Stateczność skarpy "Fundamentowanie 2"
________________________________________________________________________
Ćwiczenie nr 3 z przedmiotu
FUNDAMENTOWANIE II Obliczanie stateczności skarpy metodą Felleniusa
Opracował: Konsultował: inż. Bartłomiej Durak dr inż. Krzysztof Wilk ________________________________________________________________________
________________________________________________________________________
strona 1
Stateczność skarpy "Fundamentowanie 2" ________________________________________________________________________
METODA FELLENIUSA Metoda Felleniusa jest najstarszą z metod, które umożliwiają przeprowadzenie analizy stateczności dla różnych od prostoliniowej powierzchni poślizgu. Opracowana ona została na podstawie wyników badań Szwedzkiej Komisji Geotechnicznej, której prace prowadzone były w latach 1916-1925. Metoda ta wykorzystuje podział potencjalnej bryły osuwiskowej na bloki (paski) pionowe. Z powyższych względów metoda ta znana jest również pod nazwą metody Pettersona-Felleniusa lub metody szwedzkiej.W metodzie Felleniusa przyjęto następujące założenia: - powierzchnia poślizgu ma kształt walca cylindrycznego, - siły oddziaływania pomiędzy blokami są równoległe do podstawy bloku i nie wpływają na wartość reakcji normalnej do podstawy bloku oraz wartość sił oporu ścinania, - wskaźnik stateczności definiowany jest jako stosunek momentów sił biernych (utrzymujących równowagę) i sił czynnych (zsuwających). Wypadkowa sił oddziaływania pomiędzy blokami wywołuje wprawdzie moment przy analizie pojedynczego bloku, ale ze względu na wewnętrzny charakter tych sił wywołany przez nie moment dla całej bryły względem dowolnego punktu powinien być równy zeru. metoda Felleniusa daje z reguły wyniki niższe niż inne metody analizy stateczności. W porównaniu z metodą Bishopa różnice te wynoszą od 5% do 20%, a niekiedy nawet do 60%. Zaniżone wartości wskaźników stateczności stawiają tą metodę w grupie metod bezpiecznych a nawet asekuracyjnych. Pomimo tego metoda ta jest często stosowana w praktyce, szczególnie wówczas, gdy sposób określania parametrów wytrzymałościowych ośrodka jest niezbyt dokładny. Dużą zaletą metody Felleniusa jest jej prostota. Jawna postać wzorów powoduje, że jej praktyczne wykorzystanie nie wymaga stosowania drogich programów obliczeniowych i komputerów. 