The Simplest Method to Control the Gravity

Page 1

The Simplest Method to Control the Gravity Fran De Aquino Maranhao State University, Physics Department, S.Luis/MA, Brazil. Copyright© 2010 by Fran De Aquino. All Rights Reserved.

In this paper we show the simplest method to control the gravity (BR Patent Number:

PI0805046-5, July 31, 2008). In this Appendix we show the simplest method to control the gravity. Consider a body with mass density ρ and

i0

the following electric characteristics: μ r , ε r , σ (relative permeability, relative permittivity and electric conductivity, respectively). Through this body, passes an electric current I , which is the sum of a sinusoidal current iosc = i0 sin ωt and

IDC

I = IDC + iosc

I = I DC + i0 sin ωt ; ω = 2πf . If i0 << I DC then I ≅ I DC . Thus, the current I varies with the frequency f , but the the DC current I DC , i.e.,

variation of its intensity is quite small in comparison with I DC , i.e., I will be practically constant (Fig. 1A). This is of fundamental importance for maintaining the value of the gravitational mass of the body, m g , sufficiently stable during all the time. The gravitational mass of the body is given by [1]

⎧ ⎡ 2 ⎤⎫ ⎛ nrU ⎞ ⎥⎪ ⎪ ⎢ ⎟ −1 m mg = ⎨1− 2 1+ ⎜ ⎢ ⎜ m c2 ⎟ ⎥⎬ i0 ⎪ ⎢ ⎝ i0 ⎠ ⎥⎪ ⎦⎭ ⎩ ⎣ where U ,

is

the

electromagnetic

( A1) energy

absorbed by the body and nr is the index of refraction of the body. Equation (A1) can also be rewritten in the following form 2 ⎧ ⎡ ⎤⎫ ⎛ ⎞ n W ⎪ ⎪ r ⎢ ⎜ ⎟ = ⎨1 − 2 1 + − 1⎥ ⎬ 2 ⎜ ⎟ ⎢ ⎥ mi 0 ⎪ ⎝ρ c ⎠ ⎢⎣ ⎥⎦ ⎪⎭ ⎩

W =U V

is

electromagnetic energy and

the

( A2 )

density

ρ = mi 0 V

of

is the

density of inertial mass. The instantaneous values of the density of electromagnetic energy in an electromagnetic field can be deduced from Maxwell’s equations and has the following expression

W = 12 ε E 2 + 12 μH 2

Fig. A1 - The electric current I varies with frequency f . But the variation of I is quite small in comparison with I DC due to io << I DC . In this way, we can consider I ≅ I DC . where E = E m sin ωt and

H = H sin ωt are the

instantaneous values of the electric field and the magnetic field respectively. It is known that B = μH , E B = ω k r [11] and

v=

dz ω = = dt κ r

c

ε r μr ⎛ 2 ⎜ 1 + (σ ωε ) + 1⎞⎟ 2 ⎝

( A4)

kr is the real part of the propagation r vector k (also called phase constant ); r k = k = k r + iki ; ε , μ and σ, are the where

mg

where,

t

( A3)

electromagnetic characteristics of the medium in which the incident (or emitted) radiation is −12 propagating( ε = εrε0 ; ε 0 = 8.854×10 F / m ;μ =

μr μ0

known

where that

σ = 0 and ε r = μ r

μ0 = 4π ×10−7 H / m ).

It is

for free-space = 1 . Then Eq. (A4) gives

v=c From (A4), we see that the index of refraction nr = c v is given by


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.