2019_Engineering the transition to sustainability

Page 1


Australian Journal of Multi-Disciplinary Engineering

ISSN: 1448-8388 (Print) 2204-2180 (Online) Journal homepage: https://www.tandfonline.com/loi/tmul20

Engineering the transition to sustainability

William Grace

To cite this article: William Grace (2019): Engineering the transition to sustainability, Australian Journal of Multi-Disciplinary Engineering, DOI: 10.1080/14488388.2019.1693885

To link to this article: https://doi.org/10.1080/14488388.2019.1693885

Published online: 18 Nov 2019.

Submit your article to this journal

Article views: 10

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tmul20

ARTICLE

Engineeringthetransitiontosustainability

WilliamGrace

AustralianUrbanDesignResearchCentre,UniversityofWesternAustralia,Perth,WesternAustralia

ABSTRACT

Thehumanworldandthebiospherewhichweinhabitwithallotherlifeonearthisacomplex socio-ecologicalsystem.Itisessentialtothinkaboutthesustainabilityproblembyconsidering theinterventionsnecessarytoachieveourobjectiveswithinthatsystem.Thepaperdescribes howtheseventeenSustainableDevelopmentGoals(SDGs)canbeplacedwithinasystems configuration.Inthispaper,Ioutlinethedevelopmentofadynamicmodeltoexplorethis systemanditsplausibletrajectoriesovercomingdecadesandcenturies.Theresultsechothe findingsofotherstudies,indicatingthaturgentactionisrequiredtoavoiddecliningaverage globallivingstandardsinthecomingcentury.Thekeypolicyinterventionsrequiredtoavoid thisaredescribed.Thepresentinstitutionsareinsufficienttore-structuretheglobaleconomy inthetimeframerequired,meaningthatourprofessionmustbeelevatedinthepublic discourse,andourvoicesmustbecomelouder.

1.Introduction

TheUNSustainableDevelopmentGoals(SDGs)are intendedtobe ‘theblueprinttoachieveabetterand moresustainablefutureforall’.TheWorldFederation ofEngineeringOrganisations(WFEO)andUNESCO signedtheParisDeclarationinMarch2018which statedthecommitmentoftheworld’sengineersto sustainabledevelopment.SubsequentlyWFEOhave releasedanEngineering2030Plantosupportthis commitment(WorldFederationofEngineering Organisations 2018).Therehasbeensomecriticism oftheSDGs’ complexity,internalconsistencyand ambiguity(Swain 2018).Othershavesuggestedthat weshouldsee ‘thesustainabledevelopmentgoalsas anetworkoftargets’(LeBlanc 2015).Myowncriticism relatestotwofailures:creatingaconnectiontothe genesisofsustainabledevelopmentarticulatedinthe Brundtlandreport;andarticulatingthegoalsectorsas elementsofasinglesocio-economicsystem.Isetout analternativesystems-basedperspectiveoftheglobal socio-ecologicalsystem(SES)inthisarticle,comprisingtheinteractionsandfeedbackbetweenitssocial, economicandenvironmentaldimensions.Eachofthe 17sustainabledevelopmentgoalsisplacedwithinthe socio-ecologicalsystemconfigurationdescribed. Modellingoftheglobalpopulation – economy –resourcesystembymyselfandothers,suggeststhat abusiness-as-usualapproachwillleadtoseriousecologicaldamageandresourcescarcityduringthelatter partofthiscentury,ultimatelycausingreductionsin populationandlivingstandards.Idiscussthemajor transitionsinenergyandresourceuserequiredto

ARTICLEHISTORY

Received16October2019

Accepted11November2019

KEYWORDS

Sustainability;sustainable developmentgoals;circular economy;energy;materials; engineeringeducation; systems

avoidthisoutcome,includingtheattractionsandlimitationsofthecirculareconomyconcept.

Ialsodiscusstheroleofengineersinpromotingthe transitiontosustainability,notingboththecriticality ofourprofessionalexpertisetotheenterprise,and howthewaythatengineersseethemselveslimits proactivityoftheprofessionasawhole.

2.TheU.N.sustainabledevelopmentgoals In2015,theUNGeneralAssemblyadopted ‘Transformingourworld:the2030Agendafor SustainableDevelopment’ (UnitedNations 2015).The 17SustainableDevelopmentGoals(SDGs)covermany facetsofpolicythat,weareinvitedtobelieve,willdeliver sustainabledevelopment.Unfortunately,likemanysuch initiatives,thegoalsreadasawish-listofseparateinitiatives,invitingacontinuationofthe ‘silos’ approachto developmentpolicy.

Mostdisappointingofallisthefailuretoprovide aclearstatementofwhatthecoregoalofsustainable developmentactuallyis.Theword ‘sustainability’ is usedthroughoutthegoalstatements,inrespectof agriculture,economicgrowth(!1),industrialisation, water,energy,consumptionandproduction,cities andcommunities,andmanagementofforestsand oceans.Whatdotheseadjectivesmean?Doesthe achievementoftheseobjectivesinaggregateproduce a ‘sustainable’ world?

Itisinstructivetorecallwhereallthisstarted,which wasthereportoftheWorldCommissionon EnvironmentandDevelopment ‘OurCommonFuture’ , chairedbyGroHarlemBrundtland(WorldCommission

onEnvironmentandDevelopment 1987).Itwasthis reportthatcoinedthemuchreferredtodefinitionof sustainabledevelopment2:

“meetingtheneedsofthepresentwithoutcompromising theabilityoffuturegenerationstomeettheirownneeds”3

Althoughtherehavebeenmanyvariationsdeveloped since,asgovernmentshaveparsedtheBruntlanddefinition,formostthisremainstheessenceoftheterm. Despitewhatmanypeoplethink,thisdefinitionidentifies sustainabilityasasocialaspiration,notanenvironmental one.It,somewhatclumsily,speakstotheneedtoensure alltheresourcesthatgiverisetotheachievementof wellbeingremainavailabletofuturegenerations.Ihave suggestedthereforethatasimplegoalstatementforsustainabilityis ‘enduringwellbeing’.Thisisinfactvery similartoGoal3oftheSDGs,whichis:

GoodHealthandWell-being – Ensurehealthylives andpromotewell-beingforallatallages

Anopportunitywasmissedtomakethissentimentthe centrepieceoftheSDGs,creatingcontinuityfrom Brundtlandtothepresent.Ifwellbeingisnotthe centralfocusofsustainabilitypolicy,whatis?Allof theothergoalsarecomponentsofthiscentralgoal4

Whydowewant ‘nopoverty’ ; ‘cleanwater’ ; ‘reduced inequality’ ; ‘economicgrowth;’ and ‘climateaction’ if nottoadvancehumanwellbeing?

