2020_All roads lead to retreat: adapting to sea level rise using a trigger-based pathway

Page 1


Australian Planner

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rapl20

Bill Grace & Colleen Thompson

To cite this article: Bill Grace & Colleen Thompson (2020): All roads lead to retreat: adapting to sea level rise using a trigger-based pathway, Australian Planner, DOI: 10.1080/07293682.2020.1775665

To link to this article: https://doi.org/10.1080/07293682.2020.1775665

Published online: 20 Jun 2020.

Submit your article to this journal

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rapl20

AUSTRALIANPLANNER

https://doi.org/10.1080/07293682.2020.1775665

Allroadsleadtoretreat:adaptingtosealevelriseusingatrigger-based pathway

BillGracea andColleenThompsonb*

aAustralianUrbanDesignresearchCentre,Perth,Australia; bGHDPerth,Planning,Perth,Australia

ABSTRACT

Ascoastalcommunitiesallovertheworlddealwiththeconsequencesofrisingsea-leveland moreintensestormevents,plannersandmanagerscontinuetograpplewiththeoptimal policyapproachtomanagingincreasingriskstocoastalecosystems,peopleandproperty.In thisarticle,wedescribea flexiblepathwayapproachtoadaptationderivedinsouthwest Australiaforlocalgovernment.Whiletheissueisusuallyaddressedusingaconventional optionanalysisofthe ‘retreat-accommodate-protect’ alternativeswithinagiventimeframe (oftenuntil2100),wearguethatthisapproachismisleadinginthatitobfuscatesthelong termrealitiesofclimatechange.Sea-levelwillberisingforhundredsifnotthousandsof years,meaningthatretreatisultimatelyinevitableforanycoastlinescurrentlydeterminedto bevulnerable – theonlyuncertaintyiswhenthiswillbenecessary.Accordinglythefocus shouldbeoncontinualmonitoring,updatedhazardmapping,andtheidentificationof sequentialtriggersthatregulatelanduses.Weproposethissimplified flexiblepathwayasa rationalapproachtodealingwiththetemporaluncertaintyoffutureclimatechangethat shouldbewidelyadopted.

Introduction

Theyear2017waseitherthesecondorthirdwarmest year(NationalOceanicandAtmosphericAdministration 2018)onrecord,andthe fivewarmestyears onrecordallhavetakenplacesince2010.Climate changeishereanditsimplicationsarebeingfelt throughextremeweatherevents,bushfires,melting glaciersandcoralbleaching.Evenastheworld’ s nationsseektomitigatethefutureeffectsbyreigning incarbonemissions,adaptingtoclimatechange becomesmorecriticaleveryyear.

Sealevelriseduringperiodsofglobalwarmingoccur (mainly)throughacombinationofthermalexpansion andlossoficestoredonland(e.g.,glaciersandicesheets). AlthoughthisprocesshasbeenongoingsincetheLast GlacialMaximumsometwentythousandyearsago (Clarketal. 2009),theratehasrisensignificantlyover therecentpast.Duringthetwentiethcentury,global meansealevelsrosebyaround190mm,aratelarger thanthepriortwothousandyears(Churchetal. 2013). Ratesofchangevaryconsiderablyaroundtheworld.In thesouthwestofAustralia,sea-levelhasrisensome 150mmbetween1900and2010(Bicknell 2010).

ProjectionsinthelatestAssessmentReport(AR5)of theIntergovernmentalPanelonClimateChange (IPCC)areforglobalmeansealevel(GMSL)to ‘likely’ riseabove1986–2005levelsbetween0.28and0.98m bytheendofthecentury,dependingonfuture

CONTACT BillGrace bill.grace@uwa.edu.au

*Presentaddress:SeniorProjectOfficer,CityofJoondalup.

ARTICLEHISTORY

Received7July2018

Accepted6May2020

KEYWORDS

Sealevelrise;adaptation; strategicplanning;climate change;pathway;triggers

greenhousegas(GHG)emissions(Pachaurietal. 2014).Theterm ‘likely’ reflectstheconfidenceofthe authors.Someresearchershavequestionedwhether theIPCCestimatesare fit-for-purposetouseincoastal decision-making.Hinkeletal.(2015,188)notethat ‘thereisa0–33%probabilityofGMSLriselyingoutside thisrange,whichisnottolerablefromarisk-averse perspective’.Hansenetal.(2015)haverecentlyre-activatedtheprojectiondebatewithaconclusionthatsealevelrisecouldbeseveralmetresbytheendofthiscenturydue(mainly)topreviouslyunderestimatedlevels oficemeltfromAntarcticaandGreenland.Differences betweensealevelrisemodelspresentcomplexityfor coastalplanners,astheappropriatetimingforland useresponsesisuncertain.

Ofcourse,theslowlyrisingsealevelitselfisnotthe onlyissueofrelevanceforcoastalplanners.Firstly,a riseinsea-levelincreasescoastalerosionsignificantly invulnerablesandysiteswithabundantsandsupply andminimallongshoretransport,notablycharacterisedbyBruun(1962).Theso-called ‘BruunRule’ suggestsaonemetreriseinsealevelwillleadtoa 100mretreatofthecoastline.WhiletheBruunRule hasbeenshowntobetoosimplistictoapplygenerally (Ranasinghe,Callaghan,andStive 2012)andsome believeitshouldbeabandonedaltogether(Cooper 2004),ithasdrawnattentiontothepotentialimpact of sea-levelriseoncoastlinestability.

Secondly,stormsurgestemporarilyincreasesealevelduringsevereweatherevents,causedmainlyby windspushingwateronshore.Stormsareprojected toincreaseinseverity(ifnotfrequency)inmany regionsduetoclimatechange(Pachaurietal. 2014) thusincreasingtheimpactof floodinganderosion duetostormsurges.Theabilityofshorelinestorecover fromtransienterosioneventsreducesassea-levelrises.

