

Australian Journal of Multi-Disciplinary Engineering

ISSN: 1448-8388 (Print) 2204-2180 (Online) Journal homepage: https://www.tandfonline.com/loi/tmul20
Engineering the transition to sustainability
William Grace
To cite this article: William Grace (2019): Engineering the transition to sustainability, Australian Journal of Multi-Disciplinary Engineering, DOI: 10.1080/14488388.2019.1693885
To link to this article: https://doi.org/10.1080/14488388.2019.1693885

Published online: 18 Nov 2019.

Submit your article to this journal


Article views: 10


View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tmul20

ARTICLE
Engineeringthetransitiontosustainability
WilliamGrace
AustralianUrbanDesignResearchCentre,UniversityofWesternAustralia,Perth,WesternAustralia
ABSTRACT
Thehumanworldandthebiospherewhichweinhabitwithallotherlifeonearthisacomplex socio-ecologicalsystem.Itisessentialtothinkaboutthesustainabilityproblembyconsidering theinterventionsnecessarytoachieveourobjectiveswithinthatsystem.Thepaperdescribes howtheseventeenSustainableDevelopmentGoals(SDGs)canbeplacedwithinasystems configuration.Inthispaper,Ioutlinethedevelopmentofadynamicmodeltoexplorethis systemanditsplausibletrajectoriesovercomingdecadesandcenturies.Theresultsechothe findingsofotherstudies,indicatingthaturgentactionisrequiredtoavoiddecliningaverage globallivingstandardsinthecomingcentury.Thekeypolicyinterventionsrequiredtoavoid thisaredescribed.Thepresentinstitutionsareinsufficienttore-structuretheglobaleconomy inthetimeframerequired,meaningthatourprofessionmustbeelevatedinthepublic discourse,andourvoicesmustbecomelouder.
1.Introduction
TheUNSustainableDevelopmentGoals(SDGs)are intendedtobe ‘theblueprinttoachieveabetterand moresustainablefutureforall’.TheWorldFederation ofEngineeringOrganisations(WFEO)andUNESCO signedtheParisDeclarationinMarch2018which statedthecommitmentoftheworld’sengineersto sustainabledevelopment.SubsequentlyWFEOhave releasedanEngineering2030Plantosupportthis commitment(WorldFederationofEngineering Organisations 2018).Therehasbeensomecriticism oftheSDGs’ complexity,internalconsistencyand ambiguity(Swain 2018).Othershavesuggestedthat weshouldsee ‘thesustainabledevelopmentgoalsas anetworkoftargets’(LeBlanc 2015).Myowncriticism relatestotwofailures:creatingaconnectiontothe genesisofsustainabledevelopmentarticulatedinthe Brundtlandreport;andarticulatingthegoalsectorsas elementsofasinglesocio-economicsystem.Isetout analternativesystems-basedperspectiveoftheglobal socio-ecologicalsystem(SES)inthisarticle,comprisingtheinteractionsandfeedbackbetweenitssocial, economicandenvironmentaldimensions.Eachofthe 17sustainabledevelopmentgoalsisplacedwithinthe socio-ecologicalsystemconfigurationdescribed. Modellingoftheglobalpopulation – economy –resourcesystembymyselfandothers,suggeststhat abusiness-as-usualapproachwillleadtoseriousecologicaldamageandresourcescarcityduringthelatter partofthiscentury,ultimatelycausingreductionsin populationandlivingstandards.Idiscussthemajor transitionsinenergyandresourceuserequiredto

ARTICLEHISTORY
Received16October2019
Accepted11November2019
KEYWORDS
Sustainability;sustainable developmentgoals;circular economy;energy;materials; engineeringeducation; systems
avoidthisoutcome,includingtheattractionsandlimitationsofthecirculareconomyconcept.
Ialsodiscusstheroleofengineersinpromotingthe transitiontosustainability,notingboththecriticality ofourprofessionalexpertisetotheenterprise,and howthewaythatengineersseethemselveslimits proactivityoftheprofessionasawhole.
2.TheU.N.sustainabledevelopmentgoals In2015,theUNGeneralAssemblyadopted ‘Transformingourworld:the2030Agendafor SustainableDevelopment’ (UnitedNations 2015).The 17SustainableDevelopmentGoals(SDGs)covermany facetsofpolicythat,weareinvitedtobelieve,willdeliver sustainabledevelopment.Unfortunately,likemanysuch initiatives,thegoalsreadasawish-listofseparateinitiatives,invitingacontinuationofthe ‘silos’ approachto developmentpolicy.
Mostdisappointingofallisthefailuretoprovide aclearstatementofwhatthecoregoalofsustainable developmentactuallyis.Theword ‘sustainability’ is usedthroughoutthegoalstatements,inrespectof agriculture,economicgrowth(!1),industrialisation, water,energy,consumptionandproduction,cities andcommunities,andmanagementofforestsand oceans.Whatdotheseadjectivesmean?Doesthe achievementoftheseobjectivesinaggregateproduce a ‘sustainable’ world?
Itisinstructivetorecallwhereallthisstarted,which wasthereportoftheWorldCommissionon EnvironmentandDevelopment ‘OurCommonFuture’ , chairedbyGroHarlemBrundtland(WorldCommission
onEnvironmentandDevelopment 1987).Itwasthis reportthatcoinedthemuchreferredtodefinitionof sustainabledevelopment2:
“meetingtheneedsofthepresentwithoutcompromising theabilityoffuturegenerationstomeettheirownneeds”3
Althoughtherehavebeenmanyvariationsdeveloped since,asgovernmentshaveparsedtheBruntlanddefinition,formostthisremainstheessenceoftheterm. Despitewhatmanypeoplethink,thisdefinitionidentifies sustainabilityasasocialaspiration,notanenvironmental one.It,somewhatclumsily,speakstotheneedtoensure alltheresourcesthatgiverisetotheachievementof wellbeingremainavailabletofuturegenerations.Ihave suggestedthereforethatasimplegoalstatementforsustainabilityis ‘enduringwellbeing’.Thisisinfactvery similartoGoal3oftheSDGs,whichis:
GoodHealthandWell-being – Ensurehealthylives andpromotewell-beingforallatallages
Anopportunitywasmissedtomakethissentimentthe centrepieceoftheSDGs,creatingcontinuityfrom Brundtlandtothepresent.Ifwellbeingisnotthe centralfocusofsustainabilitypolicy,whatis?Allof theothergoalsarecomponentsofthiscentralgoal4
Whydowewant ‘nopoverty’ ; ‘cleanwater’ ; ‘reduced inequality’ ; ‘economicgrowth;’ and ‘climateaction’ if nottoadvancehumanwellbeing?
