CSIRO PUBLISHING
AustralianJournalofBotany
https://doi.org/10.1071/BT20089
Athreatenedecologicalcommunity:researchadvances andprioritiesforBanksiawoodlands
TurnerReviewNo.26
AlisonL.Ritchie A,B,K,LaurenN.Svejcar B,C,BronwynM.Ayre A,B,JulianBolleter D , AaronBrace E,MichaelD.Craig A,C,BelindaDavis B,RobertA.Davis A,E,EddieJ.B.vanEtten E , JosephB.Fontaine C,WilliamM.Fowler C,I,RayH.Froend E,ChristineGroom A , GilesE.S.J.Hardy C,F,PaulaHooper D,AnnaJ.M.Hopkins E,MichaelHughes C , SiegfriedL.Krauss A,B,MatthiasLeopold G,BenP.Miller A,B,H,RussellG.Miller B,C,H , CristinaE.Ramalho A,KatinkaX.Ruthrof C,H,ChristopherShawF,JasonC.Stevens A,B , RyanTangney B,J,LeonieE.Valentine A,ErikJ.Veneklaas A,G andRichardJ.Hobbs A
ASchoolofBiologicalSciences,TheUniversityofWesternAustralia,35StirlingHighway, Crawley,WA6009,Australia.
BKingsParkScience,BiodiversityandConservationScience,DepartmentofBiodiversity, ConservationandAttractions,2KattidjClose,KingsPark,WA6005,Australia.
CEnvironmentalandConservationSciences,CollegeofScience,Health,EngineeringandEducation, MurdochUniversity,90SouthStreet,Murdoch,WA6150,Australia.
DAustraliaUrbanDesignResearchCentre,SchoolofDesign,TheUniversityofWesternAustralia, 35StirlingHighway,Crawley,WA6005,Australia.
ECentreforEcosystemManagement,SchoolofScience,EdithCowanUniversity,270JoondalupDrive, Joondalup,WA6027,Australia.
FCentreforPhytophthoraScienceandManagement,MurdochUniversity,90SouthStreet,Murdoch, WA6150,Australia.
GUWASchoolofAgricultureandEnvironment,TheUniversityofWesternAustralia,35StirlingHighway, Crawley,WA6005,Australia.
HBiodiversityandConservationScience,DepartmentofBiodiversity,ConservationandAttractions, 17DickPerryAvenue,Kensington,WA6151,Australia.
IParksandWildlifeService,DepartmentofBiodiversity,ConservationandAttractions,POBox1266, Mandurah,WA6210,Australia.
JCentreforEcosystemScience,SchoolofBiological,EarthandEnvironmentalSciences, UniversityofNewSouthWales,Sydney,NSW2052,Australia.
KCorrespondingauthor.Email:alison.ritchie@uwa.edu.au
Abstract. Therapidexpansionofurbanareasworldwideisleadingtonativehabitatlossandecosystem fragmentationanddegradation.Althoughthestudyofurbanisation’simpactonbiodiversityisgainingincreasing interestglobally,thereisstilladisconnectbetweenresearchrecommendationsandurbanisationstrategies.Expansion ofthePerthmetropolitanareaontheSwanCoastalPlaininsouth-westernAustralia,oneoftheworld’sthirty-six biodiversityhotspots,continuestoaffecttheBanksiaWoodlands(BWs)ecosystem,afederallylistedThreatened EcologicalCommunity(TEC).Here,weutilisetheframeworkofa1989reviewofthestateofknowledgeofBWs ecologyandconservationtoexaminescientifi cadvancesmadeinunderstandingthecomposition,processesand functionsofBWsandBWs’ speciesoverthelast30years.Wehighlightkeyadvancesinourunderstandingofthe ecologicalfunctionandroleofmechanismsinBWsthatarecriticaltothemanagementofthisecosystem.Themost encouragingchangesince1989istheintegrationofresearchbetweenhistoricallydisparateecologicaldisciplines.We outlineremainingecologicalknowledgegapsandidentifykeyresearchprioritiestoimproveconservationeffortsfor thisTEC.WepromoteaholisticconsiderationofBWswithourreviewprovidingacomprehensivedocumentthat researchers,plannersandmanagersmayreference.Toeffectivelyconserveecosystemsthreatenedbyurbanexpansion, arangeofstakeholdersmustbeinvolvedinthedevelopmentandimplementationofbestpracticestoconserveand maintainbothbiodiversityandhumanwellbeing.
Keywords: SwanCoastalPlain,biodiversityhotspot,MediterraneanClimateEcosystem,synthesis,urbanisation.
Received 27 July 2020, accepted 22 January 2021, published online 10 March 2021
Introduction
Urbanlandcoverisprojectedtoincreaseby1.5millionsquare kilometresworldwide,andurbanpopulationsriseto5billion peopleby2030(Seto etal 2011).Thisgrowthisforecastto havehighimpactsonnativespeciesandecosystems(Hahs etal 2009 ;Seto etal 2011),makingtheconservationof remnantecosystemswithinurbanmatricescritical(McCarthy etal 2006;Lawson etal 2008;Wintle etal 2019),andthe utilisationofscienti ficknowledgeforinformingurbanisation strategiesimperative.InAustralia,citiesaregenerally recognisedashotspotsforthreatenedspecies(Ives etal. 2016 ).Anexampleofanurbanareaundergoingthe challengeofbalancingincreasedurbanisationpressuresand conservationofbiodiversityisthemetropolitanregionof Perth,WesternAustralia.Perthisrepresentativeof manycitiessittingwithinglobalbiodiversityhotspotswhere rapidurbandevelopmenthasresultedinextensivelossof nativeecosystems.
PerthislocatedontheSwanCoastalPlain(SCP)inSouthwesternAustralia(seeFig. 1),wherethedominantvegetation communityisBanksiawoodlands(BWs).TheSouthWestern AustralianFloristicRegion(SWAFR)inwhichtheSCPsitsis oneofonlytworecognisedglobalbiodiversityhotspotsin Australia(Marchese 2015 ),andoneoftheworld ’s fi ve MediterraneanClimateEcosystems,whichischaracterised bycool,wetwintersandhot,drysummers(Cowling etal 1996 ).However,ashiftinclimaticconditionshavebeen occurringregionallysincethe1970s(Bates etal. 2008 ). Climatechangeisamajorchallengetotheconservation andrestorationoftheBWsecosystemandthespeciesit supports.Long-termdeclinesinrainfallhaveoccurredsince themid-1970s,withcloseto14%lesswinterrainfallasof 2004(Bates etal 2008 )(seeFig. 2),andaveragetemperatures haverisenby0.15 Cperdecadeoverthesametimeperiod (Bates etal 2008 ;CSIROandBOM 2015 ).Thewarmingand dryingtrends,andextremeevents,throughouttheSWAFR region,togetherwithconcurrentlandtransformation(e.g.land clearing,habitatfragmentationandincreasedurban infrastructure)(CSIROandBOM 2015)areexpectedto drivedeclinesindistributionanddiversityof fl oral (Fitzpatrick etal 2008 ;Yates etal 2010)andfaunal species(Ruthrof etal 2018 ).Someauthorshighlightthat withoutintervention,plantextinctionsarepredictedtoexceed 2000speciesinSouth-westernAustralia,makingitoneofthe mostvulnerablebiodiversityhotspotsglobally(Malcolm etal. 2006 ).Thisriskofspecieslossincreasestheimportance oftheprotectionandconservationofintact,andrestoration ofdegraded,BWsareas.
ThemostseverelandtransformationsontheSCPinclude landclearingforagriculture,mining,silviculture,housing,and associatedurbaninfrastructure.MappingofremnantBWshas beenconductedatvaryingspatialandtaxonomicscalestohelp captureareasmostaffectedandidentify fi ne-scalevariationin
BWsspeciescomposition.By2016,between50and60%of theoriginalextentofthewoodlandshadbeencleared(Fig. 1a) (CommonwealthofAustralia 2016 a).DeclineinBWsextentis mostprofoundinthePerthmetropolitanareawith72% estimatedtohavebeencleared(CommonwealthofAustralia 2016a).Currentratesofclearingareestimatedat0.34%loss (byarea)peryearoverall,butaremuchgreaterinthePerth metropolitanarea,at~1.2%annually(Commonwealthof Australia 2016 a).Inadditiontoclearing,muchremaining BWsbushlandinthemetropolitanareaisnowhighly fragmented(Fig. 1)anddegraded,decreasingthe connectivitybetweenremnantpatchesandincreasingthe riskofinvasionbyintroducedspecies.In2016,BWswere listedasaThreatenedEcologicalCommunity(TEC)under Australia’snationalenvironmentallaw,the Environmental ProtectionandBiodiversityConservationAct 1999(EPBC Act)giventheoveralldeclineinthesystem’sgeographic extent,anditshighlyfragmentedanddegradednature. Thesethreats,andthepersistentrisksdescribedinthe listingadvicemakethisacriticaltimetoevaluateour understandingofthestructure,compositionandfunctioning oftheBWsecologicalcommunity.Ecologicalcommunities comprisemultipleecologicalprocessesandspecies interactions;however,mechanismsofecologicalfunctioning arerarelyreportedindetailwithinTEClistings(Saunders etal. 2020).Lackofinformationonecologicalprocesses andspeciesinteractionscanpreventeffectiveconservation andrecoveryeffortsforTECs(Saunders etal. 2020).
Currently,theprimarypurposeofclearingisto accommodatearapidlyexpandingurbanpopulation. Thirtyyearsago,whenPerth’spopulationwas~0.9million people,BWswereconsideredcommonacrosstheSCP (HopperandBurbidge 1989).However,by2018,the populationhadgrown130%(to >2millionpeople) (Table 1)and,forexample,theclearingof90haof ecologicallysigni fi cantremnantBWsbushlandandadjacent wetlandfortransportnetworkswasanissuethatdifferentiated partypoliticalelectioncampaignsatthestategovernment level(Gaynor etal 2018).Thecommunityresponsetothis clearingofremnantbushlanddemonstratestheneedforwellinformeddebateaboutthelong-termprotection,conservation andrestorationofBWswithinagrowingurbanenvironment. Thispapersummarisesthescientifi cunderstandingofthe structureandfunctioningofSCPBWsandthethreats facingthemandlistsresearchpriorityactions(Fig. 3).
ThelastmajorreviewevaluatingthestateofBWs,their ecology,functioningandecosystemmanagementoccurredin 1989(Pate 1989 ),followingasymposiumheldbytheRoyal SocietyofWesternAustralia.Extensivelandtransformation, includinghabitatfragmentation,plantpathogenspread,and invasivespeciesproliferationhavecontinuedtocause substantialdeclinesinregionalbiodiversity(Commonwealth ofAustralia 2016 b).GiventhesethreatstoBWsandthe

Fig.1. ( a )SwanCoastalPlain,WesternAustralia,( b )reservedlandsecurityandremnantvegetationacrossthegreaterPertharea,and( c )changeinurbanextentbetween1989and2019.Landuse fi gures for1989and2019derivedfromimageclassi fi cationof30-mresolutionLandsatimageryfromGoogleearthengine(Gorelick etal . 2017 ),andprocessedusingArcGIS(ver.10.6forDesktop,ver.
10.6.1.9270,EsriInc.).
Fig.2. (a)Annualmeantemperatureanomaly(1945 –2018)forPerth(PerthAirportbureaustation009021)basedona30-yearclimatology(1970–1999) withalineartrendlineshowninblack. b)Annualmeanrainfallanomaly(1945–2018)forPerth(PerthAirportbureaustation009021)basedona30-year climatology(1970–1999)withalineartrendlineshowninblack.DatatakenfromAustralianBureauofMeteorology.
speciescontainedtherein,wefeelitisofcriticalimportanceto reviewadvancesinknowledgeandsciencecommunication madesince1989.Inthisreview,wehavemaintainedasimilar structure,coveringthetopicsof(1) fl oristicsandweeds,(2) geologyandsoils,(3)waterrelationsandgroundwater management,(4)invertebrates,(5)vertebrates,(6)disease, (7) fi re,(8)miningandrestoration,and9)urbandevelopment (Fig. 3).
The1989reviewincludedtwosectionsomittedfrom thisreview;theimpactofhorticultureonBWsandforestry ontheSCP.Clearingforagricultureandhorticulturehasbeen notedasmainlyapastthreat(see ‘ApprovedConservation AdvicefortheBWs’ inCommonwealthofAustralia 2016a). Withregardtoforestry,webriefl yexploretheimpactsof Pinuspinaster (maritimepine)plantationsinsectionsdealing withwaterrelationsandgroundwatermanagement,mining andtheirassociationwithfauna.Wealsopresentacasestudy ofinteractionsbetweenspeciesandecologicalprocesses,and concludewithfuturedirectionsneededforSCPBWs researchtoinformpracticeandpolicydevelopmentand providesupportfortheirprotection,conservationand management.
Methods
Thisreviewcommencedbyinviting33BWsresearchersfrom multipleuniversitiesandgovernmentsectors,toparticipateby providingexpertiseinoneormoreoftheninelistedtopics. Twenty-nineresearchersrespondedand fi lledoutanonline Zohoform(seehttps://www.zoho.com/forms/,accessed29 January2021)toprovideasnapshotofpeer-reviewed scientificliteratureanddocumentspublishedsince1989,which wasusedtoguidethereviewpaperstructure.Theformlisted conservationandresearchquestionsposedinthe1989Banksia WoodlandsSymposiumandparticipantswereasked(1)whether thesequestionshadbeenansweredoverthelast30yearsthrough peer-reviewedpublications;(2)wherethegapsinknowledge remainand;(3)whatarethefuturedirectionsinresearchand conservationmanagementforBWs(see ‘BanksiaWoodland Reviewquestions’ sectionoftheSupplementarymaterialfor moredetails).Thereviewwasthendevelopedthrough workshops,smallerwritinggroups(all29researcherswere dividedintogroupsbasedonexpertise,andchargedwith draftingspecificsections),internalreviewandfollow-up meetingstoidentifythemostpertinentinformationtoBWs ecosystemresearch,practiceandpolicydevelopment.
Table1.AustralianBureauofStatisticsCensusofPopulationandHousingin1986,1991,2016and2018(AustralianBureauofStatistics 1988, 1993, 2017, 2019),andthenumberofWAlistedthreatenedandpriorityspeciesthatarelikelytooccurintheBanksiawoodlandsoftheSwanCoastalPlain ecologicalcommunitylistedinHopperandBurbidge(1989)andunderthe WildlifeConservationAct 1950asof2015
19862018
Persons8957102059484
1991census2016census
Persons11433781943858
Privatedwellings453076818081
Households
Totalhouseholds541817776014
Averagehouseholdsize(persons)2.522.55
TransportmethodtoworkA
NumberPercentageof workingpopulation
NumberPercentageof workingpopulation
Publictransport(train,bus,ferry,tram)276745.8%599276.5% Car31550465.7%63232268.7% Bicycleandwalk151053.1%283523.1% Bikeorscooter38970.8%43440.5% Otherinc.taxi57091.2%129471.4%
Motorvehicles
Numberofmotorvehicles4034131336394
Totalhouseholdswith2motorvehicles146515271887
Totalhouseholdswith3+motorvehicles55851143518
Numberofthreatenedandpriority floraandfaunaThreatenedorendangeredin1989Threatenedin2015Priorityin2015 TaxaB Flora32021 Reptiles24 Birds032 Mammals043 Invertebrates028
ATransportmethodtoworkusingonemethod. BSeefullspecieslistinCommonwealthofAustralia(2016a).

Fig.3. Banksiawoodlandsareacomplexecosystemwithhighbiodiversity.Thisreviewpaperaddressesninemainareasofscientificresearchfocusing onthisecosystem: fl oristicsandweeds,waterrelationsandgroundwatermanagement,geologyandsoils,invertebrates,vertebrates,disease, fire,urban development,andminingandrestoration.Theintensityanddirectionofinteractionsbetweentheseco-occurringthemesvariesinbothspaceandtime,and ischallengedwithchangesinclimate.
Topics
Floristicsandweeds
TheSCPBWsecologicalcommunityisalowwoodland dominated(orco-dominated)by Banksia (Proteaceae)trees, mostcommonly B.attenuata R.Brand B.menziesii R.Br., sometimeswithscatteredeucalyptsandothertreespecies presentwithinorabovethe Banksia canopy.The understoreyisrichinplantspecies,includingsclerophyllous shrubs,sedges,rushesandgeophytes(forthefullecological communityde fi nitionseeCommonwealthofAustralia 2016a). TheTEClistingobservesthat ‘manyunderstoreyspecies arelocallyendemicandmostdonotoccuracrossthefull rangeoftheecologicalcommunity ’ andthatsurveyshave recordedmorethan600nativeplanttaxa(Commonwealthof Australia 2016a).Banksiawoodlandsarehighlyvariablein compositionacrosstheirrangeand,assuch,thecommunity provideshabitatformanynative fl ora,fungiandfauna,with remainingpatchesprovidingimportantwildlifecorridorsand refugesinamostlyfragmentedlandscape.
DoddandGrif fin(1989 )providedgeneraldescriptionsof BWsvegetationandrecognisedthat fl oristictypes,vegetation associationsandtheirenvironmentalvariationhadyettobe determined.Further,theyrecognisedthatrareandendemic fl oraofBWshadnotbeenfullyassessed,withonlythree declaredrare floraspecies(allorchids)recognisedatthetime (HopperandBurbidge 1989).ThemappingoftheBWs vegetationcommunityischallengingbecauseitisoneof manyecosystemsthatco-occurinamatrixthroughoutthe SCPmakingtheextentandnumberofspeciescontainedwithin BWsdif ficulttoquantify.
Notlongafterthe1989BWssymposium,several fl oristic surveyswereconductedthatencompassedmuchoftheSCP (Griffi nandKeighery 1989 ;Gibson etal. 1994 ;Grif fi n 1994; DepartmentofEnvironmentalProtection 1996 ;Governmentof WesternAustralia 2000 ).Amongthese,Gibson etal.(1994) classi fi ed fl oristicdata(speciespresenceorabsence)from fi ve hundredandnine100-m2 quadratsbetweenBusseltonandthe MooreRiver(Fig. 1a)toderive43FloristicCommunityTypes (FCTs),ofwhich10FCTswererecognisedasBWstypes (Table 2).Anextra613quadratswereaddedandanalysedin 1996,whichidentifi edafurthertwoBWsFCTsontheSCP (DepartmentofEnvironmentalProtection 1996 ;Government ofWesternAustralia 2000 );Table 2).Floristicsurveys conductedbetweenMooreRiverandJurienBayonthe northernSCPidenti fiedanadditional10BWsFCTs (Griffi nandKeighery 1989;Griffi n 1994 ),althoughthese havenotbeenintegratedwiththesouthernSCP classi fi cation.Inallthesesurveys, fl oristicvariationacross quadratswasconsistentlycorrelatedwithsoilcharacteristics, includingsoilmoistureregimes,whicharerelatedtodepthto groundwater(Zencich etal . 2002;Groom 2004 ),andsoiltype andage,whichislinkedtothedegreeofsoilleachingand availablenutrients(McArthur etal. 2004 ).Intotal,20BWs FCTshavebeenidenti fi edontheSCPandtheseformthebasis ofcurrentconservationassessments,with3presentlylistedas TECsand4asPriorityEcologicalCommunitiesatstatelevel (KeigheryandKeighery 2016 ).TheCommonwealthlisting
assessedBWsoftheSCPandadjoiningareasintheirentirety (CommonwealthofAustralia 2016 a).Theseadjoiningareas includetheWhicherScarp(southofBusselton,Fig. 4), adjacenttothesouthernboundaryoftheSCP,whichhas sevenrecognised Banksia -dominatedFCTs,threeofwhich arelistedasPriorityEcologicalCommunitiesatthestatelevel (Keighery etal 2008;CommonwealthofAustralia 2016 a). Although80reportedthreatened fl oraspeciesoccuronthe SCP(seeFloraBaseoftheWesternAustralianHerbariumat https:// fl orabase.dpaw.wa.gov.au/,accessed2June2020),itis notclearhowmanyofthesearerestrictedtoorstronglyfavour BWs.KeigheryandKeighery(2016)reported20 ‘uncommon’ speciesthatarecompletely,ormostly,confi nedtotheBWsof thePertharea,including fi vethreatenedandsevenpriority fl oraspeciesunderstatelegislation.TheCommonwealthof Australia(2016a)listed20threatenedand21priorityspecies ‘likelytooccur’ inBWsoftheSCP,althoughmoreresearchis neededtoclarifythe fi delityofthesespeciestoBWs (Table 1).Most(butnotall)ofthethreatenedspecieshave approvedconservationadviceorrecoveryplansinplacewhich includesassessmentoftheirconservationstatusbasedontheir knowndistribution,populationsizes,habitat,reproductive ecologyandthreats.However,studiesintotheconservation biologyofindividualthreatenedspeciesarelimited,withrare orchidsbeingthebeststudiedgroup,especiallyintermsof reproductiveecologyandpopulationgenetics(e.g.Hopperand Brown 2007;Swarts etal 2009;Swarts etal 2010 ;Menz etal 2015).Othertaxahavereceivedlessresearchattention(e.g. Stace 1995 ;Monks 1999;Close etal 2006;Nield etal 2009), withsomethreatenedspecies,suchas Tetrariaaustraliensis C.B.Clarke(aperennial,tuftedsedge)havingnopublished biologicalinformation.Ramalho etal.(2014)observedthat mostnativespecies(70%)in30BWssiteswereonlyfoundin asmallproportionofthosesites,whichisconsistentwiththe highgeographicspeciesturnoverknownfortheSWAFR (HopperandGioia 2004;Jones etal. 2016 ;Gibson etal. 2017;Tsakalos etal . 2018 ).
Keighery(1989 )conductedthe fi rstandonly comprehensivesurveyofintroduced(non-native)plantsin BWs,collatingdataonthetaxonomy,life-formandorigin of120naturalisedplantspeciesfoundacross100sites.The invasivetraitsofthosespecies(e.g.rateofspread,degreeof impact,fecundity,responsetodisturbance),andappropriate managementapproaches,werestilllargelyunknownthen.In the30yearssincethecompilationofanintroducedplantlistin BWsbyKeighery(1989 ),aninventoryofintroducedspecies oftheSCPisavailablethrough fl oristicdatabases(Keighery etal 2012 ).Mostofthe fl oristicsurveysconductedsince1989 haverecordedintroducedspeciespresence,andsothelistof BWsexotic fl oraislikelytobemuchlargernow,buthasyetto becollated.Intermsofintroducedspeciesabundance, Ramalho etal.(2014)identi fi ed11specieswith 5%cover inatleastoneplot;allbuttwoofthesespecieswereonthelist ofKeighery(1989 ).
ThekeydriversofplantinvasioninBWshavebeen partiallyinvestigated,althoughthereislittlepublished informationabouttheinvasivetraitsofmostspecies. Ramalho etal.(2014)exploredtheeffectsoffragmentation,
Table2.DetailsofrecognisedBanksiawoodland floristiccommunitytypes(FCTs)oftheSwanCoastalPlain(SCP)asdefinedbyGibson etal.(1994) andDepartmentofEnvironmentalProtection(1996)forsouthernSCP;andGriffinandKeighery(1989)andGriffin(1994)fornorthernSCP ConservationstatusasperState(WA)listing(dated21January2019),exceptwhereindicated:EN,endangered;CR,criticallyendangered. Av.spp.richness,speciesrichnessmeasuredin100-m2 plots
FCTcodeDescriptionAv.spp. richness GeneraldistributionConservation status
Southerntypes(southofMooreRiver)
20a Banksiaattenuata woodlandsoverspeciesrichdenseshrublands65Perthmetro(Forrestfield,Koondoola),ChitteringEN
20bEastern Banksiaattenuata or Eucalyptusmarginata woodlands60EasternSCP(GuildfordtoHarvey)EN
20cEasternshrublandsandwoodlandsA 60EasternPerthmetro(StrattontoMaddington)CR;EN (EPBCAct)
21aCentral Banksiaattenuata-Eucalyptusmarginata woodlands52GinginsouthtoBunbury
21bSouthern Banksiaattenuata woodlands58BunburytoBusseltonP3
21cLowlying Banksiaattenuata woodlandsorshrublands39GinginsouthtoBunbury(butwettersites than21a) P3
22 Banksiailicifolia woodlands30MooreRivertoPinjarraP3
23aCentral Banksiaattenuata–Banksiamenziesii woodlands59BullsbrooktoWoodmanPoint
23bNorthern Banksiaattenuata–Banksiamenziesii woodlands47NorthofPerth(Regan’sFordtoWanneroo)P3
23cB North-eastern Banksiaattenuata–Banksiamenziesii woodlands53North-westofPerth(MogumbertoGingin)
S9B Banksiaattenuata woodlandsoverdenselowshrublands39North-eastofPerth(Regan’sFordtoEllenbrook)
28Spearwood Banksiaattenuata or Banksiaattenuata–Eucalyptus woodlands 55SeabirdsouthtoThompsonsLake
NorthernTypes(northofMooreRiver)
MGinginescarpmentBanksiawoodlands42SouthernGinginScarp(rare)D NSouthernBanksiawoodlandsC 49NammingtoMooreRiver ONorthernBanksiawoodlands48CooljarlootoJurien PBanksialowwoodlandsoverdwarfscrub40 QMtLesueurBanksialowwoodlandsoverlowordwarf diversescrub 63MtLesueur(rare) D
RMtLesueurBanksialowwoodlandsoverlowordwarfscrub36MtLesueur(rare) D SBanksialowwoodlandsoverlowordwarfscrub46
TCentralBanksialowwoodlandsoverlowdiversescrub53CatabytoMooreRiver(rare) D VSpearwoodDunesBanksiawoodlandsoverlowdiversescrub52CatabytoMooreRiver(rare) D YNorthernGinginescarpmentBanksiawoodlands44NorthernGinginScarp(rare) D
AListedasEPBCecologicalcommunity: ‘ShrublandsandWoodlandsoftheeasternSwanCoastalPlain’
BReferstotypesnotoriginallyidentifiedbyGibson etal.(1994)butaddedfollowinganalysisofextraplots(DepartmentofEnvironmentalProtection 1996). TheseadditionalFCTsarecentredontheDangaraganPlateau(CommonwealthofAustralia 2016a). CAccordingtoKeigheryandKeighery(2016)gradesintoFCTssouthofMooreRiver(e.g.23b).