1. Sprawdzenie statecznośći skarpy -grunt spoisty, promień R = 8.102m Założenia projektowe
H = 3.5m ; nachylenie 1:1,5 Rodzaj gruntu
Iły
IL = 0.0 ρB.n = 20.0
kN m
3
cu.n = 35kPa
ϕu.n = 6.5° ρD.n = 20.0
kN m
3
strona 2
Stateczność skarpy "Fundamentowanie 2"
strona 3
Stateczność skarpy "Fundamentowanie 2" ________________________________________________________________________
0
Hsk = 3.5m
01
γ1.sk = 26° 9
10
1
2
3
4
5
γ2.sk = 35°
H
8 7 6
Ti
4.5 ⋅Hsk = 15.75 m
Si Ni Gi
4,5H
________________________________________________________________________ 1.1 Pas nr 1 A - pole powierzchni danego pasa α - kąt nachylenia powierzchni poślizgu do terenu S - siła zsuwająca T - siła utrzymająca W - ciężar bryły pasa N - siła normalna
A1 = 0.048m
2
α1 = 11° 2
W1 = A1 ⋅ρB.n ⋅1m = 0.048 ⋅m ⋅20.0 ⋅
kN
⋅m = 0.96 ⋅kN 3 m kN 2 S1 = ρB.n ⋅A1 ⋅1m ⋅sin ( α1) = 20.0 ⋅ ⋅0.048 ⋅m ⋅m ⋅sin ( 11 ⋅°) = 0.18 ⋅kN 3 m kN 2 N1 = ρB.n ⋅A1 ⋅1m ⋅cos ( α1) = 20.0 ⋅ ⋅0.048 ⋅m ⋅m ⋅cos ( 11 ⋅°) = 0.94 ⋅kN 3 m T1 = N1 ⋅tan ( ϕu.n) + cu.n ⋅A1 = 0.94 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.048 ⋅m = 1.79 ⋅kN 2
1.2 Pas nr 2 A2 = 0.137m
2
α2 = 14°
strona 4
Stateczność skarpy "Fundamentowanie 2" 2
W2 = A2 ⋅ρB.n ⋅1m = 0.137 ⋅m ⋅20.0 ⋅
kN
⋅m = 2.74 ⋅kN 3 m kN 2 S2 = ρB.n ⋅A2 ⋅1m ⋅sin ( α2) = 20.0 ⋅ ⋅0.137 ⋅m ⋅m ⋅sin ( 14 ⋅°) = 0.66 ⋅kN 3 m kN 2 N2 = ρB.n ⋅A2 ⋅1m ⋅cos ( α2) = 20.0 ⋅ ⋅0.137 ⋅m ⋅m ⋅cos ( 14 ⋅°) = 2.66 ⋅kN 3 m T2 = N2 ⋅tan ( ϕu.n) + cu.n ⋅A2 = 2.66 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.137 ⋅m = 5.1 ⋅kN 2
1.3 Pas nr 3 A3 = 0.214m
2
α3 = 17° 2
W3 = A3 ⋅ρB.n ⋅1m = 0.214 ⋅m ⋅20.0 ⋅
kN
⋅m = 4.28 ⋅kN 3 m kN 2 S3 = ρB.n ⋅A3 ⋅1m ⋅sin ( α3) = 20.0 ⋅ ⋅0.214 ⋅m ⋅m ⋅sin ( 17 ⋅°) = 1.25 ⋅kN 3 m kN 2 N3 = ρB.n ⋅A3 ⋅1m ⋅cos ( α3) = 20.0 ⋅ ⋅0.214 ⋅m ⋅m ⋅cos ( 17 ⋅°) = 4.09 ⋅kN 3 m T3 = N3 ⋅tan ( ϕu.n) + cu.n ⋅A3 = 4.09 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.214 ⋅m = 7.96 ⋅kN 2