Thirdly,itisalsopredictedbytheIPCCthat ‘..extremeprecipitationeventswillbecomemore intenseandfrequentinmanyregions.’ Clearly,the probabilityoftheseeventscoincidingwithstorm surgeeventsissignificant,thusexacerbatingincidences ofcoastal flooding.

TheprojectionsoftheIPCCfocusontheperiodto theendofthecentury,andsoaccordinglydomost authoritieswithresponsibilitiesforadaptationtosea levelrise.Asnotedabove,therearemanyuncertainties aboutboththemagnitudeandrateofsealevelriseby 2100.Theseuncertaintieshavegivenrisetomanytheoriesaboutwhatisanoptimalmanagementapproach (Haasnootetal. 2013).Inthisarticlewehighlightthe roleoflanduseplanninginaddressingsealevelrise, citingasacasestudyastrategydevelopedfora coalitionofcoastalcouncilsinPerth,Western Australia.

Howdoesaplanningauthoritydecidewhereand whetheranareashouldbeprotectedornot?How andwhenis ‘Retreat’ invoked?Thesehavebeenquestionsforalongtime(Walshetal. 2004)andremain thekeyquestionsforcoastalplannersandmanagers asidentifiedbyRobbetal.ininterviewswithlocal WesternAustralianplanners(Robbetal. 2017).We drawonthelearningsfromourcasestudytocontribute answerstothosequestions.

Thecasestudy

ConsultantsGHDwerecommissionedtopreparea coastaladaptationplan(GHD 2016)fortheCockburn CoastalAlliance(CSCA),apartnershipbetweenthe

CitiesofCockburn,Fremantle,KwinanaandRockinghaminPerth’ssouthernsuburbs.Theauthorswere membersoftheconsultingteamcommissionedby CSCA,fromwhichtheapproachesproposedhere havebeenderived.Theoutputsoftheworkwere coastaladaptationplansforeachofthelocalgovernmentareas,andanoverarchingprojectreportthatprovidestheanalysisunderpinningtheplans.Asimilar projectundertakenbyGHDandtheauthorsforthe CityofFremantleandtheTownofMosmanParkfor thePort,LeightonandMosmanBeachesandadjacent landhasalsoinformedtheviewspresentedhere.

Inapreviousstageoftheproject,otherconsultants (CoastalZoneManagementetal. 2013)preparedan erosionandinundationhazardassessmentofthecoastlinecomprisingCockburnSound,OwenAnchorage andtheeastcoastofGardenIsland.

ThekeyoutputsfromtheCoastalZoneManagementetal.(2013)studywereerosionandinundation hazardmapsthatillustratethelikelyextentofcoastal inundationanderosionatdifferenttimeframes(presentday,2070and2110)basedonsealevelrisescenariosforthesetimeframes(0m,+0.5mand+0.9m respectivelyinlinewithAR5).Additionally,asea levelriseof1.5mat2110wasalsoselectedtodeterminesensitivitytohigherestimatesofsealevelrise. Thestudyconcludedthattherewouldbeanaverage recessionofthecoastlineof25mby2070and45–75mby2110,althoughtherewouldbesignificantvariationacrossthestudyareaduetosandtransfer betweencoastalsegments.Sedimenttransferisan importantconsiderationinmodellingrecession (Thometal. 2018),althoughinthelongtermthe studyauthorsnote: ‘Changestotheareasexperiencing recessionarelikelytooccurthroughseveraldifferent mechanisms,includingsealevelrisecontributingto decreaseorcessationofonshoresedimentsupply’

Theobjectivesoftheadaptationplanphaseofthe projectwereto:

. developaneffectivecoastaladaptationplan(or plans)tobeimplementedbytherelevantlocalgovernmentsandstakeholders;

. engagewithkeycommunitygroupsandstakeholderstogaintheiropinionsandvalues(economic, environmental,socialandcultural)regarding coastalassets(naturalandbuilt)atriskinthecoastal zoneandpotentialadaptationoptions;and

. buildcapacityinthecommunity,localgovernments, naturalresourcemanagementgroups,Coastcare groups,industryandotherstakeholdersbyfacilitatingtheunderstandingofclimatescience,coastal processes,hazardsandrisksthroughthedevelopmentanddisseminationoftheadaptationplan(s).

Thestudywasguidedby ‘TheCoastalHazardRisk ManagementandAdaptationPlanningGuidelines’ Figure1. Riskmanagementandadaptationhierarchy.

(DepartmentofPlanningandWesternAustralian PlanningCommission 2014),adocumentoftheWesternAustralianPlanningCommission(WAPC).1 That documentsetsoutcoastaladaptationoptionswhichare consideredasahierarchy(see Figure1) – thefurther downthehierarchy,theless flexibilitythereistoconsideralternativeadaptationmeasures.

Thestudyprogressedthroughanumberofsteps, includingidentifyinglocalisedadaptationoptionsfor eachcoastalmanagementunitanddevelopmentof coastaladaptationplansforeachcoastalmanagement unitwithineachlocalgovernmentarea.

Inparallelwiththesetasksthestudyteamprepared andimplementedastakeholderandcommunity engagementstrategy,andliaisedwithlocalgovernment officers,externalstakeholderrepresentativesandthe communitytotestvaluesandoptions.

Establishingtherisk

Assessinghazardsarisingfromcoastalprocesses usuallyinvolvesapplyingtheconventionalriskanalysis technique:evaluatethelikelihoodoftheoccurrence; thenevaluatetheconsequenceoftheoccurrence.In thiscase,theoccurrenceistheerosionand/orinundationofcoastalland.Thelikelihoodwasevaluatedin Stage1oftheprojectatdifferentpointsintime:now, 2070and2110.Asthecoastalprocessesaredominated bysealevelrise,theamountoflandaffectedincreases ateachofthesedates.Locationscurrentlyidentifiedas atriskofsporadicinundationoracuteerosionwillin futurehaveanincreasedrisk.