DNotformallyassessedbutreportedas ‘relativelyrare’ or ‘highlyrestricted’ byKeigheryandKeighery(2016).
remnantage,herbivory,andproximitytothecitycentreon plantinvasion.Thestudyindicatedthatadeclineinnative herbaceousspeciesabundancewasassociatedwithincreased abundanceofinvasiveintroducedherbaceousspecies (Ramalho etal . 2014 ).Similarly,Fisher etal.(2006 , 2009a, 2009b)investigatedtheeffectsofintroducedspecies seedbank, fi re,andsoilnutrientstatusonplantinvasionand foundthatinvasivespeciesalterthenutrientcompositionof soilsandcreateconditionsunconducivefornativespecies.The roleof fi reinpromotinginvasionwasalsoinvestigatedby MilbergandLamont(1995 ),Ruthrof etal .(2003 ),Ruthrof (2004 )andBrown etal.(2016),amongothers. Ehrharta calycina Sm.(perennialveldtgrass),aninvasiveperennial grassoriginatingfromsouthernAfrica,isthemostseriousand hencebestunderstoodoftheinvasiveplantsinBWs(Brown andBrooks 2003).Theabilityofthisspeciestoproduce abundantseed,maintainalargesoilseedbank,andquickly regeneratefollowing fi reorotherdisturbancesoftenwithinthe fi rstgrowingseasoncontributetoitscompetitiveadvantage overmanynativeunderstoreyspecies,withfrequent fi re facilitatingitsprogressivedomination(Fisher etal 2009a, 2009 b).Additionally,nutrientlevelsaretypicallyhigherunder andwithin E.calycina plants(comparedwithnatives), suggestingdifferencesinnutrientacquisitionandrecycling (Fisher etal . 2006 ).Althoughcasestudiesofsuccessful managementstrategiesexist(BrownandBrooks 2003 ), comprehensiveregionalmappingofinvasiveplantspecies islacking,andthereforelarge-scaleconservationeffortsare constrained.
ThelackofacomprehensivemapofFCTsandspecies distribution(bothnativeandintroduced)inBWsandalimited understandingthespatialpatternsof b-diversityhave constrainedconservationplanningeffortsontheSCP.Such informationisimportantfortheassessmentofindividualFCTs andofTECthreats,particularlyinthecontextofimpact assessmentstudies,andisalsocrucialtohelpguide prioritisationforintegrationofnewareasintothe conservationreservenetwork.ConservationofBWs,with theirhighnumberofFCTsandpredictedhigh b-diversity, requiresanetworkofproximateconservationreserves

Fig.4. Locationsofareasmentionedinthisreview(1)Boonanarring Reserve,(2)YellagongaRegionalPark,(3)GnangaraMound,(4) KoondoolaRegionalBushland,(5)KingsPark,(6)CanningRiver RegionalPark,(7)JandakotRegionalPark,and(8)WhicherScarp.
throughouttheSCP,whiletargetingspeci fi cFCTsinorderto representmostvegetationcomplexes,andthreatened fl ora (Ramalho etal 2013).Thecurrentmodelprioritizes conservationatthecityfringeandwhereurbanexpansion isunlikely.TheBushForeverProject(GovernmentofWestern Australia 2000 )aimedtocreatesuchanetworkwithinthe Perthmetropolitanarea.However,becauseofdevelopment pressuresandhigheconomiclandvalues,mostBushForever siteshavenotasyetbeenembeddedintheconservation
network(Dhakal 2014 ).Someoftheselandshavebeen partiallycleared,andothersremainformallyunprotected. Also,offsetpoliciesallowtheclearingofurbanandperiurbanBWsin ‘exchange’ forlandconservationinruralareas (becauseofdifferencesintheiravailabilityforprotection), althoughsomeconsiderthattheyareunlikelytoconservethe same fl oristicassetsthatarecleared(Thorn etal 2018).
Priorityresearch
DespitethegeneralunderstandingthatBWs fl oristic variationisin fl uencedbyregionalnorth –south(climaterelated),east–west(nutrientavailability-related),andlocal (topography-related)environmentalgradients(Commonwealth ofAustralia 2016a),threemajorknowledgegapsareyettobe resolved:
* ThecharacterisationofBWsspeciesturnoverpatternsand relationshipswithsoilorlandform.
* MappingBWs floristiccommunitiesascurrentlyunderstood.
* Consolidationofthehugeamountofexisting floristicdata availableacrossdisparatesources(consultants,academics, governmentagenciesandcommunitygroups)inapublicly accessibleinformationsystemthatwouldenableupdates andimprovementinclassifi cationandmappingovertime, aswellasidentifi cationofpoorlyknownareasand communities.
Geologyandsoils
SemeniukandGlassford(1989 )identi fi edtwoprimaryareasas criticaltoourunderstandingofthedunesystemsoftheSCP: (1)asystematicdescriptionofthedunes(landform, stratigraphy,soils,interrelationshipsandagestructure),and (2)howthesesystematicdescriptionsinformdelineationsof vegetationhabitats.Afewlarge-scalestudiesdescribingdune zonationbasedonmineralogicalanalysisandsoilphysical characteristicshavebeenpublishedinthelast30years (Bastian 1996;Turner etal. 2018 ).Threemainduneunits aredistinguishedwithintheregionbasedonparentsand deposits:theQuindalup(~5000yearsold),Spearwood (20000–80000yearsold)andBassendean(<120000years old)DuneSystems(Fig. 4)(McArthurandBettenay 1974; Turner etal 2018).Thesethreedunesystemsrepresentanatural chronosequencethatformedasaresultofrecedingocean levelsandsubsequentdissolutionofparentmaterial(Bastian 1996).TheSWAFRregionisclassifiedasan ‘oldclimatically bufferedinfertilelandscape’ (Hopper etal 2016),andsoil nutrientcontent,specificallynitrogen(N)andphosphorus(P), andpHalldeclinefromyoungesttooldestdune(Turner etal 2018).
Acriticalcomponentofsoilresearchthathasemergedsince 1989istheunderstandingofpreferential fl owpathwaysand hydraulicattributesofsurfacesoils(Salama etal 2005 ),which affectbothlandandaquifermanagement.Landmanagement practicesarehighlyreliantonanunderstandingofsurfacesoil propertiessuchashydrophobicityandseasonalchangesin hydraulicconductivity(RyeandSmettem 2015, 2017, 2018). Similarly,surfacesoilhydraulicpropertieshavedirectimpacts onaquiferresponseandwaterlevelpatterns(Salama etal 2005),whichinturn,arelikelytoaffectvegetation
compositionanddistribution(see ‘Waterrelationsandground watermanagement’).
Distinctecohydrologicalhabitatsareknowntobecriticalto manyplantspecies(Canham etal. 2009)andvegetation compositionandproductionistiedtosoilpropertiesthat varyacrosstheSCP(Turner etal. 2018).Adeeper understandingofthecomplexrelationsbetweenplant speciesdistributionandsoilphysicalandchemical propertiesarethereforevitaltotheconservationofmany speciesinBWs.Forexample,manyspeciesareknownto havelandform-specifi crequirementsforpersistence,suchas duneswalepositionsthathaveashallowdepthtothewater tableanddunetopspeciesthatrequirebetterdrainedsoils (Zencich etal 2002;Canham etal 2012 andsee ‘Water relationsandgroundwatermanagement’).Thus,the considerationandstudyofthedistributionofthin subsurfaceclaybandsandpalaeosolsthathelpincrease waterretentionandnutrientavailabilityonisolatedsmall areasisrequired.Theintensityofinteractionsbetween speciesandplantfunctionaltypeswithinaspecifi c landformmaychangeduetoalteredsoilphysicaland chemicalcharacteristics,forexample,someduneswales mayhaveincreasednutrientcontentsduetoagricultural run-offthatmayaffectthespatialstructureandspecies composition.
Researchonsoilbiologyandplantrootassociationshas greatlyincreasedsince1989.PlantspeciesnativetoBWsare knowntohavenumerousrootadaptations,growthformsand complexsoil –rootinteractionsrelatedwithlowsoilfertility (DoddandGrif fin 1989 ;Lamont 2003 ). Banksia spp.andmost otherProteaceaespp.aroundtheworldarenon-mycorrhizal buthaveproteoid(cluster)rootsthatarespecialisedto ‘mine’ particularlyscarceelementslikephosphorusandcertain micronutrients(testedbyLambers etal 2011 inBWs). ClusterrootsalsooccurinsomeFabaceae,anddauciform rootsofCyperaceaearesimilarinstructureandfunction. Mycorrhizalassociationsbetweenrootsandfungalspecies arealsoverycommoninBWsasameansofacquiringsoil nutrients,especiallywithincreasingtimesince fi re(Pateand Bell 1999).Mycorrhizalmediatedstrategiesfornutrient acquisitionlikelyplayacriticalroleinplant–plant interactions,inparticularcompetitionforlimitedsoil nutrientsduringperiodsofhighsurfacesoilmoisture(Bell etal 1995 ).Similarly,BWsplantspeciesaffecttheactivity anddistributionofsoilmicrobialcommunities(Marschner etal 2005).ThroughoutBWs,~20%ofwoodyshrub speciesdemonstratestrongarbuscularmycorrhizal associations,whereas~13%ofherbaceousspeciesexhibit eitherAMororchid-typemycorrhizalassociations(Pate 1994).Similarly,manyspecieswithinBWsareknownto haveectomycorrhizalassociationsthatmaypromote nutrientacquisition(Lambers etal 2008 ).Mycorrhiza clearlyplayacriticalroleinspeciesmaintenanceand reproduction,suchasthecriticallinkbetweenorchid germinationandmycorrhiza(Bonnardeaux etal . 2007 ). However,thedistribution,diversityandabundanceofsoil mycorrhizalspeciesthroughoutintactBWsisnotwell understood,norarethespatio-temporalassociations
betweenvarioussoilmicrobesandplantandanimalspecies, climateandsoiltypes.
Impactsofdisturbance,suchasminingandsoilnutrient changesduetoagriculture,introducedspeciesandintensi fi ed landuse,onmicrobialspeciesdiversityandpersistenceis poorlyquanti fi ed.Birnbaum etal.(2017 )foundthatsoil freshlystrippedfromintactwoodlandssufferslarge declinesinsoilmicrobialactivitythatmaytake severalyearstorecover.Manyspeciesofmycorrhizalfungi andsoil-dwellingbiotalikelyexistinBWs,andtheirresponse todisturbanceswilllikelyvary.However,moreresearchis neededtoimproveourunderstandingofthestructureand functioningofsoilmicrobialsystems.
Priorityresearch
ManyadvancesinourunderstandingofBWssoilshave beenmade,butcriticalgapsstillexistincludingthefollowing:
* Alargeregionalclassifi cationthatdelineatesspecifi c aboveandbelow-groundspeciescompositionasitrelates tolandformandsoilphysicalandchemicalpropertiesis neededtodeterminewhethercertainsoilcharacteristics arelinkedwithcompositionanddistributionof fl oraland faunalspecies.
* Researchonthesmall-scalepatternsofsoilswithinthe chrono-sequence(redistributionofmaterialinrecent times,plant–microbe–soilfeedbacks,impactofaltered hydrologicalwettingcyclesand fi reregimes)isessential tounderstandingplantcommunitiesandtheirspecies distributions.
* Thestudyofsoilmicrobialcommunitiesingreaterdepth byusingnewmethodology(e.g.eDNAmetabarcoding),to enumeratespeciescompositionandexamineecological functioningandresponsesorresiliencetodisturbance.
Waterrelationsandgroundwatermanagement
ThedunalsystemsthatcarryBWshaveexperiencedadrying trendduetoreducedprecipitation(CSIROandBOM 2015 ) andincreasedgroundwaterexploitation(SommerandFroend 2011 ).Groundwaterlevelshavedropped1.8mbetween1998 and2016withinthePerthmetropolitanregion(Departmentof WaterandEnvironmentalRegulation 2019 ),causingdeclines ingroundwaterdependentvegetation(FroendandSommer 2010 ).Overthelast30years,therehasbeenimproved understandingoftheimportanceofgroundwater,including responsesofvegetationtoreducedaccess,andmanagementof groundwaterresourcestominimiseimpactsonvegetation (Barron etal 2014;SommerandFroend 2014;Rohde etal 2017 ).BoundedbytheSwanRiver(south),MooreRiverand GinginBrook(north),DarlingScarp(east)andthesouth-west Australiancoast(west)(Fig. 4),theGnangaraGroundwater Mound(GGM)isalargesandmoundunderlyingseasonaland permanentwetlands,pineplantationsandextensiveareasof BWsthatcontainsgroundwaterwhichsuppliesthecitywith freshschemewater.(McFarlane etal . 2012 ).McFarlane etal . (2012 )documentedlessonslearnedinmanaginggroundwater levelsontheGGM,inresponsetodecliningrainfallinthis regiondeterminedthatamulti-agencyapproachtolandand
waterplanningisnecessaryasinteractionsbetweenlanduse, landmanagement,andwaterextractionbecamecrucialtomeet competingsocial,economic,andenvironmentalvalues.The environmentalimpactofgroundwaterextractionhasinstigated severalstudiesonwaterrelationsofBWsplants,particularly thetreespeciespresumedvulnerabletoalteredgroundwater levels.Dryingofthevadose(unsaturated)zoneduetoreduced rainfallandincreasedtemperaturehasreceivedmuchless attention.ManyBWsplantspecies,including Banksia spp.inhigherlandscapepositions,donotrelyonaccessto groundwater(Zencich etal 2002),andtheimpactofdrying soilsmightbecrucialfortheirpersistence.
DoddandGrif fi n(1989 )outlinedtheseasonalvariationin transpirationof Banksia canopyspecies,whichwerepositively correlatedwithincreasedevaporativedemand(highestin summer).Since1989,ourunderstandingofunderstoreyand overstoreyspecieswaterutilisationandtheinteractionsof specieswithinthesystemhasincreased,andhasprogressed towardsunderstandingdifferencesbetweenspeciesinBWs andtheirvulnerabilitytoreducedwateravailability.Published studiesvaryfromphysiologicalstudiesofsingleplantwater use(Pate etal . 1998 ),tocommunityresponsestogroundwater drawdownbymonitoringoflong-termsites(Froendand Sommer 2010).ThemoststudiedmassdeclineinBWs vegetation(thusfar),asaconsequenceofgroundwater drawdown,occurredduringthesummerof1990–1991 (Groom etal 2000 a),whichledtoaprocessionofstudies aimedatunderstandingtheBWsvegetationdependencyon groundwater,andresponsetochangesingroundwater availability(Groom etal 2000 a, 2000b, 2001).Groom etal .(2000b)wasoneofthe fi rstpublishedcases correlatingmortalityinBWsunderstoreyspecieswithdepth togroundwater.Myrtaceousspeciesfoundatsitesofshallow depthtowatertable(<1m)wereobservedtohavethegreatest reductioninpopulationsizeasgroundwaterlevelsdeclined (Groom etal. 2000 b).Attwolong-termmonitoringsites,high ratesofdrawdown(50cmyear 1)resultingfromgroundwater abstractionanddroughtcausedrapidchangesinBWs fl oristic composition,refl ectedina33%dissimilaritytopre-abstraction fl oristicsover12years(FroendandSommer 2010).Slower watertabledrawdown(9cmyear 1)causedamoregradual changein floristiccompositionover33years(Froendand Sommer 2010).Thepredominantbiophysicaldriverofshifts intheBWs fl oristicswasdepthtothewatertable,andthese shiftsweremoreoftenaresultofreductionintheabundanceof moresusceptiblespeciesandincreasesinmoredroughttolerantones,ratherthanbyreplacementoverthestudy period(FroendandSommer 2010).
Severalstudies(Zencich etal 2002;VeneklaasandPoot 2003 ;Groom 2004 ;FroendandSommer 2010;Sommerand Froend 2014 ;Muler etal 2018 b)havehighlightedspecies differencesinwaterusepatternsrelatingtorootingdepth relativetogroundwaterdepth.Understoreyshrubswith relativelydeeproots(e.g. Adenanthoscygnorum Diels, Eremaeapauci flora (Endl.)Druceand Stirlingialatifolia (R.Br.)Streud.)canbedependentongroundwaterwhere accessible(Groom 2004 ).Theyarelikelytobeaffectedby declininggroundwaterintheseareas,especiallywhere drawdownisrapid.However,shrubswithshallowroots
takeupwaterfromtheunsaturatedzoneandtherefore aresensitivetositewaterbalance(mainlydeterminedby rainfallandevaporationconditionsratherthanchangesin groundwater).Muler etal .(2018a),identi fied fi veplant functionaltypesbasedondifferencesinwaterrelationtraits between fi fteencommon,dominantBWsspeciesontheGGM adaptedtosummerwaterdefi citstress,highlightingthat specieswithoutdeepandextensiverootsystemsthatmay ormaynotprovideaccesstogroundwaterrequirehighlevels ofdroughttolerance.The fi vefunctionaltypesidenti fi edwere: specieswithleafdehydrationadaptations(groupA),drought toleratorspecies(groupB),specieswithintermediatevalues (groupC),deep-rootedspecieswithoutawatertable(groupD) anddeep-rootedspecieswithwatertablepresent(groupE) (Muler etal 2018 a).However,variationsinmicroclimatic conditionsduetoalteringvegetationstructurethroughoutBWs andinterannualvariationinclimaticconditionsmaymakethe strengthoftraitsusedtode fi nethe fivefunctionalgroupsvary bothspatiallyandtemporally(VeneklaasandPoot 2003 )as wellasplantphenotypicplasticitytoachangingclimate (Muler etal . 2018a).
Theimportanceofgroundwaterfordeep-rootedoverstorey Banksia spp.duringdrysummermonthswas fi rst demonstratedbyPate etal.(1998 )usingstableisotopes. Theseasonalimportanceofgroundwatervariesspatially withhabitattype: Banksia treesusemoregroundwaterin summerifitiswithinreachoftheirrootsystem(Zencich etal 2002 ).VeneklaasandPoot(2003)concludedthatdeeprootednessallowsdominant Banksia spp.toaccesssoil moisturethroughouttheentiresoilpro fi le,incontrastwith shrubsandherbswithshallowrootsthatexperiencegreater droughtstressduringsummerinBWsandonlyhaveaccessto surfacesoilmoisture.FroendandDrake(2006)provided physiologicalcon fi rmationthatBWstreespeciesoccurring indrier(higher)partsofthedunallandscapeareless vulnerabletodrought.Canham etal.(2009)expandedthese insightsreportingthatinwetterpartsofthelandscape,there werenobetween-speciesdifferencesinvulnerabilitytowater stress(forthekeycanopyspecies: B.attenuata , B.menziesii, B.ilicifolia R.Br.and B.littoralis R.Br.).However,species withbroadecohydrologicalranges(B.attenuata and B.menziesii)weremoreresistanttodroughtwhengrowing atdunecrestsitesduetoacclimationstoperiodicdrydowns, thanspeciesatwettersiteswithshallowgroundwater,suchas B.ilicifolia and B.littoralis,whicharerestrictedtositeswitha shallowwatertable.
Reducedsoilwateravailabilitynotonlydecreases transpirationrates,butalsocausesfoliagetemperaturesto increasemorethanairtemperatures.Bader etal .(2014 ) foundthatextremespringtemperaturesprecededthe mortalityof B.menziesii,suggestingatemperature-or humidity-relatedthreshold,andthuswarmeranddrier conditionsassociatedwithclimatechangeinthefuturemay resultinincreasedplantmortality.Highmortalityduring droughthasalsobeenreportedinaseedlingexperimentof B.attenuata, B.menziesii and Eucalyptustodtiana F.Muell. overmultipledroughtevents(Benigno etal. 2014)andin larger B.attenuata and B.menziesii treesfollowingdrought (Challis etal 2016).
Theimportanceofunderstandingecohydrological processesthatsupportvegetationandfaunahabitatis criticalinthefaceofadryingclimate.Burgess etal . (2000 )demonstratedhydraulicliftby B.prionotes rootsin responsetogradientsinwaterpotentialfromhightolowwater contentacrosssoilstrata,whichsuggeststhatdeep-rooting overstorey Banksia havethepotentialtocreateecologically importanthydrologicalconditionsinshallowsoil.Increasing surfacesoilmoisturethroughhydraulicliftofgroundwaterby overstoreyspeciesmayprovideimprovedconditionsfor understoreyspeciesandfacilitatetheirsurvivalandgrowth. Evidencefortheindirectuseofredistributedgroundwaterby understoreyplantsexistsinthecontextofecological restoration,butthemechanismsbehindtheseinteractions remainunclearandarelikelytobecomplex(Muler etal 2018b).Forexample,evidencesuggestsphreatophytic Banksia spp.provideabenefi ttoseedlingsuntilwater becomeslimitedinlatesummer(Muler etal 2018 b).
Managementinterventionstopreventvegetationchangeor restoreoriginal fl oristicsofBWsareconsideredextremely dif fi cultafterecohydrologicalhabitatshavepassedacritical threshold.Assessmentsofalternativevegetationstatesfor BWswereidenti fi edoveramulti-decadaldryingofthe Mediterranean-typeBWslandscape(SommerandFroend 2014).Plantcommunitycompositionvariedacrossarange ofgroundwaterdepthssuggestingthatasgroundwaterdepth increases,thedegreeofhabitatspeci fi citydecreases.Overa 35-yearperiod,thecompositionandstructureofvegetation wasconsistentinspiteofprogressiveincreasesindepthtothe watertable.However,thenarrowrangeofgroundwaterdepths defi ningdiscretestatessuggestssmallchangesinwatertable depthmaycauserapidshiftstoalternativevegetationstates, whichwilllikelybeexacerbatedbyacontinueddryingtrend. Understandingecohydrologicalprocessesinwater-limited BWsrequiresconsiderationoftemporalandspatialvegetation patternsofwateruse.OntheGGM,understorey evapotranspirationwasconsideredamajorcomponentof thewaterbudgetofBWsandthereforeanessential infl uenceonrechargetotheaquifer(Farrington etal . 1989).Toincreaseaquiferrechargeitwasagreedinthe early2000sthatpineplantationsonthemoundwouldbe progressivelyremoved(McFarlane etal 2012 ).Farrington etal.(1989)suggestedthatareductioninunderstoreycover, potentiallythroughacontrolledburningprogram,wouldkeep evaporationratesoftheground fl oraatalowlevel,and possiblyallowgroundwaterrechargeratestoincreaseand raisewatertables.However,therelationshipbetween vegetationandevaporativelossarelikelymorecomplex. Forexample,arecentassessmentofthespatialand temporalvariabilityinevapotranspirationusingremotely senseddataacrossnorthernBWsbySommer etal.(2016 ) showedvegetationinshallowgroundwaterhabitatshadhigher evapotranspirationratesduringthegrowthseason(springand summer)thanindeepergroundwaterhabitats,suggestingthat theformerwasnotphysiologicallyconstrainedbywater defi cit.Inter-annualvariabilityinactualevapotranspiration correlatedwithrainfalland,duringlowrainfallyears, peakedonemonthearlierrelativetohigherrainfallyears. Therefore,remotesensingcangiveanindicationofwhere
groundwaterissupportingBWsandthusmaybeavaluable toolinidentifyingareasofhighconservationvalue.