3.Seeingtheworldasasocio-ecological system
Moreimportanteventhancreatingacentralfocusfor theSDGsisthefailuretoarticulatethemasinterdependentgoalswithinacomplexsocio-ecologicalsystem(BerkesandFolke 1998).Forexample,itis obviouslynotpossibletomakeadvancesinpoverty andhungerinanynationwithoutaddressingitsexistingandfutureeconomicconditions.Addressingthis deficiencyhasfallentoorganisationssuchasthe MillenniumInstitutewhohavedevelopedtheiSDG
systemdynamicsmodel(MillenniumInstitute 2019) whichincorporatestherequiredinterrelationships andfeedbackinordertofacilitateabetterunderstandingofhowanoverarchingnationalplanwillimpact eachofthegoals.
The firstdimensionofthesustainabilityproblem focusesontheinteractionsbetweenthehumanworld andthebiospherewhichweinhabitwithallotherlife onearth,andwhichprovidesthematerialnecessities requiredforadecentstandardofliving.Thesecond dimensionrelatestothepurelysocialinteractionsthat affecthumanwellbeing.Iillustratebothdimensionsin Figure1 whichisknownasacausalloopdiagram.It seekstodepictcauseandeffectandfeedbackin asystemovertime.
Althoughalltheloopsactsimultaneouslyitishelpfultoconsiderthemoneatatime.Thepolarityofthe arrowsindicatestheeffectofonevariableonanother. Asexamples,intheabove:
● Higherlivingstandardsleadtohigherlevelsof overallwellbeing(allotherthingsbeingconstant) sothecausationispositive.
● Higherlevelsofeconomicproductionleadto lowerlevelsofnaturalresources(allotherthings beingconstant)sothecausationisnegative.
ForclarityIhaveonlylabelledthenegativecausations. Allunlabelledarrowsindicatepositivecausation.
3.1.Populationandtheeconomy(blueloops)
Thesetwoloopsessential ly dominatethestoryof humanhistorysincethebeginningoftheagriculturalagesome10,000yearsago.Risinglivingstandardsleadtohigherpopulationlevelsleadto higherlevelsofeconomicproductionleadtohigher livingstandardsandsoon(LoopR1). CompoundingthegrowthrateofR1isthatrising livingstandardshavealsoledtomoreeconomic productiononapercapitabasis(LoopR2).
Figure1. Causalloopdiagram5 oftheglobalsocio-ecologicalsystem.
Thesearereferredtoasreinforcingloopsbecause ariseinonevariableleadstoariseintheother, whichinturnleadstoafurtherriseinthe first.The behaviourovertimeofsuchaloopiseitherexponentialgrowthorexponentialdecline.Exponential growthisreflectedinthedatafromthemodernera (see Figures2 and 3).
3.2.Environmentandnaturalresources(the green loops)
Materiallivingstandardsaredependentonthenonhuman world,throughtheprovisionofso-calledecosystemservices(Gómez-Baggethunetal. 2010)whichwe derivefromnaturalresources.Economicproduction depletesnaturalresources.Theconversionofhabitat (LoopB2)andthecreationofpollution(including
carbon)andwaste(LoopB4)bothlimitnature’sability toprovideecosystemservicesintothefuture(Reidetal. 2005).Thosethatare finite(e.g.fossilfuels)willeventuallyrunoutcompletely(MaggioandCacciola 2012), andthosethatarerenewablearebeingdepletedatfaster ratesthantheyareregenerated(GrootenandAlmond 2018).Thisscarcitycreatesfeedbackinthesystemwhich, ifandwhenlimitsarereached,willreduceeconomic production,livingstandardsandpopulation(LoopB1).
3.3.Society(theorangeloops)

Fromtheriseofcivilisation,uptothepresenttimewe have seen,inaverageglobalterms,anincreasein humanhealthandwellbeingonthefoundationof higherlivingstandards(Easterlin 2000).Ofcourse, thereishugevariabilityacrosstheworldandsetbacks atvarioustimes,butthisscenariomoreorless describeshumanprogresstodate.
Theeffectoflivingstandardsonglobalpopulation ischanging.Overhumanhistoryrisinglivingstandardshaveincreasedbirthratesandreduceddeath rates,andhaveaccordinglyledtohigherpopulation levels.Thatwouldindicateapositiverelationship betweenwellbeingandpopulation,andthathasbeen thecaseinthepast(LoopR1).Aslivingstandardsrise indevelopingcountriesthenetpopulationgrowthrate (birthsminusdeaths)isdropping,asitalreadyhasin muchofthedevelopedworld
theso-called
Figure2. Globalpopulation(source:UNpopulationdivision).
Figure3. GlobalGDPsource:Maddisonhistoricalstatistics.6
demographictransition(Lesthaeghe 2011).Thisissignificantlyafunctionofincreasinggenderequality, essentiallytheabilityofwomentocontroltheirown fertility(McNay 2005).Accordingly,inthemodern era,therelationshipbetweenpopulationandwellbeingisreversed – higherlivingstandardswilltend toreducepopulation,hencethenegativesignin LoopB3.
