UNIVERSITY OF THE AEGEAN 11th Panhellenic Conference on Informatics (PCI 2007), Patras, Greece.
THREE-DIMENSIONAL MULTIPLE LAYER EXTENDED TARGET MODELING FOR INVERSE SYNTHETIC APERTURE RADAR STUDIES IN TARGET IDENTIFICATION Presented by Theodoros Kostis PhD Candidate, Dept of Information & Communication Systems Engineering University of the Aegean, Karlovasi, 83200 Samos, Greece.
[18-20 of May 2007]
1 Introduction - Project Purpose Correct stereoscopic (three-dimensional) Identification Friend or Foe (IFF) automatic decision on a non-cooperative and very likely hostile target Contact will generally be unable to fire upon the illuminating radar due to the great distance and technology gap between the two adversaries. [enemy inability to secure a good lock on friendly radar]
2 Non-Cooperative & Stealthy Targets Optical Countermeasures - Camouflage
2.1 Need for Positive Identification Background : Janes on Non-Cooperative Target Identification Rules of Engagement (ROEs)
• F-22 : 90% ability deprivation • F-15 : IFF+NCTRecon modes resulting in majority of air-to-air engagements • F-18 : NTCR but no IFF • F-14 : IFF but no NCTR (needed AWACS clearance) Jane’s International Defence Review – June 01, 2001
2.2 Need for Positive Identification Microwave Domain
3 Target Classification Theory Main Methods Available • • • •
HRR – High Range Resolution Profiling ISAR – Inverse Synthetic Aperture Radar JEM – Jet Engine Modulation Comb HRR-JEM – Combined HRR & JEM
3.1 Focus on HRR & ISAR Radar Parameters
Movement Engine
STX(n,t)=Aeφ
Environment Model
Exciter
Target
Antenna Range Delay Delay 2Ro/c
SRX(n,t)=σeφ-Range Delay Windowing (Reduces Range Side-lobes)
MIXER Pulse Compression - Matched Filter Function - Dechirp
SREF(n,t)=eφ-Delay
SIF(n,t-nT)=σeφ-Range Delay-Dechirp
Low Pass FIltering for A/D Help
Analog to Digital Conversion
N 1 K 1
S DIG (n, k ) ( e ( n ,k ) ) n 0
k 0
Recorder
Target RCS (σ) vs Range Delay
3.2 Organisation Model for Radar Systems Design 3D Engine System Dynamics
Radar Platform
Matched Filter
Transmitter Type ie Tx Parameters Waveform Selection
correlation convolution procedures
Target Platform
Motion Provider
Antenna Type ie phased array parabolic
Ground Clutter and other clutter types
Electromagnetic Interference
Propagation of Radar Waves Modeling ie. Parabolic - Ray Tracing Hybrid - Custom - Custom Hybrid [Refraction - Diffraction]
Motion Provider
Target Type ie. rcs
All Other Noise ie. equipment noise
Dynamic Errors
Receiver Type
ie. Platform Motion Scanning Motion Vibration
Glint
Directional Interference ie. Jammer Chaff
ie Rx Parameters
General Simulation Parameters Information Extraction from Signals Received
Results Formation
ie Code Specific Considerations Sampling Rate
4 Worldspace - Simulation Geometry z
Pace Engine [Affine Transformations]
Height Range Axis
Radar Sensor
φ2
φ1 Scatterer Aejφ (x1,y1,z1)
n 1
Scatterer Aejφ (0,0,0)
R1 R2
1 θ1 θ2
45
R
y Cross Range Axis
x Slant Range Axis
Entity-Relationship [Database Approach]
4.1 Data Format Radar Line of Sight LOS
Resolution Cells Inclusion for ISAR Calculations
RS 20
X axis
RS 15
141
136
131
126
121
116
111
106
101
096
091
086
081
076
071
066
142
137
132
127
122
117
112
107
102
097
092
087
082
077
072
067
143
138
133
128
123
118
113
108
103
098
093
088
083
078
073
068
144
139
134
129
124
119
114
109
104
099
094
089
084
079
074
069
145
140
135
130
125
120
115
110
105
100
095
090
085
080
075
070
061
056
051
046
041
062
057
052
047
042
036
031
026
021
016
011
006
001
037
032
063
058
053
048
043
038
033
027
022
017
012
007
002
028
023
018
013
008
003
064
059
054
049
044
039
034
029
024
019
065
060
055
050
045
040
035
030
025
020
014
009
004
015
010
005
RS 10 RS 05 z axis
x axis
RS 01 45o
Y axis y axis
RADAR
Z axis
5 Target Modeling Considerations Reflectance Model principles : the ship is divided into one hundred and forty-five (145) square equal cells. Each of these cells produces an echo back at the radar which is modelled as a complex number (amplitude and phase) as shown in the equation below :
Reflectance Cell = RF
j IP e
5.1 DKMS Bismarck Upper Layer
5.2 DKMS Bismarck Lower Layer
6 Results The simulation provides : • a three dimensional environment. • a multiple scatterers multiple layer mathematical representation of a large naval vessel. • an entity-relationship description of the aforementioned model. • plus a pace engine that can provide movement of objects within the worldspace.