Priorityresearch
Groundwaterextractionandclimatechangewilllikely continuetoexertsigni fi cantpressureonwateravailability toBWsvegetation.DespitethesurgeinstudiesonBWs vegetationwaterrelationsandresponsetochangesinwater availability,moreinformationisneededon:
* Soil–plant–atmosphereinteractionsthatwouldinformwater availabilityforvegetationandgroundwatermanagement models.
* Identificationofmanagementtriggerstomitigatethresholdtyperesponsesinvegetation.
* Resilienceandrestorationofecohydrologicalhabitats (e.g.increasedunderstandingofplant–plantinteractions throughtime).
* Interactionsbetweenwaterdeficit, fire,weeds,andother ecologicalpressures.
Invertebrates
Majer(1989)reviewedtheavailableliteratureofinvertebrate faunaofBWsandhighlightedthattherewerefewpublished studies.Hesuggestedthatthereweredifferencesinthe invertebratefaunaofBWscomparedtoadjacentvegetation typesandtherewerelikelytobespeciesendemictoBWs (Abbott 1982;RossbachandMajer 1983;Majer 1989). Negativeeffectsoffragmentation,landclearanceandhabitat modificationoncompositionandpersistenceofBWs invertebratecommunitieswerehighlightedwithurbanisation, weeds,andthefrequencyandseasonof fireidentifiedasmajor threats(Majer 1989).
AcensusoftheinvertebratefaunathroughoutBWshasnot beenconducted.Invertebratestudiessince1989havelargely beenfunctionallynottaxonomicallyfocused.Examplesof functionalstudiesaretheroleofinvertebratesaspollination vectorsforspecificplantspecies(Newman etal. 2013;Phillips etal. 2015),antsasindicatorsofdisturbance(Burbidge etal. 1992),andchangesinbutterflyandmothassemblageasaresult offragmentation(e.g.DoverandRowlingson 2005;Williams 2009;Williams 2011).Arachnidshavebeenlargelystudiedin BWswithregardtotheirinteractionwith fire(Mason etal 2019) andweeds(Mason etal 2016, 2018b).
Theeffectsofhabitatfragmentationandotherdisturbanceson invertebratecommunitiesarecomplexandlikelytodiffer betweeninvertebratespeciesandbiogeographicassociations (Harvey etal 1997;Williams 2011;Newman etal 2013; Phillips etal 2015;Mason etal 2016).Habitatfragmentation hasbeenlinkedtodeclinesinspeciesdiversity,withlarger reservescontainingagreaterdiversityandspeciesrichnessof rarespeciesofbutterfliesandday flyingmothsthansmaller reserves(e.g.butterfly Ogyrisidmo inKoondoolabushland; Williams 2009, 2011).Inaddition,edgeeffectsassociatedwith fragmentationareknowntoaffectthynnidwasppersistence (genera Zaspilothynnus)(Newman etal. 2013)whereas predationofmygalomorphspiders(genera Aname and Teyl)is significantlyinfluencedbytheproportionofsurrounding parkland(Mason etal 2018a).Likewise,planthostspecies
densityaffectsbutterflyspeciespersistencewithinremnants (Williams 2011).AstudyofbutterfliesinBWsfound13taxa nowprimarilyuseexoticplantspeciesashostsinandaround urbanfragments(e.g.butterflies Vanessakershawi oftenbreeds onwidespreadcapeweed, Arctothecacalendula (L.)K.Lewin and Geitoneuraminyas on Ehrharta spp.)(Williams 2009). Burbidge etal.(1992)foundthatantspeciesthatpreferred littercoverandweresolitaryforagerswereindicativeof larger,undisturbedBWssites.Conversely,Doverand Rowlingson(2005)foundthatwesternjewelbutterflies (Hypochrysopshalyaetus)preferreddegradedareaswithin highqualityBWsduetoforagingandroostingbehaviours. Theabundanceoftrapdoorspiders(Nemesiid spp.)inBWs wasnegativelycorrelatedwiththepresenceofinvasive perennialveldtgrassandrabbitdisturbance(Mason etal 2016).Eachofthesestudieshighlightshowchangesinthese woodlandscaninfluenceinvertebrateabundanceanddistribution.
RecentresearchbyPhillips etal .(2015 )hashighlighted thesignifi cantimpactthatspecialistinvertebrate–plant relationshipscanhaveonplantspeciespersistenceinBWs. Thesmallformofthynninewasp(Macrothynnusinsignis),has aspecialisedpollinatorrelationshipwiththeoncemore commonorchid, Caladeniahuegelii Rchb.f.Thedeclineof thisthynninewaspinfragmentedBWsiscontributingtothe increasingrarityoftheorchid,andthespeciesisnowfacingan almostcompletelossofpollinationservices(Phillips etal 2015 ).Manyoftheserelationshipsremainundocumentedor studied.
Changestodisturbanceregimesandqualityofhabitatalso affectinvertebratepopulations.Forexample,mygalomorph spidersarelessabundantinBWsafterhighintensity firesas comparedtolowintensity fires(Mason etal 2018b).Most invertebratetaxaareapproximatelyhalfasabundantinthe fi rstyearafter fi rethaninareasunburntfor22years (Bamford 1992).Bycontrast,antsareextremelyabundant inthe firstfewyearsafter fi re,withlowerandslightly declininglevelsofabundancemorethan4yearsafter fi re (Bamford 1992).
Notdiscussedin1989wasthepresenceandconditionof subterraneanfaunacommunitieswithinundergroundaquifers undertheSCP.StudiesofstygofaunainWesternAustralia beganintheearly1990s(e.g.Knott 1993),includingsurveys oftheGGM(see ‘Waterrelationsandgroundwater management’)(Knott 1993 ).Nearlyallstygofaunafoundin WesternAustraliaareinvertebrates,mostlycrustaceans, thoughafewlargervertebratespeciesarealsofound (Humphreys 2006;Halse 2008).UnderneathBWs,the GGMfeedsthethreatenedecologicalcommunitiesof stygofaunafoundwithintheYanchepcaves.These communitiescontainhighlevelsofdiversity,witheach cavecontaining30 –40species,comparedtoaglobal averageof6species(Jasinska etal 1996 ;English etal 2003 ).Atleast100speciesoffaunaareknownfromthese sixcaves,including6Gondwananrelics(English etal. 2003 ). Thesecommunitiesarethreatenedbydrought,climatechange, increasedgroundwateruse,andlandclearingaltering hydrology.Mostspeciesareunabletosurviveiftheir aquiferdriesout,forexample,whenthestreaminGilgie Cavedriedoutin1996nofaunasurvived,andlevelsof
recolonisationhavebeenextremelylow(English etal . 2003).Althoughourknowledgeofthestygofauna communitiesfoundbeneathBWshasgrownoverthelast 30years,westilllackabasicunderstandingoftheir biology,ecology,andmanagement.
Overthelast30years,wehaveincreasedourunderstanding ofthefunctionalrolethatinvertebratesplayinBWs.Despite this,therearestillmajorgapsinourunderstandingof invertebratebiology,andtheirinteractionswithother specieswithinBWs.Althoughsomeinvertebratetaxahave beeninvestigatedinsomedetail(e.g.moths,thynninewasps, trapdoorspiders),manytaxahavebeenpoorlystudied.For manythreatenedandnon-threatenedinvertebrates,their managementrequirementsarelargelyunknown(Braby 2018).Knowledgeoftheiridentity,abundance,diversity, distribution, fi delityandrelianceonBWsisessentialto theirconservation.Althoughthisisnotaproblemuniqueto BWs,initialstudieswouldsuggestBWsarehometoseveral endemicorshortrangeendemicinvertebratespecies,someof whicharelikelytobethreatened(Abbott 1982 ;Mason etal. 2018b).Similarly,theroleofinvasiveinvertebrates(e.g. Portuguesemillipede(Ommatoiulusmoreletii ),European houseborer(Hylotrupesbajulus)andEuropeanhoneybee (Apismellifera)andtheirimpactsonbothnativeplantand faunalspeciesislargelyunderstudied,thoughlikelyhas consequencesforecosystemfunctioning.
Priorityresearch
InformationonBWsinvertebratesisseverelydeficient, researchareaswheremoreinformationisneededinclude:
* ConductingacensusoftheBWsinvertebratefaunatogather basicinformationabouttheiridentity,abundance, distribution, fi delity,functionandrelianceonBWs.
* Understandingofinvertebratebiologyandtheirinteractions withotherspeciesinBWs.
* Improvingourunderstandingabouthowwecanmanage threatenedandendangeredinvertebrates,including stygofaunacommunitiesfoundbeneathBWs.
* Improvingourunderstandingofinvasiveinvertebrates andtheirimpactonnativeandendemicspeciesaswellas theirimpactontheBWsecosystem.
Vertebrates
HowandDell(1989)highlightedthatalthoughBWs amphibian,reptileandbirdcommunitieshadbeenrelatively resistanttoanthropogenicimpacts,mammalcommunitieshad beenseverelyaffected,withmanyspecieslocallyextinct. Theyalsonotednegativeeffectsofweedinvasionon reptiles,withoutcitation,andmentionedthelackof knowledgeofBWsbatcommunities(HowandDell 1989 ). MuchresearchhasbeenconductedonBWsvertebrate communitiessince1989;however,manyknowledgegaps remain.Taxonomicworkhasclarifiedthespeciesstatusof somereptilesthatoccurprimarilyinBWs(KayandKeogh 2012;DoughtyandOliver 2013).Knowledgeof finer-scale distributionsofmammals,birds,reptilesandfrogshas increased,duetoresearchconductedfortheGnangara SustainabilityStrategy(BamfordandHuang 2009;Davis
2009a;Valentine etal. 2009)andinurbanremnantswithinthe Perthmetropolitanarea(HowandDell 1994, 2000;How 1998; Davis etal. 2013).ThisresearchconfirmedthedirestateofBWs mammalcommunities(Wilson etal. 2012).Italsohighlighted thatreptileandfrogcommunities,whilemoreresilientto anthropogenicthreats,arealsosusceptibletofragmentation, withremnantwoodlandsizeandspeciesrichnesspositively relatedinallgroupsexceptskinksandfrogs(HowandDell 2000).
Frogsandreptiles
Frogpopulationshavebeenfoundtobereasonablyresilientto theimpactsof fi re,althoughtheabundanceoftwospecies (westernbanjofrog, Limnodynastesdorsalis,andtheturtle frog, Myobatrachusgouldii )waspositivelyrelatedtotime since fi re(Bamford 1992 ).Astudyoftheresponsesoffrogsto hydrologicalchangesasaconsequenceofreducedrainfall, highlightedarangeofresponsesfrom ‘unlikelytobeaffected ’ (M.gouldi),to ‘likelytobeseverelyaffected’ (Glauert’sfrog, Criniaglauerti,andGünther’stoadlet, Pseudophryne guentheri)(BamfordandHuang 2009).Astudyofgenetic variationinthefrog M.gouldi foundlowgeneticdivergence betweenpopulations(Vertucci etal 2017 ).Similarly,weak populationgeneticstructuringforthescincidlizard, Ctenotus fallens,suggestshistoricallyhighlevelsofconnectivityamong recentlyfragmentedurbanpopulations(Krawiec etal 2015). OurunderstandingofthedistributionofBWsfrogsisstill limited,anddeservesgreaterattention.
FireissuggestedtobethebiggestthreattoremnantBWs reptilecommunities,particularlythoseinsmall,unconnected fragments(HowandDell 2000).Althoughreptileshavea rangeofpost- fi reresponses(Valentine etal 2012;Davisand Doherty 2015),generally,therarestspecieshavebeenfound onlyinlongunburntsites.Thissuggeststhat,althoughreptile communitiestypicallyrecoverrapidly(<3years)post fi re (HowandDell 2000 ;DavisandDoherty 2015),the retentionoflongunburnthabitatremainscriticalforreptile conservationinBWs(Wilson etal . 2014).Therearefour Australiansquamates(lizardsandsnakes)foundprimarily inBWs(Ctenotusora, Leristalineata , Diplodactylus polyophthalmus and Neelapscalonotus)thatwereclassifi ed asthreatenedusingtheIUCNRedListduringarecent assessmentofallreptilespeciesbyTingley etal.(2019). However,threeofthesespeciesarecurrentlylistedasWA Priority3fauna(Ctenotusora, Leristalineata ,and Neelaps calonotus).Rangeextensionshavebeenreportedforseveral speciesofreptilesrecordedinBWs(DavisandBamford 2005; DavisandWilcox 2008 ;Thompson etal 2008 )anditislikely thatfurtherfaunasurveyswilldocumenttheextensionof thedistributionofotherreptilesintheregion.Areviewof thedistributionandthreatsto L.lineata recommendedan urgentre-evaluationofitsconservationstatus,asitslongtermsurvivalistenuousatbest(Maryan etal. 2015 ).Howand Dell(1989)alsosuggestedthepotentialforweedstobea threattoreptilecommunities,butnoresearchhasbeen conductedonthistopicinBWs.Arecentpaperhighlighted thethreatposedtoreptilepopulationsbyanticoagulant rodenticides(Lettoof etal 2020 ).
Birds
ResearchonBWsbirdcommunitieshasfocusedonresponses tofragmentationandurbanisation, fi re,andtheplantpathogen Phytophthoracinnamomi,aswellasspecifi cstudiesonthe endangeredCarnaby’scockatoo(Calyptorhynchus (Zanda ) latirostris)andsouthernboobook(Ninoxboobook).Studies onfragmentationandurbanisationfoundlargevariationsinthe impactonindividualbirdspeciesoverthepast60years (RecherandServenty 1991;Davis etal 2013 ).Allspecies thathaddeclinedorbecomelocallyextinctweredependenton bushlandandunlikelytopersistinsmallorisolatedremnants (Davis etal 2013),withgroundforagersdisproportionately represented,perhapsduetoweedinvasion(Recherand Serventy 1991).Nectarivorousbirdpollinatorscan functionallyconnectsomeplantspeciesinfragmented urbanBWs,withevidenceofwidespreadpollendispersal betweenremnantandrestored B.menziesii populations (Ritchie etal. 2019 ).Mostbirdspeciesrecovered reasonablyrapidlypost- fire,althoughonespecies(western thornbill, Acanthizainornata)mayhavedisappearedfrom KingsPark(oneofthelargesturbanBWsreserves) followinga fi re(Recher 1997 ),suggestingthat fireposesa threattosomebirdcommunitiesinisolatedremnants(Recher 1997 ;Davis 2009 b).Conversely,inlargeintactexpansesof BWs,onlytwospecies(splendidfairy-wren, Malurus splendens andyellow-rumpedthornbill, Acanthiza chrysorrhoa )havebeenfoundtobeaffectedby fi re(Davis 2009 a),indicatingthat fi reeffectsonbirdcommunitiesmaybe somewhatephemeralincontiguouswoodlands(Davis 2009b). Theplantpathogen P.cinnamomi (see ‘Plantdisease’ below) wasfoundtoindirectlyaffectBWsbirdcommunitieswith threebirdspecieslessabundantandonespeciesmore abundantindiseasedsites(Davis etal 2014 ).InBWs northofPerth,10birdspeciesdependentonwetland vegetationhavebeenidentifi edaslikelytobeaffectedby fallinggroundwatertablesduetoreducedrainfalland extraction(Davis 2009b).Severalstudiesfoundthat C.latirostris useofBWswasrelatedto Banksia seed availability(Johnston etal 2019),whichpeakedin relativelylongunburntsites(11 –30yearspost fi re)where P cinnamomi wasabsent(Davis etal 2014;Valentine etal 2014 ;Johnston etal 2016 ).PineplantationsnearPerthhave providedanimportantfoodsourcefor C.latirostris sincethe 1940s(Stock etal 2013).Demographicmodelsprojected signi fi cantdeclinesintheSCP C.latirostris populations proportionatetotheareaofBWsandpineplantations clearedinthefuture(Stock etal 2013;Williams etal 2016 , 2017).Birdsarealsoaffectedbytheuseof rodenticidesontheSCP,withonestudyofdead N.boobook inurbanBWs fi ndingthatmostbirdscontained sub-lethalconcentrationsofanticoagulantrodenticide(Lohr 2018 ).
Mammals
Researchonmammalshasfocusedon fi reeffects,surveysand reviewsonthepastandcurrentstatusofpopulationsinBWs. Thesestudiescon fi rmsigni ficantlossesofmammalspecies fromBWs,withlossesgreatestinisolatedremnants.Veryfew
smalltomedium-sizedgrounddwellingmammalsremainin remnantsaroundPerth,andtheyarelargelyrestrictedtoperiurbanareas(HowandDell 2000).However,theQuenda (Isoodonfusciventer)persistsinwetlandandriparianareas ofsomeremnantswithinthePerthmetropolitanarea(Howard etal. 2014 )andBWsreserveswithwetlandsnorthofPerth (Wilson etal 2012 ).Theyhavealsobeenreintroducedinto severalBWsurbanandperi-urbanreserveswithinthelast decade(e.g.Ryan etal 2020).Ground-dwellingmammals, exceptforthehoneypossum(Tarsipesrostratus),werealso foundtobescarceinextensivewoodlandsnorthofPerth (Valentine etal 2009;Wilson etal 2012),withBoonanarring Reserve(Fig. 4)supportingmostsmallground-dwelling mammals(Moore etal 2016 ).Astudyoftherelationship betweenmammalsand fi refoundthattheintroducedhouse mouse(Musmusculus),wasmoreabundantinrecentlyburnt woodlands,whereas T.rostratus weremorefrequently detectedatsites20–26yearspost fi re(Valentine etal 2009 ).Species-specifi cstudieshavealsoexaminedthediets ofthewesternbrushwallaby(Notamacropusirma ),and westerngreykangaroo(Macropusfuliginosus),(Wannand Bell 1997 ),homerangesof N.irma (Povh etal. 2019)and ecologyoftheash-greymouse(Pseudomysalbocinereus) (Smith etal 2019 ).HowandDell(1989 )notedalackof informationonbatsandsincethisstudy,therehasbeenvery littleresearchonbatsinBWs.However,therehasbeenanew recordofthewesternfalsepipistrelle(Falsistrellus mackenziei)(HoskenandO’Shea 1994 )andaradio-tracking studyidentifi edthatlong-earedbats(Nyctophilusmajor and N geoffroyii)roostprimarilyindead Banksia and Melaleuca preissiana Schauertrees(Hosken 1996).
TheresearchconductedonBWsvertebratessince1989has aidedconservationthroughidentifyingthreatenedspeciesand threatsthatneedtobeameliorated.UrbanBWsremnantsare unlikelytosupportpopulationsofmammalsandreptilesinthe longtermunlesstheyarefunctionallyconnected.This indicatesthatthecontinuingclearanceandfragmentationof BWsremainstheprimarythreattovertebratepopulationsand onlylargecontiguouswoodlandsarelikelytoretain populationsinthelongterm,evenforwide-rangingspecies. Inappropriate fi reregimesremainanotherthreattovertebrate populationsinremnantsandasigni ficantthreatincontiguous woodlands.In2010,over60%ofremainingBWsinthe GnangaraGroundwaterSystemhadbeenburnt <7years previously,andonly~3%hadnotbeenburntin >25years (Wilson etal 2014).Yetlongunburntpatchessupportthe mostdiversevertebratecommunities,andseveralspecies appearrestrictedtothem(Wilson etal 2014 ).Wilson etal (2014)concludedthatchangestocurrent fi remanagement practicesmayassistinmaintainingpopulationsofsome vertebratespecies.
Fallinggroundwatertables,throughreducedrainfall,and extraction,alsoposeathreattoBWsvertebrates,withresearch alreadyidentifyingthosespeciesmostsusceptibletothisthreat (Wilson etal. 2012 ).Thedearthofsmallground-dwelling mammalssuggestspredationisnotthesolethreattothese species,with fi re,weedsandinteractionsamongthreatslikely drivingpopulationdeclines.Researchconductedsince1989 hasidentifi edmuchofwhatisrequiredtoconserveBWs
vertebrates.However,ongoinginvestmentinresearchis requiredtoaddressincreasingthreats(e.g.urbansprawland associatedhumanimpacts),inanintegratedconservation approach.
Priorityresearch
Researchisneededinthefollowingareas:
* TheinteractionsbetweenmultiplethreatstoBWs vertebrates,includinglandtransformationandclimate change,sosynergisticeffectscanbebetterunderstood andimproveourabilitytoconservevertebratepopulations.
* UnderstandingtraitsofspeciespersistinginBWs,particularly thosepersistinginremnants.
* Identifi cationofmechanismsunderpinningspecies responsestofragmentation,andthenthedevelopmentof strategiestoamelioratefragmentationeffects,includingthe permeabilityoftheurbanmatrixtoindividualspecies.
* KnowledgeofextinctiondebtinBWsremnantsandits relationshipswithremnantsize,anditwouldbebeneficial torevisitsitessurveyedbyHowandDell(2000).
* Anexaminationofthegeneticstructureofvertebrate populations,andhowthisrelatestovariousthreatsinorder tofacilitatetheconservationofpopulations,aswellasthe geneticvariabilitytheyrequiretoadapttoclimatechange.
* Understandinghuman–wildlifeinteractions(includingthose relatedtoreintroductions)andwaysinwhichcommunity supportandengagementcanbeutilisedtopromote effectivespeciesconservation.
* InvestigationsofhowvertebratesinurbanBWsremnants, especiallyferalcats,spreaddiseases.
Plantdisease
Withtheexistenceofonly30publications,plantdiseasesof BWsweredescribedasaneglectedareaofresearchin1989, andinneedofasystematicsurvey(ShearerandHill 1989). Considerableresearchhasbeenundertakenonplantdiseasesin BWsoverthelast30years.Althoughotherpathogens,suchas Australianhoneyfungus(Armillarialuteobubalina ),have beenrecordedinBWsoftheSpearwooddunesystem (Shearer 1994 ),themostproli fi candseriouspathogenis Phytophthoracinnamomi.Manyofthelifehistory characteristics,survivalmechanismsandspreadmechanisms forthiswatermouldhavebeendescribed(ShearerandDillon 1996a, 1996b).Other Phytophthora spp.(suchas P.multivora) arenowcommonlydetectedwithinBWs,butcomparatively lessisknownabouttheirpathogenicityandinfl uenceonthe plantcommunity(Scott etal 2009 ;Ireland 2011 ;Barber etal 2013;Burgess etal 2017 , 2019 ). Phytophthoracinnamomi diseasecentresaremorecommonlyfoundindeepersoils wheretheycanaltertherootsystemtoproviderefugiafor persistence(Hill etal . 1994;Shearer etal. 2010 ).Colonies originatefrom fi nerootsandspreadbywatermovement, erosionoranthropogenicorpotentialanimalvector(native andnon-nativespecies)soilmovementandroottorootcontact (Shearer 1990;Cahill etal . 2008 ). Phytophthoracinnamomi maypersistinde fi nitelyatinfestedsitesthroughinfected asymptomatichostsplants,thick-walledoospores,
chlamydosporesandstromata(Crone etal. 2013;Jung etal . 2013).Soilabioticfactorsaffecttheoccurrenceof P.cinnamomi;diseaseexpressionisrareonthecalcareous, alkalineQuindalupandSpearwoodDunesystemsoftheSCP (ShearerandDillon 1996a)(Fig. 4).However, P.multivora andotherspeciesaredetectedfrequentlyfromthesedune systemsandaremoretolerantofalkalinesoils(Scott etal 2009).CrushedlimestoneisusedforpedestrianpathsinBWs asitisassumedtoreducethespreadof P.cinnamomi.The higherlevelsofphosphorusandcalciumintheQuindalup Dunesarethoughttopromotehostdefence,although,thisis understudied(ShearerandCrane 2014).