Higherlivingstandardsalsoimprovehumanwellbeingandequality,whichpromotethedemographic transition(LoopB4)andenhancetheeffectofLoop B3.However,theseeffectsareoffsetbyLoopR3.If higherlivingstandardsinthemorerapidlygrowing developingworldincreaseaverageglobalinequality, theywillalsosuppressthedemographictransition whichisaprerequisiteforstabilisingpopulation. Thisresultsinareinforcinglooplinkinglivingstandardsandpopulationviaequalityandthedemographictransition(LoopR3).
Itispossibletoplaceall17ofthesustainabledevelopmentgoalswithinthissimplepictureoftheglobal socio-ecologicalsystem(see Figure4).
4.Aglobalmodel
Thishighlysimplifieddepictionprovidesthebasisfor understandingcauseandeffectintheglobalsocioecologicalsystem.However,therearemanydifferent trajectories(behaviourovertime)forthissystem.You cannottellbylookingatthispicturewhatthefuture stateofthesystemmaybe(bearinginmindthatno modelcanaccuratelypredictthefuture).Clearlygrowth todateduetothereinforcingloopsR1andR2has dominatedthebalancingloopsastheexponential growthinreal-worlddataonpopulation(Figure2), economicgrowth(Figure3)andlivingstandardsshow.
Thesustainabilityquestionisthereforewhatwillhappeninthefutureastheworldpopulationgrowstowards 9billion,poorernationsbecomericher,theeffectsof pollution(particularlycarbon)grow,andresources becomedepleted.Toinvestigateplausiblescenariosfor thefuturerequiresafullglobalsystemsmodel.

Thetechniqueofsystemdynamicshaslongbeenused tomodelthelinksbetweeneconomy,environmentand well-beingattheglobalscale,mostfamouslyinthe LimitstoGrowth(LtG)studies firstpublishedinthe early70s(DonellaH.Meadowsetal. 1972),updatedin the1990s(DonellaH.Meadows,Meadows,andRanders 1992)andearly2000s(DonellaH.Meadows,Meadows, andRanders 2004).Themodelsestablishacausalstructurelinkinglivingstandards(thebasicconstituentof wellbeing)toproductionandconsumptionofrenewable andnon-renewableresourcesandpollutionabsorption capacity.Myownmorerecentworkisasimplifiedglobal population – economy – resourcemodelthatexplores thefutureimpactofdecliningresourceavailabilityonthe worldeconomy(Grace 2015).Themodeltracksthelikely futureconsumptionofrenewableresources,fossilfuels andnon-renewablematerialsandtheeconomicimpact ofavailabilityto2300.Themodeliscalibratedagainst datafrom1960to2010.
Thesimulationsproducesimilar findingstothe LTGstudies,namelythatresourcescarcitywilllikely becomeevidentduringthelatterpartofthiscentury andconstraineconomicproduction,reducingincome percapita,livingstandardsandultimatelypopulation. Putsimply,thepresentexploitationofnatural resources(renewableandnon-renewable)is unsustainable inthecommonlanguageuseoftheterm,i.e. thatitcannotcontinueindefinitely.The findingsindicatethatpolicyinterventionsinvolvingarapidtransitionfromfossilfuelstorenewableenergy,reduced resourceintensityandmaterialsrecyclingarenecessarytocorrectthistrajectoryandfacilitateongoing improvementsinglobalaveragelivingstandards. Deliveringthesetransitionsisthecentralroleofengineeringinthe21st century.
5.Engineeringandtheeconomy
TheRoyalCharteroftheUnitedKingdom’ s InstitutionofCivilEngineers, firstgrantedbyKing GeorgeIVon3June1828includedadefinitionofcivil engineeringbyoneThomasTredgold(Shergoldand Inkster 1982).Thisdescribedcivilengineeringas being ‘theartofdirectingthegreatsourcesofpower innaturefortheuseandconvenienceofman’.Savefor thereferenceto ‘ man ’ ratherthan ‘humanity’,this definitionholdsupwelltodayasanexpressionofthe roleofengineersmoregenerally.Althoughwethinkof themeansofproductionascomprisinglabourandraw materials,tools,machineryandfacilities,infactthe finalgoodandallintermediateitemsembeddedinit orusedtomakeit,deriveultimatelyfromnatural resources,solarenergyandhumanlabour.This includesfossilfuelswhichderivefromthedecompositionoforganicmatter.Althoughthematerialand energyintensityusuallyinvolvedintheprovisionof ‘services’ isafractionofthatusedinmanufacturing
Figure4. DepictionoftheSDGsinasystemsconfiguration.
‘goods’,theseservicesarestillproducedinengineered buildingscontainingamyriadofengineeredcomponentsandproducts.Engineeringisessentiallyabout thetransformationofnaturalresources(directlyor indirectly)intothegoodsandservicesusedinthe economy – thebluelinesin Figure5.
Engineeringtasksresidesomewhereinthispictureandalthoughtheworkofmostiswithnatural resourceswhichhavealreadybeentransformedinto othermaterials,components,machines,plantor structures,eachisreliantonthem.Itistheextraction,processingandtransformationofthese resourcesthatprovidethegoodsandservicesthat underpinmodernsociety.Itisalsothesesameactivitiesthatgiverisetothelossofhabitatandbiodiversity,greenhousegasemissionsandother pollutionthatnowthreatenthelivingstandardsof peopleeverywhere.Ourp reoccupationwitheconomic ‘ growth ’ meansthatrateofexploitationof resourcescontinuestorapidlygrow.
TheformerWorldBankeconomistandfounding memberoftheschoolofe cologicaleconomics HermanDalyintroducedtheconceptofasteadystateeconomymorethanthirtyyearsago(Daly 1974 ).
“Asteady-stateeconomyisdefinedbyconstantstocksof physicalwealth(artifacts)andaconstantpopulation, eachmaintainedatsomechosen,desirablelevelbyalow rateofthroughput-i.e.,bylowbirthratesequaltolow deathratesandbylowphysicalproductionratesequalto lowphysicaldepreciationrates,sothatlongevityof peopleanddurabilityofphysicalstocksarehigh.”