1.4 Pas nr 4 A4 = 0.278m
2
α4 = 21° 2
W4 = A4 ⋅ρB.n ⋅1m = 0.278 ⋅m ⋅20.0 ⋅
kN
⋅m = 5.56 ⋅kN 3 m kN 2 S4 = ρB.n ⋅A4 ⋅1m ⋅sin ( α4) = 20.0 ⋅ ⋅0.278 ⋅m ⋅m ⋅sin ( 21 ⋅°) = 1.99 ⋅kN 3 m kN 2 N4 = ρB.n ⋅A4 ⋅1m ⋅cos ( α4) = 20.0 ⋅ ⋅0.278 ⋅m ⋅m ⋅cos ( 21 ⋅°) = 5.19 ⋅kN 3 m T4 = N4 ⋅tan ( ϕu.n) + cu.n ⋅A4 = 5.19 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.278 ⋅m = 10.32 ⋅kN 2
1.5 Pas nr 5 A5 = 0.328m
2
α5 = 24°
kN 2 W5 = A5 ⋅ρB.n ⋅1m = 0.328 ⋅m ⋅20.0 ⋅ ⋅m = 6.56 ⋅kN 3 m
strona 5
Stateczność skarpy "Fundamentowanie 2" S5 = ρB.n ⋅A5 ⋅1m ⋅sin ( α5) = 20.0 ⋅
kN 3
⋅0.328 ⋅m ⋅m ⋅sin ( 24 ⋅°) = 2.67 ⋅kN 2
m kN 2 N5 = ρB.n ⋅A5 ⋅1m ⋅cos ( α5) = 20.0 ⋅ ⋅0.328 ⋅m ⋅m ⋅cos ( 24 ⋅°) = 5.99 ⋅kN 3 m T5 = N5 ⋅tan ( ϕu.n) + cu.n ⋅A5 = 5.99 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.328 ⋅m = 12.16 ⋅kN 2
1.6 Pas nr 6 A6 = 0.363m
2
α6 = 27° 2
W6 = A6 ⋅ρB.n ⋅1m = 0.363 ⋅m ⋅20.0 ⋅
kN
⋅m = 7.26 ⋅kN 3 m kN 2 S6 = ρB.n ⋅A6 ⋅1m ⋅sin ( α6) = 20.0 ⋅ ⋅0.363 ⋅m ⋅m ⋅sin ( 27 ⋅°) = 3.3 ⋅kN 3 m kN 2 N6 = ρB.n ⋅A6 ⋅1m ⋅cos ( α6) = 20.0 ⋅ ⋅0.363 ⋅m ⋅m ⋅cos ( 27 ⋅°) = 6.47 ⋅kN 3 m T6 = N6 ⋅tan ( ϕu.n) + cu.n ⋅A6 = 6.47 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.363 ⋅m = 13.44 ⋅kN 2
1.7 Pas nr 7 A7 = 0.381m
2
α7 = 31° 2
W7 = A7 ⋅ρB.n ⋅1m = 0.381 ⋅m ⋅20.0 ⋅
kN
⋅m = 7.62 ⋅kN 3 m kN 2 S7 = ρB.n ⋅A7 ⋅1m ⋅sin ( α7) = 20.0 ⋅ ⋅0.381 ⋅m ⋅m ⋅sin ( 31 ⋅°) = 3.92 ⋅kN 3 m kN 2 N7 = ρB.n ⋅A7 ⋅1m ⋅cos ( α7) = 20.0 ⋅ ⋅0.381 ⋅m ⋅m ⋅cos ( 31 ⋅°) = 6.53 ⋅kN 3 m T7 = N7 ⋅tan ( ϕu.n) + cu.n ⋅A7 = 6.53 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.381 ⋅m = 14.08 ⋅kN 2
1.8 Pas nr 8 A8 = 0.381m
2
α8 = 35° 2
W8 = A8 ⋅ρB.n ⋅1m = 0.381 ⋅m ⋅20.0 ⋅
kN m
S8 = ρB.n ⋅A8 ⋅1m ⋅sin ( α8) = 20.0 ⋅
kN m
3
3
⋅m = 7.62 ⋅kN
⋅0.381 ⋅m ⋅m ⋅sin ( 35 ⋅°) = 4.37 ⋅kN 2
strona 6
Stateczność skarpy "Fundamentowanie 2" N8 = ρB.n ⋅A8 ⋅1m ⋅cos ( α8) = 20.0 ⋅
kN m
3
⋅0.381 ⋅m ⋅m ⋅cos ( 35 ⋅°) = 6.24 ⋅kN 2
T8 = N8 ⋅tan ( ϕu.n) + cu.n ⋅A8 = 6.24 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.381 ⋅m = 14.05 ⋅kN 2