Theeffectsof P.cinnamomi onabove-groundbiotaare becomingincreasinglydefined(Shearer etal 2004).Many commonplantfamiliesinBWsaresusceptibleto P.cinnamomi,includingProteaceae,Fabaceae,Ericaceae, Xanthorrhoeaceae,andZamiaceae,causingmortalityby hydraulicfailure,leadingtochangesinplantspecies abundanceandcommunitystructure(ShearerandDillon 1996a, 1996b;KinlochandWilson 2009).Thechangein plantcommunitycompositionandstructure,andpotential localisedlossofkeyspeciescanhave flow-oneffectsfor faunadependentonspeci fi chabitatandfoodsources(Davis etal 2014 ;Johnston etal 2016).Fireplaysamajorroleinthe ecologicalfunctioningofBWs(see ‘Fire’ below);however, verylittleisknownabouttheresponseto,andpotentialimpact of, fi reonplantdiseases(Moore etal 2014).Moore etal (2014 )indicatedthat fi rewithin P.cinnamomi -infested communitieshasthepotentialtoincreasetheseverityand theextentofdiseaseinnativeecosystemsinthe SWAFR.PredictedclimatechangeintheSWAFR,with longerdrierperiods,willpotentiallyincrease fi refrequency, whichinturncouldworsenplantdeathswhenconditionsare warmandwet(Moore etal 2014).Managersneedtoconsider theseinteractionswhendevelopingmanagementstrategies. Increasedunderstandingofthebiologyandecologyof P.cinnamomi hasenabledtailoredmanagementstrategies. Phosphitecanbeappliedasafoliarsprayorinjectedinto theplantstem(typicallyoftrees)andisthemostcommonly usedcontrolmethod(Komorek etal 1997 ).Inaddition,the applicationofcalciumsulphatetosoilhasbeenshownto augmentandprolongtheeffectofphosphiteapplication (Stasikowski etal 2014).Managementof P.cinnamomi , notspeci fi ctoBWs,bytheDepartmentofBiodiversity, ConservationandAttractions(DBCA)hasoccurredthrough aeriallysprayingofphosphite,forarapidtreatmentofplant communitiescontainingendangeredplantspecies,andinareas whereruggednessoftheterrainmakesapplicationbyhand expensive(O’Gara etal 2005 ).Some400haofnative woodlandandshrublandinsouth-westernAustraliahave beensprayedregularlyatrecommendedratesofbetween12 and24kgha–1 (Hardy etal 2001;BarrettandRathbone 2018). Phosphiteinitiatesanimmuneresponseintheplantand alleviatessymptomswhiledecreasingthespreadofthe pathogen;however, P.cinnamomi isnoteradicated(Shearer andFairman 2007;ShearerandCrane 2014 ;Barrettand Rathbone 2018 ).Thepathogencan,infact,sporulatefrom lesionscontainedbytheimmuneresponseinitiatedby phosphite(Wilkinson etal 2001).Fungicidetreatmentsare
infrequentlyusedinnaturalvegetationwithmechanicaland chemical(e.g.glyphosate)vegetationremovalbeingan effectiveeradicationandcontainmentstrategy(Hill 1995 ). Vegetationremoval,diseasesuppression(i.e.metalaxyl)and fumigation(metham-sodium)havebeencombinedtoeradicate spotinfestations;thoughnolarge-scalemethodshavebeen developed.Theincreasedknowledgeabouthowthepathogen proliferatesandspreadshasbeenhelpfulinimplementing logisticalcontrolmethods(ProjectDieback 2019 ).Methods, suchashygienewashesandrestrictedmovementofsoilsfrom infectedareas(Bell 2002;Cahill etal 2008 ),havebeen developed,yettheireffectivenessisdebatableasitisvery hardtoenforcethesemeasures.Effortisrequiredtoensureall landusersandmanagersfollowhygieneprotocolstominimise spreadofthepathogenandother Phytophthora spp.intononinfestedareas.Despiteconcernsofpotentialnegativelongtermimpactsofphosphiteapplicationontheabundanceof Phytophthora sensitiveProteaceaespeciesandspecies composition(Lambers etal. 2013),arecentlong-term (7–16years)studyofKwongansiteswithintheSWAFRby BarrettandRathbone(2018 )indicatedtherewasnoevidence ofadverseeffectson Phytophthora sensitivespeciesorchange inspeciesassemblages.
Priorityresearch
Keyareasforinvestigationincludethefollowing:
* Whethertheeffectivenessoferadicationtreatmentsinspot infestationsof Phytophthora spp.willresultinsuppression orsigni fi cantspreadifnotmanaged.
* Responseof P.cinnamomi,P.multivora andthetwospecies togetherintheirdifferentlifecyclestagestovarying climaticconditionsanddisturbancetypes.
* Responseof flora,fauna,andfungitotheeffectsof P.cinnamomi undervaryingclimaticconditionsand disturbancetypes,suchasdroughtplusheavysummer rainfallandvarying firefrequencyandintensities.
* Thebiology,ecologyandpathologyofnativeandintroduced speciesof Phytophthora presentinBWs,theirhostranges, ecologicalrolesandtheirinteractionswith P.cinnamomi
* Theresponseof P.cinnamomi-affectedwoodlandsto restorationthataimstoprovideecosystemservicesand functionssimilartothosebeforeimpact.Opportunitiesexist toselectresistantortolerantspeciesthroughseedcollection followingimpactandreintroductionbytubestockorbroadcast seeding.
* AbetterunderstandingofotherplantdiseasesanddiseasecausingorganismspresentinBWsandhowtheymaybe affectedbydisturbancessuchasclimatechangeand fire.
Fire
Inthe30yearssinceHopkinsandGrif fi n(1989 )summarised fi reecologyand firemanagementinBWs,mostoftheissues theyraisedhaveonlybecomemorecomplex.Theseinclude: substantialexpansionofthewildland –urbaninterface (AustralianBureauofStatistics 2019 );weed– fire interactions(Fisher etal 2009 b);adryingandwarming climateandthefrequencyofextremeevents(Andrys etal
2017 ).Thebroadcategoriesof fi rescienceknowledgegaps identifi edbyHopkinsandGrif fi n(1989 )alsoremainrelevant today,including:
* Fueldynamicsandwildfireriskinrelationto firehistory.
* Toleranceofnativeandintroducedspeciestovarying fire frequency,intensity,andseason.
* Howfragmentationandalteredlandscapesinfluence fire regimesandmanagementstrategies.
Firemanagement
FirewithinBWsisanaturalprocesswithevidenceofits occurrencedatingbackto2.7 106–2.5 106 yearsBP (HassellandDodson 2002).Fossilcharcoalevidenceof aboriginaluseof fi rewithinBWsdatesbackatleast 30000yearsBP(Hallam 2014 ).FireoccurrenceinBWs remainsdrivenbyhumanactivity:basedon12yearsof DepartmentofFireandEmergencyServicesdata (2004–2012;excluding5.5%of fi resoccurringonpublic land),Plucinski(2014 )attributedjustover1%of fi resin thePerthmetropolitanregiontonaturalcauses,(i.e. lighteningorspontaneouscombustion),55%toarson,30% toaccidents(including2.5%toescapedprescribedburns),and 14%tounknowncauses.Themajorityof firesoccurred October –April, fi resweremorelikelyonweekends thanweekdaysandmoreignitionsoccurredunderhigher fi redangerconditions.Althoughunplannedignitions dominatedthenumberof fi res,themajorityofareaburned wasfromplannedmanaged fi res(Plucinski 2014).
DBCA’srisk-basedframeworkelaboratesbushfire managementobjectivesacrossfourFireManagementAreas (FMAs)and13broadfueltypes(Howard etal 2020).BWs arerecognisedasoneofthesefueltypes,but,notingthe absenceofaspeci fi cfuelaccumulationand fi rebehaviour model,theframeworkadaptstheDryEucalyptForestFire Model(Cheney etal 2012)forBWs.Publiclandswithineach fueltypeareclassi fi edintofourFMAs ‘defi nedbytheprimary intentoffuelmanagement,whichisafunctionofpotential fi re behaviourandthetypeanddistributionofassetscharacteristic ofthearea ’ (Howard etal 2020 ).Basedonfuelaccumulation and fi rebehaviourmodels,theframeworkidentifi esa threshold fi reintensitythatprecludeseffectivesuppression actionunderthe95thpercentile fi redangerconditionsto derivemanagementobjectiveswithineachFMA.These objectivesareexpressedasproportionofFMAareawith treatedfuelsthatwillnotsupportahead fi reofintensity abovethatthreshold.Thisresultsinobjectivesof60%for theSettlement-HazardSeparationFMA(within1kmof settlements),and30%intheLandscapeRiskReduction FMAwithin5kmofprivatepropertyforBWs(Howard etal 2020).Five-year-oldfuelisindicatedasa representativeintensitythresholdforopeneucalyptforest, butHoward etal .(2020 )donotprovideavaluefor BW.If,forexample,anindicativethresholdfuelageof 8–10yearsisusedforBWs(followingBurrowsand McCaw 1990 ),objectiveswouldcorrespondto13 –17-and 27–33-yearburnrotationsinBWsat0–1and1–5kmfrom settlementsorprivatepropertyrespectively.
MostDBCAprescribedburninginBWsoccursinspring, withsmalleramountsinautumn,usuallyaimingforlow
intensity fi rewithminimalcanopyscorchandsomespatial patchiness(DensmoreandClingan 2019 ).Theplacementof burnsinthelandscapeaddressesstrategiesbothtargeting infrastructure,suchasreducingintensityof fi recloseto assets(Florec etal . 2020;Howard etal. 2020 ),aswellas breakinguplandscapecontinuitybydevelopingamatrixof mixedfuelagesthuscreatingoptionstosuppresswildfi res underelevated fi reweatherconditions(Conservationand ParksCommission 2018).
Fueldynamicsinrelationto fire FuelloadsandstructureinBWsareknowntobeaffectedby fi reregimescomponents,suchasvarying fireinterval,this relationshipwasrecognisedin1989butwithlittleevidence available(HopkinsandGriffi n 1989).Subsequently,fuel characteristicsandaccumulationdynamicsofBWswere describedbyBurrowsandMcCaw(1990 )whoconcluded thatBWsfuelaccumulationstabilisesat~8–10yearspost fi re.ThisremainstheonlypublishedstudyofBWsfuel dynamics.Fueldynamicsinteractionsarelikelytobe complex.Forinstance,Ryan etal.(2020 )recentlyshowed thatreintroduceddiggingmammalscouldhaveasigni ficant effectonsmall-scalefueldistributions.Bioturbationby mammalsmayhavepotentialvalueasacomplimentarytool forreducinglitterfuelloads,andpotentially, fi rerisk(Ryan etal. 2020 ).
Theimpactsoflongerintervals,weedcontributiontofuels, spatialvariation,andthecontributionofclimateand groundwaterchangeonfueldynamicsremainunknown. Owingtothelackofdevelopmentinunderstandingfuel and firedynamicsinBWs,manyofthemanagementand operationalmechanismscurrentlyusedinBWshavebeen importedfromotherecosystems(e.g. fi respreadmodels developedindryeucalyptusforestsareusedforBWs (Howard etal 2020 ).
Toleranceof floratovarying fireregimes
Since1989,severalstudieshaveinvestigatedthetoleranceof nativeBWsplantspeciestovarying fi reregimes.Atleasta quarterofnativespeciesare fire-sensitive,obligateseeders (PateandBell 1999 ;Mickle etal 2010),withtheslowest maturingspecies(fromasampleofconservationprioritytaxa) takingbetween4and7yearstoreachmaturityand8and 16yearstoreachanagewhereasuf fi cientseedbankhas accumulatedforpopulationpersistence(Wilson etal. 2014), andthereforeinterpretedasvulnerabletoshortened fi re intervals.Seasonof fi reeffectshavealsobeen demonstrated,with fi reinthewetwinter–springperiod showntohavenegativeeffectsongermination(Roche etal 1998;Tangney etal 2019 ),seedlingrecruitment(Hobbsand Atkins 1990 ;Roche etal 1998),andpost- fi re fl owering (BowenandPate 2004 )forsomespecies.Studiesof populationrecoveryfollowingahigh-intensitysummer wildfi refoundthatsomeresproutingplantsarecapableof regeneratingwithinafewmonthsof fi re,beforethewetwinter period,andthatsmaller Banksia individualsarelesstolerantof high-intensity fi rethanlargerindividuals(Bell etal 1992; Miller etal 2020 ).DensmoreandClingan(2019)foundthat higherintensity fi re(wild fi res)resultedinreduced Banksia
treesurvivalandconeproductionrelativetolowerintensity fi res(prescribedburns)withinthesameseason.Withthe diversityofplantspeciesand fireresponsetypespresentin BWs(dominatedbyserotinoustreespecieslike B.attenuata and B.menziesii andawiderangeofresproutingandobligate seedingunderstoreyspecies),andtheeffectsofvaryingsite, pre-andpost- fi reconditions,and fi reeventattributes,there remainsmuchtobeunderstoodregardingthetoleranceof nativeBWsspeciestovarying fi reregimes.Assessing demographicchangeinplantpopulationsfollowing fi reis likelyaparticularlyusefulapproachtothisproblemasit providesamechanisticunderstandingofpatternsofchange (Miller etal 2019;Tangney etal 2020a).
Toleranceoffaunatovarying fireregimes
Faunalresearchinrelationto fi rehasfocusedonvertebrate foodresources(especiallyforlargeparrots),structuralhabitat features,orindicesofreptileandfrogabundance(Bamford 1992;Valentine etal. 2012 , 2014;DavisandDoherty 2015). Substantialgapsremaininunderstanding fi reimpacts,and howtheyvaryby fi retype(i.e.prescribedburn v.wildfi re, varyingseasonof fi reandinterval)fornativefauna.For example,Valentine etal .(2014)investigatedfruit productionofthetwomostcommon Banksia treespecies,a keyfoodresourceforendangeredblackcockatoos(primarily Carnaby’scockatoo)acrossatimesince fi rechronosequence, fi ndingthat20 –35-year-oldsitessupportedmaximumfruit production.DensmoreandClingan(2019 )showedthat varying fi reintensityalsohassigni fi cantconsequencesfor theavailabilityofwoodyfruits,whichserveascockatoofood resources,withseverewild fi redepletingthisresource substantially,whereaslowseverityprescribedburnshave negligibleimpacts.
Effectsofanalteredandfragmentedlandscape
SeveralstudiesshowthatalterationandfragmentationofBWs canin fl uencethe fi reregimethroughdiversepathways, includingbyalteredherbivoredensity – totalgrazing pressure(Brown etal 2016 ),weedinvasion,andisolation ofremnants(Ramalho etal 2014 ).Ramalho etal.(2014 ) studiedBWsremnantconditionin30reservesinthePerth region,revealinginteractionsinvolving fire.Theyfoundthat fi rewasmostfrequentinlargeremnantsandinareaswith greaterhumanactivity,andthatnativewoodyplantspecies richnesswasassociatedwithhigher firefrequencyinthese reserves(Ramalho etal 2014 ).
Non-nativespecies,especiallygrassyweeds,areknownto increasewith fi reoccurrenceinBWs(MilbergandLamont 1995;Ramalho etal 2014;Brown etal 2016 ). Ehrharta calycina (see ‘Floristicsandweeds’)isrecognisedasakey contributortothisgrass- firecycleinBWs.Repeated prescribedburninginKingsPark(alargeurbanBWs reserve)duringthemid-20thcenturywasimplicatedinthe shiftfromshrub-dominatedtoinvasive-grass-dominated understoreyvegetationbyCrosti etal.(2007). Ehrharta calycina andothergrassyweedsproduceabundantseeds, germinateunderawiderangeofconditions,and,while manyseedsmayperishunderwildfi retemperatures,some
arealwayssuf fi cientlyburiedtosurvive(Smith etal . 1999 ; Fisher etal. 2009a).Prevalenceofinvasiveplantspecieshas beenfoundtoincreaseinlong-isolatedreservesregardlessof fi rehistoryorgreaterrabbitabundance(Ramalho etal. 2014; Brown etal. 2016 ),specifi callyinareasthatexperiencelow soilheatingduring fi re(Tangney etal. 2020b).Severalcase studiesdemonstratetheef fi cacyofweedmanagement(i.e. herbicideapplication)immediatelypost- fi reinconstraining weedsandpromotingnativevegetation(Brown etal 2016 ). Nativeherbivoreinteractionswith fi re,eitherbyreducingfuel loadsorreducingpost-fi revegetationrecovery,havealsobeen identi fied(Brown etal 2016 ;Ryan etal 2020).Furtherwork isrequiredtounderstandtheextentoftheseinteractions.
Priorityresearch
ManyissuesraisedbyHopkinsandGriffin(1989)regarding fireecologyandmanagementremainrelevanttoday.In particular,thedevelopmentofaBWsspecificfuel accumulationand firebehaviourmodelandanunderstanding oftheeffectivenessandimpactsofprescribedburningonboth wildfireriskandbiodiversityvaluesrequiresthefollowing:
* Fueldynamicsandvariationaccordingto firehistory,spatial extentofBWsandchangingclimateconditions.
* Explicitdescriptionof firebehaviourandamodelsuitableto predict firebehaviourinBWs.
* Theroleofenvironmentalvariables(includingvaryingweed cover,totalgrazingpressure,digginganimals,climate,and soiltypes)on fireresponses,fuelcharacteristics, fire behaviour,andwildfirerisk.
* Quanti fi cationofthegrass– fi recycle,includingitsimpacts onwildfi reandnativebiodiversity,anddocumentationof effectivemanagementoptionsthatinterruptthiscycle.
* Integrationof firescience, fine-scalemeteorologyandremote sensing,andhumanhealthimpactstorevealpotentialtradeoffsindiffering firemanagementstrategies.
* Detailedspeciestraitsandresponsestovarying fireregime elements,including:
* fireseason,includingeffectsofburninginvariousseasons,
* fireintensity,
* fireinterval(orfrequency),and
* firepatchinessunderdifferentconditions.
* Tosupportlandmanagersinavoidingunwanted fireeffects, researchincorporatinginteractionsbetweenallofthese elements,whichiscomplexandlargelyunstudied,isrequired.
Miningandrestoration
Thefocusofmining-relatedactivitiesinGozzardandMouritz (1989 )wasonthemethodofextractionandqualityof limestoneandsandresources.Theuseofextracted resourcesatthetimewaslargelyforlocalhousingand infrastructuredevelopmentandexportsofsandforglass production(GozzardandMouritz 1989).Followingmining, pitswereconvertedtoland fi llwastedisposalandsuburban developmentareas,withsomerehabilitatedtonative vegetation.However,littleattentioninthereviewwas giventopost-miningrestorationpractices.Since1989,there
hasbeenasigni ficantincreaseintheminingofbaseraw materials(BRM)occurringinareasthatsupportBWs (e.g.sand,limestone,clay,hardrockandgravel aggregates).IncreasesinBRMdemandaremainlydriven byPerth ’spopulationincreasewithconcomitanturban development.Itisestimatedthatanaveragedwellingand supportinginfrastructureinthePerthregionrequires~663 tonnes(Mg)ofBRMincluding151Mgofhardrock,255Mg ofsand,102Mgofclayand155Mgoflimestone(Western AustralianPlanningCommission 2012).DepositsofBRM werethoughtofasabundantin1989(GozzardandMouritz 1989 ).However,arecentanalysisshowedtheoccurrence ofeconomicallyviabledepositsislimited,increasingly constrainedbyenvironmentalandland-useconsiderations (WesternAustralianPlanningCommission 2012).
Since1989,researchonBWsrestorationfollowing mininghasincreaseddramatically,resultinginthe publicationofabookdevotedtoBWsrestoration(Stevens etal . 2016).Theconservationofintactwoodlandsiscriticalto maintainecosystemfunctionandhabitat,especiallyforrare andendangered floraandfauna.However,continuous degradationoverthelast30yearshasmaderestoration effortsmorecriticalthanever.
Broadlyspeaking,therestorationrequirementsof individualminesdependuponthetypeofmining(e.g.hard rockpitvoids v.sandstripmining),thenatureofthe surroundingenvironment(e.g.urban v.intactwoodland), andtheagreed-uponpost-miningornextland-use(basedon land-usehierarchies,andagreed-uponcompletioncriteria). Restorationtypicallycomprisesdesigningandreconstructing appropriatelandforms,spreadingoftopsoil,andadditional seedingandplantingwhererequired.Largeadvanceshave beenmadeintheefficacyofpost-miningrestorationeffortsin thelast30years,whichhasaidedpost-pine,post-agriculturaland greenfieldlandrestoration,thoughlargegapsinknowledgestill existandefficiencyofeffortsrequiresimprovement.
Soils
Post-miningenvironmentscanbechallengingtorestore becauseofextremechangesinabioticandbioticconditions (Stevens etal 2016 ).Inthepasttwodecades,advancesinsoil profi lereconstructionandtopsoiltransferpracticeshave substantiallyimprovedthequalityandquantityofplant speciesrestored(Stevens etal 2016;Waryszak etal 2021 ).Mineralsandextractionisacommonminingactivity inBWswhere5–50-mdunesareminedtowithinapproximately fourmetersofthewatertable(Rokich 2016).Thisextreme alterationinsoilprofileleadstomultipleproblemsfor restoration,themostcriticalofwhichisahardeningprocessof thesubsurfacesoillayerthatconstrictsplantrootdevelopment (Rokich etal 2000, 2001;Benigno etal 2013).Soil reconstructionusingvarioussandmaterialsbefore redistributingtopsoil,suchassoilripping(Rokich etal. 2001) andtheapplicationoforganicsubsurfacemulches(Benigno etal. 2013)havebeenfoundtoimproveseedlingsurvival.
Appropriatehandlingoftopsoilisarguablythemost importantingredientforthesuccessfulestablishmentof BWsbecauseofmanyspecieshavingtopsoil-storedseeds
(Rokich etal. 2000;Fowler etal. 2015).Speci fi cally,thedepth atwhichtopsoilisstrippedandredistributedacrosspost-mine sitesandthetimingoftransferhavealargeeffectonboththe richnessandabundanceofspeciesthatcanestablishfromseed storedinthetopsoil(Rokich etal. 2000).Thequalityoftopsoil utilisedisalsocriticaltonativeseedpersistence.Ahigh occurrenceofseedfrominvasivespeciesintopsoilsmay leadtohighlycompetitiveenvironmentsthatresultin increasednativeseedlingmortality(Fisher etal 2009 b).
Seedsandseedtechnology
Signifi cantadvanceshavebeenmadeinseed,collection, handling,storage,andusagetechniquesandtechnologies, spurredonbythedemandforseedsforminesite restoration.Fundamentaltotheincreasedeffectivenessof seedhasbeentheabilitytoreleaseseeddormancyand stimulategerminationatmuchhigherratesthanpreviously possible.Earlyresearchintotheseedgerminationecologyof BWsspeciesprovidedinsightsintotheeffectsoftemperature andlightongermination(Bell etal. 1993 , 1995).Inthe1990s investigationsintotheroleofsmokeinstimulating germination(Dixon etal . 1995 ;Roche etal . 1997 ) culminatedinresearchestablishingandidentifyingan activechemicalcontainedwithinsmokeresponsiblefor germinationstimulation,karrikinolide(Flematti etal 2004). Karrikinolidewasidenti fi edasapredominantchemical responsibleforpromotinggerminationinawiderangeof nativeandintroducedseeds(Flematti etal 2004 ;Dixon etal 2009)withotherchemicalsnowidenti fi edforother speci fi cfamilieswithinBWs(e.g.organiccompound cyanohydrins – Haemodoraceae)(Flematti etal 2013).
Similaradvancementshavebeenachievedinunderstanding germinationofseedsofBWsspeciesthatrequirespecific treatmentstobreakdormancyandpromotegermination(Bell etal. 1995;Roche etal. 1998;Bell 1999;Turner etal. 2006; Merritt etal. 2007).Forexample,dryheatisusedtorelease dormancyintheiconicredandgreenkangaroopaw (Anigozanthosmanglesii D.Don)(Tieu etal. 2001).Similarly, stratification(Turner etal. 2006),andwetting-dryingcycles (Baker etal. 2005)havebeenfoundtoimproveseedgermination ratesofmultiplespecies.Usingthisinformation,seedmaybe treatedfordormancyandusedintandemwithtopsoiltransfer effortsthatoccuratbroad-acrescales(Stevens etal 2016) Challengesremainwithregardtogerminatingseedsof someoftheimportantunderstoreyspeciesinBWsbecause ofdormancy-breakingrequirementsthatarestillunclear. Reliablemethodsofdormancy-breakingareyettobe establishedforspeciesofEricaceae(thosethatdisperse seedsencasedinwoody,indehiscentfruits),Cyperaceae, Restionaceae,andRutaceae(Merritt etal 2007).