Thisisadescriptionofasysteminequilibrium,where inputsandoutputsvaryovertimebutareapproximatelyequal.Inrespectofnaturalresourceexploitationthismeans(Daly 1990):
(1)Therateofharvestofrenewableresources shouldnotexceedtherateofregeneration (e.g.sustainableforestry);
(2)Thegenerationofeconomicby-products (whichwecallwaste)shouldnotexceedthe assimilativecapacityoftheenvironment;and (3)Thedepletionofnon-renewableresources shouldrequirecomparabledevelopmentof renewablesubstitutesforthatresource.
Thisthinkinghasgivenrisetotheconceptofthecircular economy(Stahel 2016)inwhichalifecycleapproachis takentotheexploitationofnaturalresources.Thekey componentsofthisapproacharetoreducetherateof naturalresourcesexploitationthrough:
● extendingservicelife,i.e.improveddurabilityof engineeredproductsandstructuresandreduced builtinobsolescence;
● re-using,repairing,retrofittingratherthanreplacingthem;and
● recyclingtheproductoritscomponents.
Toexplorethepotentialofthecirculareconomyconceptitisnecessaryonceagaintoconsiderthe dynamics(behaviourovertime)ofthewholesystem, whichIhavedepictedin Figure6.Thedriverofthis systemiseconomicdemandwhichgivesrisetothe exploitationofmineral(non-renewable)resources, renewable(biological)resourcesandenergyresources.
5.1.Mineralresources
Asmineralresourcesareessentiallynon-renewable(in the temporalscaleofinteresttohumanity)their exploitationnecessarilyreducestheavailableremainingstocks.Andofcourse,therearelossesinvolvedin theexploitationoftheseresources.Asstocksdecline, theeconomicandenvironmentalcostofexploitation inevitablyincreases(Prioretal. 2012).Materials,productsandmachinesmadefromsuchresourceswill degradeovertime.Themodernthrowawayculture meansthatresourcesareunlikelytoberetainedfor Figure5. Flowsofmaterialsandenergyintheeconomy.


eventheireffectivedesignlife.Bothfactorsmeanmore resourcesneedtobeexploitedjustbecauseofobsolescence,letalonenewdemand.
5.2.Renewableresources
Theecologicalfootprint(WackernagelandRees 1998) is aratiomeasureoftherateofnaturalresource exploitationtotherateofregenerationofthose resources(biocapacity).Ifthefootprintratioisgreater thanone,thenresourcesarebeingexploitedfaster thantheyareregenerating.Further,asstocksof renewableresourcesdecline,therateofregeneration also(generally)decreases(Arrowetal. 1995). Accordingly,weneedtobeconcernedwithboththe rateofexploitationandthelevelofstocks(e.g.tropical forestcoverage, fishstocks).Currentlytheecological footprintis1.7(GlobalFootprintNetwork 2019),i.e. weareusingtheseresourcesat1.7timestheratethat theyarebeingreplenishedbynature.Ecologicalsystemsunderpinalllifeonearth.
5.3.Energy
heexploitationofrawresourcesofallkindsrequires the inputofenergy,asdoestheirtransformationinto machines,productsandstructures,andtheoperation ofthosemachines,productsandstructures.Measures thatseektoreducethematerialthroughputofthe economysuchasreuseandrecyclingalsorequire energytobeexpended.Thetraditionaluseoffossil fuelsfortheproductionofthisenergyisresponsible forglobalwarming(Bruckneretal. 2014).Asfossil fuelsarealsoanon-renewableresource(againatthe temporalscalerelevanttohumanity),theirexploitationinevitablyreducesremainingstocks.Asstocks decline,theirongoingexploitationinvolveshigher economicandenvironmentalcostsirrespectiveof
greenhousegasemissions.Theonlylong-termsolutionisatransitiontoapurelyrenewableenergypoweredeconomy.Whilethepureenergysourcesofwind andsolarareinexhaustible(atleastforthenext fewbillionyears)themachinesthatexploitthem, includingbatteries,requirematerialinputs,which areallcurrentlymineralresources(iron,cadmium, titanium,lithiumetc).Andofcourse,energyisalso required.
Itisimportanttounderstandthatthisis asinglesystemwithinterdependenciesandfeedbackthroughout.Policiesthatdealwithonespeci fi csub-systemwithoutunderstandingthe implicationsfortherestofthesystemare fl awed andwillfail.
Whileindividualengineersmayonlyplayadiscrete rolesomewhereinthesystem,engineeringas aprofessionneedstoaddresstheentiresystemto playanymeaningfulroleinatransitiontoglobal sustainability.Thissystempicturesetsoutthekey objectivesandchallengesforengineeringtoaddress insupportofthesustainabledevelopmentgoals.
Objectives
(1)tominimisetheenvironmentalimpactsof resourceexploitationintheeconomyinorder tostabilisekeyecologicalstocksatanacceptableleveltosupportlifeonearth(i.e.therateof exploitationisequalto,orlessthantherateof regeneration);
(2)tominimisetheeconomiccostsofresource exploitationwhicharea(necessary)overhead inseekingtoretainhighlevelsofhumanwellbeingforthosethathavethem,andobtain themforthosewhodonot;
(3)tominimisegreenhousegasemissionsthough increasinguseofrenewableenergywhilealso minimisingtheeconomiccostsofenergy.
Figure6. Causalloopdiagramoftheresource-energysubsystem.
Thechallenges
Achievingtheobjectivesrequiressimultaneous actiontomanagethosevariablesthataffectthem, withaminimisationoftrade-offs:
(1)efficiencymeasuresofonekindortheother (includinghighlevelsofdurabilityandlonger lifecycleproducts);
(2)re-purposing,reusing,orrecyclingthecomponentsthemselvesorthematerialsembodiedin theproducts,machinesandstructures;
(3)substitutingmineralresourceswithrenewable resourceswherethisispossible(e.g.substitutinghydrocarbon-basedplasticswithnatural polymers);
(4)reducingtheenergyintensityofproductionin, andoperationoftheeconomy;and (5)transitioningtorenewableenergy.