3.Seeingtheworldasasocio-ecological system

Moreimportanteventhancreatingacentralfocusfor theSDGsisthefailuretoarticulatethemasinterdependentgoalswithinacomplexsocio-ecologicalsystem(BerkesandFolke 1998).Forexample,itis obviouslynotpossibletomakeadvancesinpoverty andhungerinanynationwithoutaddressingitsexistingandfutureeconomicconditions.Addressingthis deficiencyhasfallentoorganisationssuchasthe MillenniumInstitutewhohavedevelopedtheiSDG

systemdynamicsmodel(MillenniumInstitute 2019) whichincorporatestherequiredinterrelationships andfeedbackinordertofacilitateabetterunderstandingofhowanoverarchingnationalplanwillimpact eachofthegoals.

The firstdimensionofthesustainabilityproblem focusesontheinteractionsbetweenthehumanworld andthebiospherewhichweinhabitwithallotherlife onearth,andwhichprovidesthematerialnecessities requiredforadecentstandardofliving.Thesecond dimensionrelatestothepurelysocialinteractionsthat affecthumanwellbeing.Iillustratebothdimensionsin Figure1 whichisknownasacausalloopdiagram.It seekstodepictcauseandeffectandfeedbackin asystemovertime.

Althoughalltheloopsactsimultaneouslyitishelpfultoconsiderthemoneatatime.Thepolarityofthe arrowsindicatestheeffectofonevariableonanother. Asexamples,intheabove:

● Higherlivingstandardsleadtohigherlevelsof overallwellbeing(allotherthingsbeingconstant) sothecausationispositive.

● Higherlevelsofeconomicproductionleadto lowerlevelsofnaturalresources(allotherthings beingconstant)sothecausationisnegative.

ForclarityIhaveonlylabelledthenegativecausations. Allunlabelledarrowsindicatepositivecausation.

3.1.Populationandtheeconomy(blueloops)

Thesetwoloopsessential ly dominatethestoryof humanhistorysincethebeginningoftheagriculturalagesome10,000yearsago.Risinglivingstandardsleadtohigherpopulationlevelsleadto higherlevelsofeconomicproductionleadtohigher livingstandardsandsoon(LoopR1). CompoundingthegrowthrateofR1isthatrising livingstandardshavealsoledtomoreeconomic productiononapercapitabasis(LoopR2).

Figure1. Causalloopdiagram5 oftheglobalsocio-ecologicalsystem.

Thesearereferredtoasreinforcingloopsbecause ariseinonevariableleadstoariseintheother, whichinturnleadstoafurtherriseinthe first.The behaviourovertimeofsuchaloopiseitherexponentialgrowthorexponentialdecline.Exponential growthisreflectedinthedatafromthemodernera (see Figures2 and 3).

3.2.Environmentandnaturalresources(the green loops)

Materiallivingstandardsaredependentonthenonhuman world,throughtheprovisionofso-calledecosystemservices(Gómez-Baggethunetal. 2010)whichwe derivefromnaturalresources.Economicproduction depletesnaturalresources.Theconversionofhabitat (LoopB2)andthecreationofpollution(including

carbon)andwaste(LoopB4)bothlimitnature’sability toprovideecosystemservicesintothefuture(Reidetal. 2005).Thosethatare finite(e.g.fossilfuels)willeventuallyrunoutcompletely(MaggioandCacciola 2012), andthosethatarerenewablearebeingdepletedatfaster ratesthantheyareregenerated(GrootenandAlmond 2018).Thisscarcitycreatesfeedbackinthesystemwhich, ifandwhenlimitsarereached,willreduceeconomic production,livingstandardsandpopulation(LoopB1).

3.3.Society(theorangeloops)

Fromtheriseofcivilisation,uptothepresenttimewe have seen,inaverageglobalterms,anincreasein humanhealthandwellbeingonthefoundationof higherlivingstandards(Easterlin 2000).Ofcourse, thereishugevariabilityacrosstheworldandsetbacks atvarioustimes,butthisscenariomoreorless describeshumanprogresstodate.

Theeffectoflivingstandardsonglobalpopulation ischanging.Overhumanhistoryrisinglivingstandardshaveincreasedbirthratesandreduceddeath rates,andhaveaccordinglyledtohigherpopulation levels.Thatwouldindicateapositiverelationship betweenwellbeingandpopulation,andthathasbeen thecaseinthepast(LoopR1).Aslivingstandardsrise indevelopingcountriesthenetpopulationgrowthrate (birthsminusdeaths)isdropping,asitalreadyhasin muchofthedevelopedworld

theso-called

Figure2. Globalpopulation(source:UNpopulationdivision).
Figure3. GlobalGDPsource:Maddisonhistoricalstatistics.6

demographictransition(Lesthaeghe 2011).Thisissignificantlyafunctionofincreasinggenderequality, essentiallytheabilityofwomentocontroltheirown fertility(McNay 2005).Accordingly,inthemodern era,therelationshipbetweenpopulationandwellbeingisreversed – higherlivingstandardswilltend toreducepopulation,hencethenegativesignin LoopB3.

