ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Frequency Adaptive Fractional Order Repetitive Control of Shunt Active Power Filters ABSTRACT: Repetitive control which can achieve zero steady-state error tracking of any periodic signal with known integer period, offers active power filters a promising accurate current control scheme to compensate the harmonic distortion caused by nonlinear loads. However, classical repetitive control cannot exactly compensate periodic signals of variable frequency, and would lead to significant performance degradation of active power filters. In this paper a fractional order repetitive control strategy at fixed sampling rate is proposed to deal with any periodic signal of variable frequency, where a Lagrange interpolation based fractional delay filter is used to approximate the factional delay items. The synthesis and analysis of fractional-order repetitive control systems are also presented. The proposed fractional-order repetitive control offers fast on-line tuning of the fractional delay and the fast update of the coefficients, and then provides active power filters with a simple but very accurate real-time frequency adaptive control solution to the elimination of harmonic distortions under grid frequency variations. A case study of single-phase shunt active power filter is conducted. Experimental results are provided to demonstrate the validity of the proposed fractional-order repetitive control.
KEYWORDS: 1. Active power filter 2. Fractional order 3.
Repetitive control
4. Frequency variation
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245