Itisimportanttorememberthesecondlawofthermodynamicsinallofthis.Theadoptionofthese measuresreducestherateofexploitationofnonrenewableresourcesandtheassociatedenvironmental costsbutnottozero.Reducingtherateofnonrenewableresourceexploitationthroughrecycling requiresmoreenergyinput.Thesubstitutionofnonrenewableresourceswithrenewableresources increasestheecologicalfootprint.Theexploitationof renewableenergyrequiresmineralresourcestobuild themachines.Becauseofthistherecanbenocompletelycirculareconomy,unlessoruntiltheworld operatesonpurelyrenewableenergyandrenewable resources,andtheecologicalfootprintisreduced belowunity7.Althoughthatmaynotberealisedfor manydecadesorevencenturiestocome,ifever, recognisingthatultimateaimidentifiesthedirection inwhichwemusttravel.
5.4.Cradletocradle
Mostofthecurrentapproachestorecyclingareactual lydowncycling(Korhonen,Honkasalo,andSeppälä 2018),e.g.theconversionofplasticsorpaperto lowerqualityproducts,aprocessthatcanonly recurafewtimes.Thisprocessonlydelaystheeventuallossoftheresource.Theapproachchampioned byMcDonoughandBraungartin CradletoCradle: RemakingtheWayWeMakeThings (2002)relieson theconceptof ‘biological’ and ‘technicalnutrients’ Innature,biologicalnutrientsareretainedinanendlesscycleoftransformationinvolvingthecreation anddecompositionoflivingtissue.Manyofthe productsthatpresentlyusemineralresources,such assingleuseplasticsthataremainlyresponsiblefor theenvironmentalcrisisinouroceans(Andrady 2015),canbesubstitutedwithnaturalpolymers (fromplantandanimalderivedmaterials),biomass
based,compostable,syntheticbiopolymersandreusabledurablenon-plasticmaterials(Kershaw 2018).Suchmaterialswillberecycledbynature.It isnotsosimplewithproductsthatincorporatemultiplemineralorhydrocarbon-basedmaterials. Althoughitisphysicallypossibletoseparatethe elementsattheendoflife(e.g.inelectronicequipment),todosowouldusesignificantamountsof (presentlyfossilfuelled)energyandpotentially releasetoxicchemicalsintotheenvironment. McDonoughandBraungart’ssolutiontothisproblemisforproductstobemadeofso-called ‘technicalnutrients’ thatcanbere-usedinthesameway thatnaturere-uses ‘biologicalnutrients’.AsanexampleofthistheauthorscitePhilips’ Econovatelevision whichwasreleasedin2010,andwasdesignedfor ‘almostcompletedisassembly’ (Braungartand McDonough 2013).Thecradle-to-cradle(C2C)concepthasspawned TheCradletoCradleProducts InnovationInstitute8,thatadministersthe Cradleto CradleCertified™ ProductStandard.Atthetimeof writingover400productshavebeencerti fied.
5.5.Thefourthindustrialrevolution
Wearenowenteringtheso-calledfourthstageofthe industrial revolution(Bloemetal. 2014)thatcommencedinthe18th centurywithsteampoweredproduction(firstphase),wasfollowedintheearly20th centurybymassproduction(secondphase),andacceleratedbyelectronicsandautomationmorerecently (thirdphase).Thefourthphaseischaracterisedbythe integrationofinformationtechnology(IT)andoperationaltechnology(OT)intoso-called ‘Cyber-Physical Systems’.Accordingtoadvisory firmGartner(2019), OTis ‘hardwareandsoftwarethatdetectsorcauses achangethroughthedirectmonitoringand/orcontrol ofphysicaldevices,processesandeventsintheenterprise’.AccordingtoBloemetal,theconvergenceofIT andOT,coupledwiththeinternetofthings(IoT)9,has threemajorbenefits:
(1)Machine-to-Machinecommunication,sothat humanworkcanbereducedandimportantcontributionstoefficiencyandsecuritycanbemade.
(2)Maintenance,preferablyPredictive Maintenanceofmachinesandapplianceson thebasisofdirectstatusreportsandpossibly alsoremoterepairs.
(3)Engagementorclientinteractionviatheuseof productsbyconsumersorprofessionals.
Sohowcanthisrevolutionadvancetheobjectivesof thecirculareconomyandcradletocradle?Inareport preparedbytheWorldEconomicForumandadvisory firmAccenture,theopportunitiesaffordedbythe emergingtechnologiesforthreeindustrialsectors
(automotive,electronics,foodandbeverage)offer aglimpseofthefuture(LeurentandAbbosh 2018):
● Shortlooprecycling,i.e.retainingrecyclingprocesseswithineachmanufacturingsectorforremanufacturing,formaterialssuchassteel,copperand plasticsbycombiningphysicalanddigitaltechnologies(e.g.digitaltrack-and-traceformonitoring andmanagingmaterialandcomponent flows),supportedbyadvancedmaterialsortingandefficient robotic,coboticorworker-assisteddisassembly systems;
● Roboticdisassemblyforremanufacturing: expandingtheuseofrobotsbeyondinitial manufacturing;
● Greenelectronicmaterials:theuseofsynthetic biologicalmaterialscomponents(e.g.sensors, computingdevicesandcomponentsofsolar panels);
● Precisionagriculture:integratingdataandanalyticsusingGPSsoilsensorsandweatherdatato improvedecisionsrelatedtofertiliser,irrigation, harvestingtimeetcetera.
Thesedigitalinnovationswillbesupportedbygreen chemistry;i.e.biologicalsolutionstoreplacechemicals usedinmanufacturingandagriculture.
Progressingtheinitiativessetoutabovewillclearly involvethefullrangeofengineeringskillsandcapabilities.Ihavenodoubtthatindividualengineerswill respondtothesignalsprovidedtothembytheir employerswhetherintheprivateorpublicsector,as theyhavethroughoutthepreviousphasesofthe industrialrevolution.Somewilltakeleadershiproles intheirorganisations,industriesorprofessional bodies.Whethertheprofessionofengineeringwill havemuchinfluenceonthisprocess,however, remainstobeseen.