Higherlivingstandardsalsoimprovehumanwellbeingandequality,whichpromotethedemographic transition(LoopB4)andenhancetheeffectofLoop B3.However,theseeffectsareoffsetbyLoopR3.If higherlivingstandardsinthemorerapidlygrowing developingworldincreaseaverageglobalinequality, theywillalsosuppressthedemographictransition whichisaprerequisiteforstabilisingpopulation. Thisresultsinareinforcinglooplinkinglivingstandardsandpopulationviaequalityandthedemographictransition(LoopR3).

Itispossibletoplaceall17ofthesustainabledevelopmentgoalswithinthissimplepictureoftheglobal socio-ecologicalsystem(see Figure4).

4.Aglobalmodel

Thishighlysimplifieddepictionprovidesthebasisfor understandingcauseandeffectintheglobalsocioecologicalsystem.However,therearemanydifferent trajectories(behaviourovertime)forthissystem.You cannottellbylookingatthispicturewhatthefuture stateofthesystemmaybe(bearinginmindthatno modelcanaccuratelypredictthefuture).Clearlygrowth todateduetothereinforcingloopsR1andR2has dominatedthebalancingloopsastheexponential growthinreal-worlddataonpopulation(Figure2), economicgrowth(Figure3)andlivingstandardsshow.

Thesustainabilityquestionisthereforewhatwillhappeninthefutureastheworldpopulationgrowstowards 9billion,poorernationsbecomericher,theeffectsof pollution(particularlycarbon)grow,andresources becomedepleted.Toinvestigateplausiblescenariosfor thefuturerequiresafullglobalsystemsmodel.

Thetechniqueofsystemdynamicshaslongbeenused tomodelthelinksbetweeneconomy,environmentand well-beingattheglobalscale,mostfamouslyinthe LimitstoGrowth(LtG)studies firstpublishedinthe early70s(DonellaH.Meadowsetal. 1972),updatedin the1990s(DonellaH.Meadows,Meadows,andRanders 1992)andearly2000s(DonellaH.Meadows,Meadows, andRanders 2004).Themodelsestablishacausalstructurelinkinglivingstandards(thebasicconstituentof wellbeing)toproductionandconsumptionofrenewable andnon-renewableresourcesandpollutionabsorption capacity.Myownmorerecentworkisasimplifiedglobal population – economy – resourcemodelthatexplores thefutureimpactofdecliningresourceavailabilityonthe worldeconomy(Grace 2015).Themodeltracksthelikely futureconsumptionofrenewableresources,fossilfuels andnon-renewablematerialsandtheeconomicimpact ofavailabilityto2300.Themodeliscalibratedagainst datafrom1960to2010.

Thesimulationsproducesimilar findingstothe LTGstudies,namelythatresourcescarcitywilllikely becomeevidentduringthelatterpartofthiscentury andconstraineconomicproduction,reducingincome percapita,livingstandardsandultimatelypopulation. Putsimply,thepresentexploitationofnatural resources(renewableandnon-renewable)is unsustainable inthecommonlanguageuseoftheterm,i.e. thatitcannotcontinueindefinitely.The findingsindicatethatpolicyinterventionsinvolvingarapidtransitionfromfossilfuelstorenewableenergy,reduced resourceintensityandmaterialsrecyclingarenecessarytocorrectthistrajectoryandfacilitateongoing improvementsinglobalaveragelivingstandards. Deliveringthesetransitionsisthecentralroleofengineeringinthe21st century.

5.Engineeringandtheeconomy

TheRoyalCharteroftheUnitedKingdom’ s InstitutionofCivilEngineers, firstgrantedbyKing GeorgeIVon3June1828includedadefinitionofcivil engineeringbyoneThomasTredgold(Shergoldand Inkster 1982).Thisdescribedcivilengineeringas being ‘theartofdirectingthegreatsourcesofpower innaturefortheuseandconvenienceofman’.Savefor thereferenceto ‘ man ’ ratherthan ‘humanity’,this definitionholdsupwelltodayasanexpressionofthe roleofengineersmoregenerally.Althoughwethinkof themeansofproductionascomprisinglabourandraw materials,tools,machineryandfacilities,infactthe finalgoodandallintermediateitemsembeddedinit orusedtomakeit,deriveultimatelyfromnatural resources,solarenergyandhumanlabour.This includesfossilfuelswhichderivefromthedecompositionoforganicmatter.Althoughthematerialand energyintensityusuallyinvolvedintheprovisionof ‘services’ isafractionofthatusedinmanufacturing

Figure4. DepictionoftheSDGsinasystemsconfiguration.

‘goods’,theseservicesarestillproducedinengineered buildingscontainingamyriadofengineeredcomponentsandproducts.Engineeringisessentiallyabout thetransformationofnaturalresources(directlyor indirectly)intothegoodsandservicesusedinthe economy – thebluelinesin Figure5.

Engineeringtasksresidesomewhereinthispictureandalthoughtheworkofmostiswithnatural resourceswhichhavealreadybeentransformedinto othermaterials,components,machines,plantor structures,eachisreliantonthem.Itistheextraction,processingandtransformationofthese resourcesthatprovidethegoodsandservicesthat underpinmodernsociety.Itisalsothesesameactivitiesthatgiverisetothelossofhabitatandbiodiversity,greenhousegasemissionsandother pollutionthatnowthreatenthelivingstandardsof peopleeverywhere.Ourp reoccupationwitheconomic ‘ growth ’ meansthatrateofexploitationof resourcescontinuestorapidlygrow.

TheformerWorldBankeconomistandfounding memberoftheschoolofe cologicaleconomics HermanDalyintroducedtheconceptofasteadystateeconomymorethanthirtyyearsago(Daly 1974 ).

“Asteady-stateeconomyisdefinedbyconstantstocksof physicalwealth(artifacts)andaconstantpopulation, eachmaintainedatsomechosen,desirablelevelbyalow rateofthroughput-i.e.,bylowbirthratesequaltolow deathratesandbylowphysicalproductionratesequalto lowphysicaldepreciationrates,sothatlongevityof peopleanddurabilityofphysicalstocksarehigh.”