1.9 Pas nr 9 A9 = 0.360m
2
α9 = 39° 2
W9 = A9 ⋅ρB.n ⋅1m = 0.360 ⋅m ⋅20.0 ⋅
kN m
S9 = ρB.n ⋅A9 ⋅1m ⋅sin ( α9) = 20.0 ⋅
kN m
N9 = ρB.n ⋅A9 ⋅1m ⋅cos ( α9) = 20.0 ⋅
3
⋅m = 7.2 ⋅kN
⋅0.360 ⋅m ⋅m ⋅sin ( 39 ⋅°) = 4.53 ⋅kN 2
kN m
3
3
⋅0.360 ⋅m ⋅m ⋅cos ( 39 ⋅°) = 5.6 ⋅kN 2
T9 = N9 ⋅tan ( ϕu.n) + cu.n ⋅A9 = 5.6 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.360 ⋅m = 13.24 ⋅kN 2
1.10 Pas nr 10 A10 = 0.313m
2
α10 = 43° 2
W10 = A10 ⋅ρB.n ⋅1m = 0.313 ⋅m ⋅20.0 ⋅
kN m
S10 = ρB.n ⋅A10 ⋅1m ⋅sin ( α10) = 20.0 ⋅
kN m
N10 = ρB.n ⋅A10 ⋅1m ⋅cos ( α10) = 20.0 ⋅
3
3
⋅0.313 ⋅m ⋅m ⋅sin ( 43 ⋅°) = 4.27 ⋅kN 2
kN m
⋅m = 6.26 ⋅kN
3
⋅0.313 ⋅m ⋅m ⋅cos ( 43 ⋅°) = 4.58 ⋅kN 2
T10 = N10 ⋅tan ( ϕu.n) + cu.n ⋅A10 = 4.58 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.313 ⋅m = 11.48 ⋅kN 2
1.11 Pas nr 11 A11 = 0.236m
2
α11 = 47°
kN 2 W11 = A11 ⋅ρB.n ⋅1m = 0.236 ⋅m ⋅20.0 ⋅ ⋅m = 4.72 ⋅kN 3 m S11 = ρB.n ⋅A11 ⋅1m ⋅sin ( α11) = 20.0 ⋅
kN m
N11 = ρB.n ⋅A11 ⋅1m ⋅cos ( α11) = 20.0 ⋅
3
⋅0.236 ⋅m ⋅m ⋅sin ( 47 ⋅°) = 3.45 ⋅kN
kN m
3
2
⋅0.236 ⋅m ⋅m ⋅cos ( 47 ⋅°) = 3.22 ⋅kN 2
strona 7
Stateczność skarpy "Fundamentowanie 2" T11 = N11 ⋅tan ( ϕu.n) + cu.n ⋅A11 = 3.22 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.236 ⋅m = 8.63 ⋅kN 2
1.12 Pas nr 12 A12 = 0.236m
2
α12 = 47°
kN 2 W12 = A12 ⋅ρB.n ⋅1m = 0.236 ⋅m ⋅20.0 ⋅ ⋅m = 4.72 ⋅kN 3 m S12 = ρB.n ⋅A12 ⋅1m ⋅sin ( α12) = 20.0 ⋅
kN m
N12 = ρB.n ⋅A12 ⋅1m ⋅cos ( α12) = 20.0 ⋅
3
⋅0.236 ⋅m ⋅m ⋅sin ( 47 ⋅°) = 3.45 ⋅kN
kN m
3
2
⋅0.236 ⋅m ⋅m ⋅cos ( 47 ⋅°) = 3.22 ⋅kN 2
T12 = N12 ⋅tan ( ϕu.n) + cu.n ⋅A12 = 3.22 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.236 ⋅m = 8.63 ⋅kN 2
( T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12) ( S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12)
n =
1.79 ⋅kN + 5.1 ⋅kN + 7.96 ⋅kN + 10.32 ⋅kN + 12.16 ⋅kN + 13.44 ⋅kN + 14.08 ⋅kN + 14.05 ⋅kN + 13.24 ⋅kN + 11.48 ⋅kN + 8.63 ⋅kN + 8.63 ⋅kN n = 0.18 ⋅kN + 0.66 ⋅kN + 1.25 ⋅kN + 1.99 ⋅kN + 2.67 ⋅kN + 3.3 ⋅kN + 3.92 ⋅kN + 4.37 ⋅kN + 4.53 ⋅kN + 4.27 ⋅kN + 3.45 ⋅kN + 3.45 ⋅kN
= 3.551 > 1.