6.Re-engineeringourprofession
Whatkindofanimalisanengineer?Andersonetal. (2010)carriedoutresearchtounderstandtheidentity ofengineersbyinterviewingpeopleinanumberofUS firms.Althoughthesamplewasrathersmall,the findingsresonatewithmyexperiencesintheworkplacein severalcountriesoverfourdecades.
“Inessence,engineersvaluethethrillofdiscovery –figuringsomethingout,solvingachallengingproblem, ormakingsomethingwork.Inshort,wecametosee thattheseengineerswalkedaroundwithanunstated equationintheirheads:Problemsolver+teamplayer +life-longlearner=Engineer.
....mostoftheengineersinourstudydidnotsee themselvesasbeingengineersinordertocontributeto thegeneralpublicgood.Theiridentitywasmorelikely tobegroundedinsolvingproblemswell – for
themselves,fortheirteam,fortheirorganization,and fortheirclient.”
Inapreviouslifeasasustainabilitymanagerinalarge engineeringconsultancy,IwassurprisedattheresistanceIoftenencounteredfromexperiencedengineers toconsideringsustainabilityinourprojectwork.It wasnotsomuchthattheindividualsthemselveswere climatedeniersorresistanttoenvironmentalprotection,ratherthatitwasnotreallyourbusinessto incorporatethesenon-engineeringfactorsintoour workforclientsunlesstheyspecificallyaskedforit10. Asabroadgeneralisation,engineersseemtoseethemselvesasveryimportantcogsinthewheelofthe economybutnotresponsibleforturningthatwheel inanyparticulardirection.Manyengineershave strongviewsaboutcontemporarysocialandenvironmentalissuesbutseemtoparkthematthedoorwhen theygotowork.AndrewJamison,EmeritusProfessor ofTechnology,EnvironmentandSocietyatAalborgin Denmarktellsthestoryofengineersbeingexcitedto designandbuildwindfarmsbutdoinglittletomake Denmarksustainable(Jamison 2013).
“Whiletheyhavelearnedhowtosolveproblemswith technicalsolutions,theyhavenotlearnedmuchabout theproblemsthatneedtobesolved.Morespecifically, theyhavebeengiventoofewopportunitiesintheir educationtolearnaboutthesocialandculturalcontextsinwhichtheirscientificknowledgeandengineeringskillsareactuallyused.”
Ifthisisindeedareasonablyaccurateinterpretationof howengineersseethemselves,itisnotsurprisingthat weseelittleproactiveinvolvementoftheprofessionin drivingsocietytowardssustainability.Whileourprofessionalinstitutionsnearlyallhaveappropriatepoliciesandunderstandtheimportantroleofengineering fortheachievementofthesustainabledevelopment goals,thevoiceoftheprofessioninsocietyasawhole isweak.Unlikeourcolleaguesinscience,thereisno ‘UnionofConcernedEngineers’11.Thereisnostrong advocacyonsocialandpoliticalissuesasevidencedby lawyersthroughthelawsocieties,ordoctorsthrough thevariousnationalmedicalassociations.The SustainableEngineeringSocietywithinEngineers Australia(EA)comprisesmanyengineerswhoare dedicatedtoadvancingsustainabilityintheirwork andadvocatingforit,buthasonly630membersout of100,000overall(lessthan1%).AlthoughEAitself hasanumberofpolicypositions,thesetendtobe focussedmainlyoneconomicissuessuchasproductivity,skillsandinfrastructure.Theproblemiscultural andculturetakestimetochange.Thatiswhyour focusmustbeonthenextgenerationofengineers.
AndrewJamisonhasdedicatedhisacademiccareer toexpandingtheeducationofengineerstodevelop whathecallsa ‘hybridimagination’ (2013).
“Ahybridimaginationcanbedefinedasthecombinationofascientific-technicalproblemsolvingcompetencewithanunderstandingoftheproblemsthat needtobesolved.Itisamixingofscientificknowledge andtechnicalskillswithwhatmightbetermedcultural empathy,thatis,aninterestinreflectingontheculturalimplicationsofscienceandtechnologyingeneral andone’sowncontributionasascientistorengineer,in particular.”
Inmostengineeringfacultiesitisnotpossibletoget suchaneducation.However,therearesomeleading examples,suchastheTechnicalUniversityofDelft (TUD)whichhasadoptedastrategytopromote Jamison’ s ‘hybridimagination’ throughthreecomplementaryapproaches(Kamp 2006):
(1)Introducinganelementarycourse ‘Technology insustainabledevelopment’ whichismandatoryforallTUDstudents;
(2)Intertwiningtheconceptofsustainabledevelopmentintoallengineeringcourses;and
(3)Developmentofthepossibilitytograduatewith asustainabledevelopmentspecialisation,takingbetweenthreeand fivesustainabilityrelated coursesinvolvingsome ‘400studyhoursplus athoroughsustainabilityanalysisofthesubject withinthestudent’sthesis’ .
Althoughthereareotheruniversitieswithsimilar programmes12,studentsofengineeringinmostuniversitieshavebeendirectedtomoreandmorespecialisttechnical fieldsatatimewheninterdisciplinarityis mostneededtosolvesociety’sproblems.Ifengineers aretaughtthatsolvingthoseproblemsisalsotheir socialresponsibility,thetransitiontosustainability willbeaccelerated.As finalyearengineeringstudents respondedwhenaskedthequestion ‘What’sanengineer?’ byLeeShulman,aformerPresidentoftheU.S. NationalAcademyofEducation(Sheppard 2009):
‘Anengineerissomeonewhousesmathandthe sciencestomesswiththeworld – bydesigningand makingthingsthatpeoplewillbuyanduse;andonce youmesswiththeworld,youareresponsibleforthe messyou ’vemade’
Notes
1. ‘Sustainable growth’ isanoxymoron,aspointedout bytheWorldBankeconomistHermanDalythirty yearsago(Daly 1990). ‘Sincethehumaneconomyis asubsystemofa finiteglobalecosystemwhichdoesnot grow,eventhoughitdoesdevelop,itisclearthat growthoftheeconomycannotbesustainableover longperiodsoftime ’
2. Theterm ‘sustainable development’ wasprobably first usedasthesub-titleforthe ‘WorldConservation Strategy:LivingResourceConservationfor SustainableDevelopment’ (InternationalUnionfor
ConservationofNature,andWorldWildlifeFund, 1980).