Thisisadescriptionofasysteminequilibrium,where inputsandoutputsvaryovertimebutareapproximatelyequal.Inrespectofnaturalresourceexploitationthismeans(Daly 1990):

(1)Therateofharvestofrenewableresources shouldnotexceedtherateofregeneration (e.g.sustainableforestry);

(2)Thegenerationofeconomicby-products (whichwecallwaste)shouldnotexceedthe assimilativecapacityoftheenvironment;and (3)Thedepletionofnon-renewableresources shouldrequirecomparabledevelopmentof renewablesubstitutesforthatresource.

Thisthinkinghasgivenrisetotheconceptofthecircular economy(Stahel 2016)inwhichalifecycleapproachis takentotheexploitationofnaturalresources.Thekey componentsofthisapproacharetoreducetherateof naturalresourcesexploitationthrough:

● extendingservicelife,i.e.improveddurabilityof engineeredproductsandstructuresandreduced builtinobsolescence;

● re-using,repairing,retrofittingratherthanreplacingthem;and

● recyclingtheproductoritscomponents.

Toexplorethepotentialofthecirculareconomyconceptitisnecessaryonceagaintoconsiderthe dynamics(behaviourovertime)ofthewholesystem, whichIhavedepictedin Figure6.Thedriverofthis systemiseconomicdemandwhichgivesrisetothe exploitationofmineral(non-renewable)resources, renewable(biological)resourcesandenergyresources.

5.1.Mineralresources

Asmineralresourcesareessentiallynon-renewable(in the temporalscaleofinteresttohumanity)their exploitationnecessarilyreducestheavailableremainingstocks.Andofcourse,therearelossesinvolvedin theexploitationoftheseresources.Asstocksdecline, theeconomicandenvironmentalcostofexploitation inevitablyincreases(Prioretal. 2012).Materials,productsandmachinesmadefromsuchresourceswill degradeovertime.Themodernthrowawayculture meansthatresourcesareunlikelytoberetainedfor Figure5. Flowsofmaterialsandenergyintheeconomy.

eventheireffectivedesignlife.Bothfactorsmeanmore resourcesneedtobeexploitedjustbecauseofobsolescence,letalonenewdemand.

5.2.Renewableresources

Theecologicalfootprint(WackernagelandRees 1998) is aratiomeasureoftherateofnaturalresource exploitationtotherateofregenerationofthose resources(biocapacity).Ifthefootprintratioisgreater thanone,thenresourcesarebeingexploitedfaster thantheyareregenerating.Further,asstocksof renewableresourcesdecline,therateofregeneration also(generally)decreases(Arrowetal. 1995). Accordingly,weneedtobeconcernedwithboththe rateofexploitationandthelevelofstocks(e.g.tropical forestcoverage, fishstocks).Currentlytheecological footprintis1.7(GlobalFootprintNetwork 2019),i.e. weareusingtheseresourcesat1.7timestheratethat theyarebeingreplenishedbynature.Ecologicalsystemsunderpinalllifeonearth.

5.3.Energy

heexploitationofrawresourcesofallkindsrequires the inputofenergy,asdoestheirtransformationinto machines,productsandstructures,andtheoperation ofthosemachines,productsandstructures.Measures thatseektoreducethematerialthroughputofthe economysuchasreuseandrecyclingalsorequire energytobeexpended.Thetraditionaluseoffossil fuelsfortheproductionofthisenergyisresponsible forglobalwarming(Bruckneretal. 2014).Asfossil fuelsarealsoanon-renewableresource(againatthe temporalscalerelevanttohumanity),theirexploitationinevitablyreducesremainingstocks.Asstocks decline,theirongoingexploitationinvolveshigher economicandenvironmentalcostsirrespectiveof

greenhousegasemissions.Theonlylong-termsolutionisatransitiontoapurelyrenewableenergypoweredeconomy.Whilethepureenergysourcesofwind andsolarareinexhaustible(atleastforthenext fewbillionyears)themachinesthatexploitthem, includingbatteries,requirematerialinputs,which areallcurrentlymineralresources(iron,cadmium, titanium,lithiumetc).Andofcourse,energyisalso required.

Itisimportanttounderstandthatthisis asinglesystemwithinterdependenciesandfeedbackthroughout.Policiesthatdealwithonespeci fi csub-systemwithoutunderstandingthe implicationsfortherestofthesystemare fl awed andwillfail.

Whileindividualengineersmayonlyplayadiscrete rolesomewhereinthesystem,engineeringas aprofessionneedstoaddresstheentiresystemto playanymeaningfulroleinatransitiontoglobal sustainability.Thissystempicturesetsoutthekey objectivesandchallengesforengineeringtoaddress insupportofthesustainabledevelopmentgoals.

Objectives

(1)tominimisetheenvironmentalimpactsof resourceexploitationintheeconomyinorder tostabilisekeyecologicalstocksatanacceptableleveltosupportlifeonearth(i.e.therateof exploitationisequalto,orlessthantherateof regeneration);

(2)tominimisetheeconomiccostsofresource exploitationwhicharea(necessary)overhead inseekingtoretainhighlevelsofhumanwellbeingforthosethathavethem,andobtain themforthosewhodonot;

(3)tominimisegreenhousegasemissionsthough increasinguseofrenewableenergywhilealso minimisingtheeconomiccostsofenergy.

Figure6. Causalloopdiagramoftheresource-energysubsystem.

Thechallenges

Achievingtheobjectivesrequiressimultaneous actiontomanagethosevariablesthataffectthem, withaminimisationoftrade-offs:

(1)efficiencymeasuresofonekindortheother (includinghighlevelsofdurabilityandlonger lifecycleproducts);

(2)re-purposing,reusing,orrecyclingthecomponentsthemselvesorthematerialsembodiedin theproducts,machinesandstructures;

(3)substitutingmineralresourceswithrenewable resourceswherethisispossible(e.g.substitutinghydrocarbon-basedplasticswithnatural polymers);

(4)reducingtheenergyintensityofproductionin, andoperationoftheeconomy;and (5)transitioningtorenewableenergy.