Whilethereisunderstandablyconsiderableinterest inthesealevelat2100,thisfocusmasksthelongterm scientificallyacceptedrealitythatsea-levelwillberising forhundreds,ifnotthousandsofyearsirrespectiveof futureGHGemissions.IntheirarticleinNatureClimateChange,Clarketal.(2016,360)provideamuch longertemporalperspectiveonclimatechange,contextualisingchangesoveraperiodfrom20,000years beforethepresent(thetimeoftheLastGlacialMaximum),to10,000yearsbeyondthepresent.Whether fossilfuelscontinuetobeuseduntilreservesare exhausted,orabandonedtocombatclimatechange, theemissionsreleasedwillbeshorttermbliponthe graphoverthattimeframe.Howevertheirinfluence onatmosphericcarbondioxide(CO2)levelswilllast forthousandsofyears,meaningtemperatures,and hencesealevels,willremainhighoverthatperiod.

… thescientificemphasisontheexpectedclimate changesby2100hascreatedamisleadingimpression inthepublicarena theimpressionthathumancausedclimatechangeisatwenty-first-centuryproblem,andthatpost-2100changesareofsecondary importance,ormaybereversedwithemissions reductionsatthattime.(Clarketal.)

Therealityisthattheeffectsofclimatechangein respectofbothtemperaturesandsealevelriseare withusnowandhave ‘multi-millennial’ implications. Sealevelriseisaresultofseveralcoincidentprocesses, eachwiththeirownresponsetimetochangesinduced bywarming.Clarketal.’scalculationsincorporatethe impactonsealevelriseofarangeofemissionscenarios oneachprocess:

. Thermalexpansionoftheoceans:1.1–3.4mrise whichislikelytopeakinaround2300yearsand thenfall;

. Glacierloss:0.25–0.34mrise,likelytooccurwithin afewcenturies;

. MeltingoftheGreenlandicesheet:4–7mriseover 2,500–10,000years;

. MeltingoftheAntarcticicesheet:24–45mriseover 10,000years.

Inaggregate,theauthorsprojectGMSLtorise somewherebetween25and52moverthenext 10,000years,dependingonfutureemissions.Their modellingsuggeststhatemissionstodatehavealready ‘committedEarthtoaGMSLriseof ∼1.7m(rangeof 1.2to2.2m)’.These figuresputthe2100estimatesin AR5intheirproperperspective.

Itisthereforeclearthatthe ‘likelihood’ ofthose partsoftheCockburncoastidentifiedasvulnerable intheperiodto2100becomingerodedand/orinundated,willeventuallybe ‘certain’.Theonlyuncertainty relatestowhenthiswilloccur.Itisalsoclearthatthe areaidentifiedasvulnerablewillsteadilygrowover time.Accordingly,thepracticeofestablishinglikelihoodscales(e.g., ‘almostcertain’ to ‘ rare ’)forerosion/inundationbasedoncurrentmodellingis unhelpfulinconveyingthereallongtermriskand forplanningforthefuture.Dealingwiththetemporal uncertaintyrequiresa flexibleadaptationpathway.

Theneedtoarticulateapathway

Duringcommunityengagement,theprojectteam identifiedthattheriskmanagementandadaptation hierarchywasnotinitselfasufficientpolicytoolto clearlycommunicatetheneedforongoing,iterative adaptationplanning.

Oneofthecoreaimsofthestakeholderengagement componentoftheprojectwastoconsiderandtestthe valuesofthecommunityinrelationtothecoast,and theimplicationsoftheimpactsofsealevelrise.These valueswereintendedtobeusedaspartofthemethodologyfortestingthevariouscoastalmanagement options.Asfoundbyothers(Alexander,Ryan,and Measham 2012;CoviandKain 2016),differentcommunitymembersrespondedaccordingtotheirdifferentinterests.Thiswasexpressedthroughthosewho potentiallyhadat-riskpropertybeinginclinedto

expecthardinfrastructureprotection(groynes,seawalls,etc.),andthosewithnodirectpropertyimpact, e.g.,beachgoers,beinginclinedtoexpecttheretention oftheirbeachandadjacentparkingareasand parklands.

Theengagementprocessillustratedthatthecommunityisnotsufficientlyawareof,orinformed about,thepotentialimpactsofsealevelriseanderosiontoarticulatetheirvaluesinawaythatwasconstructiveforassessingthevariousoptionsforcoastal management.Thiswasfurtheremphasisedbythegenerallylowlevelofinterestinbeingengaged.

Furthermore,therewaslimitedcapacitytoimagine andengagebeyondtheimmediateplanninghorizon, beyondthetemporalscaleofpersonalimpact.This inabilitywasatoddswiththeexpectationthatcoastal adaptationplanswouldmakerecommendationsfor mitigatingrisksinthelong-term.

Thedynamicnatureofcommunityneedsandvalues requiresa flexibleapproachwhenconsideringadaptationoptions.Theeffectsofclimatechangeonthe coasthaveonlyrecentlybeenidentifiedasapotential concernforsomeinthecommunity,asapparent fromtheminimalinterestshownduringtheconsultationprocess.Thelevelofinterestandvaluesofthe communitywillchangeovertimeasmoreinformation becomesavailable,andtheimpactsofclimatechange becomemoreapparent.

Theselearningsandconsiderationsfromthecommunityengagementprocessdemonstratedtheneed toarticulatea flexiblepathwayratherthanapplythe riskmanagementandadaptationhierarchyatthistime.

A flexibleadaptationpathway

Anadaptationpathwayisadecision-makingstrategy thatismadeupofasequenceofmanageablesteps ordecision-pointsovertime.(CoastAdapt 2018)

Asa firststep,theauthorsdevelopedprinciples,based onexistingWesternAustraliancoastalplanningpolicy, toarticulatethebenchmarkforlongtermadaptation planningdecisions,andhelptomanagetheinfluence ofshorttermpoliticsanddevelopmentpressure.

Principle1Adaptationplanninginthecurrentplanninghorizondoesnot impedetheabilityoffuturegenerationstorespondto increasingriskbeyondcurrentplanninghorizons.

Principle2Adaptationrequiresadecision-makingframeworkthat enablestherightdecisiontobemadeattherighttime,in linewiththevaluesandcircumstancesofthetime.