Restorationgenetics
Priortothe1989review,geneticissuesofrelevancetoBW restorationwerelargelyunknown.Anappreciationofthese issuesbeganwiththedevelopmentofrestorationecologyasa strongscientificdisciplinefromtheearly1990s(Bradshaw 1993).Thiscoincidedwiththedevelopmentofgenetic markerswhichincreasedtheunderstandingofgenetic
variationanditsspatialstructuringamongpopulationswithin species(LinhartandGrant 1996).Today,restorationgeneticsisa maturescientificdisciplineconcernedwithresearchingand understandinggeneticissuespotentiallyaffectingthepractise ofecologicalrestoration(Williams etal. 2014;Mijangos etal. 2015).Akeyissueisseedsourcing,withimplicit acknowledgmentthatnaturalselectionistheprimary selectionpressurethatleadstogeneticdifferentiation,and assumptionsthatlocalseedsarebestadaptedtothelocal restorationsite(HuffordandMazer 2003 ).Toinvestigate howlocalislocal,geneticmarkershavebeenusedsince 2000togenerategeneticallyinformedseedsourcing guidelinesformanySCPspecies(Krauss etal 2013; Krauss 2016).Recentinvestigationsintoadaptivegenetic variationhasfacilitatedtheassessmentofgeneticresilience toenvironmentalstressors.Bydetectingselectionand adaptation-relatedcandidategenes,theroleofgenetic diversityinbufferingBWsspeciesagainsttheeffectsof climatechange(He etal. 2016),andtheenvironmental driversintraitdifferentiationwithinandbetweenspecies (He etal. 2019 ),mayberevealed.Recentecological geneticstudieshavealsocon fi rmedthereturnofpollinator servicesandreproductivefunctionalityinpost-mining restorationpopulationsofBanksias(RitchieandKrauss 2012;Frick etal 2014),aswellasthegeneticintegration andconnectivitywithnearbyremnantpopulations(Ritchie etal 2019).
Priorityresearch
Researchisrequiredinthefollowingareas:
* Developacompleteunderstandingofwhatprocesses (physical,chemicalandbiological)aredrivingsubsurface soilhardeninginpost-miningrestorationsites.
* Determinetheconditionsforthesuccessfulgerminationand establishmentofthemanyspecieswithinBWsthatare unknown.
* Investigateanddevelopseedenhancementtechnologiesto maximiseseeduseforrestorationofBWs(e.g.Brown etal 2019).
* Refinebestpractiseseed-sourcingguidelinesusing provenancetrialstotestif ‘local-is-best’,orwhetherthere arebenefitsfromimplementingaclimate-adjusted provenancingmayprovemoresuccessfulwithexpected climatechange(Prober etal 2015).
* Investigatenewopportunitiesthatexistfromtherapid developmentofhigh-throughputDNAsequencing technologies.Theseincluderapidandcomprehensive eDNAassessmentofabove-andbelow-groundbiological communities(e.g.soilbiota)pre-andpost-restoration,as wellasgeneexpressionanalysisforassessmentofgenetic resiliencetoenvironmentalstressorsoftargetedplantspecies orcommunities.
* Identifyfaunalspeciesthatpassivelyrecoloniserestoration areastoidentifyspeciesthatwill,andwillnot,benefitfrom restorationactivities.
* Developtechniquestomovetowardsholisticrestorationof BWsthatspeci fi callyfacilitatestherecolonizationofsoil
biotaandfauna,particularlykeystoneandthreatenedspecies andthosecriticalforecosystemservices(e.g.pollinators).
Urbandevelopment
In1989,Poole(1989 )correctlypredictedthatPerthwould growimmenselyandthatregionalplanningstrategieswould beunsuccessfulatcontainingurbansprawl(Table 1;Fig. 1). ThePerthandPeelmetropolitanregionscurrentlyextendover 130kmalongthecoastandmayreach170kmby2050(Weller 2009 ).Indeed,Perthhasthelowestpopulationdensityofany mainlandcapitalcityinAustraliawith1000peoplekm–2 (by comparisonSydneyhas1900,Melbourne1500,andAdelaide 1300)(Hunn 2017).In1989,Perthhadapopulationof ~0.9millionpeople.Thecitywasoneofthefastest growinginAustraliawithanannualgrowthrateof3%in thelate1980sthatdeclinedto1.4%intheearly1990s (AustralianBureauofStatistics 1996 ).Projectionsatthe timeindicatedthatthecitywouldreach1.9millionpeople by2021(Poole 1989);however,Perth’spopulationattained over2millionin2018(AustralianBureauofStatistics 2019).
Perthhashad fi vemainplanningstrategiessince1990, whichhavetriedtoaddressurbansprawlandtheneedfora coordinatedregionalopenspacesystem.In1990,the Metroplan(DepartmentofPlanningandDevelopment 1990 ),proposedaregionalparksnetworkforconservation andrecreationaluseinthePerthmetropolitanarea (MacCallumandHopkins 2011 ).Theparksnetworkwas establishedinlawandvestedintheConservation CommissionofWesternAustraliain1997withanemphasis ontheprotectionoftheSwanRiverandDarlingScarp (Fig. 1b).Metroplanwasthe fi rstPerthplantospeci fi cally identifytheimportanceofprotectingurbangreenspaces, mainlyintermsofthebenefi tstopeoplenearby(Pauliand Boruff 2016 ).In2000,theBushForeverProjectwasendorsed forbushlandprotectionandmanagementonthecoastalplain portionofthePerthmetropolitanregion(DavisandHarfordMills 2016)(seethe ‘Floristicsandweeds’).Similarly,the NetworkCityPlan(WesternAustralianPlanningCommission 2004 )anticipatedsigni fi cantpopulationgrowth(MacCallum andHopkins 2011 ),andagainencouragedamorecompact urbanform.Importantly,itintroducedanurbangrowth boundaryand60%infi lltargetfornewhousing(Curtis 2006 ).Releasedin2010,Directions2031(WesternAustralian PlanningCommission 2010)followedthespiritofNetwork CityPlan,althoughitreducedtheinfilltargetto47%and expandedtheplanningareatoincludethePeelregion.
SomelargeBWsareashavebeensecuredwithinthePerth metropolitanarearegionalnetworkestablishedin1997 (e.g.Jandakot,Beeliar,CanningRiverandYellagonga RegionalParks,Fig. 4).Ramalho etal.(2013)identifiedthat severalBushForeversitesremainoutsidetheconservation estateandthat,inordertofurtherprotectremainingBWs FCTs,especiallythoseinthenorthernsectionofthe metropolitanregion,theyshouldbeplacedintheconservation estate.
Theformanddistributionofpublicopenspace(POS)in urbandevelopmentsalsorequiresconsideration(Bolleter 2017 ).Onekeyrulecurrentlydeterminingtheproportionof landreleasedperdevelopmenttobesetasideforPOShasbeen
inheritedfromtheStephensonandHepburn(1955 )plan.This plansuggestedaminimumareaofdevelopableland(10%) shouldbeallocatedtoPOSforrecreationalpurposes,based onthenumberofpeoplethePOSwasintendedtoserve. However,biodiversityconservationwasnotconsideredin theestablishmentofthesedevelopmentrules.Atthesame time,suburbanareasarebasedonthe ‘Liveable Neighbourhoods’ designcodewhichcallsforthecreation ofsmaller,butmoreaccessibleparks(WesternAustralian PlanningCommission 2007).Thetrade-offofparksize againstaccessibilitymakesmanyoftheseparkstoosmall tosupportself-sustainingBWs(Ramalho etal 2014 ).
Finally,itisimportanttomodeltheintegrationof conservationandreserveplanningscenarioswithalternative growthpatternstooptimiseprotectionofBWs.Urban developmentinPerthtypicallyfollowsthedispersedsites (sprawl)andtransportation-corridor(strip)modelswhich accordingtoForman(2010),causeextensivedegradationof naturalareas.Someofstrategiesandscenariostointegrate conservationandplanningcouldincludesecuringlandtenure forremainingBWs,directingdevelopmenttowardsalready clearedareas(introducedpineplantations,abandoned agriculturallands),andsteeringdevelopmenttowardshigher density,moreconnectedcommunitiesrequiringlesslandand physicalinfrastructure.Bolleter(2016)suggestedalternatives tothecurrentinfillapproaches,suchastransit-oriented developmentandsmallscale, adhoc ‘background’ infillto deliverPerth’sinfilldevelopmenttargetsandincrease suburbanamenity.Backgroundinfillreferstosmallinfill developmentprojectsthatyieldfewerthan fivegroup dwellings,andresultfromthesubdivisionofindividual suburbanlots(DepartmentofPlanningandWestern AustralianPlanningCommission 2014).Alternativestothis infillincluderesidentialdensificationaroundredesigned, ecologicallyenhancedurbanparksininnerandmiddlering suburbs(BolleterandRamalho 2014).


Priorityresearch
Researchisrequiredinthefollowingareas:
* Modeltheintegrationofconservationandreserveplanning scenarioswithalternativegrowthpatternstooptimise protectionofBWs.Analysethegrowthpatternsofthe dominanturbandevelopmenttypesoutlinedinBolleter (2018)foruseandapplicationinPerth.
* Researchstrategiesandscenariostoincludesecuringland tenureforremainingBWs,directingdevelopmenttowards alreadyclearedareas.
* Thedevelopmentofalternativestrategiesforachieving urbandensi ficationinPerth ’sexistingsuburbsthatare reconciledwithsuburbanlifestyleaspirationsofboth existingandfutureresidents.
* Overcomingsocialandenvironmentalbarriers(and identifyingenablers)forexpansionofBWs florainto streetscapesandurbanlandscapingasacoordinated approachacrossthePerthmetropolitanarea.
Interactions
Ecologicalsystemsarecomplex,withmanyfactorsbeing infl uencedbychangingclimateandlandmanagement practices.Manyinterrelatedprocessesandrelationships existamongbioticandabioticcomponentsofBWs occurringacrossarangeofscales,fromthesmall-scale (metre)interactionsbetweenplantspeciesandinvertebrates (discussedinLamont 1989)tolargescale(kilometre) processes,suchasthebreakdowninpollinatornetworks duetolandfragmentation.AkeyexampleinBWsisthe interactionbetweenweeds,nativespeciesand fi re.Land clearingcanadverselyaffectnativespeciesdiversityand promoteweedinvasionbecauseofincreasingareasof disturbance,fragmentationofhabitat(edgeeffects,Fig. 5) andincreasedpresenceofweedspeciesdecreasesthe likelihoodofpersistenceofmanynativespecies(Standish







etal. 2012 ;Stanbury etal . 2018).Therelationshipbetween weedspeciesand fi realsoprovidesachallengetothe maintenanceofnativespeciesassemblages.Firecanhavea negativeorpositiveeffectonweedinvasionand establishment:someweedsspeciesaresupressedorkilled by fire,whileotherweedspeciesbene fi tfrom fi re(see ‘Floristicsandweeds’).Increasedweedgrowthfollowing fi recanalsoincreasethecontinuityandavailabilityoffuels forfuture fi res,drivingapositivefeedbackloopoffrequent high-intensity fi resinaweeddominatedstate(grass- firecycle Fig. 5,see ‘Fire’).WeedsontheSCParealsofoundtomodify soilnutrientswithinBWs(see ‘Floristicandweeds’).BWs vegetationhasadaptedtothenutrientpoorsoilsoftheSCP, andFisher etal.(2006)demonstratedhowtheintroducedweed species, E.calycina and Pelargoniumcapitatum (L.)Aiton signifi cantlyincreasesoilnutrientcontent,whichfurther decreasesthecompetitiveabilityofnativeplants.
Thepositivefeedbackof fi reandweedinvasionis detrimentaltonativeplantstructureandfaunalcommunities associatedwiththe fl oristiccommunity(see ‘Vertebrates ’ and ‘Invertebrates ’).ManyBWsplantspeciesarealsosensitiveto changesinclimaticconditions,suchasincreasedoccurrenceof heatwaveevents(Ruthrof etal. 2018 )andseveredroughts (Challis etal 2016).Theimpactsofclimatechangeotherthan increased fi refrequency(e.g.heatwavesanddrought)areyet unknownforinvasiveweedspeciesinBWs.However, increasedstressonnativeplantpopulationswilllikely providegreateropportunityforweedspeciesinvasionif theyaretoleranttochangesinclimaticconditions. Subsequently,thereplacementofBWsplantswithweed speciescouldleadtofurtherfaunalreductions,throughloss ofhabitat(Davis etal 2013 , 2014 ;Mason etal 2018 b, 2019) andfoodresources(e.g.(Valentine etal 2014 ;Mason etal 2016).
Futuredirections
Inadditiontokeyprioritiesforresearchsetthroughoutthis paper(andinTableS1intheSupplementarymaterial),the increaseofexistingpressuresandnewchallengeswilldrive theneedforcontinuedresearchontheecologicalfunctioning andstructureofBWsandtheirassociatedspeciesintothe future.Hereweoutlinetheanticipatedfuturelandscapeand thenecessarypolicyandpracticetosupportresearch, conservationandmanagementofBWs.
Amajorchallengenotacknowledgedin1989isclimate change,affectingboththeabioticconditionsandbiotic responsesinBWs.By2030,rainfallispredictedtodecline afurther6%overthesouth-westofWesternAustraliaand theannualnumberofdaysabove35 Ctoincreasefrom28 (1971 –2000)to36(DepartmentofWaterandEnvironmental Regulation 2019 ).Theregionalimpactsofclimatechangemay alsobeexacerbatedbylocalscalechanges,drivenbylanduse change,suchastheheatislandeffectthatoccursdueto conversionfromvegetatedecosystemstohardsurface developments(MacLachlan etal . 2017 ).Newdevelopments inthePerthregionhavelowerpercentagecanopycoverof treesandhigherpercentagecoverofhotrefl ectivesurfaces (Fig. 1, 6),whichmayadverselyaffectinhabitants(Duncan etal 2019 ).Whenurbantemperaturesarehigh,inhabitants utiliseairconditionersandrefrigeratorsathighercapacity, increasingenergycostsandexacerbatingheatisland effects.
Higherdensityhousingwillbeanessentialcomponentof futuregrowthplansthataccountforbothagrowingpopulation andconservationofBWsinPerth(Fig. 3).Theincorporation ofbiophilicandenvironmentalsensitivedesigninplansfor urbandevelopmentwilllikelycontributetoreductionsinheat islandeffects.Perthhasavisiontobealeadingwaterwisecity by2030andthecurrentstategovernmenthasoutlinedthat
Vegetation change (%) Urban–industrial change (%) Current human population Population forecast 2041
Fig.6. DataextractedfromGorelick etal.(2017 )forlocalgovernmentareasbasedoncurrentboundariesforpercentagechangeinvegetationcover between1989and2019,urbanorindustrialcoverpercentagechangebetween1989and2019derivedfrom,currenthumanpopulationin2019and populationforecastfor2041(https://www.forecast.id.com.au)oftwonortherncitiesJoondalup,Wanneroo,andsoutherncitiesMandurahandCockburnin WesternAustralia.
100%ofgovernment-ledurbandevelopmentinPerthandPeel willbewaterwiseby2030,workingwithlocalgovernmentsto reduceirrigationratesandadoptwater-sensitiveurbandesigns toaccountforagrowingpopulation(DepartmentofWaterand EnvironmentalRegulation 2019 ).Conservingandprotecting BWsfromconversiontoopen-usegreenspaceswillhelpto reducewaterusageandincreaserecharge.
Alterationsinspeciescomposition(Scholze etal 2006; Forbes etal 2018)andextinctions(Yates etal 2010 )are likelytooccurduetochangingclimate,whichmeansBWs fl oristicsandfaunisticsarelikelytoshiftovertime,whichin turnwouldaffectlocalFCTclassification,regionalFCT distributions,conservationassessmentsandprotection(Boitani etal 2015).Thesechallengesareintensifiedbythepressureofa growingurbanenvironment(Fig. 1, 6;Table 1).Topreventfurther biodiversityloss,werequireknowledgeofhow,whenandwhy theseshiftsoccurwithinthisecologicalcommunity(Saunders etal 2020).Therefore,strengtheningthecurrentandfuture reservesystemstoprotectthefullcomplementofBWs biodiversityandtheirkeysustainingprocessesiscritical. Conservingsmallpatchesandremnantvegetationthatmaybe perceivedasinsignificantcanprovidealargerlandscapematrix throughwhichtooptimisetheretentionofbiodiversityand functionalityoftheecologicalcommunity(Wintle etal 2019). Further,itisimportantthatadequateresourcesareavailable forongoingresearchandmanagementofexistingreservesin urbanareaswheretheyareparticularlyvulnerabletoaltered fireregimes,weedinvasion,disease,incursionbyferal predatorsandherbivores,andhumandisturbance.
Extensiverestorationandrehabilitationwillbeessentialin thecomingdecadestoconserveBWs.In1989, ‘restoration ecology’ wasnotyetadiscipline(Young etal 2005 ).Since 1990,considerableresearchinconservationhasprogressed hand-in-handwithaneedtorestoretheecologicalfunction ofdegradedBWs.Ongoingresearchandimplementationof ecologicalrestoration(Stevens etal . 2016)andreintroductions offaunaarealsocriticalforreturningareasofBWsfollowing clearingandmaintainingecosystemprocessesindisturbed BWs(Ritchie etal . 2019;Ryan etal. 2020 ).Although muchprogresshasbeenmadeinre-establishingBWs, technologicaladvancesinlarge-scalebiodiverserestoration arevitaltothedevelopmentandachievementofsuccessful ecologicalrestorationinordertocompensateforclearing.
Environmentaloffsetsareakeypolicyinstrumentthathas becomeprominentrecently,andareparticularlyrelevantfor BWsbecauseongoingurbandevelopmenthasbeenamajor causeofwoodlandlossontheSCP(Thorn etal 2018 ).Offsets policyaimstoassessdevelopmentproposalsinrelationtotheir likelyeffectonbiodiversityandthepotentialtoavoid,mitigate oroffsetthisloss.Offsetschemesrequiredeveloperstoinvest inotheractionsthatcompensateforthelossescausedby thedevelopmentsaftersuccessfullyandcomprehensively implementingthemitigationhierarchy(Maron etal. 2012 ). Offsetsaresupposedtobeinstitutedonlywhenallother optionstoavoidandreduceadverseenvironmentalimpacts havebeenexhausted.InWesternAustralia,39%ofoffsets studiedbyMay etal.(2017)wereconsideredeffectivein deliveringtheirplannedoutcome,withauthorsconcludingthat althoughtherehavebeenrecenteffortstoadvanceoffset
implementationandeffectiveness,thereisneedforfurther improvement.The2016FederalRegisterlistingofBWs (CommonwealthofAustralia 2016a)anditsidenti fication ashabitatforspecieslistedasThreatenednationallysuchas Carnaby’scockatoos,areimportantfactorsstrengtheningthe needforprotectionofBWs.
Thepublicnowandintothefuturewillplayalargerolein protectingandconservingBWs.Theecologicalcommunityis ofgreatsigni fi cancetomanylocals,includingtheindigenous inhabitantsoftheSCP,theNoongarpeople,andtheirlanguage groups.In1989,HopperandBurbidge(1989)concluded ‘ fewwouldconsiderthesecommunities(BWs)tobeof seriousconservationconcern ’.In2017,Perthresidents activelyprotestedadevelopmentthatwouldhavecleared substantialBWsandwetlands,bringingaboutpublicityof BWs,BeeliarwetlandsandAboriginalheritagesitesandtheir protectioninPerth(Gaynor etal 2018 ).Ifwe ‘carefor Country ’,andplacesigni fi canceonthisuniqueecological community,wearemorelikelytosecurewhatisleftforfuture generations. ‘Place’ narrativesareacentralpartofAustralian Indigenouscultureandknowledge,andthesigni fi canceof placeiscriticaltoAboriginalpeople’shealthandwellbeing (Kingsley etal . 2013).
Studieshaveshownthatsightsofnature,orproximityto natureandgreenspaceisimportantforhealthandmental wellbeingforallpeople(Zylstra etal 2014 ;Wood etal 2017).Thus,theneedtodemonstratethenatureofBWsand thevaluetheyaddtosocietyremainsascriticalnowasitwas in1989. ‘Nature’ canbereframed,notasaproblemor constrainttourbaninfrastructure,butasanassetthatcan beutilisedtoimprovetheurbancontextbyincorporatingthe principlesofbiodiversitysensitiveurbandesign.Human healthwithinsustainedurbangrowthisdependentupona healthynaturalenvironment,andcarefullyplanneddevelopment, utilisingsoundscientific,socialandtraditionalknowledgecan incorporateincreasinghumanpopulationswhileconservingthe naturalenvironmentandminimisingimpactsonourthreatened ecologicalcommunities.
Australiancitiesareknowntosupportmorenationally threatenedanimalandplantspeciesthannon-urbanareas throughoutAustralia(Ives etal 2016).However,ourcities continuetoexpand,withstategovernmentsreportingthat greenfielddevelopmentratesaccountfor~20%ofgrowthin Sydney,30%inMelbourneandasmuchas70%inPerth (InfrastructureAustralia 2019;UniversityofNSWCity FuturesResearchCentreAstrolabeGroup 2019).Banksia Woodlandsprovidevitalhabitatfornumerousspeciesof whichover20arenationallyThreatened(Commonwealthof Australia 2016 b).Perthispredictedtogrowto3millionby 2050and6.6millionby2061(AustralianBureauofStatistics 2018),potentiallymeaninganincreaseof1486km2 ofsuburban area(Bolleter 2015),furtherincreasingpressuresonalready threatenedspecies.
Theutilisationofscientificresearchwillbecriticalfor informingtheenvironmentalprotectionofBWswhile balancingandmanagingthecompetinglandusesonthe SCP.ThepolicyenvironmentwithinwhichBWs conservationandmanagementoperatesiscomplex,with relevantpoliciesandregulationsatlocal,regional,stateand
federallevels,coveringwoodlandsonprivateandpubliclands. Policiesrelatetowoodlandprotection,management, fi re, weeds,andparticularspeciesconservationconcern. Therefore,thereisanever-greaterneedforscientiststo workaspartofcross-disciplinaryeffortsandwithdiverse stakeholdergroupstoprotectthisecosystemfromfurther declines.
Thisreviewhasbroughttogetheradiversegroup(interms ofbothageandgender)ofindividualsfrommultipleagencies anduniversitiesasthenewgenerationofecological researcherscurrentlyworkingintheconservationand managementofthesewoodlands.Thechallengesfacedand theknowledgenecessarytoovercomethemrequiresa transdisciplinaryapproachandwerecognisethatingoing forwardagreaterdiversityofpeopleandperspectivesneed tobeincludedinthediscussionandresearchofBWs, specifi callygreatercommunicationamongresearchers, local,stateandnationalgovernmentagencies,nongovernmentorganizations,communityandNoongarpeople, andprivatebusinesses.Giventhelast30yearsofurban growth,BWsnowrequireanurbanecologyperspective, involvingagreatervarietyofstakeholdersfromdiffering cultural,ethnicandprofessionalbackgrounds.Continued fundinginresearchisnecessarytobetteranticipate emergingprocessesthreateningtheenvironmentand, throughtheintegrationofscienceintoadaptive managementprograms,lessentheirimpact.Greater investmentallocationtoon-groundmanagementagenciesis requiredtoeffectivelyintegratescienti fi cknowledgegained andimplementmanagementprogramstorestore,conserveand maintainremainingremnantBWsareas.
Conclusion
Followingthefederal2016TEClistingofBWs (CommonwealthofAustralia 2016a),clearstrategiesneed tobedevelopedandappliedinordertooverthrowthe predictionsmadein1989of ‘totaldestructionornear destructionplusdegradationoftheremnants’ (Burbidge 1989).Wesuggestthepriorityresearchareasthatwehave derivedfromtheBWsstudiesreviewedherewillbeintegrated intoresearchaimedatsustainablenatureconservation alongsidesustainablepopulationgrowthinoneof Australia ’sfastestgrowingcities.Gainingaccuratedataon anongoingbasiswillprovidetheevidencerequiredtobetter understandimpacts,suchasfromclimatechange.Effective informationtransferbetweenresearch,managementand policydevelopmentwouldfacilitateeffectiveconservation. Thisreviewbroughttogetherresearchersfromarangeof institutionsandscientifi cdisciplines.However,topreserve BWsandthespeciesthisecosystemsupports,agreater diversityofprofessionalsandstakeholdersincluding communitygroupsneedtobeengagedindiscussionsabout appropriatewaysforwardforconservation,managementand restorationeffortssothatthegrowingcityofPerthandBWs maycoexist.Ourhopeisthatthisreviewservesasa foundationforfuturecollaborativeeffortsbetweenagreater diversityofresearch,management,communityorganisations andplanningentities.Preservationoftheseuniqueecosystems
andtheirassociatedspeciesisdependentonscienti fi cally informedmanagementinconjunctionwithnovelapproaches toaccommodateagrowinghumanpopulation.