Itisimportanttorememberthesecondlawofthermodynamicsinallofthis.Theadoptionofthese measuresreducestherateofexploitationofnonrenewableresourcesandtheassociatedenvironmental costsbutnottozero.Reducingtherateofnonrenewableresourceexploitationthroughrecycling requiresmoreenergyinput.Thesubstitutionofnonrenewableresourceswithrenewableresources increasestheecologicalfootprint.Theexploitationof renewableenergyrequiresmineralresourcestobuild themachines.Becauseofthistherecanbenocompletelycirculareconomy,unlessoruntiltheworld operatesonpurelyrenewableenergyandrenewable resources,andtheecologicalfootprintisreduced belowunity7.Althoughthatmaynotberealisedfor manydecadesorevencenturiestocome,ifever, recognisingthatultimateaimidentifiesthedirection inwhichwemusttravel.

5.4.Cradletocradle

Mostofthecurrentapproachestorecyclingareactual lydowncycling(Korhonen,Honkasalo,andSeppälä 2018),e.g.theconversionofplasticsorpaperto lowerqualityproducts,aprocessthatcanonly recurafewtimes.Thisprocessonlydelaystheeventuallossoftheresource.Theapproachchampioned byMcDonoughandBraungartin CradletoCradle: RemakingtheWayWeMakeThings (2002)relieson theconceptof ‘biological’ and ‘technicalnutrients’ Innature,biologicalnutrientsareretainedinanendlesscycleoftransformationinvolvingthecreation anddecompositionoflivingtissue.Manyofthe productsthatpresentlyusemineralresources,such assingleuseplasticsthataremainlyresponsiblefor theenvironmentalcrisisinouroceans(Andrady 2015),canbesubstitutedwithnaturalpolymers (fromplantandanimalderivedmaterials),biomass

based,compostable,syntheticbiopolymersandreusabledurablenon-plasticmaterials(Kershaw 2018).Suchmaterialswillberecycledbynature.It isnotsosimplewithproductsthatincorporatemultiplemineralorhydrocarbon-basedmaterials. Althoughitisphysicallypossibletoseparatethe elementsattheendoflife(e.g.inelectronicequipment),todosowouldusesignificantamountsof (presentlyfossilfuelled)energyandpotentially releasetoxicchemicalsintotheenvironment. McDonoughandBraungart’ssolutiontothisproblemisforproductstobemadeofso-called ‘technicalnutrients’ thatcanbere-usedinthesameway thatnaturere-uses ‘biologicalnutrients’.AsanexampleofthistheauthorscitePhilips’ Econovatelevision whichwasreleasedin2010,andwasdesignedfor ‘almostcompletedisassembly’ (Braungartand McDonough 2013).Thecradle-to-cradle(C2C)concepthasspawned TheCradletoCradleProducts InnovationInstitute8,thatadministersthe Cradleto CradleCertified™ ProductStandard.Atthetimeof writingover400productshavebeencerti fied.

5.5.Thefourthindustrialrevolution

Wearenowenteringtheso-calledfourthstageofthe industrial revolution(Bloemetal. 2014)thatcommencedinthe18th centurywithsteampoweredproduction(firstphase),wasfollowedintheearly20th centurybymassproduction(secondphase),andacceleratedbyelectronicsandautomationmorerecently (thirdphase).Thefourthphaseischaracterisedbythe integrationofinformationtechnology(IT)andoperationaltechnology(OT)intoso-called ‘Cyber-Physical Systems’.Accordingtoadvisory firmGartner(2019), OTis ‘hardwareandsoftwarethatdetectsorcauses achangethroughthedirectmonitoringand/orcontrol ofphysicaldevices,processesandeventsintheenterprise’.AccordingtoBloemetal,theconvergenceofIT andOT,coupledwiththeinternetofthings(IoT)9,has threemajorbenefits:

(1)Machine-to-Machinecommunication,sothat humanworkcanbereducedandimportantcontributionstoefficiencyandsecuritycanbemade.

(2)Maintenance,preferablyPredictive Maintenanceofmachinesandapplianceson thebasisofdirectstatusreportsandpossibly alsoremoterepairs.

(3)Engagementorclientinteractionviatheuseof productsbyconsumersorprofessionals.

Sohowcanthisrevolutionadvancetheobjectivesof thecirculareconomyandcradletocradle?Inareport preparedbytheWorldEconomicForumandadvisory firmAccenture,theopportunitiesaffordedbythe emergingtechnologiesforthreeindustrialsectors

(automotive,electronics,foodandbeverage)offer aglimpseofthefuture(LeurentandAbbosh 2018):

● Shortlooprecycling,i.e.retainingrecyclingprocesseswithineachmanufacturingsectorforremanufacturing,formaterialssuchassteel,copperand plasticsbycombiningphysicalanddigitaltechnologies(e.g.digitaltrack-and-traceformonitoring andmanagingmaterialandcomponent flows),supportedbyadvancedmaterialsortingandefficient robotic,coboticorworker-assisteddisassembly systems;

● Roboticdisassemblyforremanufacturing: expandingtheuseofrobotsbeyondinitial manufacturing;

● Greenelectronicmaterials:theuseofsynthetic biologicalmaterialscomponents(e.g.sensors, computingdevicesandcomponentsofsolar panels);

● Precisionagriculture:integratingdataandanalyticsusingGPSsoilsensorsandweatherdatato improvedecisionsrelatedtofertiliser,irrigation, harvestingtimeetcetera.

Thesedigitalinnovationswillbesupportedbygreen chemistry;i.e.biologicalsolutionstoreplacechemicals usedinmanufacturingandagriculture.

Progressingtheinitiativessetoutabovewillclearly involvethefullrangeofengineeringskillsandcapabilities.Ihavenodoubtthatindividualengineerswill respondtothesignalsprovidedtothembytheir employerswhetherintheprivateorpublicsector,as theyhavethroughoutthepreviousphasesofthe industrialrevolution.Somewilltakeleadershiproles intheirorganisations,industriesorprofessional bodies.Whethertheprofessionofengineeringwill havemuchinfluenceonthisprocess,however, remainstobeseen.