Principle3Adaptationplanningreflectsthepublic’sinterestinthesocial, environmentalandeconomicvalueofthecoast.

Principle4Alternativeadaptationmeasuresshouldconsiderthefull rangeoflandusesandvalues.

Principle5Thefulllifecyclebenefits,costsandimpactsofcoastal protectionworksshouldbeevaluatedwhileconsidering adaptationoptions.

Theadaptationprincipleswereusedtoarticulatea pathwaythatwouldapplytheadaptationhierarchyto avulnerablecoastalareaovertime.

TheStateCoastalPlanningPolicy(SPP2.6)(Western AustralianPlanningCommission 2013)includesan assessmentmethodologythatestablishesacoastalsetbackfornewdevelopment(fora100yeartimeframe) toallowforcoastalprocesses,involvingcomponentsof:

. Erosion

○ currentriskofstormerosion(S1);plus ○ historicshorelinemovementtrends(S2);plus ○ futuresealevelrise(S3).

. Stormsurgeinundation(S4)

Thestormeventsfordeterminingthecurrenterosionandinundationriskaredefinedinthepolicy. Theallowanceforerosion/accretionisbasedona1% AnnualExceedanceProbability(AEP)eventwhichis (approximately)equivalenttoa100yearAnnual RecurrenceInterval(ARI).Thestormeventtocalculatethestormsurgeinundationallowancehasa0.2% AEP,(approximately)equivalenttoa500yearARI. Theworstcaseoferosionorinundationsetstheminimumacceptabledistance(setback)fromtheshoreline fornewdevelopment,consideringaperiodof100 years.Ifthissetbacklineistranslatedtoamapthis wouldrepresentacontour(Y100).Similarcontours canbedevelopedusingthesameanalysisforanytimeframe.Forexample,theY50contourrepresentsthesetbackthatrepresentsacceptablerisk(e.g.,1%AEP erosionevent)foraperiodof50years.

Reflectingthisapproachweproposethefollowing pathwayandhierarchytosettriggerpointsatwhich decisionsaretobetaken(see Figure2 and Table1).

SettingTrigger3atY15meansthatthereisa15yearperiodduringwhichadecisionismadeand implementedtoeitherprotectthecoastlineorretreat beforetheriskoferosionand/orinundationbecomes unacceptableforassetswithinthatcontour.Abenefit ofthetrigger-basedpathwayfordecision-makingis that – irrespectiveoftheuncertaintysurrounding sea-levelriseestimatesusedinpolicydevelopment –decisionsarenotmadepre-emptively,i.e.,beforethe risklevelisrealisedandunderstoodinreality.

Table2 illustratesthekeydecisionsthat flowateach triggerpoint.Theavailablemeasuresarebasedonthe leveloftolerabilityaccepted.

Reframingtheprotectvsretreatquestion

Coastalworksaimtoprotectphysicalassetsatthreat fromerosionandinundation.However,suchworks arenotbenign-seawallsresultinlossofbeachby restrictinglandwardmigrationanddeflecterosionto adjacentunprotectedbeach(Kraus 1988).Theintertidalpartofthebeachisalsohabitattomacroinvertebratesandtheirshorebirdpredators,andthe narrowingandeventuallossofbeachadverselyimpact thisecosystem(Duganetal. 2008).

Triggerbased,long-termadaptationpathway.

Engineeredstructuresaredesignedtowithstanda specifiedstormevent,andhaveadesignlifeafter whichtheynolongerofferviableprotection.Itis importantforstakeholderstounderstandthetemporarynatureofprotectionmeasures.Inthelongterm, thesizeandextentofengineeringstructuresrequired towithstandsealevelriseandmoreintensestorm eventswillnecessarilybecomelarger,increasingtheir costandimpact.Thelogicalconclusionisthatthe feasibilityandcostofcontinuingprotectionwill becomeuntenable,andeventualretreatfromthevulnerablelandisthereforeinevitable.

Thismeansthatthelosses(landvalue)andcosts (disruptiontooperations)associatedwithRetreatare commontoallpossiblemeasurestakenintheforeseeablefuture.Thevariousadaptationmeasures(AccommodateorProtectorcombinationthereof)willhavea finiteeffectivelifeandthereforeonlyservetodelay theselossesandcosts,albeitconsiderablyinsome cases.Tobe financiallypreferable,thecapitaland ongoingcostsofthesemeasuresmustbelessthanthe

Table1. Calculationoftriggerpoints.

Trigger RiskLevel Locationofmostseaward asset/valueatrisk:

Trigger 1 Tolerable BetweentheY100andY50 contour

Trigger 2 Increasinglikelihoodof intolerablerisk BetweentheY50andY15 contour

Trigger 3 Intolerable.Interimprotection maybefeasible SeawardoftheY15contour

Trigger 4 Intolerable.Protectionisnot feasible

SeawardoftheY15contour

benefitobtainedbydelayingtheinevitablelossesand costsofeventualretreat.Thistestisrelativelystraightforwardusingdiscountedcash flowtechniques. ApplyingthislogicintheCockburncaseledtoan optionanalysisprocess(includingbutnotlimitedto financialcosts)thatcomparedthefollowingalternatives:

. Retreatwhenriskbecomeunacceptable;and

. ProvideInterimProtectionincorporatingarangeof shorttolongtermprotectionmeasuresthatdelay (buteventuallyleadto)Retreat.

Interimprotectionmeasurescompriseeither:

. CoastalProtection – protectingsiteslandwardofthe coastlineitselffromrecession/inundationthrough either ‘hard’ (engineering)measuresor ‘soft’ (regenerative)measures;or

. AssetProtection – protectingtheassetitselffrom measurestakenatthelotscale.

Coastalprotectionoptionsweredeveloped,reflectingthenatureofthedefencesprovided(see Table3).

Optionevaluation

Inorderforcoastalprotectionworkstobeanappropriateresponse,thereneedstobesufficientbenefittojustifythelifecyclecostandotherconsequencesofthe works.Asnotedabove,the financialequationisthe comparisonbetween:

Figure2.