M0 = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12 M0 = 0.18 ⋅kN + 0.66 ⋅kN + 1.25 ⋅kN + 1.99 ⋅kN + 2.67 ⋅kN + 3.3 ⋅kN = 34.04 ⋅kN + 3.92 ⋅kN + 4.37 ⋅kN + 4.53 ⋅kN + 4.27 ⋅kN + 3.45 ⋅kN + 3.45 ⋅kN Mu = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12 Mu = 1.79 ⋅kN + 5.1 ⋅kN + 7.96 ⋅kN + 10.32 ⋅kN + 12.16 ⋅kN + 13.44 ⋅kN = 103.62 ⋅kN + 14.08 ⋅kN + 14.05 ⋅kN + 13.24 ⋅kN + 11.48 ⋅kN Mu M0
=
103.62 ⋅kN = 3.044 > 1. 34.04 ⋅kN
________________________________________________________________________ 2. Sprawdzenie statecznośći skarpy -grunt spoisty, promień R = 6.100m Założenia projektowe
H = 3.5m ; nachylenie 1:1,5 Rodzaj gruntu IL = 0.0
Iły cu.n = 35kPa
strona 8
Stateczność skarpy "Fundamentowanie 2" ρB.n = 20.0
kN m
3
ϕu.n = 6.5° ρD.n = 20.0
kN m
3
________________________________________________________________________
0
Hsk = 3.5m
01
1
2
3
4
5
m +1
γ1.sk = 26° H
1− HK iλ = 9 10 8 V + A' c' ctgΦ ' d 7 6
Ti Si Ni Gi
γ2.sk = 35°
4.5 ⋅Hsk = 15.75 m
4,5H
________________________________________________________________________ 2.1 Pas nr 1
A - pole powierzchni danego pasa α - kąt nachylenia powierzchni poślizgu do terenu S - siła zsuwająca T - siła utrzymająca W - ciężar bryły pasa N - siła normalna
A1 = 0.192m
2
α1 = −10°
kN 2 W1 = A1 ⋅ρB.n ⋅1m = 0.192 ⋅m ⋅20.0 ⋅ ⋅m = 3.84 ⋅kN 3 m
strona 9
Stateczność skarpy "Fundamentowanie 2" S1 = ρB.n ⋅A1 ⋅1m ⋅sin ( α1) = 20.0 ⋅
kN 3
⋅0.192 ⋅m ⋅m ⋅sin ( −10 ⋅°) = −0.67 ⋅kN 2
m kN 2 N1 = ρB.n ⋅A1 ⋅1m ⋅cos ( α1) = 20.0 ⋅ ⋅0.192 ⋅m ⋅m ⋅cos ( −10 ⋅°) = 3.78 ⋅kN 3 m T1 = N1 ⋅tan ( ϕu.n) + cu.n ⋅A1 = 3.78 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.192 ⋅m = 7.15 ⋅kN 2
2.2 Pas nr 2 A2 = 0.552m
2
α2 = −10°
kN 2 W2 = A2 ⋅ρB.n ⋅1m = 0.552 ⋅m ⋅20.0 ⋅ ⋅m = 11.04 ⋅kN 3 m kN 2 S2 = ρB.n ⋅A2 ⋅1m ⋅sin ( α2) = 20.0 ⋅ ⋅0.552 ⋅m ⋅m ⋅sin ( −10 ⋅°) = −1.92 ⋅kN 3 m kN 2 N2 = ρB.n ⋅A2 ⋅1m ⋅cos ( α2) = 20.0 ⋅ ⋅0.552 ⋅m ⋅m ⋅cos ( −10 ⋅°) = 10.87 ⋅kN 3 m T2 = N2 ⋅tan ( ϕu.n) + cu.n ⋅A2 = 10.87 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.552 ⋅m = 20.56 ⋅kN 2