6.Re-engineeringourprofession

Whatkindofanimalisanengineer?Andersonetal. (2010)carriedoutresearchtounderstandtheidentity ofengineersbyinterviewingpeopleinanumberofUS firms.Althoughthesamplewasrathersmall,the findingsresonatewithmyexperiencesintheworkplacein severalcountriesoverfourdecades.

“Inessence,engineersvaluethethrillofdiscovery –figuringsomethingout,solvingachallengingproblem, ormakingsomethingwork.Inshort,wecametosee thattheseengineerswalkedaroundwithanunstated equationintheirheads:Problemsolver+teamplayer +life-longlearner=Engineer.

....mostoftheengineersinourstudydidnotsee themselvesasbeingengineersinordertocontributeto thegeneralpublicgood.Theiridentitywasmorelikely tobegroundedinsolvingproblemswell – for

themselves,fortheirteam,fortheirorganization,and fortheirclient.”

Inapreviouslifeasasustainabilitymanagerinalarge engineeringconsultancy,IwassurprisedattheresistanceIoftenencounteredfromexperiencedengineers toconsideringsustainabilityinourprojectwork.It wasnotsomuchthattheindividualsthemselveswere climatedeniersorresistanttoenvironmentalprotection,ratherthatitwasnotreallyourbusinessto incorporatethesenon-engineeringfactorsintoour workforclientsunlesstheyspecificallyaskedforit10. Asabroadgeneralisation,engineersseemtoseethemselvesasveryimportantcogsinthewheelofthe economybutnotresponsibleforturningthatwheel inanyparticulardirection.Manyengineershave strongviewsaboutcontemporarysocialandenvironmentalissuesbutseemtoparkthematthedoorwhen theygotowork.AndrewJamison,EmeritusProfessor ofTechnology,EnvironmentandSocietyatAalborgin Denmarktellsthestoryofengineersbeingexcitedto designandbuildwindfarmsbutdoinglittletomake Denmarksustainable(Jamison 2013).

“Whiletheyhavelearnedhowtosolveproblemswith technicalsolutions,theyhavenotlearnedmuchabout theproblemsthatneedtobesolved.Morespecifically, theyhavebeengiventoofewopportunitiesintheir educationtolearnaboutthesocialandculturalcontextsinwhichtheirscientificknowledgeandengineeringskillsareactuallyused.”

Ifthisisindeedareasonablyaccurateinterpretationof howengineersseethemselves,itisnotsurprisingthat weseelittleproactiveinvolvementoftheprofessionin drivingsocietytowardssustainability.Whileourprofessionalinstitutionsnearlyallhaveappropriatepoliciesandunderstandtheimportantroleofengineering fortheachievementofthesustainabledevelopment goals,thevoiceoftheprofessioninsocietyasawhole isweak.Unlikeourcolleaguesinscience,thereisno ‘UnionofConcernedEngineers’11.Thereisnostrong advocacyonsocialandpoliticalissuesasevidencedby lawyersthroughthelawsocieties,ordoctorsthrough thevariousnationalmedicalassociations.The SustainableEngineeringSocietywithinEngineers Australia(EA)comprisesmanyengineerswhoare dedicatedtoadvancingsustainabilityintheirwork andadvocatingforit,buthasonly630membersout of100,000overall(lessthan1%).AlthoughEAitself hasanumberofpolicypositions,thesetendtobe focussedmainlyoneconomicissuessuchasproductivity,skillsandinfrastructure.Theproblemiscultural andculturetakestimetochange.Thatiswhyour focusmustbeonthenextgenerationofengineers.

AndrewJamisonhasdedicatedhisacademiccareer toexpandingtheeducationofengineerstodevelop whathecallsa ‘hybridimagination’ (2013).

“Ahybridimaginationcanbedefinedasthecombinationofascientific-technicalproblemsolvingcompetencewithanunderstandingoftheproblemsthat needtobesolved.Itisamixingofscientificknowledge andtechnicalskillswithwhatmightbetermedcultural empathy,thatis,aninterestinreflectingontheculturalimplicationsofscienceandtechnologyingeneral andone’sowncontributionasascientistorengineer,in particular.”

Inmostengineeringfacultiesitisnotpossibletoget suchaneducation.However,therearesomeleading examples,suchastheTechnicalUniversityofDelft (TUD)whichhasadoptedastrategytopromote Jamison’ s ‘hybridimagination’ throughthreecomplementaryapproaches(Kamp 2006):

(1)Introducinganelementarycourse ‘Technology insustainabledevelopment’ whichismandatoryforallTUDstudents;

(2)Intertwiningtheconceptofsustainabledevelopmentintoallengineeringcourses;and

(3)Developmentofthepossibilitytograduatewith asustainabledevelopmentspecialisation,takingbetweenthreeand fivesustainabilityrelated coursesinvolvingsome ‘400studyhoursplus athoroughsustainabilityanalysisofthesubject withinthestudent’sthesis’ .

Althoughthereareotheruniversitieswithsimilar programmes12,studentsofengineeringinmostuniversitieshavebeendirectedtomoreandmorespecialisttechnical fieldsatatimewheninterdisciplinarityis mostneededtosolvesociety’sproblems.Ifengineers aretaughtthatsolvingthoseproblemsisalsotheir socialresponsibility,thetransitiontosustainability willbeaccelerated.As finalyearengineeringstudents respondedwhenaskedthequestion ‘What’sanengineer?’ byLeeShulman,aformerPresidentoftheU.S. NationalAcademyofEducation(Sheppard 2009):

‘Anengineerissomeonewhousesmathandthe sciencestomesswiththeworld – bydesigningand makingthingsthatpeoplewillbuyanduse;andonce youmesswiththeworld,youareresponsibleforthe messyou ’vemade’

Notes

1. ‘Sustainable growth’ isanoxymoron,aspointedout bytheWorldBankeconomistHermanDalythirty yearsago(Daly 1990). ‘Sincethehumaneconomyis asubsystemofa finiteglobalecosystemwhichdoesnot grow,eventhoughitdoesdevelop,itisclearthat growthoftheeconomycannotbesustainableover longperiodsoftime ’

2. Theterm ‘sustainable development’ wasprobably first usedasthesub-titleforthe ‘WorldConservation Strategy:LivingResourceConservationfor SustainableDevelopment’ (InternationalUnionfor

ConservationofNature,andWorldWildlifeFund, 1980).