Conflictsofinterest
Theauthorsdeclarethattheyhavenoconflictsofinterest.
DeclarationofFunding
Thisresearchdidnotreceiveanyspecificfunding.A.L.Ritchie wassupportedbyTheAustralianResearchCouncil (LP170100075)inthepreparationofthisarticle.
Acknowledgements
TheauthorsthankDavidMerrittandRichardSilbersteinfortheir contributionstothemanuscript.Theauthorsthankthereviewersfor theirhelpfulandthoroughcritiqueofthemanuscript.Theauthors acknowledgetheTraditionalOwnersofcountrythroughoutWestern Australiaandtheircontinuingconnectiontoland,seaandcommunity. Wepayourrespectstothem,theircultureandtotheirElderspastand present.
References
AbbottI(1982)ThedistributionofearthwormsinthePerthmetropolitan area. RecordsoftheWesternAustralianMuseum 10,1–34. AndrysJ,KalaJ,LyonsTJ(2017)Regionalclimateprojectionsofmean andextremeclimateforthesouthwestofWesternAustralia (1970–1999comparedto2030–2059). ClimateDynamics 48, 1723–1747.doi:10.1007/s00382-016-3169-5
AustralianBureauofStatistics(1988)2102.0 – CensusofPopulationand Housing,1986.ABS,Canberra,ACT,Australia.
AustralianBureauofStatistics(1993)2101.0 – CensusofPopulationand Housing,1991.ABS,Canberra,ACT,Australia.
AustralianBureauofStatistics(1996)4102.0 – AustralianSocialTrends, 1996.ABS,Canberra,ACT,Australia.
AustralianBureauofStatistics(2017)1001.0 – AustralianBureauof Statistics – AnnualReport,2016-17.ABS,Canberra,ACT,Australia. AustralianBureauofStatistics(2018)PopulationProjections,Australia, 2012to2101.Vol.2019.ABS,Canberra,ACT,Australia.
AustralianBureauofStatistics(2019)3218.0-RegionalPopulation Growth,Australia,2017–18.ABS,Canberra,ACT,Australia.
BaderMKF,EhrenbergerW,BitterR,StevensJ,MillerBP,ChopardJ,Rüger S,HardyGESJ,PootP,DixonKW,ZimmermannU,VeneklaasEJ (2014)Spatio-temporalwaterdynamicsinmature Banksiamenziesii treesduringdrought. PhysiologiaPlantarum 152,301–315. doi:10.1111/ppl.12170
BakerK,SteadmanK,PlummerJ,MerrittD,DixonK(2005)Thechanging windowofconditionsthatpromotesgerminationoftwo fireephemerals, Actinotusleucocephalus (Apiaceae)and Tersoniacyathiflora (Gyrostemonaceae). AnnalsofBotany 96,1225–1236. doi:10.1093/aob/mci274
BamfordMJ(1992)Theimpactof fireandincreasingtimeafter fireupon Heleioporuseyrei,Limnodynastesdorsalis and Myobatrachusgouldii (Anura:Leptodactylidae)inBanksiawoodlandnearperth,western Australia. WildlifeResearch 19,169–178.doi:10.1071/WR9920169
BamfordMJ,HuangN(2009)Theoccurrenceandstatusoffrogsinthe GnangaraSustainabilityStrategystudyarea.Report,Departmentof EnvironmentandConservation,Perth,WA,Australia.
BarberP,PaapT,BurgessT,DunstanW,HardyGSJ(2013)Adiverserange of Phytophthora speciesareassociatedwithdyingurbantrees. Urban Forestry&UrbanGreening 12,569–575. doi:10.1016/j.ufug.2013.07.009
BarrettS,RathboneD(2018)Long-termphosphiteapplicationmaintains speciesassemblages,richnessandstructureofplantcommunities invadedby Phytophthoracinnamomi AustralEcology 43,360–374. doi:10.1111/aec.12574
BarronO,FroendRH,HodgsonG,AliR,DawesW,DaviesP,McFarlane D(2014)Projectedriskstogroundwater-dependentterrestrial vegetationcausedbychangingclimateandgroundwaterabstraction intheCentralPerthBasin,WesternAustralia. HydrologicalProcesses 28,5513–5529.doi:10.1002/hyp.10014
BastianL(1996)Residualsoilmineralogyanddunesubdivision,Swan CoastalPlain,WesternAustralia. AustralianJournalofEarthSciences 43,31–44.doi: 10.1080/08120099608728233
BatesBC,HopeP,RyanB,SmithI,CharlesS(2008)Key findingsfrom theIndianOceanClimateInitiativeandtheirimpactonpolicy developmentinAustralia. ClimaticChange 89,339–354. doi:10.1007/s10584-007-9390-9
BellDT(1999)TheprocessofgerminationinAustralianspecies. Australian JournalofBotany 47,475–517.doi:10.1071/BT98007
BellRW(2002)Restorationofdegradedlandscapes:principlesand lessonsfromcasestudieswithsalt-affectedlandandmine revegetation. ChiangMaiUniversityJournalofNaturalSciences 1, 1–21.
BellDT,LoneraganWA,RidleyWJ,DixonKW,DixonIR(1992) ResponseoftreecanopyspeciesofKingsPark,Perth,Western Australiatotheseveresummerwild fireofJanuary1989. Journal oftheRoyalSocietyofWesternAustralia 75,35–39.
BellDT,PlummerJA,TaylorSK(1993)Seedgerminationecologyin southwesternWesternAustralia. BotanicalReview 59,24–73. doi:10.1007/BF02856612
BellDT,RokichDP,McChesneyCJ,PlummerJA(1995)Effectsof temperature,lightandgibberellicacidonthegerminationofseedsof 43speciesnativetoWesternAustralia. JournalofVegetationScience 6, 797–806.doi:10.2307/3236393
BenignoSM,DixonKW,StevensJC(2013)Increasingsoilwater retentionwithnative-sourcedmulchimprovesseedling establishmentinpostmineMediterraneansandysoils. Restoration Ecology 21,617–626.doi: 10.1111/j.1526-100X.2012.00926.x
BenignoSM,DixonKW,StevensJC(2014)Seedlingmortalityduring biphasicdroughtinsandyMediterraneansoils. FunctionalPlant Biology 41,1239–1248.doi:10.1071/FP13366
BirnbaumC,BradshawLE,RuthrofKX,FontaineJB(2017)Topsoil stockpilinginrestoration:Impactofstoragetimeonplantgrowthand symbioticsoilbiota. EcologicalRestoration 35,237–245. doi:10.3368/er.35.3.237
BoitaniL,MaceGM,RondininiC(2015)Challengingthescientific foundationsforanIUCNRedListofEcosystems. Conservation Letters 8,125–131.doi:10.1111/conl.12111
BolleterJ(2015) ‘ScavengingtheSuburbs:AuditingPerthfor1millioninfill dwellings.’ (UWAPublishing:Perth,WA,Australia)
BolleterJA(2016)Backgroundnoise:areviewoftheeffectsof backgroundin fillonurbanliveabilityinPerth. AustralianPlants 53,265–278.doi:10.1080/07293682.2016.1245201
BolleterJ(2017)Fringebene fits?Areviewofoutersuburban developmentonPerth ’sfringesinrelationtostategovernment goalsconcerningthenaturalenvironmentandef fi cienttransport connectivity. AustralianPlants 54,93 –114. doi:10.1080/07293682.2017.1319395
BolleterJA(2018)Theconsequencesofthreeurbanisationscenariosfor northernAustralia. AustralianPlants 55,103–125. doi:10.1080/07293682.2019.1620302
BolleterJ,RamalhoC(2014)Thepotentialofecologicallyenhanced urbanparkstoencourageandcatalyzedensificationingrey field suburbs. JournalofLandscapeArchitecture 9,54–65. doi:10.1080/18626033.2015.968418
BonnardeauxY,BrundrettM,BattyA,DixonK,KochJ, SivasithamparamK(2007)Diversityofmycorrhizalfungiof terrestrialorchids:compatibilitywebs,briefencounters,lasting relationshipsandalieninvasions. MycologicalResearch 111,51 –61. doi:10.1016/j.mycres.2006.11.006
BowenBJ,PateJS(2004)Effectofseasonofburnonshootrecoveryand post- fire floweringperformanceintheresprouter Stirlingialatifolia R.Br.(Proteaceae). AustralEcology 29 ,145–155. doi:10.1111/j.1442-9993.2004.01332.x
BrabyMF(2018)Threatenedspeciesconservationofinvertebratesin Australia:anoverview. AustralEntomology 57,173–181. doi:10.1111/aen.12324
BradshawA(1993)Restorationecologyasascience. RestorationEcology 1, 71–73.doi:10.1111/j.1526-100X.1993.tb00011.x
BrownK,BrooksK(2003) ‘BushlandWeeds:aPracticalGuidetotheir Management.’ (EnvironmentalWeedsActionNetworkInc.:Perth,WA, Australia)
BrownK,PaczkowskaG,GibsonN(2016)Mitigatingimpactsofweeds andkangaroograzingfollowingprescribed fireinaBanksiawoodland. EcologicalManagement&Restoration 17,133–139. doi:10.1111/emr.12208
BrownVS,RitchieAL,StevensJC,HarrisRJ,MadsenMD,EricksonTE (2019)Protectingdirectseededgrassesfromherbicideapplication:can extrudedpelletformulationsbeusedinrestoringnaturalplant communities? RestorationEcology 27,488–494.doi:10.1111/rec.12903
BurbidgeA(1989)Banksiawoodlands:Summaryandconclusions. JournaloftheRoyalSocietyofWesternAustralia 71 ,117–118.
BurbidgeA,LeicesterK,McDavittS,MajerJ(1992)Antsasindicatorsof disturbanceatYanchepnationalPark,WesternAustralia. Journalofthe RoyalSocietyofWesternAustralia 75,89–95.
BurgessSS,PateJS,AdamsMA,DawsonTE(2000)Seasonalwater acquisitionandredistributionintheAustralianwoodyphreatophyte, Banksiaprionotes AnnalsofBotany 85,215–224. doi:10.1006/anbo.1999.1019
BurgessTI,WhiteD,McDougallKM,GarnasJ,DunstanWA,CatalàS, CarnegieAJ,WorboysS,CahillD,VettrainoA,StukelyMJC,Liew ECY,PaapT,BoseT,MiglioriniD,WilliamsB,BriggF,CraneC, RudmanT,HardyGESJ(2017)Distributionanddiversityof Phytophthora acrossAustralia. PacificConservationBiology 23, 150–162.doi:10.1071/PC16032
BurgessTI,McDougallKL,ScottPM,HardyGES,GarnasJ(2019) Predictorsof Phytophthora diversityandcommunitycompositionin naturalareasacrossdiverseAustralianecoregions. Ecography 42, 565–577.doi:10.1111/ecog.03904
BurrowsND,McCawWL(1990)Fuelcharacteristicsandbush firecontrol inbanksialowwoodlandsinWesternAustralia. Journalof EnvironmentalManagement 31,229–236. doi:10.1016/S0301-4797(05)80036-2
CahillDM,RookesJE,WilsonBA,GibsonL,McDougallKL(2008) Phytophthoracinnamomi andAustralia’sbiodiversity:impacts, predictionsandprogresstowardscontrol. AustralianJournalof Botany 56,279–310.doi:10.1071/BT07159
CanhamCA,FroendRH,StockWD(2009)Waterstressvulnerabilityof four Banksia speciesincontrastingecohydrologicalhabitatsonthe GnangaraMound,WesternAustralia. Plant,Cell&Environment 32 , 64–72.doi:10.1111/j.1365-3040.2008.01904.x
CanhamCA,FroendRH,StockWD,DaviesM(2012)Dynamicsof phreatophyterootgrowthrelativetoaseasonally fluctuatingwater tableinaMediterranean-typeenvironment. Oecologia 170,909–916. doi:10.1007/s00442-012-2381-1
ChallisA,StevensJ,McgrathG,MillerB(2016)Plantandenvironmental factorsassociatedwithdrought-inducedmortalityintwofacultative phreatophytictrees. PlantandSoil 404,157–172. doi:10.1007/s11104-016-2793-5
CheneyNP,GouldJS,McCawWL,AndersonWR(2012)Predicting fire behaviourindryeucalyptforestinsouthernAustralia. ForestEcology andManagement 280,120–131.doi:10.1016/j.foreco.2012.06.012
CloseDC,MessinaG,KraussSL,RokichDP,StritzkeJ,DixonKW (2006)Conservationbiologyoftherarespecies Conospermum undulatum and Macarthuriakeigheryi inanurbanbushland remnant. AustralianJournalofBotany 54,583 –593. doi: 10.1071/BT05205
CommonwealthofAustralia(2016a)ApprovedConservationAdvice (incorporatinglistingadvice)fortheBanksiaWoodlandsofthe SwanCoastalPlainecologicalcommunity.Approved26August 2016;Listingeffectivefrom16September2016.Report, DepartmentofEnvironmentandEnergy,Canberra,ACT,Australia. CommonwealthofAustralia(2016b)BanksiaWoodlandsoftheSwan CoastalPlain:anationallyprotectedecologicalcommunity.Report, DepartmentofEnvironmentandEnergy,Canberra,ACT,Australia. ConservationandParksCommission(2018)PositionStatementon prescribedburningonvestedlands.Report,ConservationandParks Commission,Perth,WA,Australia.
CowlingRM,RundelPW,LamontBB,ArroyoMK,ArianoutsouM (1996)PlantdiversityinMediterranean-climateregions. Trendsin Ecology&Evolution 11,362–366. doi: 10.1016/0169-5347(96)10044-6
CroneM,McCombJA,O’BrienPA,HardyGESJ(2013)Survivalof Phytophthoracinnamomi asoospores,stromata,andthick-walled chlamydosporesinrootsofsymptomaticandasymptomaticannual andherbaceousperennialplantspecies. FungalBiology 117,112–123. doi:10.1016/j.funbio.2012.12.004
CrostiR,DixonK,LaddP,YatesC(2007)Changesinthestructureand speciesdominanceinvegetationover60yearsinanurbanbushland remnant. PacificConservationBiology 13,158–170. doi:10.1071/PC070158
CSIROandBOM(2015)ClimatechangeinAustraliainformationfor Australia’snaturalresourcemanagementregions:Technicalreport, CSIROandBureauofMeteorologyAustralia,Canberra,ACT,Australia.
CurtisC(2006)Networkcity:retrofittingthePerthmetropolitanregionto facilitatesustainabletravel. UrbanPolicyandResearch 24,159–180. doi:10.1080/08111140600703691
DavisRA(2009a)Theimpactof fireand Phytophthora diebackonbirdsin theGnangaraSustainabilityStrategy.Report,Departmentof EnvironmentandConservation,Perth,WA,Australia.
DavisRA(2009b)Terrestrialaviandiversityandthreateningprocesseson theGnangaragroundwatermound,WesternAustralia.Report, DepartmentofEnvironmentandConservation,Perth,WA,Australia.
DavisRA,BamfordMJ(2005)Arangeextensionfor Leristalineopunctulata andasecondrecordof Leristalineata,nearYalgorup,WesternAustralia. WesternAustralianNaturalist 25,59–60.
DavisRA,DohertyTS(2015)Rapidrecoveryofanurbanremnantreptile communityfollowingsummerwildfire. PLoSOne 10,e0127925. doi:10.1371/journal.pone.0127925
DavisG,Harford-MillsG(2016)Examining60yearsofstrategicplanning inmetropolitanPerthandPeel.Report,CommitteeforPerth,Perth, WA,Australia.
DavisRA,WilcoxJ(2008)Rangeextensionofthewesternheathdragon Rankiniaadelaidensis andGray’sleglesslizard Delmagrayii with notesonthedistributionofsouthernSwanCoastalPlainreptiles. WesternAustralianNaturalist 26 ,67 –70.
DavisRA,GoleC,RobertsJD(2013)Impactsofurbanisationonthe nativeavifaunaofPerth,WesternAustralia. UrbanEcosystems 16, 427–452.doi:10.1007/s11252-012-0275-y
DavisRA,ValentineLE,CraigMD,WilsonB,BancroftWJ,MallieM (2014)Impactof Phytophthora-diebackonbirdsinBanksiawoodlands insouthwestWesternAustralia. BiologicalConservation 171,136–144. doi:10.1016/j.biocon.2014.01.027
DensmoreVS,ClinganES(2019)PrescribedburninginaMediterraneanclimateregionmitigatesthedisturbancebybushfiretoacriticalfood resourceforanendangeredbird,theCarnaby’scockatoo. FireEcology 15,36.doi:10.1186/s42408-019-0054-8
DepartmentofEnvironmentalProtection(1996)System6andpartSystem1 updateprogram.Bushlandplotandarearecords,EPA,Perth,WA, Australia.
DepartmentofPlanningandDevelopment(1990) ‘Metroplan:Aplanning strategyforthePerthMetropolitanRegion.’ (ArtGalleryofWestern Australia:Perth,WA,Australia)
DepartmentofPlanning,WesternAustralianPlanningCommission(2014) UrbanGrowthMonitor:PerthMetropolitan,PeelandGreaterBunbury Regions.ReportWesternAustralianPlanningCommission.
DepartmentofWaterandEnvironmentalRegulation(2019)Waterwise Perth.Report,GovernmentofWesternAustralia,Perth,WA,Australia.
DhakalSP(2014)Securingthefutureofurbanenvironmentalsustainability initiativesinAustralia. UrbanPolicyandResearch 32,459–475. doi:10.1080/08111146.2014.896787
DixonKW,RocheS,PateJS(1995)Thepromotiveeffectofsmoke derivedfromburntnativevegetationonseedgerminationofWestern Australianplants. Oecologia 101,185–192.doi:10.1007/BF00317282
DixonK,MerrittD,FlemattiG,GhisalbertiE(2009)Karrikinolide – a phytoreactivecompoundderivedfromsmokewithapplicationsin horticulture,ecologicalrestorationandagriculture. ActaHorticulturae 813,155–170.doi:10.17660/ActaHortic.2009.813.20
DoddJ,Grif fi nE(1989)FloristicsoftheBanksiawoodlands. Journalof theRoyalSocietyofWesternAustralia 71 ,89–90.
DoughtyP,OliverPM(2013)Systematicsof Diplodactylus (Squamata: Diplodactylidae)fromthesouth-westernAustralianbiodiversity hotspot:rede finitionof D.polyophthalmus andthedescriptionof twonewspecies. RecordsoftheWesternAustralianMuseum 28, 44–65.doi: 10.18195/issn.0312-3162.28(1).2013.044-065
DoverJW,RowlingsonB(2005)Thewesternjewelbutter fly (Hypochrysopshalyaetus):factorsaffectingadultbutter fly distributionwithinnativeBanksiabushlandinanurbansetting. BiologicalConservation 122,599–609. doi:10.1016/j.biocon.2004.09.014
DuncanJ,BoruffB,SaundersA,SunQ,HurleyJ,AmatiM(2019) Turningdowntheheat:Anenhancedunderstandingoftherelationship betweenurbanvegetationandsurfacetemperatureatthecityscale. TheScienceoftheTotalEnvironment 656,118–128. doi:10.1016/j.scitotenv.2018.11.223
EnglishV,JasinskaE,BlythJ(2003)Aquaticrootmatcommunityof cavesoftheSwanCoastalPlainandtheCrystalCavecrangonyctoid interimrecoveryplan2003–2008.Report,Departmentof ConservationandLandManagement,WesternAustralian ThreatenedSpeciesandCommunitiesUnit,Perth,WA,Australia. FarringtonP,GreenwoodE,BartleG,BeresfordJ,WatsonG(1989) EvaporationfromBanksiawoodlandonagroundwatermound. JournalofHydrology 105,173–186.
doi:10.1016/0022-1694(89)90102-9
FisherJL,VeneklaasEJ,LambersH,LoneraganWA(2006)Enhancedsoil andleafnutrientstatusofaWesternAustralianBanksiawoodland communityinvadedby Ehrhartacalycina and Pelargonium capitatum PlantandSoil 284,253–264.
doi:10.1007/s11104-006-0042-z
FisherJL,LoneraganWA,DixonK,DelaneyJ,VeneklaasEJ(2009a) Alteredvegetationstructureandcompositionlinkedto fi refrequency andplantinvasioninabiodiversewoodland. BiologicalConservation 142,2270–2281.doi:10.1016/j.biocon.2009.05.001
FisherJL,LoneraganWA,DixonK,VeneklaasEJ(2009b)Soilseedbank compositionalchangeconstrainsbiodiversityinaninvadedspeciesrichwoodland. BiologicalConservation 142,256–269.
doi:10.1016/j.biocon.2008.10.019
FitzpatrickMC,GoveAD,SandersNJ,DunnRR(2008)Climatechange, plantmigration,andrangecollapseinaglobalbiodiversityhotspot:the Banksia(Proteaceae)ofWesternAustralia. GlobalChangeBiology 14, 1337–1352.doi:10.1111/j.1365-2486.2008.01559.x
FlemattiGR,GhisalbertiEL,DixonKW,TrengoveRD(2004)Acompound fromsmokethatpromotesseedgermination. Science 305,977. doi:10.1126/science.1099944
FlemattiGR,WatersMT,Scaf fidiA,MerrittDJ,GhisalbertiEL,Dixon KW,SmithSM(2013)Karrikinandcyanohydrinsmokesignals providecluestonewendogenousplantsignalingcompounds. MolecularPlant 6,29–37.doi:10.1093/mp/sss132
FlorecV,BurtonM,PannellD,KelsoJ,MilneG(2020)Whereto prescribeburn:thecostsandbene fitsofprescribedburningcloseto houses. InternationalJournalofWildlandFire 29 ,440–458. doi:10.1071/WF18192
ForbesCJ,GillsonL,HoffmanMT(2018)Shiftingbaselinesina changingworld:Identifyingmanagementtargetsinendangered heathlandsoftheCapeFloristicRegion,SouthAfrica. Anthropocene 22 ,81 –93.doi: 10.1016/j.ancene.2018.05.001
FormanR(2010) ‘UrbanRegions:EcologyandPlanningBeyondtheCity.’ (CambridgeUniversityPress:Cambridge,MA,USA)
FowlerWM,FontaineJB,EnrightNJ,VeberWP(2015)Evaluating restorationpotentialoftransferredtopsoil. AppliedVegetationScience 18,379–390.doi:10.1111/avsc.12162
FrickKM,RitchieAL,KraussSL(2014)Fieldofdreams:restitutionof pollinatorservicesinrestoredbird-pollinatedplantpopulations. RestorationEcology 22,832–840.doi:10.1111/rec.12152
FroendR,DrakeP(2006)Definingphreatophyteresponsetoreduced wateravailability:preliminaryinvestigationsontheuseofxylem cavitationvulnerabilityinBanksiawoodlandspecies. Australian JournalofBotany 54,173–179.doi:10.1071/BT05081
FroendR,SommerB(2010)Phreatophyticvegetationresponsetoclimatic andabstraction-inducedgroundwaterdrawdown:examplesoflongtermspatialandtemporalvariabilityincommunityresponse. EcologicalEngineering 36 ,1191–1200. doi:10.1016/j.ecoleng.2009.11.029
GaynorA,NewmanP,JenningsP(2018) ‘NeverAgain:Reflectionson EnvironmentalResponsibilityafterRoe8.’ (UWAPublishing:Perth, WA,Australia)
GibsonN,KeigheryBJ,KeigheryGJ,BurbidgeAH,LyonsMN(1994)A floristicsurveyoftheSouthernSwanCoastalPlain.AustralianHeritage Commission.ReportfortheAustralianHeritageCommissionprepared bytheDepartmentofConservationandLandManagementandthe ConservationCouncilofWesternAustralia,Inc.
GibsonN,ProberS,MeissnerR,VanLeeuwenS(2017)Implicationsof highspeciesturnoveronthesouth-westernAustraliansandplains. PLoSOne 12 ,e0172977.doi:10.1371/journal.pone.0172977
GorelickN,HancherM,DixonM,IlyushchenkoS,ThauD,MooreR(2017) GoogleEarthEngine:Planetary-scalegeospatialanalysisforeveryone. RemoteSensingofEnvironment 202,18–27. doi:10.1016/j.rse.2017.06.031
GovernmentofWesternAustralia(2000)BushForever – keepingthebushin thecity.Vol.2:Directoryofbushforeversites.Departmentof EnvironmentalProtection,Report,Perth,WA,Australia.
GozzardJ,MouritzM(1989)Mineralresourcesandminingofthe SpearwoodandBassendeandunesystems. JournaloftheRoyal SocietyofWesternAustralia 71,109–110.