Table2. Triggeranddecisionpoints.

Trigger Decision Implication/action

Trigger1:Assetsorvaluesincoastalzonereach highrisklevel

Trigger2:Assetsorvaluesincoastalzonewill reachextremerisklevelduringtheplanning period

Trigger3:Assetsorvaluesincoastalzonereach extremerisklevel

Trigger4:Assetsorvaluesincoastalzone continuetobeatextremerisklevel

Riskistolerable . Avoid throughstrategicplanningmeasures . Ongoingmonitoring

Increasinglikelihoodof intolerablerisk . Accommodate throughassetorareaspecificmeasures

Intolerablerisk – interim protectionmaybefeasible

Intolerablerisk – protectionis notfeasible

. thecapitalandongoingcosts(includingdecommissioning)ofthesemeasures,and . thebenefitsobtainedbydelayingthelossesandcosts ofeventualretreat.

Ofcourse,therearenon-financialcostsandbenefits, andmulti-criteriaanalysis(MCA)incorporatinga rangeofcriteria(Table4)wasusedtoranktheRetreat, andoneormoreInterimcoastalprotectionoptions. Weightingsweredevelopedforthecriteriathrough engagementwiththeprojectstakeholders.

Thestudyareacomprisessome18separatecoastal managementunits.Thepurposeoftheoptionevaluationprocesswastocomparethecostsandbenefits ofRetreattooneormoreInterimprotectionmeasures foreachmanagementunit:

. atthedecisiontriggerpointwhichisdeterminedby thelevelofrisktocoastalassets;and

. overthelifeofthatprotectionmeasure.

Itisintendedthatthisprocessisappliedatthepoint intimewhen Trigger3 occurs.Formostcoastalmanagementunitsconsideredinthisproject(i.e.,14of the18),thiswasapointinthefutureandsotheassessmentwasa ‘firstpass’ onlyfortheseunits.Itisintended thattheoptionevaluationiscontinuallyupdatedas newinformationonsealevelrisebecomesavailable. Theexerciseresultedin:

. Retreat beingthepreferredoptionin5ofthe18 coastalmanagementunits;

. Ongoingmonitoring

. Evaluatewhether InterimProtection isjustifiableonsocial, environmental,andeconomicgrounds.

. Whereinterimprotectionisjustifiable,determinethenatureofthe worksbasedonsocial,environmentalandeconomicgrounds.

. Whereinterimprotectionisnotjustifiable, Retreat

Activelyplanfor Retreat inacoordinatedmanner.

. Hard-active measuresbeingpreferredin4ofthe units;

. Soft-passive and hard-passive measuresbeingpreferredin7oftheunits;and

. Nomeasureswererequiredin2oftheunits(which havearockycoastlineunlikelytobeaffectedinthe evaluationtimeframe).

Whereinterimcoastalprotectionmeasureswere foundnottobejustified,thosepartsofthecoastwill beassumedtobecomeaffectedovertimebyerosion andinundation,requiringtheeventualretreatfrom thatlocationandintheinterim,considerationofprotectionofindividualassetsbytheassetowners,includinginfrastructureproviders.

Theidentifiedpreferenceforprotectionmeasuresin otherlocationsarisesessentiallybecausetheseoptionsprovideprotectiontothelandwardassetsaswellasbeach retentionforthelifeofthemeasures.However,theresults needtobeconsideredfurtherinthelightofcumulative environmentalimpact,includingmaterialsavailability.

Planningresponse

Theplanningsystemwillneedtobemodifiedtoincorporateandregulatetherecommendedapproach.The localplanningstrategywillbeakeyconsultationand communicationtoolthatwillengagethecommunity indecision-making,andcommunicatetriggersand timeframesforadditionalcontrolsofcoastallanduse tomanagecoastalrisks.Thisinvolvesanumberof keyplanningactions.

Table3. Coastalprotectionmeasures.

Approach Description Examples

Soft – PassiveForeshoreprotectionworksthatofferbenefitstoerosionandinundationbutdonotinvolve constructionofstructuresanddonotdirectlyaffectcoastalprocesses.

Hard – PassiveForeshoreprotectionworksthatinvolvetheconstructionofstructureswhichalterthecoastalprocesses thatactontheland/beachwiththeintentiontomaintainorimprovebeachamenitythrough retentionofsand.

Hard – ActiveWorksthatinvolvetheconstructionofstructureswhichofferasourceofprotectiontolandsideassetsin proximitytotheforeshore.Theconstructionofhardactiveengineeringoptionscanaltertheway coastalprocessesactontheland/beachinterface.Thesechangestotheshapeoftheland(e.g., erosionofabeachinfrontofaseawall)canhaveimplicationsforlanduse(e.g.,lossofbeach amenity).

Sandnourishmentanddune stabilisation

Groynesandoffshore breakwaters

SeawallsandLevees

Table4. Optiondecisioncriteria.

DecisionCriteria

Lossoflandvalue

Interimprotectioncosts

Industrialpropertyimpact

Residential&commercialproperty impact

Metric

Duringthelifeoftheinterimprotectionmeasure: Retreatmeans … Interimprotectionmeans …

Discountedcost($) ImmediatelossoflandvalueDelayedlossoflandvalue

Discountedcost($) Nil

Numberofpotentiallots

affected

Numberofpotentiallots

affected

Capitalandoperatingcosts

Relocation&disruptionNil

Relocation&disruptionNil

Residualrisktoproperty Scaleof1–5 Nil

Parksandreservesimpact Area(ha)

Riskfromfailureand/orextremeevents

Arealosttoencroaching foreshore Nil

Beachrecreation/amenityimpactLinealmofbeach Nil

Heritageimpact

No.ofheritageproperties

affected

Beachloss(forhard-passiveengineering approaches)

Loss/degradationofheritage assets Nil

Habitatloss Area(ha) Nil

Planningaction – incorporateaspecialcontrol areaforvulnerablecoastalarea

Akeyplanningmechanismisthedemarcationofa SpecialControlArea(SCA)appliedtothevulnerable coastalareaat Trigger1,whichprovidesadditionalplanningcontrolsforaspecificarea.Thelocalplanning schemeshouldincorporatetheSCAtoadviselandownersandplannersthattheareaisinavulnerablecoastal areaforthelong-term(100-year)planninghorizon.