3. Infact,thereportitselfdoesnotusethesewordsin adefinitionalsensebutaspartofanopeningclause undertheheadingofSustainableDevelopment.The fullsentencereads: ‘Humanityhastheabilitytomake developmentsustainabletoensurethatitmeetsthe needsofthepresentwithoutcompromisingtheability offuturegenerationstomeettheirownneeds ’

4. Ofcourse,therearestillproblemswiththestatement as drafted.Doweonlywantto ‘promotewellbeingfor all’?Surely,wewantto ‘achievewellbeingforall’

5. Anexplanationofcausalloopdiagramsisavailableat (Kirkwood 1998) Chapter1.

6. Sourcedfrom(GroningenGrowthandDevelopment Centre 2010).

7. Asitdidinpre-industrialtimes.

8. (Cradletocradleproductsinnovationinstitute 2019).

9. i.e.,theinterconnectionviatheInternetofcomputing devices embeddedineverydayobjects,enablingthem tosendandreceivedata.

10. Theironywasthatinmanycasestheclientorganisation wasveryinterestedinsustainabilityatthesenior levelbutthesemessageshadnottrickleddowntothe peoplethatmycolleagueswereservicing.

11. InfactsomeengineersaremembersoftheUnionof Concerned Scientists.

12. TheTimesHigherEducationUniversityRankings now includeanevaluationofhowuniversitiesaround theworldarecommittingtotheSDGs.Thisranking however,relatestotheUniversityasawholerather thanreflectengineeringeducation.

Disclosurestatement

Nopotentialconflictofinterestwasreportedbytheauthor.

Notesoncontributor

WilliamGrace isaFellowofEngineersAustralia,anindependent sustainabilityadviser,researcherandconsultant, andanAdjunctProfessorattheUniversityofWestern Australia’sAustralianUrbanDesignResearchCentre.

Billworksattheinterfaceofeconomicsandsustainability,providingstrategicadvicetostateandlocalgovernment agenciesonthesustainabilityaspectsofurbanandcity development,includingintegratedurbanwatercyclemanagement,sustainableenergy,materialsandwastemanagementandgreenbuildingdesign.

BillwaspreviouslyDeputyChairmanoftheWestern AustralianSustainabilityRoundtable,whichwascharged withprovidingadvicetoPremierGalluponimplementation oftheStateSustainabilityStrategy.Hehasalsoservedonthe WesternAustralianPlanningCommittee’sStatutory PlanningCommittee.Hewasamemberoftheprevious federalgovernment’sExpertWorkingGroupfor SustainableRegionalPlanning,developingmethodologies forstrategicplanningofregionalgrowthcentres.

References

Anderson,K.J.B.,S.S.Courter,T.McGlamery, T.M.Nathans-Kelly,andC.G.Nicometo. 2010. “UnderstandingEngineeringWorkandIdentity:A Cross-caseAnalysisofEngineerswithinSixFirms.”

EngineeringStudies 2(3):153–174.doi:10.1080/ 19378629.2010.519772

Andrady,A.L. 2015. PersistenceofPlasticLitterinthe OceansMarineAnthropogenicLitter,57–72.Cham: Springer.

Arrow,K.,B.Bolin,R.Costanza,P.Dasgupta,C.Folke, C.S.Holling,andB.-O.Jansson. 1995 “Economic Growth,CarryingCapacity,andtheEnvironment.” Science 268(5210):520.doi:10.1126/ science.268.5210.520

Berkes,F.,andC.Folke. 1998. “LinkingSocialand EcologicalSystemsforResilienceandSustainability.” LinkingSocialandEcologicalSystems:Management PracticesandSocialMechanismsforBuildingResilience 1(4):4.

Bloem,J.,M.VanDoorn,S.Duivestein,D.Excoffier, R.Maas,andE.VanOmmeren. 2014 TheFourth IndustrialRevolution.SogetiVINT.

Braungart,M.,andW.McDonough. 2002 CradletoCradle: RemakingtheWayWeMakeThings.1sted.NewYork: NorthPointPress.

Braungart,M.,andW.McDonough. 2013 TheUpcycle. BeyondSustainability-designingforAbundance.1sted. NewYork:NorthPointPress.

Bruckner,T.,I.Bashmakov,Y.Mulugetta,H.Chum,A.De laVegaNavarro,J.Edmonds,...E.Hertwich. 2014. EnergySystemsClimateChange2014:Mitigationof ClimateChange.ContributionofWorkingGroupIIIto theFifthAssessmentReportoftheIntergovernmental PanelonClimateChange,edO.Edenhofer,R.PichsMadruga,Y.Sokona,E.Farahani,S.Kadner,K. Seyboth,...J.C.Minx.CambridgeandNewYork: CambridgeUniversityPress. Availableat: https://www. ipcc.ch/pdf/assessment-repo rt/ar5/wg3/ipcc_wg3_ar5_ chapter7.pdf

Cradletocradleproductsinnovationinstitute. 2019 https:// www.c2ccertified.org/

Daly,H.E. 1974 “TheEconomicsoftheSteadyState.” The AmericanEconomicReview 64(2):15–21.

Daly,H.E. 1990. “TowardSomeOperationalPrinciplesof SustainableDevelopment.” EcologicalEconomics 2(1): 1–6. doi:10.1016/0921-8009(90)90010-R.