2.3 Pas nr 3 A3 = 0.868m
2
α 3 = − 4° 2
W3 = A3 ⋅ρB.n ⋅1m = 0.868 ⋅m ⋅20.0 ⋅
kN
⋅m = 17.36 ⋅kN 3 m kN 2 S3 = ρB.n ⋅A3 ⋅1m ⋅sin ( α3) = 20.0 ⋅ ⋅0.868 ⋅m ⋅m ⋅sin ( −4 ⋅°) = −1.21 ⋅kN 3 m kN 2 N3 = ρB.n ⋅A3 ⋅1m ⋅cos ( α3) = 20.0 ⋅ ⋅0.868 ⋅m ⋅m ⋅cos ( −4 ⋅°) = 17.3 ⋅kN 3 m T3 = N3 ⋅tan ( ϕu.n) + cu.n ⋅A3 = 17.3 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.868 ⋅m = 32.35 ⋅kN 2
2.4 Pas nr 4 A4 = 1.142m
2
α4 = 2°
kN 2 W4 = A4 ⋅ρB.n ⋅1m = 1.142 ⋅m ⋅20.0 ⋅ ⋅m = 22.84 ⋅kN 3 m kN 2 S4 = ρB.n ⋅A4 ⋅1m ⋅sin ( α4) = 20.0 ⋅ ⋅1.142 ⋅m ⋅m ⋅sin ( 2 ⋅°) = 0.8 ⋅kN 3 m kN 2 N4 = ρB.n ⋅A4 ⋅1m ⋅cos ( α4) = 20.0 ⋅ ⋅1.142 ⋅m ⋅m ⋅cos ( 2 ⋅°) = 22.83 ⋅kN 3 m T4 = N4 ⋅tan ( ϕu.n) + cu.n ⋅A4 = 22.83 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.142 ⋅m = 42.57 ⋅kN 2
strona 10
Stateczność skarpy "Fundamentowanie 2"
2.5 Pas nr 5 A5 = 1.37m
2
α5 = 8°
kN 2 W5 = A5 ⋅ρB.n ⋅1m = 1.37 ⋅m ⋅20.0 ⋅ ⋅m = 27.4 ⋅kN 3 m kN 2 S5 = ρB.n ⋅A5 ⋅1m ⋅sin ( α5) = 20.0 ⋅ ⋅1.37 ⋅m ⋅m ⋅sin ( 8 ⋅°) = 3.81 ⋅kN 3 m kN 2 N5 = ρB.n ⋅A5 ⋅1m ⋅cos ( α5) = 20.0 ⋅ ⋅1.37 ⋅m ⋅m ⋅cos ( 8 ⋅°) = 27.13 ⋅kN 3 m T5 = N5 ⋅tan ( ϕu.n) + cu.n ⋅A5 = 27.13 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.37 ⋅m = 51.04 ⋅kN 2
2.6 Pas nr 6 A6 = 1.560m
2
α6 = 14°
kN 2 W6 = A6 ⋅ρB.n ⋅1m = 1.560 ⋅m ⋅20.0 ⋅ ⋅m = 31.2 ⋅kN 3 m kN 2 S6 = ρB.n ⋅A6 ⋅1m ⋅sin ( α6) = 20.0 ⋅ ⋅1.560 ⋅m ⋅m ⋅sin ( 14 ⋅°) = 7.55 ⋅kN 3 m kN 2 N6 = ρB.n ⋅A6 ⋅1m ⋅cos ( α6) = 20.0 ⋅ ⋅1.560 ⋅m ⋅m ⋅cos ( 14 ⋅°) = 30.27 ⋅kN 3 m T6 = N6 ⋅tan ( ϕu.n) + cu.n ⋅A6 = 30.27 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.560 ⋅m = 58.05 ⋅kN 2
2.7 Pas nr 7 A7 = 1.70m
2
α7 = 20°
kN 2 W7 = A7 ⋅ρB.n ⋅1m = 1.70 ⋅m ⋅20.0 ⋅ ⋅m = 34 ⋅kN 3 m kN 2 S7 = ρB.n ⋅A7 ⋅1m ⋅sin ( α7) = 20.0 ⋅ ⋅1.70 ⋅m ⋅m ⋅sin ( 20 ⋅°) = 11.63 ⋅kN 3 m kN 2 N7 = ρB.n ⋅A7 ⋅1m ⋅cos ( α7) = 20.0 ⋅ ⋅1.70 ⋅m ⋅m ⋅cos ( 20 ⋅°) = 31.95 ⋅kN 3 m T7 = N7 ⋅tan ( ϕu.n) + cu.n ⋅A7 = 31.95 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.70 ⋅m = 63.14 ⋅kN 2
2.8 Pas nr 8 A8 = 1.79m
2
α8 = 27°
strona 11
Stateczność skarpy "Fundamentowanie 2" 2