TheSCAwouldencompasslandthatwouldbeboth impactedandinfluencedbyfuturelandusechangein responsetocoastalprocesses,comprisinglandseaward ofthephysicalprocessesallowancefora100-yearplanninghorizoncalculatedinaccordancewithSPP2.6 (theY100contour)usingcoastalvulnerabilitymapping undertakenandupdatedatregularintervals,(say)5 years.ThereshouldbeapresumptionthattheSCA willexpandlandwardsovertimeasthesea-levelrises. Developmentcontrolswouldbeinvokedforthe SCA,including:

. Notificationsontitleforexistingproperties, reviewedandupdatedovertime;

. Presumptionagainstmajornewdevelopment/redevelopmentwithintheSCA;and

. Conditionsunderwhichexceptionsareallowable, includingfortemporaryand/orshortliveddevelopmentandforfacilitiesrequiringdirectcoastalaccess (e.g.,industrialfacilities,surfclubs).

ForlandwithintheSCAsubjectto Trigger2 (i.e.,within theY50contour),thelocalgovernmentwouldadviseownersandoccupiersthattheirassetsareatriskoferosion/ inundationassociatedwithsealevelrisewithin50years.

At Trigger3 (affectinglandwithintheS15contourof theSCA),riskisassessedasintolerable,requiringa studytodeterminethecost–benefitofProtectionvs Retreatinlinewiththeapproachoutlinedabove.Landownersshouldberestrictedfromundertakingcoastal protectionmeasuresthatseektoprotectprivateassets. Protectionmeasureshaveconsequenteffectsonadjacent coastlineandad-hocinstallationswouldunderminethe

Shorelineloss

whole-of-coastplanpromotedhere.Anycoastalprotectionmeasuresthatdoprogressshouldbecommissioned bythestategovernmentandincorporatedwithin,andas partof,coastalforeshorereserves.

At Trigger4,i.e.,whenprotectionisdeemedunviable,Retreatisinvoked.

Planningaction – expandthecoastalforeshore reservetosupportlong-termretreatfrom coastalland

Theprimaryplanningresponsetoenableretreatfrom thevulnerablecoastalareaisthroughexpansionofthe coastalforeshorereserve,requiringthere-zoningof landforthispurpose.Foreshorereservesshouldbe sufficientinwidthtomaintainthesocialandenvironmentalfunctionsofthereserveoncephysicalprocesses havebeenallowedfor(notingthatmanyexisting reservesaredeficient).

Insituationswhereacoastalforeshorereservealready exists,thereservationwouldbeexpandedlandwardsin logicallandparcels,takingintoaccounttheadjacent landuse.Insituationswherethereisnoexistingforeshorereserve,thereservationwouldbecreatedonprivatelandandtheadjacentroadreserve.Accordingly, overtimethepolicywouldresultinacontinuouscoastal foreshorereserve,providingthedualbenefitsofbufferingcoastalprocessesandmaintainingthesocialandculturalvaluesoftheforeshore,includingbeachaccess.

Overtime,toimplementRetreat,reservedland wouldbeacquiredusingpublicfunds,justasitisfor infrastructureprojectssuchasmajorhighways.

Planningaction – developforeshore managementplansthatincludecomprehensive policyguidancefortemporarydevelopmentand landusewithinthecoastalforeshorereserve

Undertheapproachesoutlinedhere,foreshoremanagementplansbecomeanimportantelementofthe adaptationstrategy.Coastalprotectionshouldbethe highestpriority,requiringtheidentification,

prioritisation,andfundingofnaturalcoastalanddune managementtechniquestoenhancetheabilityofthe naturalsystemtobuffercoastalprocesses.

Theplanshouldidentifyappropriate,impermanent communityfacilities,whileincorporatingtrigger pointsfortherelocationordecommissioningofexistingassets.Anynewtemporarydevelopmentthatis approved,shouldaddressdesignlifeandarchitectural andconstructionrequirementsthatcommunicatethe impermanentnatureoffacilitiestothecommunity.

Conclusions

Thescienceisin.Theworldwillbeadaptingtosealevelriseforseveralcenturiesatminimumandcoastal managers,national,stateandlocalgovernmentsare, orshouldbe,awareofthesituation.Althoughsubject tomuchresearchandanalysis – theliteratureisextensive(Tompkinsetal. 2010;Bowering 2014;Hurlimann etal. 2014;Kellett,Balston,andWestern 2014,Abel etal. 2011;Taylor,Harman,andInman 2013;Bray, Hooke,andCarter 1997;Hill 2016;Robbetal. 2017),thereisnotyetanyrealconsensusonhowto progresstowardsaconsistentandrationallandplanningprocessthatcan,andwillbebroadlyapplied everywhere.

Insituationswhereplannedretreathasbeen attempted,outragefromaffectedlandholdershas oftenreversedthepolicyinfavourofcoastalprotection works,mostnotablyinByronBay2 (Kellett,Balston, andWestern 2014).InCalifornia,morethan10per centofthecoastlineisnow ‘armoured’ (Meliusand Caldwell 2015).Theprocesssuggestedinthisarticle doesnotprecludeprotection,andindeedthiswasthe nominallypreferredoptioninsomeareasinourcase study.However, whether toprotectornotprotectisa falsecomparisongiveninevitablesealevelrise.The correctcomparisonisbetweenretreatnow,orprotect temporarilybeforeretreatinginthefuture.Framing theissueinthiswayshouldreducethetensions betweenprivateandpublicintereststhathaveoften preventedrationalpolicydevelopmentinthepast. Manycoastaladaptationplanningprojectsand researcherspromotetheuseofa flexiblepathway approach(Haasnootetal. 2013;Brownetal. 2014; Wiseetal. 2014;CoastAdapt 2018;Abeletal. 2011). Akeyinnovationinthepathwayoutlinedhereisthat longterm flexibilityinadaptationisenabledthrough anongoingstrategicplanningprocessthatmaintains andpreparesforfutureavoidandretreatdecisions. Inessence,thestrategicplanningpathwayplansfor ultimateretreatwhilecontemplatingthatits implementationmaybedelayedthroughinterimprotection.Developingaconsistent,yet flexiblepolicyframeworkiscriticallyimportanttobuildcommunity trust,insulatepolicymakersfromthecontroversies thatinevitably flowfrompolicyparalysis,and

ensureefficientpublicandprivateinvestmentin coastalassets.