GriffinEA(1994)FloristicsurveyofnorthernsandplainsbetweenPerthand Geraldton.Technicalreport144,DepartmentofAgricultureandFood, Perth,WA,Australia.
GriffinEA,KeigheryB(1989) ‘MooreRivertoJurienSandplainSurvey.’ (WesternAustralianWildflowerSociety:Perth,WA,Australia)
GroomPK(2004)Rootingdepthandplantwaterrelationsexplainspecies distributionpatternswithinasandplainlandscape. FunctionalPlant Biology 31,423–428.doi:10.1071/FP03200
GroomBPK,FroendRH,MattiskeEM(2000a)Impactofgroundwater abstractiononaBanksiawoodland,SwanCoastalPlain,Western Australia. EcologicalManagement&Restoration 1,117–124. doi:10.1046/j.1442-8903.2000.00033.x
GroomP,FroendR,MattiskeE,KochB(2000b)Myrtaceousshrub speciesrespondtolong-termdecreasinggroundwaterlevelsonthe GnangaraGroundwaterMound,northernSwanCoastalPlain. Journal oftheRoyalSocietyofWesternAustralia 83,75–82.
GroomP,FroendR,MattiskeE,GurnerR(2001)Long-termchangesin vigouranddistributionof Banksia and Melaleuca overstoreyspecies ontheSwanCoastalPlain. JournaloftheRoyalSocietyofWestern Australia 84,63–70.
HahsAK,McDonnellMJ,McCarthyMA,VeskPA,CorlettRT,Norton BA,ClemantsSE,DuncanRP,ThompsonK,SchwartzMW,Williams NSG(2009)Aglobalsynthesisofplantextinctionratesinurbanareas. EcologyLetters 12,1165–1173. doi:10.1111/j.1461-0248.2009.01372.x
HallamSJ(2014) ‘FireandHearth:aStudyofAboriginalUsageand EuropeanUsurpationinSouth-westernAustralia.’ (UWAPublishing: Perth,WA,Australia)
HalseS(2008)Literaturereviewandmonitoringprogramforstygofauna intheGnangaragroundwatersystem.Report,Departmentof EnvironmentandConservation,Perth,WA,Australia.
HardyGESJ,BarrettS,ShearerBL(2001)Thefutureofphosphiteasa fungicidetocontrolthesoilborneplantpathogen Phytophthora cinnamomi innaturalecosystems. AustralasianPlantPathology 30, 133–139.doi:10.1071/AP01012
HarveyM,WaldockJ,HowR,DellJ,KostasE(1997)Biodiversityand biogeographicrelationshipsofselectedinvertebratesfromurban bushlandremnants,Perth,WesternAustralia. MemoirsoftheMuseum ofVictoria 56,275–280.doi:10.24199/j.mmv.1997.56.14
HassellCW,DodsonJR(2002).Firehistoryofsouth-westWestern AustraliapriortoEuropeansettlementin1826–1829.In ‘ProceedingsoftheFireinEcosystemsofSouth-WestWestern Australia:ImpactsandManagement’,16 –18April2002.Perth, WA,Australia ’.(EdsIAbbott,NBurrows)Vol.1,pp.71–85. (BackhuysPublishers:Leiden,Netherlands)
HeT,D’AguiH,LimSL,EnrightNJ,LuoY(2016)Evolutionary potentialandadaptationof Banksiaattenuata (Proteaceae)to climateand fireregimeinsouthwesternAustralia,aglobal biodiversityhotspot. ScientificReports 6,26315. doi:10.1038/srep26315
HeT,LamontBB,EnrightNJ,D’AguiHM,StockW(2019) Environmentaldriversandgenomicarchitectureoftrait differentiationin fire-adapted Banksiaattenuata ecotypes. JournalofIntegrativePlantBiology 61,417–432. doi:10.1111/jipb.12697
HillTCJ(1995)Evaluationofthreetreatmentsforeradicationof Phytophthoracinnamomi fromdeep,leachedsandsinsouthwest Australia. PlantDisease 79,122–127.doi:10.1094/PD-79-0122
HillT,TippettJ,ShearerB(1994)InvasionofBassendeanDuneBanksia woodlandby Phytophthoracinnamomi AustralianJournalofBotany 42,725–738.doi: 10.1071/BT9940725
HobbsRJ,AtkinsL(1990)Fire-relateddynamicsofaBanksiawoodlandin south-westernWesternAustralia. AustralianJournalofBotany 38, 97–110.doi:10.1071/BT9900097
HopkinsAJM,GriffinEA(1989)FireintheBanksiawoodlandsoftheSwan CoastalPlain. JournaloftheRoyalSocietyofWesternAustralia 71, 92–94.
HopperSD,BrownAP(2007)ArevisionofAustralia’shammerorchids (Drakaea:Orchidaceae),withsome fielddataonspecies-specific sexuallydeceivedwasppollinators. AustralianSystematicBotany 20, 252–285.doi:10.1071/SB06033
HopperS,BurbidgeA(1989)ConservationstatusofBanksiawoodlands ontheSwanCoastalPlain. JournaloftheRoyalSocietyofWestern Australia 71 ,115–116.
HopperSD,GioiaP(2004)ThesouthwestAustralian floristicregion: evolutionandconservationofaglobalhotspotofbiodiversity. AnnualReviewofEcology,Evolution,andSystematics 35,623–650. doi:10.1146/annurev.ecolsys.35.112202.130201
HopperSD,SilveiraFA,FiedlerPL(2016)Biodiversityhotspotsand Ocbiltheory. PlantandSoil 403,167–216. doi: 10.1007/s11104-015-2764-2
HoskenDJ(1996)Roostselectionbythelesserlong-earedbat,Nyctophilus geoffroyi,andthegreaterlong-earedbat,N.major(Chiroptera: Vespertilionidae)inBanksiawoodlands. JournaloftheRoyalSociety ofWesternAustralia 79,211–216.
HoskenDJ,O’SheaJE(1994) Falsistrellusmackenziei atJandakot. Western AustralianNaturalist 19,351
HowRA(1998)Long-termsamplingofaherpetofaunalassemblageonan isolatedurbanbushlandremnant,BoldPark,Perth. Journalofthe RoyalSocietyofWesternAustralia 81 ,143–148.
HowRA,DellJ(1989)VertebratefaunaofBanksiawoodlands. Journalof theRoyalSocietyofWesternAustralia 71,97–98.
HowRA,DellJ(1994)Thezoogeographicsignificanceofurbanbushland remnantstoreptilesinthePerthregion,WesternAustralia. Pacific ConservationBiology 1,132–140.doi:10.1071/PC940132
HowRA,DellJ(2000)GroundvertebratefaunaofPerth’svegetation remnants:Impactof170yearsofurbanization. PacificConservation Biology 6,198–217.doi:10.1071/PC000198
HowardKH,BarrettG,RamalhoCE,FriendJA,BoylandRJI,HudsonJ, WilsonB(2014)Communityquendasurvey2012.Report,Worldwide FundforNatureandDepartmentofParksandWildlife,Perth,WA, Australia.
HowardT,BurrowsN,SmithT,DanielG,McCawL(2020)Aframework forprioritisingprescribedburningonpubliclandinWesternAustralia. InternationalJournalofWildlandFire 29,314–325. doi: 10.1071/WF19029
HuffordKM,MazerSJ(2003)Plantecotypes:geneticdifferentiationin theageofecologicalrestoration. TrendsinEcology&Evolution 18, 147–155.doi:10.1016/S0169-5347(03)00002-8
HumphreysWF(2006)Aquifers:theultimategroundwater-dependent ecosystems. AustralianJournalofBotany 54,115–132. doi:10.1071/BT04151
HunnP(2017)Australiancitiesamongthelargestandleastdenselysettled intheworld.https://architectureau.com/articles/australian-citiesamong-the-largest-and-least-densely-settled-in-the-world/[Verifi ed 21February2019]
InfrastructureAustralia(2019)AnAssessmentofAustralia'sFuture InfrastructureNeeds:TheAustralianInfrastructureAudit2019. Report,AustralianGovernment,Canberra,ACT,Australia. IrelandK(2011) Phytophthoraramorum :SusceptibilityofAustralian plants,potentialgeographicrangeandscienceintopolicyand management.PhDthesis,MurdochUniversity,Perth,WA,Australia. IvesCD,LentiniPE,ThrelfallCG,IkinK,ShanahanDF,GarrardGE, BekessySA,FullerRA,MumawL,RaynerL,RoweR,ValentineLE, KendalD(2016)Citiesarehotspotsforthreatenedspecies. Global EcologyandBiogeography 25,117–126.doi:10.1111/geb.12404
JasinskaEJ,KnottB,McCombAJ(1996)Rootmatsingroundwater:a fauna-richcavehabitat. JournaloftheNorthAmericanBenthological Society 15,508–519.doi: 10.2307/1467802
JohnstonTR,StockWD,MawsonPR(2016)ForagingbyCarnaby’s Black-CockatooinBanksiawoodlandontheSwanCoastalPlain, WesternAustralia. Emu – AustralOrnithology 116 ,284–293. doi:10.1071/MU15080
JohnstonTR,StockWD,MawsonPR(2019)ImplicationsofBanksiaseed rewardforconservationandmanagementofCarnaby’scockatooon theSwancoastalplain,WesternAustralia. AustralianJournalof Zoology 67,12–18.doi:10.1071/ZO19057
JonesMM,GibsonN,YatesC,FerrierS,MokanyK,WilliamsKJ, ManionG,SvenningJC(2016)Underestimatedeffectsofclimateon plantspeciesturnoverintheSouthwestAustralianFloristicRegion. JournalofBiogeography 43 ,289–300.doi: 10.1111/jbi.12628
JungT,ColquhounIJ,HardyGESJ,WoodwardS(2013)Newinsights intothesurvivalstrategyoftheinvasivesoilbornepathogen Phytophthoracinnamomii differentnaturalecosystemsinWestern Australia. ForestPathology 43,266–288.doi:10.1111/efp.12025
KayGM,KeoghJS(2012)Molecularphylogenyandmorphological revisionofthe Ctenotuslabillardieri (Reptilia:Squamata: Scincidae)speciesgroupandanewspeciesofimmediate conservationconcerninthesouthwesternAustralianbiodiversity hotspot. Zootaxa 3390,1–18.doi: 10.11646/zootaxa.3390.1.1
KeigheryG(1989)Banksiawoodlandweeds. JournaloftheRoyalSociety ofWesternAustralia 71 ,111–112.
KeigheryGJ,KeigheryBJ(2016)FloristicsoftheBanksiawoodlandsof theSwanCoastalPlain.In ‘BanksiaWoodlands:aRestorationGuide fortheSwanCoastalPlain’.(EdsJCStevens,DPRokich,VJNewton, RLBarrettandKWDixon)pp.7–30.(UWAPublishing:Perth,WA, Australia)
KeigheryB,KeigheryG,WebbA,LongmanV,GriffinE(2008)A floristic surveyoftheWhicherScarp.DepartmentofEnvironmentConservation, Perth,WA,Australia.
KeigheryB,KeigheryG,LongmanV,ClarkeK(2012)Nativeandweed floraoftheSouthernSwanCoastalPlain:2005Dataset.(Department ofBiodiversity,ConservationandAttractions:Perth,WA,Australia) Availableat:https://naturemap.dpaw.wa.gov.au/[Veri fied29January 2021]
KingsleyJ,TownsendM,Henderson-WilsonC,BolamB(2013)Developing anexploratoryframeworklinkingAustralianAboriginalpeoples’ connectiontocountryandconceptsofwellbeing. International JournalofEnvironmentalResearchandPublicHealth 10,678–698. doi:10.3390/ijerph10020678
KinlochJ,WilsonB(2009) Phytophthora diebackriskassessmentof Gnangaramoundbiodiversity.ReportpreparedfortheDepartmentof EnvironmentandConservationandtheGnangaraSustainability Strategy,Perth,WA,Australia.
KnottB(1993)StygofaunafromCapeRangepeninsula,Western Australia:Tethyanrelicts. RecordsoftheWesternAustralianMuseum 45,109–127.
KomorekB,ShearerB,SmithB,FairmanR(1997)Thecontrolof Phytophthora innativeplantcommunities.In ‘Controlof Phytophthora and Diplodina cankerinWesternAustralia.Final ReporttotheThreatenedSpeciesandCommunities,Biodiversity Group,EnvironmentAustralia’.pp.1–59.(Departmentof ConservationandLandManagement:Perth,WA,Australia)
KraussSL(2016)Seedsourcing.In ‘BanksiaWoodlands:aRestoration GuidefortheSwanCoastalPlain’.(EdsJCStevens,DPRokich,VJ Newton,RLBarrett,KWDixon)pp.117–145.(UWAPublishing:Perth, WA,Australia)
KraussSL,SinclairEA,BussellJD,HobbsRJ(2013)Anecological geneticdelineationoflocalseed-sourceprovenanceforecological restoration. EcologyandEvolution 3,2138–2149. doi:10.1002/ece3.595
KrawiecJ,KraussSL,DavisRA,SpencerPB(2015)Weakgenetic structuringsuggestshistoricallyhighgeneticconnectivityamong recentlyfragmentedurbanpopulationsofthescincidlizard, Ctenotus fallens. AustralianJournalofZoology 63,279–286. doi:10.1071/ZO15022
LambersH,RavenJA,ShaverGR,SmithSE(2008)Plantnutrientacquisitionstrategieschangewithsoilage. TrendsinEcology& Evolution 23,95–103.doi:10.1016/j.tree.2007.10.008
LambersH,BrundrettMC,RavenJA,HopperSD(2011)Plantmineral nutritioninancientlandscapes:highplantspeciesdiversityoninfertile soilsislinkedtofunctionaldiversityfornutritionalstrategies. Plant andSoil 348,7–27.doi: 10.1007/s11104-011-0977-6
LambersH,AhmediI,BerkowitzO,DunneC,FinneganPM,Hardy GESJ,JostR,LalibertéE,PearseSJ,TesteFP(2013)Phosphorus nutritionofphosphorus-sensitiveAustraliannativeplants:threatsto plantcommunitiesinaglobalbiodiversityhotspot. Conservation Physiology 1,cot010.doi: 10.1093/conphys/cot010
LamontB(1989)BioticandabioticinteractionsinBanksiawoodland. JournaloftheRoyalSocietyofWesternAustralia 71,99–100. LamontBB(2003)Structure,ecologyandphysiologyofrootclusters–a review. PlantandSoil 248,1–19.doi:10.1023/A:1022314613217
LawsonDM,LamarCK,SchwartzMW(2008)Quantifyingplant populationpersistenceinhuman-dominatedlandscapes. Conservation Biology 22,922–928.doi:10.1111/j.1523-1739.2008.00936.x
LettoofD,LohrM,BusettiF,BatemanP,DavisR(2020)Toxictime bombs:Frequentdetectionofanticoagulantrodenticidesinurban reptilesatmultipletrophiclevels. TheScienceoftheTotal Environment 724,138218.doi:10.1016/j.scitotenv.2020.138218
LinhartYB,GrantMC(1996)Evolutionarysignificanceoflocalgenetic differentiationinplants. AnnualReviewofEcologyandSystematics 27, 237–277.doi:10.1146/annurev.ecolsys.27.1.237
LohrMT(2018)AnticoagulantrodenticideexposureinanAustralian predatorybirdincreaseswithproximitytodevelopedhabitat. The ScienceoftheTotalEnvironment 643,134–144. doi:10.1016/j.scitotenv.2018.06.207
MacCallumD,HopkinsD(2011)Thechangingdiscourseofcityplans: rationalitiesofplanninginPerth,1955–2010. PlanningTheory& Practice 12,485–510.doi:10.1080/14649357.2011.626313
MacLachlanA,BiggsE,RobertsG,BoruffB(2017)Urbanisationinducedlandcovertemperaturedynamicsforsustainablefuture urbanheatislandmitigation. UrbanScience 1(4),38. doi:10.3390/urbansci1040038
MajerJ(1989)Terrestrialinvertebratefauna. JournaloftheRoyalSociety ofWesternAustralia 71,95–96. MalcolmJR,LiuC,NeilsonRP,HansenL,HannahL(2006)Global warmingandextinctionsofendemicspeciesfrombiodiversity hotspots. ConservationBiology 20,538–548. doi:10.1111/j.1523-1739.2006.00364.x
MarcheseC(2015)Biodiversityhotspots:ashortcutforamorecomplicated concept. GlobalEcologyConservationBiology 3,297–309. doi:10.1016/j.gecco.2014.12.008
MaronM,HobbsRJ,MoilanenA,MatthewsJW,ChristieK,GardnerTA, KeithDA,LindenmayerDB,McAlpineCA(2012)Faustianbargains? Restorationrealitiesinthecontextofbiodiversityoffsetpolicies. BiologicalConservation 155,141–148. doi:10.1016/j.biocon.2012.06.003
MarschnerP,GriersonPF,RengelZ(2005)Microbialcommunity compositionandfunctioningintherhizosphereofthreeBanksia speciesinnativewoodlandinWesternAustralia. AppliedSoil Ecology 28,191–201.doi:10.1016/j.apsoil.2004.09.001
MaryanB,GaikhorstG,O’ConnellM,CallanS(2015)Notesonthe distributionandconservationstatusofthePerthLinedSkink, Lerista lineata:asmalllizardinabigcity. WesternAustralianNaturalist 30, 12–29.
MasonLD,Wardell-JohnsonG,MainBY(2016)Qualitynotquantity: conservingspeciesoflowmobilityanddispersalcapacityinsouthwesternAustralianurbanremnants. PacificConservationBiology 22, 37–47.doi:10.1071/PC15044
MasonL,Wardell-JohnsonG,LuxtonS,BatemanP(2018a)Predators showseasonalpredilectionsformodelclayspidersinanurban environment. Scienti ficReports 8,12444. doi:10.1038/s41598-018-30778-y
MasonLD,BatemanPW,Wardell-JohnsonGW(2018b)Thepitfallsof short-rangeendemism:highvulnerabilitytoecologicalandlandscape traps. PeerJ 6,e4715.doi:10.7717/peerj.4715
MasonL,BatemanPW,MillerBP,Wardell-JohnsonGW(2019)Ashesto ashes:Intense firesextinguishpopulationsofurbanshort-range endemics. AustralEcology 44,514–522.doi:10.1111/aec.12685
MayJ,HobbsRJ,ValentineLE(2017)Areoffsetseffective?Anevaluation ofrecentenvironemntakoffsetsinWesternAustralia. Biological Conservation 206,249–257.doi:10.1016/j.biocon.2016.11.038
McArthurWM,BettenayE(1974)Developmentanddistributionofsoils oftheSwanCoastalPlain,WesternAustralia.Report,CSIRO, Australia.
McArthurWM,JohnstonDA,SnellLW(2004) ‘ReferenceSoilsofSouthwesternAustralia.’ (DepartmentofAgriculture,WesternAustraliaon behalfoftheAustralianSocietyofSoilScienceInc.,Perth:Perth,WA, Australia)
McCarthyMA,ThompsonCJ,WilliamsNS(2006)Logicfordesigning naturereservesformultiplespecies. AmericanNaturalist 167,717–727. doi:10.1086/503058
McFarlaneD,StrawbridgeM,StoneR,PatonA(2012)Managing groundwaterlevelsinthefaceofuncertaintyandchange:acasestudy fromGnangara. WaterScienceandTechnology:WaterSupply 12, 321–328.doi:10.2166/ws.2011.137
MenzMH,PhillipsRD,AnthonyJM,BohmanB,DixonKW,PeakallR (2015)Ecologicalandgeneticevidenceforcrypticecotypesinarare sexuallydeceptiveorchid, Drakaeaelastica BotanicalJournalofthe LinneanSociety 177,124–140.doi:10.1111/boj.12230
MerrittD,TurnerS,ClarkeS,DixonK(2007)Seeddormancy andgerminationstimulationsyndromesforAustraliantemperate species. AustralianJournalofBotany 55,336–344. doi:10.1071/BT06106
MickleD,ValentineLE,KuehsJ,SwinburnM(2010)Post-firejuvenile periodofplantsinBanksiawoodlandonthenorthernSwanCoastalPlain. Report,Perth,WA,Australia.
MijangosJL,PacioniC,SpencerPB,CraigMD(2015)Contributionof geneticstoecologicalrestoration. MolecularEcology 24,22–37. doi:10.1111/mec.12995
MilbergP,LamontBB(1995)Fireenhancesweedinvasionofroadside vegetationinsouthwesternAustralia. BiologicalConservation 73, 45–49.doi:10.1016/0006-3207(95)90061-6
MillerRG,TangneyR,EnrightNJ,FontaineJB,MerrittDJ,OoiMK,Ruthrof KX,MillerBP(2019)Mechanismsof fireseasonalityeffectsonplant populations. TrendsinEcology&Evolution 34,1104–1117. doi:10.1016/j.tree.2019.07.009
MillerRG,TangneyR,EnrightNJ,FontaineJB,MerrittDJ,OoiMK, RuthrofKX,MillerBP(2020)Fireseasonalitymechanismsare fundamentalforunderstandingbroader fireregimeeffects. Trends inEcology&Evolution 35 ,869–871.doi:10.1016/j.tree.2020.08.002 MonksLT(1999)Conservationbiologyoftherareandthreatened Dryandra ionthocarpa, D.mimica and D.serra.PhDthesis,CurtinUniversity, Perth,WA,Australia.
MooreN,BarrettS,HowardK,CraigMD,BowenB,ShearerB,HardyG (2014)Timesince fireandaverage fireintervalarethebestpredictorsof Phytophthoracinnamomi activityinheathlandsofsouth-western Australia. AustralianJournalofBotany 62,587–593. doi:10.1071/BT14188
MooreTL,BurbidgeAH,SonnemanT,WilsonBA(2016)Mammal assemblagesinBoonanarringNatureReserve,DandaraganPlateau, WesternAustraliafrom1986and2012. JournaloftheRoyalSociety ofWesternAustralia 99,1–8.
MulerAL,CanhamCA,vanEttenEJ,StockWD,FroendRH(2018a) Usingafunctionalecologyapproachtoassistplantselectionfor restorationofMediterraneanwoodlands. ForestEcologyand Management 424,1–10.doi: 10.1016/j.foreco.2018.04.032
MulerAL,vanEttenE,StockWD,HowardK,FroendR(2018b)Can hydraulicallyredistributedwaterassistsurroundingseedlingsduring summerdrought? Oecologia 187,625–641. doi:10.1007/s00442-018-4158-7
NewmanBJ,LaddP,BrundrettM,DixonKW(2013)Effectsofhabitat fragmentationonplantreproductivesuccessandpopulationviability atthelandscapeandhabitatscale. BiologicalConservation 159, 16 –23.doi: 10.1016/j.biocon.2012.10.009
NieldAP,LaddPG,YatesCJ(2009)Reproductivebiology,post- fire successiondynamicsandpopulationviabilityanalysisofthecritically endangeredWesternAustralianshrub Calytrixbrevisetasubsp. breviseta (Myrtaceae). AustralianJournalofBotany 57 ,451–464. doi: 10.1071/BT09043
O’GaraE,HowardK,WilsonB,HardyGSJ(2005)Managementof Phytophthoracinnamomi forbiodiversityconservationin Australia:Part2.Nationalbestpracticeguidelines.Report, DepartmentoftheEnvironmentandHeritage,Canberra,ACT, Australia.
PateJS(1989)Preface. JournaloftheRoyalSocietyofWesternAustralia 71 ,83 –84.
PateJS(1994)Themycorrhizalassociation:justoneofmanynutrient acquiringspecializationsinnaturalecosystems. PlantandSoil 159,1–10. doi:10.1007/BF00000090
PateJS,BellTL(1999)Applicationoftheecosystemmimicconcepttothe species-richBanksiawoodlandsofWesternAustralia. Agroforestry Systems 45,303-341.doi:10.1023/A:1006218310248
PateJS,JeschkeD,DawsonTE,RaphaelC,HartungW,BowenBJ(1998) GrowthandseasonalutilisationofwaterandnutrientsbyBanksia prionotes. AustralianJournalofBotany 46,511–532. doi:10.1071/BT97045
PauliN,BoruffB(2016)Naturalenvironments,ecosystemservicesand greeninfrastructure:planningforPerth’s ‘Green’ Matrix.In ‘Planning BoomtownandBeyond’.pp.238–276.(UWAPublishing:Perth,WA, Australia)
PhillipsRD,PeakallR,RetterBA,MontgomeryK,MenzMHM,Davis BJ,HayesC,BrownGR,SwartsND,DixonKW(2015)Pollinator rarityasathreattoaplantwithaspecializedpollinationsystem. BotanicalJournaloftheLinneanSociety 179,511–525. doi: 10.1111/boj.12336
PlucinskiMP(2014)Thetimingofvegetation fireoccurrenceinahuman landscape. FireSafetyJournal 67,42–52. doi:10.1016/j.firesaf.2014.05.012
PooleMD(1989)Urbandevelopment. JournaloftheRoyalSocietyof WesternAustralia 71,103–104.