W8 = A8 ⋅ρB.n ⋅1m = 1.79 ⋅m ⋅20.0 ⋅
kN m
S8 = ρB.n ⋅A8 ⋅1m ⋅sin ( α8) = 20.0 ⋅
kN m
N8 = ρB.n ⋅A8 ⋅1m ⋅cos ( α8) = 20.0 ⋅
3
3
⋅1.79 ⋅m ⋅m ⋅sin ( 27 ⋅°) = 16.25 ⋅kN 2
kN m
⋅m = 35.8 ⋅kN
3
⋅1.79 ⋅m ⋅m ⋅cos ( 27 ⋅°) = 31.9 ⋅kN 2
T8 = N8 ⋅tan ( ϕu.n) + cu.n ⋅A8 = 31.9 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.79 ⋅m = 66.28 ⋅kN 2
2.9 Pas nr 9 A9 = 1.74m
2
α9 = 33° 2
W9 = A9 ⋅ρB.n ⋅1m = 1.74 ⋅m ⋅20.0 ⋅
kN m
S9 = ρB.n ⋅A9 ⋅1m ⋅sin ( α9) = 20.0 ⋅
kN m
N9 = ρB.n ⋅A9 ⋅1m ⋅cos ( α9) = 20.0 ⋅
3
3
⋅1.74 ⋅m ⋅m ⋅sin ( 33 ⋅°) = 18.95 ⋅kN 2
kN m
⋅m = 34.8 ⋅kN
3
⋅1.74 ⋅m ⋅m ⋅cos ( 33 ⋅°) = 29.19 ⋅kN 2
T9 = N9 ⋅tan ( ϕu.n) + cu.n ⋅A9 = 29.19 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.74 ⋅m = 64.23 ⋅kN 2
2.10 Pas nr 10 A10 = 1.43m
2
α10 = 40° 2
W10 = A10 ⋅ρB.n ⋅1m = 1.43 ⋅m ⋅20.0 ⋅
kN m
S10 = ρB.n ⋅A10 ⋅1m ⋅sin ( α10) = 20.0 ⋅
3
kN m
N10 = ρB.n ⋅A10 ⋅1m ⋅cos ( α10) = 20.0 ⋅
3
⋅1.43 ⋅m ⋅m ⋅sin ( 40 ⋅°) = 18.38 ⋅kN
kN m
⋅m = 28.6 ⋅kN
3
2
⋅1.43 ⋅m ⋅m ⋅cos ( 40 ⋅°) = 21.91 ⋅kN 2
T10 = N10 ⋅tan ( ϕu.n) + cu.n ⋅A10 = 21.91 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.43 ⋅m = 52.55 ⋅kN 2
2.11 Pas nr 11 A11 = 1.00m
2
α11 = 48°
kN 2 W11 = A11 ⋅ρB.n ⋅1m = 1.00 ⋅m ⋅20.0 ⋅ ⋅m = 20 ⋅kN 3 m
strona 12
Stateczność skarpy "Fundamentowanie 2" S11 = ρB.n ⋅A11 ⋅1m ⋅sin ( α11) = 20.0 ⋅
kN m
N11 = ρB.n ⋅A11 ⋅1m ⋅cos ( α11) = 20.0 ⋅
3
⋅1.00 ⋅m ⋅m ⋅sin ( 48 ⋅°) = 14.86 ⋅kN 2
kN m
3
⋅1.00 ⋅m ⋅m ⋅cos ( 48 ⋅°) = 13.38 ⋅kN 2
T11 = N11 ⋅tan ( ϕu.n) + cu.n ⋅A11 = 13.38 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅1.00 ⋅m = 36.52 ⋅kN 2
2.12 Pas nr 12 A12 = 0.38m
2
α12 = 57°
kN 2 W12 = A12 ⋅ρB.n ⋅1m = 0.38 ⋅m ⋅20.0 ⋅ ⋅m = 7.6 ⋅kN 3 m S12 = ρB.n ⋅A12 ⋅1m ⋅sin ( α12) = 20.0 ⋅
kN m
N12 = ρB.n ⋅A12 ⋅1m ⋅cos ( α12) = 20.0 ⋅
3
⋅0.38 ⋅m ⋅m ⋅sin ( 57 ⋅°) = 6.37 ⋅kN
kN m
3
2
⋅0.38 ⋅m ⋅m ⋅cos ( 57 ⋅°) = 4.14 ⋅kN 2
T12 = N12 ⋅tan ( ϕu.n) + cu.n ⋅A12 = 4.14 ⋅kN ⋅tan ( 6.5 ⋅°) + 35 ⋅kPa ⋅0.38 ⋅m = 13.77 ⋅kN 2
( T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12) ( S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12)
n =