Notes

1.ThisdocumentwasrevisedinJuly2019afterthedraft ofthisarticlewasprepared,andcontainssomeofthe recommendationssetouthereandintheGHD reports(WesternAustralianPlanningCommission 2019).

2.ThecaseforretreatatByronBayiscontested,with somearguingthatitis ‘unworkableinpractice’ (Buckley 2013).

Acknowledgements

Theauthorswouldliketoacknowledgethecontributionsto thisworkbyGHDstaff andthankthelocalgovernmentsthat commissionedtheCockburnCoaststudy.

Disclosurestatement

Nopotentialconflictofinterestwasreportedbytheauthor(s).

References

Abel,Nick,RussellGorddard,BenHarman,AnneLeitch, JenniferLangridge,AnthonyRyan,andSonjaHeyenga. 2011. “SeaLevelRise,CoastalDevelopmentandPlanned Retreat:AnalyticalFramework,GovernancePrinciples andanAustralianCaseStudy.” EnvironmentalScience& Policy 14(3):279–288. doi:10.1016/j.envsci.2010.12.002 Alexander,KimS.,AnthonyRyan,andThomasG.Measham. 2012 “ManagedRetreatofCoastalCommunities: UnderstandingResponsestoProjectedseaLevelRise.” JournalofEnvironmentalPlanningandManagement 55 (4):409–433. doi:10.1080/09640568.2011.604193

Bicknell,C. 2010 “SeaLevelChangeinWesternAustralia–ApplicationtoCoastalPlanning.” DepartmentofTransport CoastalInfrastructure,CoastalEngineeringGroup Bowering,Ethan. 2014. “AdaptingtoClimate-InducedSea LevelRiseontheGoldCoast:LessonsFromthe Netherlands.” AustralianPlanner 51(4):340–348. doi:10.1080/07293682.2014.897637.

Bray,Malcolm,JanetHooke,andDavidCarter. 1997. “PlanningforSea-levelRiseontheSouthCoastof England:AdvisingtheDecision-Makers.” Transactions oftheInstituteofBritishGeographers 22(1):13–30. Brown,Sally,RobertJ.Nicholls,SusanHanson,Geoff Brundrit,JohnA.Dearing,MarkE.Dickson,ShariL. Gallop,etal. 2014 “ShiftingPerspectivesonCoastal ImpactsandAdaptation.” NatureClimateChange 4(9): 752–755. doi:10.1038/nclimate2344

Bruun,Per. 1962 “Sea-levelRiseasaCauseofShore Erosion.” JournaloftheWaterwaysandHarbors Division 88(1):117–132.

Buckley,Ralf. 2013. “TheContestedNatureofCoastal ClimateChange CommentarytoNivenandBardsley. PlannedRetreatasaManagementResponsetoCoastal Risk:aCaseStudyFromtheFleurieuPeninsula,South Australia ” RegionalEnvironmentalChange 13(1):211–214. doi:10.1007/s10113-012-0383-5

Church,J.A.,P.U.Clark,A.Cazenave,J.M.Gregory,S. Jevrejeva,A.Levermann,M.A.Merrifield,etal. 2013

“SeaLevelChange.” In ClimateChange2013:ThePhysical ScienceBasis.ContributionofWorkingGroupItotheFifth AssessmentReportoftheIntergovernmentalPanelon ClimateChange,editedbyT.F.Stocker,D.Qin,G.-K. Plattner,M.Tignor,S.K.Allen,J.Boschung,A.Nauels, Y.Xia,V.Bex,andP.M.Midgley,1137–1216. Cambridge:CambridgeUniversityPress.

Clark,PeterU.,ArthurS.Dyke,JeremyD.Shakun,Anders E.Carlson,JorieClark,BarbaraWohlfarth,JerryX. Mitrovica,StevenW.Hostetler,andA.Marshall McCabe. 2009 “TheLastGlacialMaximum. ” Science 325(5941):710–714.

Clark,PeterU.,JeremyD.Shakun,ShaunA.Marcott,Alan C.Mix,MichaelEby,ScottKulp,AndersLevermann, GlennA.Milne,PatrikL.Pfister,andBenjaminD. Santer. 2016 “ConsequencesofTwenty-First-Century PolicyforMulti-MillennialClimateandsea-Level Change.” NatureClimateChange 6(4):360–369. CoastAdapt. 2018. “WhatisaPathwaysApproachto Adaptation?” AccessedMarch14,2018. https:// coastadapt.com.au/pathways-approach CoastalZoneManagement,UWASchoolofEnvironmental SystemsEngineering,DamaraWA,andOceanica Consulting. 2013.CockburnSoundCoastalAlliance: CoastalVulnerabilityStudy – ErosionandInundation HazardAssessmentReport.

Cooper,J.AndrewG. 2004 “Sea-levelRiseandShoreline Retreat:TimetoAbandontheBruunRule.” Globaland PlanetaryChange 43(3):157–171. doi:10.1016/j. gloplacha.2004.07.001

Covi,MichellePeppina,andDonnaJeanKain. 2016 “SeaLevelRiseRiskCommunication:PublicUnderstanding, RiskPerception,andAttitudesAboutInformation.” EnvironmentalCommunication 10(5):612–633. doi:10. 1080/17524032.2015.1056541.