PovhLF,BenciniR,ChambersBK,KreplinsTL,WillersN,AdamsPJ, WannJ,KobrynHT,FlemingPA(2019)Sheddinglightonacryptic macropodid:Homerangesandhabitatpreferencesoftranslocated westernbrushwallabies(Notamacropusirma). Australian Mammalogy 41,82–91.doi:10.1071/AM17041
ProberSM,ByrneM,McLeanEH,SteaneDA,PottsBM,Vaillancourt RE,StockWD(2015)Climate-adjustedprovenancing:astrategyfor climate-resilientecologicalrestoration. FrontiersinEcologyand Evolution 3,65.doi:10.3389/fevo.2015.00065
ProjectDieback(2019) ‘DiebackPublicMap.ProjectDieback.Dieback InformationDeliveryandManagementSystem.’ (GaiaResourcesPtyin associationwithSouthCoastNRM)
RamalhoCE,BarrettG,GlossopB,MitchellD,WilsonB,ClarkeK (2013)SpatialconservationprioritizationintheSwanRegion-apilot studyusingMarxan.Report,WesternAustralianDepartmentofParks andWildlife,SwanRegion,Perth,WA,Australia.
RamalhoCE,LalibertéE,PootP,HobbsRJ(2014)Complexeffectsof fragmentationonremnantwoodlandplantcommunitiesofarapidly urbanizingbiodiversityhotspot. Ecology 95,2466–2478. doi:10.1890/13-1239.1
RecherHF(1997)ImpactofwildfireontheavifaunaofKingsPark,Perth, WesternAustralia. WildlifeResearch 24,745–761. doi:10.1071/WR97008
RecherHF,ServentyDL(1991)Longtermchangesintherelative abundancesofbirdsinKingsPark,Perth,WesternAustralia. ConservationBiology 5,90–102. doi:10.1111/j.1523-1739.1991.tb00391.x
RitchieAL,KraussSL(2012)Ageneticassessmentofecologicalrestoration successin Banksiaattenuata RestorationEcology 20,441–449. doi:10.1111/j.1526-100X.2011.00791.x
RitchieAL,DyerRJ,NevillPG,SinclairEA,KraussSL(2019)Wide outcrossingprovidesfunctionalconnectivityfornewandold Banksia populationswithinafragmentedlandscape. Oecologia 190,255–268. doi:10.1007/s00442-019-04387-z
RocheS,KochJM,DixonKW(1997)Smokeenhancedseedgermination forminerehabilitationinthesouthwestofWesternAustralia. RestorationEcology 5,191–203. doi:10.1046/j.1526-100X.1997.09724.x
RocheS,DixonKW,PateJS(1998)Foreverythingaseason:SmokeinducedseedgerminationandseedlingrecruitmentinaWestern AustralianBanksiawoodland. AustralEcology 23 ,111–120. doi:10.1111/j.1442-9993.1998.tb00709.x
RohdeMM,FroendR,HowardJ(2017)Aglobalsynthesisofmanaging groundwaterdependentecosystemsundersustainablegroundwater policy. GroundWater 55,293–301.doi:10.1111/gwat.12511
RokichDP(2016)Soilprofilereconstruction.In ‘BanksiaWoodlands:a RestorationGuidefortheSwanCoastalPlain’.(EdsJCStevens,DP Rokich,VJNewton,RLBarrett,KWDixon)pp.83–90.(UWA Publishing,Perth,WesternAustralia:Perth,Australia)
RokichDP,DixonKW,SivasithamparamK,MeneyKA(2000)Topsoil handlingandstorageeffectsonwoodlandrestorationinWestern Australia. RestorationEcology 8,196–208. doi:10.1046/j.1526-100x.2000.80027.x
RokichDP,MeneyKA,DixonKW,SivasithamparamK(2001)Theimpact ofsoildisturbanceonrootdevelopmentinwoodlandcommunitiesin WesternAustralia. AustralianJournalofBotany 49,169–183. doi:10.1071/BT00015
RossbachM,MajerJ(1983)Apreliminarysurveyoftheantfaunaofthe DarlingPlateauandSwanCoastalPlainnearPerth,WesternAustralia. JournaloftheRoyalSocietyofWesternAustralia 66,85–90.
RuthrofKX(2004)Invasionby Eucalyptusmegacornuta ofanurban bushlandinsouthwesternAustralia. WeedTechnology 18,1376–1380. doi:10.1614/0890-037X(2004)018[1376:IBEMOA]2.0.CO;2 RuthrofKX,LoneraganWA,YatesCJ(2003)Comparativepopulation dynamicsof Eucalyptuscladocalyx initsnativehabitatandasan invasivespeciesinanurbanbushlandinsouth-westernAustralia. Diversity&Distributions 9,469–483. doi:10.1046/j.1472-4642.2003.00040.x
RuthrofKX,BreshearsDD,FontaineJB,FroendRH,MatusickG,KalaJ, MillerBP,MitchellPJ,WilsonSK,vanKeulenM,EnrightNJ,Law DJ,WernbergT,HardyGESJ(2018)Subcontinentalheatwave triggersterrestrialandmarine,multi-taxaresponses. Scientifi c Reports 8,13094.doi: 10.1038/s41598-018-31236-5
RyanC,HobbsR,ValentineL(2020)Bioturbationbyareintroduced diggingmammalreducesfuelloadsinanurbanreserve. Ecological Applications 30,e02018.doi:10.1002/eap.2018
RyeC,SmettemK(2015)Seasonalandinterannualvariabilityofthe effective flowcross-sectionalareainawater-repellentsoil. Vadose ZoneJournal 14(3),vzj2014.10.0141.doi:10.2136/vzj2014.10.0141
RyeC,SmettemK(2017)Theeffectofwaterrepellentsoilsurfacelayers onpreferential flowandbaresoilevaporation. Geoderma 289, 142–149.doi:10.1016/j.geoderma.2016.11.032
RyeC,SmettemK(2018)Seasonalvariationofsubsurface flowpathway spreadunderawaterrepellentsurfacelayer. Geoderma 327,1–12. doi:10.1016/j.geoderma.2018.04.008
SalamaRB,SilbersteinR,PollockD(2005)Soilscharacteristicsofthe BassendeanandSpearwoodSandsoftheGnangaraMound(Western Australia)andtheircontrolsonrecharge,waterlevelpatternsand solutesofthesuperfi cialaquifer. WaterAirandSoilPollutionFocus 5, 3–26.doi: 10.1007/s11267-005-7396-8
SaundersME,BowerDS,MikaS,HunterJT(2020)Condition thresholdsinAustralia ’sthreatenedecologicalcommunitylistings hinderconservationofdynamicecosystems. Paci ficConservation Biology
doi:10.1071/PC20040 [Publishedonlineearly13November2020]
ScholzeM,KnorrW,ArnellNW,PrenticeIC(2006)Aclimate-change riskanalysisforworldecosystems. ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica 103, 13116–13120.doi: 10.1073/pnas.0601816103
ScottPM,BurgessT,BarberP,ShearerB,StukelyM,HardyGSJ,Jung T(2009) Phytophthoramultivorasp .nov.,anewspeciesrecovered fromdeclining Eucalyptus,Banksia,Agonis andotherplantspecies inWesternAustralia. Persoonia 22 ,1. doi: 10.3767/003158509X415450
SemeniukV,GlassfordDK(1989)BassendeanandSpearwooddunes: theirgeomorphology,stratigraphyandsoilsasabasisforhabitatsof Banksiawoodlands. JournaloftheRoyalSocietyofWesternAustralia 71,87–88.
SetoKC,FragkiasM,GüneralpB,ReillyMK(2011)Ameta-analysisof globalurbanlandexpansion. PLoSOne 6,e23777. doi:10.1371/journal.pone.0023777
ShearerB(1990)Diebackofnativeplantcommunitiescausedby Phytophthora species-amajorfactoraffectinglanduseinSouthWesternAustralia. LandandWaterResearchNews 1990(5),15–26.
ShearerB(1994)Themajorplantpathogensoccurringinnative ecosystemsofsouth-westernAustralia. JournaloftheRoyalSociety ofWesternAustralia 77,113–122.
ShearerBL,CraneCE(2014) Phytophthoracinnamomi disease expressionandhabitatsuitabilityofsoilsonatopographicgradient acrossacoastalplainfromdunestoforestedpeneplain. AustralasianPlantPathology 43,131–142. doi:10.1007/s13313-013-0255-6
ShearerB,DillonM(1996a)Impactanddiseasecentrecharacteristicsof Phytophthoracinnamomi InfestationsofBanksiawoodlandsontheSwan CoastalPlain,WesternAustralia. AustralianJournalofBotany 44, 79–90.doi:10.1071/BT9960079
ShearerB,DillonM(1996b)SusceptibilityofplantspeciesinBanksia woodlandsontheSwanCoastalPlain,WesternAustralia,toinfection by Phytophthoracinnamomi AustralianJournalofBotany 44 , 433–445.
ShearerB,FairmanR(2007)Asteminjectionofphosphiteprotects Banksiaspeciesand Eucalyptusmarginata from Phytophthora cinnamomi foratleastfouryears. AustralasianPlantPathology 36 , 78–86.doi:10.1071/AP06085
ShearerB,HillT(1989)DiseasesofBanksiawoodlandsonthe BassendeanandSpearwooddunesystems. JournaloftheRoyal SocietyofWesternAustralia 71 ,113–114.
ShearerBL,CraneCE,CochraneA(2004)Quantificationofthe susceptibilityofthenative floraoftheSouth-WestBotanical Province,WesternAustralia,to Phytophthoracinnamomi Australian JournalofBotany 52,435–443.doi:10.1071/BT03131
ShearerB,DillonM,KinalJ,BuehrigR(2010)Temporalandspatialsoil inoculumdynamicsfollowing Phytophthoracinnamomi invasionof Banksiawoodlandand Eucalyptusmarginata forestbiomesofsouthwesternAustralia. AustralasianPlantPathology 39,293–311. doi:10.1071/AP09095
SmithMA,BellDT,LoneraganWA(1999)Comparativeseed germinationecologyofAustrostipacompressaand Ehrharta calycina (Poaceae)inaWesternAustralianBanksiawoodland. AustralEcology 24 ,35–42.doi:10.1046/j.1442-9993.1999.00944.x
SmithK,FlemingP,KreplinsT,WilsonB(2019)Populationmonitoring andhabitatutilisationoftheash-greymouse(Pseudomys albocinereus)inWesternAustralia. AustralianMammalogy 41, 170–178.doi: 10.1071/AM17061
SommerB,FroendR(2011)Resilienceofphreatophyticvegetationto groundwaterdrawdown:isrecoverypossibleunderadryingclimate? Ecohydrology 4,67–82.doi:10.1002/eco.124
SommerB,FroendR(2014)Phreatophyticvegetationresponsesto groundwaterdepthinadryingmediterranean-typelandscape. Journal ofVegetationScience 25,1045–1055.doi:10.1111/jvs.12178
SommerB,BoggsDA,BoggsGS,vanDijkA,FroendR(2016)Spatiotemporalpatternsofevapotranspirationfromgroundwater-dependent vegetation. Ecohydrology 9,1620–1629.doi:10.1002/eco.1752
StaceHM(1995)Protogyny,self-incompatibilityandpollinationin Anthocercisgracilis (Solanaceae). AustralianJournalofBotany 43, 451–459.doi:10.1071/BT9950451
StanburyKE,StevensJC,RitchieAL(2018)Legacyissuesinpost-pine (Pinuspinaster)restorationenvironments:Weedscompromise seedlinggrowthandfunctionmorethanedaphicfactors. Land Degradation&Development 29,1694–1704.doi:10.1002/ldr.2945
StandishR,FontaineJB,HarrisR,StockW,HobbsR(2012)Interactive effectsofalteredrainfallandsimulatednitrogendepositionon seedlingestablishmentinaglobalbiodiversityhotspot. Oikos 121, 2014–2025.doi:10.1111/j.1600-0706.2012.20553.x
StasikowskiP,McCombJ,ScottP,PaapT,O’BrienP,HardyGSJ(2014) Calciumsulphatesoiltreatmentsaugmentthesurvivalofphosphitesprayed Banksialeptophylla infectedwith Phytophthoracinnamomi. AustralasianPlantPathology 43,369–379. doi:10.1007/s13313-014-0303-x
StephensonG,HepburnJA(1955)Planforthemetropolitanregionof PerthandFremantle,WesternAustralia:areportpreparedforthe GovernmentofWesternAustralia.GovernmentPrintingOf fice,Perth, WA,Australia.
StevensJ,RokichD,NewtonV,BarrettR,DixonK(2016) ‘Banksia Woodlands:aRestorationGuidefortheSwanCoastalPlain.Floristics oftheBanksiaWoodlandsoftheSwanCoastalPlain.’ (UWAPublishing: Perth,WA,Australia)
StockWD,FinnH,ParkerJ,DodsK(2013)Pineasfastfood:foraging ecologyofanendangeredcockatooinaforestrylandscape. PLoSOne 8, e61145.doi:10.1371/journal.pone.0061145
SwartsND,SinclairEA,KraussSL,DixonKW(2009)Geneticdiversityin fragmentedpopulationsofthecriticallyendangeredspiderorchid Caladeniahuegelii:implicationsforconservation. Conservation Genetics 10,1199–1208.doi:10.1007/s10592-008-9651-9
SwartsND,SinclairEA,FrancisA,DixonKW(2010)Ecological specializationinmycorrhizalsymbiosisleadstorarityinan endangeredorchid. MolecularEcology 19,3226–3242. doi:10.1111/j.1365-294X.2010.04736.x
TangneyR,MerrittDJ,FontaineJB,MillerBP(2019)Seedmoisture contentasaprimarytraitregulatingthelethaltemperaturethresholds ofseeds. JournalofEcology 107,1093–1105. doi:10.1111/1365-2745.13095
TangneyR,MerrittDJ,CallowJN,FontaineJB,MillerBP(2020a)Seed dormancyinteractswith fi reseasonalitymechanisms. Trendsin EcologyandEvolution 35 (12),1057–1059. doi:10.1016/j.tree.2020.09.008
TangneyR,MerrittDJ,CallowJN,FontaineJB,MillerBP(2020b)Seed traitsdeterminespeciesresponsesto fireundervaryingsoilheating scenarios. FunctionalEcology 34(9),1967–1978. doi:10.1111/1365-2435.13623
ThompsonSA,ThompsonGG,OatesJE(2008)Rangeextensionofthe WesternHeathDragon, Rankiniaadelaidensisadelaidensis (Squamata:Agamidae). JournaloftheRoyalSocietyofWestern Australia 91 ,207–208.
ThornS,HobbsRJ,ValentineLE(2018)Effectivenessofbiodiversity offsets:AnassessmentofacontroversialoffsetinPerth,Western Australia. BiologicalConservation 228,291–300. doi:10.1016/j.biocon.2018.10.021
TieuA,DixonK,MeneyK,SivasithamparamK,BarrettR(2001)Spatial anddevelopmentalvariationinseeddormancycharacteristicsinthe fire-responsivespecies Anigozanthosmanglesii (Haemodoraceae) fromWesternAustralia. AnnalsofBotany 88,19–26. doi: 10.1006/anbo.2001.1424
TingleyR,MacdonaldSL,MitchellNJ,WoinarskiJCZ,MeiriS,Bowles P,CoxNA,SheaGM,BöhmM,ChansonJ,TognelliMF,HarrisJ, WalkeC,HarrisonN,VictorS,WoodsC,AmeyAP,BamfordM,Catt G,ClemannN,CouperPJ,CoggerH,CowanM,CraigMD,Dickman CR,DoughtyP,EllisR,FennerA,FordS,GaikhorstG,GillespieGR, GreenleesMJ,HobsonR,HoskinCJ,HowR,HutchinsonMN,Lloyd R,McDonaldP,MelvilleJ,MichaelDR,MoritzC,OliverPM, PetersonG,RobertsonP,SandersonC,SomaweeraR,TealeR, ValentineL,VanderduysE,VenzM,WapstraE,WilsonS, ChappleDG(2019)Geographicandtaxonomicpatternsof extinctionriskinAustraliansquamates. BiologicalConservation 238,108203.doi: 10.1016/j.biocon.2019.108203
TsakalosJL,RentonM,DobrowolskiMP,FeoliE,MacintyrePD, VeneklaasEJ,MucinaL(2018)Communitypatternsand environmentaldriversinhyper-diversekwonganscrubvegetation ofWesternAustralia. AppliedVegetationScience 21,694–722. doi: 10.1111/avsc.12399
TurnerS,MerrittD,RidleyE,CommanderL,BaskinJ,BaskinC,DixonK (2006)EcophysiologyofseeddormancyintheAustralianendemic species Acanthocarpuspreissii (Dasypogonaceae). AnnalsofBotany 98,1137–1144.doi:10.1093/aob/mcl203
TurnerBL,HayesPE,LalibertéE(2018)Aclimosequenceof chronosequencesinsouthwesternAustralia. EuropeanJournalofSoil Science 69,69–85.doi:10.1111/ejss.12507
UniversityofNSWCityFuturesResearchCentreAstrolabeGroup(2019) Australia’sHouseholdInfrastructureBill:AnalysisReport,Sydney, NSW,Australia.
ValentineLE,WilsonBA,ReaveleyA,HuangN,JohnsonB,BrownP(2009) Patternsofground-dwellingvertebratebiodiversityintheGnangara SustainabilityStrategystudyarea.Report,Departmentof EnvironmentandConservation,Perth,WA,Australia.
ValentineLE,ReaveleyA,JohnsonB,FisherR,WilsonBA(2012) BurninginBanksiawoodlands:Howdoesthe fire-freeperiod in fl uencereptilecommunities? PLoSOne 7,e34448. doi: 10.1371/journal.pone.0034448
ValentineLE,FisherR,WilsonBA,SonnemanT,StockWD,Fleming PA,HobbsRJ(2014)Timesince firein fluencesfoodresourcesforan endangeredspecies,Carnaby’scockatoo,ina fi re-pronelandscape. BiologicalConservation 175,1–9.doi: 10.1016/j.biocon.2014.04.006 VeneklaasEJ,PootP(2003)Seasonalpatternsinwateruseandleaf turnoverofdifferentplantfunctionaltypesinaspecies-richwoodland, south-westernAustralia. PlantandSoil 257,295–304. doi: 10.1023/A:1027383920150
VertucciS,PepperM,EdwardsDL,RobertsJD,MitchellN,KeoghJS (2017)Evolutionaryandnaturalhistoryoftheturtlefrog, Myobatrachusgouldii ,abizarremyobatrachidfroginthe southwesternAustralianbiodiversityhotspot. PLoSOne 12, e0173348.doi:10.1371/journal.pone.0173348
WannJM,BellDT(1997)Dietarypreferencesoftheblack-gloved wallaby(Macropusirma)andthewesterngreykangaroo (M.fuliginosus )inWhitemanPark,Perth,WesternAustralia. JournaloftheRoyalSocietyofWesternAustralia 80,55 –62.
WaryszakP,StandishRJ,LaddPG,EnrightNJ,BrundrettM,FontaineJB (2021)Bestserveddeep:Theseedbankfromsalvagedtopsoil underscorestheroleofthedispersal filterinrestorationpractice. AppliedVegetationScience 24,e12539.doi:10.1111/avsc.12539
WellerR(2009) ‘Boomtown2050:ScenariosforaRapidlyGrowingCity.’ (UWAPublishing:Perth,WA,Australia)
WesternAustralianPlanningCommission(2004) ‘NetworkCity: CommunityPlanningStrategyforPerthandPeel.’ (Western AustralianPlanningCommission:Perth,WA,Australia)
WesternAustralianPlanningCommission(2007) ‘Liveable Neighbourhoods:aWesternAustralianGovernmentSustainable CitiesInitiative.’ (WesternAustralianPlanningCommission:Perth, WA,Australia)
WesternAustralianPlanningCommission(2010)Directions2031and beyond:metropolitanplanningbeyondthehorizon.Report,Western AustralianPlanningCommission,Perth,WA,Australia.
WesternAustralianPlanningCommission(2012)Basicrawmaterials: demandandsupplystudyfortheBunbury–BusseltonRegion. Report,WesternAustralianPlanningCommission,Perth,WA, Australia.
WilkinsonCJ,HolmesJM,DellB,TynanKM,McCombJA,Shearer BL,ColoquhounIJ,HardyGESJ(2001)Effectofphosphiteon inplantazoosporeproductionof Phytophthoracinnamomi PlantPathology 50 ,587 – 593. doi: 10.1046/j.1365-3059.2001.00605.x
WilliamsMR(2009)Butter fliesandday- flyingmothsinafragmented urbanlandscape,south-westWesternAustralia:patternsofspecies richness. Paci fi cConservationBiology 15,32 –46. doi:10.1071/PC090032
WilliamsMR(2011)Habitatresources,remnantvegetationconditionand areadeterminedistributionpatternsandabundanceofbutter flies andday- flyingmothsinafragmentedurbanlandscape,south-west WesternAustralia. JournalofInsectConservation 15,37–54. doi:10.1007/s10841-010-9307-1
WilliamsAV,NevillPG,KraussSL(2014)Nextgenerationrestoration genetics:applicationsandopportunities. TrendsinPlantScience 19, 529–537.doi:10.1016/j.tplants.2014.03.011
WilliamsMR,YatesCJ,StockWD,BarrettGW,FinnHC(2016)Citizen sciencemonitoringrevealsasignificant,ongoingdeclineofthe EndangeredCarnaby’sblack-cockatoo Calyptorhynchuslatirostris Oryx 50,626–635.doi:10.1017/S0030605315000320
WilliamsMR,YatesCJ,SaundersDA,DawsonR,BarrettGW(2017) Combineddemographicandresourcemodelsquantifytheeffectsof potentialland-usechangeontheendangeredCarnaby’scockatoo (Calyptorhynchuslatirostris). BiologicalConservation 210,8–15. doi:10.1016/j.biocon.2017.03.018
WilsonBA,ValentineLE,ReaveleyA,IsaacJ,WolfeKM(2012) TerrestrialmammalsoftheGnangaraGroundwaterSystem, WesternAustralia:History,status,andthepossibleimpactsofa dryingclimate. AustralianMammalogy 34 ,202–216. doi:10.1071/AM11040
WilsonBA,KuehsJ,ValentineLE,SonnemanT,WolfeKM(2014) GuidelinesforecologicalburningregimesinMediterranean ecosystems:AcasestudyinBanksiawoodlandsinWesternAustralia. PacificConservationBiology 20,57–74.doi:10.1071/PC140057
WintleBA,KujalaH,WhiteheadA,CameronA,VelozS,KukkalaA, MoilanenA,GordonA,LentiniPE,CadenheadNCR,BekessySA (2019)Globalsynthesisofconservationstudiesrevealstheimportance ofsmallhabitatpatchesforbiodiversity. ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica 116,909–914. doi:10.1073/pnas.1813051115
WoodL,HooperP,FosterS,BullF(2017)Publicgreenspacesand positivementalhealth–investigatingtherelationshipbetweenaccess, quantityandtypesofparksandmentalwellbeing. Health&Place 48 , 63–71.doi:10.1016/j.healthplace.2017.09.002
YatesCJ,McNeillA,ElithJ,MidgleyGF(2010)Assessingtheimpactsof climatechangeandlandtransformationonBanksiaintheSouthWest AustralianFloristicRegion. Diversity&Distributions 16 ,187–201. doi:10.1111/j.1472-4642.2009.00623.x
YoungTP,PetersenD,ClaryJ(2005)Theecologyofrestoration:historical links,emergingissuesandunexploredrealms. EcologyLetters 8, 662–673.doi:10.1111/j.1461-0248.2005.00764.x
ZencichSJ,FroendRH,TurnerJV,GailitisV(2002)Influenceof groundwaterdepthontheseasonalsourcesofwateraccessedby Banksia treespeciesonashallow,sandycoastalaquifer. Oecologia 131,8–19.doi:10.1007/s00442-001-0855-7
ZylstraMJ,KnightAT,EslerKJ,LeGrangeLL(2014)Connectednessas acoreconservationconcern:Aninterdisciplinaryreviewoftheory andacallforpractice. SpringerScienceReviews 2,119–143. doi:10.1007/s40362-014-0021-3
Handlingeditor:DickWilliams