3. Infact,thereportitselfdoesnotusethesewordsin adefinitionalsensebutaspartofanopeningclause undertheheadingofSustainableDevelopment.The fullsentencereads: ‘Humanityhastheabilitytomake developmentsustainabletoensurethatitmeetsthe needsofthepresentwithoutcompromisingtheability offuturegenerationstomeettheirownneeds ’
4. Ofcourse,therearestillproblemswiththestatement as drafted.Doweonlywantto ‘promotewellbeingfor all’?Surely,wewantto ‘achievewellbeingforall’
5. Anexplanationofcausalloopdiagramsisavailableat (Kirkwood 1998) Chapter1.
6. Sourcedfrom(GroningenGrowthandDevelopment Centre 2010).
7. Asitdidinpre-industrialtimes.
8. (Cradletocradleproductsinnovationinstitute 2019).
9. i.e.,theinterconnectionviatheInternetofcomputing devices embeddedineverydayobjects,enablingthem tosendandreceivedata.
10. Theironywasthatinmanycasestheclientorganisation wasveryinterestedinsustainabilityatthesenior levelbutthesemessageshadnottrickleddowntothe peoplethatmycolleagueswereservicing.
11. InfactsomeengineersaremembersoftheUnionof Concerned Scientists.
12. TheTimesHigherEducationUniversityRankings now includeanevaluationofhowuniversitiesaround theworldarecommittingtotheSDGs.Thisranking however,relatestotheUniversityasawholerather thanreflectengineeringeducation.
Disclosurestatement
Nopotentialconflictofinterestwasreportedbytheauthor.
Notesoncontributor
WilliamGrace isaFellowofEngineersAustralia,anindependent sustainabilityadviser,researcherandconsultant, andanAdjunctProfessorattheUniversityofWestern Australia’sAustralianUrbanDesignResearchCentre.
Billworksattheinterfaceofeconomicsandsustainability,providingstrategicadvicetostateandlocalgovernment agenciesonthesustainabilityaspectsofurbanandcity development,includingintegratedurbanwatercyclemanagement,sustainableenergy,materialsandwastemanagementandgreenbuildingdesign.
BillwaspreviouslyDeputyChairmanoftheWestern AustralianSustainabilityRoundtable,whichwascharged withprovidingadvicetoPremierGalluponimplementation oftheStateSustainabilityStrategy.Hehasalsoservedonthe WesternAustralianPlanningCommittee’sStatutory PlanningCommittee.Hewasamemberoftheprevious federalgovernment’sExpertWorkingGroupfor SustainableRegionalPlanning,developingmethodologies forstrategicplanningofregionalgrowthcentres.
References
Anderson,K.J.B.,S.S.Courter,T.McGlamery, T.M.Nathans-Kelly,andC.G.Nicometo. 2010. “UnderstandingEngineeringWorkandIdentity:A Cross-caseAnalysisofEngineerswithinSixFirms.”
EngineeringStudies 2(3):153–174.doi:10.1080/ 19378629.2010.519772
Andrady,A.L. 2015. PersistenceofPlasticLitterinthe OceansMarineAnthropogenicLitter,57–72.Cham: Springer.
Arrow,K.,B.Bolin,R.Costanza,P.Dasgupta,C.Folke, C.S.Holling,andB.-O.Jansson. 1995 “Economic Growth,CarryingCapacity,andtheEnvironment.” Science 268(5210):520.doi:10.1126/ science.268.5210.520
Berkes,F.,andC.Folke. 1998. “LinkingSocialand EcologicalSystemsforResilienceandSustainability.” LinkingSocialandEcologicalSystems:Management PracticesandSocialMechanismsforBuildingResilience 1(4):4.
Bloem,J.,M.VanDoorn,S.Duivestein,D.Excoffier, R.Maas,andE.VanOmmeren. 2014 TheFourth IndustrialRevolution.SogetiVINT.
Braungart,M.,andW.McDonough. 2002 CradletoCradle: RemakingtheWayWeMakeThings.1sted.NewYork: NorthPointPress.
Braungart,M.,andW.McDonough. 2013 TheUpcycle. BeyondSustainability-designingforAbundance.1sted. NewYork:NorthPointPress.
Bruckner,T.,I.Bashmakov,Y.Mulugetta,H.Chum,A.De laVegaNavarro,J.Edmonds,...E.Hertwich. 2014. EnergySystemsClimateChange2014:Mitigationof ClimateChange.ContributionofWorkingGroupIIIto theFifthAssessmentReportoftheIntergovernmental PanelonClimateChange,edO.Edenhofer,R.PichsMadruga,Y.Sokona,E.Farahani,S.Kadner,K. Seyboth,...J.C.Minx.CambridgeandNewYork: CambridgeUniversityPress. Availableat: https://www. ipcc.ch/pdf/assessment-repo rt/ar5/wg3/ipcc_wg3_ar5_ chapter7.pdf
Cradletocradleproductsinnovationinstitute. 2019 https:// www.c2ccertified.org/
Daly,H.E. 1974 “TheEconomicsoftheSteadyState.” The AmericanEconomicReview 64(2):15–21.
Daly,H.E. 1990. “TowardSomeOperationalPrinciplesof SustainableDevelopment.” EcologicalEconomics 2(1): 1–6. doi:10.1016/0921-8009(90)90010-R.