DepartmentofPlanning,andWesternAustralianPlanning Commission. 2014.CoastalHazardRiskManagement andAdaptationPlanningGuidelines. Dugan,JeniferE.,DavidM.Hubbard,IvánF.Rodil,DavidL. Revell,andStephenSchroeter. 2008 “EcologicalEffectsof CoastalArmoringonSandyBeaches.” MarineEcology 29 (s1): 160–170.

GHD. 2016 CockburnSoundCoastalAlliance – Stage3 Report:CoastalAdaptationPlan Haasnoot,Marjolijn,JanH.Kwakkel,WarrenE.Walker, andJudithterMaat. 2013 “DynamicAdaptivePolicy Pathways:AMethodforCraftingRobustDecisionsfora DeeplyUncertainWorld.” GlobalEnvironmentalChange 23(2):485–498. doi:10.1016/j.gloenvcha.2012.12.006.

Hansen,J.,M.Sato,P.Hearty,R.Ruedy,M.Kelley,V. Masson-Delmotte,G.Russell,etal. 2015. “IceMelt,Sea LevelRiseandSuperstorms:EvidenceFromPaleoclimate Data,ClimateModeling,andModernObservationsThat 2°CGlobalWarmingisHighlyDangerous.” Atmospheric ChemistryandPhysicsDiscussions 15(14):20059–20179. doi:10.5194/acpd-15-20059-2015

Hill,Kristina. 2016 “ClimateChange:Implicationsforthe Assumptions,GoalsandMethodsofUrban EnvironmentalPlanning.” UrbanPlanning 1(4):103. doi:10.17645/up.v1i4.771

Hinkel,Jochen,CarloJaeger,RobertJ.Nicholls,JasonLowe, OrtwinRenn,andShiPeijun. 2015. “Sea-levelRise ScenariosandCoastalRiskManagement.” Nature ClimateChange 5(3):188–190. doi:10.1038/ nclimate2505.

Hurlimann,Anna,JonBarnett,RuthFincher,Nick Osbaldiston,ColetteMortreux,andSoniaGraham.

2014 “UrbanPlanningandSustainableAdaptationto sea-LevelRise.” LandscapeandUrbanPlanning 126:84–93. doi:10.1016/j.landurbplan.2013.12.013.

Kellett,Jon,JacquelineBalston,andMarkWestern. 2014. “Sea-levelRiseandPlanning:RetrospectandProspect.” AustralianPlanner 51(3):203–211. doi:10.1080/ 07293682.2013.808681

Kraus,NicholasC. 1988 “TheEffects ofSeawallsonthe Beach:anExtendedLiteratureReview.” Journalof CoastalResearch SpecialIssueNo.4):1–28.

Melius,MollyLoughney,andMargaretR.Caldwell. 2015 “CaliforniaCoastalArmoringReport:ManagingCoastal ArmoringandClimateChangeAdaptationinthe21st Century” NationalOceanicandAtmosphericAdministration. 2018 “GlobalClimateReport – January2018.” accessed18/ 01/2018. https://www.ncdc.noaa.gov/sotc/global/201801.

Pachauri,RajendraK.,MylesR.Allen,VicenteR.Barros, JohnBroome,WolfgangCramer,RenateChrist,JohnA. Church,LeonClarke,QinDahe,andPurnamita Dasgupta. 2014 ClimateChange2014:SynthesisReport. ContributionofWorkingGroupsI,IIandIIItotheFifth AssessmentReportoftheIntergovernmentalPanelon ClimateChange .Geneva,Switzerland:IPCC.

Ranasinghe,Roshanka,DavidCallaghan,andMarcelJ.F. Stive. 2012 “EstimatingCoastalRecessionDuetoSea LevelRise:BeyondtheBruunRule.” ClimaticChange 110(3-4):561–574.

Robb,Ashley,LauraStocker,MichelePayne,andGarry Middle. 2017 “PlanningforCoastalErosionand InundationinWesternAustralia:Practiceand PerceptionsFromtheLocalLevel.” Environmentaland PlanningLawJournal 34(2):142.

Taylor,BruceM.,BenP.Harman,andMatthewInman. 2013. “Scaling-Up,Scaling-Down,andScaling-Out: LocalPlanningStrategiesforSea-LevelRiseinNew SouthWales,Australia.” GeographicalResearch 51(3): 292–303. doi:10.1111/1745-5871.12011

Thom,B.G.,I.Eliot,M.Eliot,N.Harvey,D.Rissikd,C. Sharples,A.D.Short,andC.D.Woodroffe. 2018 “NationalSedimentCompartmentFrameworkfor AustralianCoastalManagement.” OceanandCoastal Management 154:103–120. doi:10.1016/j.ocecoaman. 2018.01.001

Tompkins,EmmaL.,W.NeilAdger,EmilyBoyd,Sophie Nicholson-Cole,KeithWeatherhead,andNigelArnell. 2010. “ObservedAdaptationtoClimateChange:UK EvidenceofTransitiontoaWell-AdaptingSociety.” GlobalEnvironmentalChange 20(4):627–635 . doi:10. 1016/j.gloenvcha.2010.05.001 . Walsh,K.J.E.,H.Betts,J.Church,A.B.Pittock,K.L. McInnes,D.R.Jackett,andT.J.McDougall. 2004 “UsingseaLevelRiseProjectionsforUrbanPlanningin Australia.” JournalofCoastalResearch 20(2):586–598. WesternAustralianPlanningCommission. 2013.State PlanningPolicyNo.2.6StateCoastalPlanningPolicy,editedbyWAPC.Perth. WesternAustralianPlanningCommission. 2019.Coastal HazardRiskManagementandAdaptationPlanning Guidelines,editedbyWesternAustralianPlanning Commission.Perth.

Wise,R.M.,I.Fazey,M.StaffordSmith,S.E.Park,H.C. Eakin,E.R.M.ArcherVanGarderen,andB.Campbell. 2014. “ReconceptualisingAdaptationtoClimateChange asPartofPathwaysofChangeandResponse.” Global EnvironmentalChange 28:325–336. doi:10.1016/j. gloenvcha.2013.12.002

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.