6.1 Slant Range Profiles
6.2 Inverse Synthetic Aparture Radar
6.3 HRR & ISAR Association TARGET SLANT RANGE PROFILE - FREQUENCY DOMAIN SIGNATURE
TARGET SLANT RANGE PROFILE - TIME DOMAIN HISTORY
h/θ amplitude/phase of the nth slant range cell of the synthetic range profile from the kth burst
Η/φ amplitude/phase of I and Q echo samples from the ith step of the kth burst Steps from 1 to i Bursts from 1 to k
RESULTS
Steps from 1 to n
PULSE 01
PULSE 02
PULSE 33
H/ˆ(1,1)
H/ˆ(1,2)
H/ˆ(1,33)
SLANT RANGE CELL 01
SLANT RANGE CELL 02
SLANT RANGE CELL 33
h/Ë(1,1)
h/Ë(1,2)
h/Ë(1,33)
E1 MULTILAYER MODEL - SRP Ant 1 (32)
4
2.5
BURST 1
-1
FFT
x 10
2
Reflectance Value
1.5
1
0.5
H/ˆ(32,2)
H/ˆ(32,33)
FFT-1
h/Ë(32,1)
h/Ë(32,2)
h/Ë(32,33) 0 0
FFT
FFT
FFT
RD(1,1)
RD(1,2)
RD(1,33)
5
TARGET SLANT RANGE PROFILE - PHYSICAL DOMAIN
10
15 20 Resolution Cell ID
25
30
35
E1 MULTILAYER MODEL - ISAR Ant 1 (32)
5
7
x 10
6 5
Catalina distance is 45 Km from target. Aspect Angle is 45 degrees.
Radar Sweep
4 Doppler
H/ˆ(32,1)
Steps from 1 to j
BURST 32
3 2
1
RD(32,1)
RD(32,2)
RD(32,33)
0
-1 0
FFT
FFT
FFT
RESOLUTION CELL 01
RESOLUTION CELL 02
RESOLUTION CELL 33
ISAR IMAGE - DOPPLER (HEIGHT) vs RESOLUTION CELLS
5
10
15 20 Resolution Cell ID
25
30
35
RD magnitude of the nth slant range cell and the jth doppler cell of the Range-Doppler image.
6.4 Vessel Height Ideal Case Resolution Cells vs Doppler 5
5
4
2.5
x 10
7
x 10
7
2
6
6
1.5
5
5
1
4
4
0.5
3
3
2
2
1
1
0
0
0
0
5
10
15
20
25
30
x 10
35
3 8 0 m m L 4 8 ,5 g ro o v e s , c a l. 5 2 o v e ra ll (1 4 ,9 6 " ) c a lib e r S K C /3 4
-1
-1 0
5
10
15
20
25
30
FuM O 23 (F u n k M e s s O rtu n g s g e ra te )
1 5 0 m m /L 5 5 (5 ,9 " ) S K C /2 8
35
0
5
10
15
20
25
30
35
6.5 Vessel Height Error Case Resolution Cells vs Doppler 5
4
2.5
x 10
7
x 10
4
2.5
x 10
2
2
6 1.5
1.5
5
1
1
0.5
4
0 0
0.5
3
5
10
15
20
25
30
35
5
10
15
20
25
30
35
5
7
x 10
6
0 0
5
10
15
20
25
30
35
2
5
4
3
1
380 mm L48,5 grooves, cal. 52 overall (14,96") caliber SK C/34
Usual Actual Result
2
1
0
0
-1 0
-1 0
5
10
15
20
25
30
FuMO 23 (FunkMess Ortungsgerate)
35
Not dependent on S/N 150 mm/L55 (5,9") SK C/28
Three-Dimensional Multiple Layer Extended Target Modeling for Inverse Synthetic Aperture Radar Studies in Target Identification
Are there any questions?
E-mail : tkostis@aegean.gr