Easterlin,R.A. 2000. “TheWorldwideStandardofLiving since1800.” JournalofEconomicPerspectives 14(1):7–26. doi:10.1257/jep.14.1.7
Gartner. 2019 “OperationalTechnology.” https://www.gart ner.com/it-glossary/operational-technology-ot/ GlobalFootprintNetwork. 2019 “EcologicalFootprint.” https://www.footprintnetwork.org/our-work/ecologicalfootprint/ Gómez-Baggethun,E.,R.DeGroot,P.L.Lomas,and C.Montes. 2010 “TheHistoryofEcosystemServicesin EconomicTheoryandPractice:FromEarlyNotionsto MarketsandPaymentSchemes.” EcologicalEconomics 69 (6):1209–1218.doi:10.1016/j.ecolecon.2009.11.007. Grace,W. 2015. “SimulatingSustainability:AResources Perspective.” JournalofNaturalResourcesPolicy Research 191–220.doi:10.1080/19390459.2015.1050202. GroningenGrowthandDevelopmentCentre. 2010 “MadisonProject.” https://www.rug.nl/ggdc/historicalde velopment/maddison/original-maddison
Grooten,M.,andR.Almond 2018 LivingPlanetReport–2018:AimingHigher https://wwf.panda.org/knowledge_ hub/all_publications/living_planet_report_2018/ InternationalUnionforConservationofNature,&World WildlifeFund. 1980 WorldConservationStrategy:Living
ResourceConservationforSustainableDevelopment Gland,Switzerland:IUCN.
Jamison,A. 2013 TheMakingofGreenEngineers SustainableDevelopmentandtheHybridImagination Vol.20.SanRafael,Calif.:Morgan&Claypool.
Kamp,L. 2006. “EngineeringEducationinSustainable DevelopmentatDelftUniversityofTechnology.” JournalofCleanerProduction 14 (9):928–931. doi:10.1016/j.jclepro.2005.11.036.
Kershaw,P.J. 2018. ExploringthePotentialforAdopting AlternativeMaterialstoReduceMarinePlasticLitter UnitedNationsEnvironmentProgramme.
Kirkwood,C.W. 1998 SystemDynamicsMethods:AQuick Introduction.Tempe:ArizonaStateUniversity.
Korhonen,J.,A.Honkasalo,andJ.Seppälä. 2018 “Circular Economy:TheConceptandItsLimitations.” Ecological Economics 143:37–46.doi:10.1016/j.ecolecon.2017.06.041
LeBlanc,D. 2015 “TowardsIntegrationatLast?the SustainableDevelopmentGoalsasaNetworkof Targets.” SustainableDevelopment 23(3):176–187. doi:10.1002/sd.v23.3.
Lesthaeghe,R. 2011. “The” SecondDemographictransition”:AConceptualMapfortheUnderstandingofLate ModernDemographicDevelopmentsinFertilityand FamilyFormation.” In HistoricalSocialResearch/ HistorischeSozialforschung,179–218.GESIS-Leibniz InstitutefortheSocialSciences.
Leurent,H.,andO.Abbosh. 2018. DrivingtheSustainability ofProductionSystemswithFourthIndustrialRevolution Innovation.Geneva:WorldEconomicForum.
Maggio,G.,andG.Cacciola. 2012. “WhenWillOil,Natural Gas,andCoalPeak?” Fuel 98:111–123.doi:10.1016/j. fuel.2012.03.021
McNay,K. 2005 “TheImplicationsoftheDemographic TransitionforWomen,GirlsandGenderEquality: AReviewofDevelopingCountryEvidence.” Progressin DevelopmentStudies 5(2):115–134.doi:10.1191/ 1464993405ps109oa
Meadows, D.H.,D.L.Meadows,andJ.Randers. 1992 BeyondtheLimits.PostMills,VT:ChelseaGreen PublishingCompany.
Meadows,D.H.,D.L.Meadows,andJ.Randers. 2004. LimitstoGrowththe30YearUpdate.WhiteRiver Junction,VT:ChelseaGreenPublishingCompany. Meadows,D.H.,D.L.Meadows,J.Randers,and W.W.I.Behrens. 1972 TheLimitstoGrowth NewYork:UniverseBooks. MillenniumInstitute. 2019. “PlanningforaSustainable Future.” https://www.millennium-institute.org/ Prior,T.,D.Giurco,G.Mudd,L.Mason,andJ.Behrisch. 2012. “ResourceDepletion,PeakMineralsandthe ImplicationsforSustainableResourceManagement.” GlobalEnvironmentalChange 22(3):577–587. doi:10.1016/j.gloenvcha.2011.08.009
Reid,W.V.,H.A.Mooney,A.Cropper,D.Capistrano, S.R.Carpenter,K.Chopra,...R.Hassan. 2005 MillenniumEcosystemAssessment.Ecosystemsand HumanWell-being:Synthesis.Washington,DC:World ResourcesInstitute. Sheppard,S. 2009 EducatingEngineers:Designingforthe FutureoftheField.1sted.SanFrancisco,CA:Jossey-Bass. Shergold,P.,andI.Inkster. 1982 “CivilEngineeringandthe Admiralty:ThomasTredgold,EdwardDeasThomson andEarlySteamNavigation,1827–1828.” TheGreat Circle 4(1):41.
Stahel,W.R. 2016 “TheCircularEconomy.” NatureNews 531 (7595):435.doi:10.1038/531435a
Swain,R.B. 2018. “ACriticalAnalysisoftheSustainable DevelopmentGoals.” In HandbookofSustainability ScienceandResearch,341–355.Cham:Springer. UnitedNations. 2015. “TransformingOurWorld:The2030 AgendaforSustainableDevelopment.” ResolutionAdopted bytheGeneralAssembly 70(1).
Wackernagel,M.,andW.Rees. 1998 OurEcological Footprint:ReducingHumanImpactontheEarth.Vol.9. Philadelphia:NewSocietyPublishers. WorldCommissiononEnvironmentandDevelopment. 1987. OurCommonFuture.Oxford:OxfordUniversityPress. WorldFederationofEngineeringOrganisations. 2018. APlantoAdvancetheAchievementoftheUN SustainableDevelopmentGoalsthroughEngineering