Easterlin,R.A. 2000. “TheWorldwideStandardofLiving since1800.” JournalofEconomicPerspectives 14(1):7–26. doi:10.1257/jep.14.1.7

Gartner. 2019 “OperationalTechnology.” https://www.gart ner.com/it-glossary/operational-technology-ot/ GlobalFootprintNetwork. 2019 “EcologicalFootprint.” https://www.footprintnetwork.org/our-work/ecologicalfootprint/ Gómez-Baggethun,E.,R.DeGroot,P.L.Lomas,and C.Montes. 2010 “TheHistoryofEcosystemServicesin EconomicTheoryandPractice:FromEarlyNotionsto MarketsandPaymentSchemes.” EcologicalEconomics 69 (6):1209–1218.doi:10.1016/j.ecolecon.2009.11.007. Grace,W. 2015. “SimulatingSustainability:AResources Perspective.” JournalofNaturalResourcesPolicy Research 191–220.doi:10.1080/19390459.2015.1050202. GroningenGrowthandDevelopmentCentre. 2010 “MadisonProject.” https://www.rug.nl/ggdc/historicalde velopment/maddison/original-maddison

Grooten,M.,andR.Almond 2018 LivingPlanetReport–2018:AimingHigher https://wwf.panda.org/knowledge_ hub/all_publications/living_planet_report_2018/ InternationalUnionforConservationofNature,&World WildlifeFund. 1980 WorldConservationStrategy:Living

ResourceConservationforSustainableDevelopment Gland,Switzerland:IUCN.

Jamison,A. 2013 TheMakingofGreenEngineers SustainableDevelopmentandtheHybridImagination Vol.20.SanRafael,Calif.:Morgan&Claypool.

Kamp,L. 2006. “EngineeringEducationinSustainable DevelopmentatDelftUniversityofTechnology.” JournalofCleanerProduction 14 (9):928–931. doi:10.1016/j.jclepro.2005.11.036.

Kershaw,P.J. 2018. ExploringthePotentialforAdopting AlternativeMaterialstoReduceMarinePlasticLitter UnitedNationsEnvironmentProgramme.

Kirkwood,C.W. 1998 SystemDynamicsMethods:AQuick Introduction.Tempe:ArizonaStateUniversity.

Korhonen,J.,A.Honkasalo,andJ.Seppälä. 2018 “Circular Economy:TheConceptandItsLimitations.” Ecological Economics 143:37–46.doi:10.1016/j.ecolecon.2017.06.041

LeBlanc,D. 2015 “TowardsIntegrationatLast?the SustainableDevelopmentGoalsasaNetworkof Targets.” SustainableDevelopment 23(3):176–187. doi:10.1002/sd.v23.3.

Lesthaeghe,R. 2011. “The” SecondDemographictransition”:AConceptualMapfortheUnderstandingofLate ModernDemographicDevelopmentsinFertilityand FamilyFormation.” In HistoricalSocialResearch/ HistorischeSozialforschung,179–218.GESIS-Leibniz InstitutefortheSocialSciences.

Leurent,H.,andO.Abbosh. 2018. DrivingtheSustainability ofProductionSystemswithFourthIndustrialRevolution Innovation.Geneva:WorldEconomicForum.

Maggio,G.,andG.Cacciola. 2012. “WhenWillOil,Natural Gas,andCoalPeak?” Fuel 98:111–123.doi:10.1016/j. fuel.2012.03.021

McNay,K. 2005 “TheImplicationsoftheDemographic TransitionforWomen,GirlsandGenderEquality: AReviewofDevelopingCountryEvidence.” Progressin DevelopmentStudies 5(2):115–134.doi:10.1191/ 1464993405ps109oa

Meadows, D.H.,D.L.Meadows,andJ.Randers. 1992 BeyondtheLimits.PostMills,VT:ChelseaGreen PublishingCompany.

Meadows,D.H.,D.L.Meadows,andJ.Randers. 2004. LimitstoGrowththe30YearUpdate.WhiteRiver Junction,VT:ChelseaGreenPublishingCompany. Meadows,D.H.,D.L.Meadows,J.Randers,and W.W.I.Behrens. 1972 TheLimitstoGrowth NewYork:UniverseBooks. MillenniumInstitute. 2019. “PlanningforaSustainable Future.” https://www.millennium-institute.org/ Prior,T.,D.Giurco,G.Mudd,L.Mason,andJ.Behrisch. 2012. “ResourceDepletion,PeakMineralsandthe ImplicationsforSustainableResourceManagement.” GlobalEnvironmentalChange 22(3):577–587. doi:10.1016/j.gloenvcha.2011.08.009

Reid,W.V.,H.A.Mooney,A.Cropper,D.Capistrano, S.R.Carpenter,K.Chopra,...R.Hassan. 2005 MillenniumEcosystemAssessment.Ecosystemsand HumanWell-being:Synthesis.Washington,DC:World ResourcesInstitute. Sheppard,S. 2009 EducatingEngineers:Designingforthe FutureoftheField.1sted.SanFrancisco,CA:Jossey-Bass. Shergold,P.,andI.Inkster. 1982 “CivilEngineeringandthe Admiralty:ThomasTredgold,EdwardDeasThomson andEarlySteamNavigation,1827–1828.” TheGreat Circle 4(1):41.

Stahel,W.R. 2016 “TheCircularEconomy.” NatureNews 531 (7595):435.doi:10.1038/531435a

Swain,R.B. 2018. “ACriticalAnalysisoftheSustainable DevelopmentGoals.” In HandbookofSustainability ScienceandResearch,341–355.Cham:Springer. UnitedNations. 2015. “TransformingOurWorld:The2030 AgendaforSustainableDevelopment.” ResolutionAdopted bytheGeneralAssembly 70(1).

Wackernagel,M.,andW.Rees. 1998 OurEcological Footprint:ReducingHumanImpactontheEarth.Vol.9. Philadelphia:NewSocietyPublishers. WorldCommissiononEnvironmentandDevelopment. 1987. OurCommonFuture.Oxford:OxfordUniversityPress. WorldFederationofEngineeringOrganisations. 2018. APlantoAdvancetheAchievementoftheUN SustainableDevelopmentGoalsthroughEngineering

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.