7.15 ⋅kN + 20.56 ⋅kN + 32.35 ⋅kN + 42.57 ⋅kN + 51.04 ⋅kN + 58.05 ⋅kN + 63.14 ⋅kN + 66.28 ⋅kN + 64.23 ⋅kN + 52.55 ⋅kN + 36.52 ⋅kN + 13.77 ⋅kN n = −0.67 ⋅kN + −1.92 ⋅kN + −1.21 ⋅kN + 0.8 ⋅kN + 3.81 ⋅kN + 7.55 ⋅kN + 11.63 ⋅kN + 16.25 ⋅kN + 18.95 ⋅kN + 18.38 ⋅kN + 14.86 ⋅kN + 6.37 ⋅kN
= 5.361 > 1
M0 = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12 M0 = −0.67 ⋅kN − 1.92 ⋅kN − 1.21 ⋅kN + 0.8 ⋅kN + 3.81 ⋅kN + 7.55 ⋅kN + 11.63 ⋅kN + 16.25 ⋅kN + 18.95 ⋅kN + 18.38 ⋅kN + 14.86 ⋅kN + 6.37 ⋅kN
= 94.8 ⋅kN
Mu = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12 Mu = 7.15 ⋅kN + 20.56 ⋅kN + 32.35 ⋅kN + 42.57 ⋅kN + 51.04 ⋅kN + 58.05 ⋅kN + 63.14 ⋅kN + 66.28 ⋅kN + 64.23 ⋅kN + 52.55 ⋅kN + 36.52 ⋅kN + 13.77 ⋅kN Mu M0
=
= 508.21
508.21 ⋅kN = 5.361 > 1. 94.8 ⋅kN
________________________________________________________________________ 3. Sprawdzenie statecznośći skarpy -grunt lużny,płaszczyzna poślizgu równoległa do
strona 13
Stateczność skarpy "Fundamentowanie 2" płaszczyzny skarpy. Kąt nachylenia skarpy 34 deg Założenia projektowe
H = 3.5m ; nachylenie 1:1,5 Rodzaj gruntu
Piasek drobny
ID = 0.5 ρB.n = 16.5
kN m
3
cu.n = 0kPa
ϕu.n = 30.5° ρD.n = 16.5
kN m
3
________________________________________________________________________
________________________________________________________________________
strona 14
Stateczność skarpy "Fundamentowanie 2"
3.1 Pas nr 1
A - pole powierzchni danego pasa α - kąt nachylenia powierzchni poślizgu do terenu S - siła zsuwająca T - siła utrzymająca W - ciężar bryły pasa N - siła normalna
A1 = 0.144m
2
α1 = 0°
kN 2 W1 = A1 ⋅ρB.n ⋅1m = 0.144 ⋅m ⋅16.5 ⋅ ⋅m = 2.376 ⋅kN 3 m kN 2 S1 = ρB.n ⋅A1 ⋅1m ⋅sin ( α1) = 16.5 ⋅ ⋅0.144 ⋅m ⋅m ⋅sin ( 0 ⋅°) = 0 ⋅kN 3 m kN 2 N1 = ρB.n ⋅A1 ⋅1m ⋅cos ( α1) = 16.5 ⋅ ⋅0.144 ⋅m ⋅m ⋅cos ( 0 ⋅°) = 2.38 ⋅kN 3 m T1 = N1 ⋅tan ( ϕu.n) + cu.n ⋅A1 = 2.38 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.144 ⋅m = 1.4 ⋅kN 2
3.2 Pas nr 2 A2 = 0.431m
2
α2 = 0° 2
W2 = A2 ⋅ρB.n ⋅1m = 0.431 ⋅m ⋅16.5 ⋅
kN m
S2 = ρB.n ⋅A2 ⋅1m ⋅sin ( α2) = 16.5 ⋅
kN 3
3
⋅m = 7.112 ⋅kN
⋅0.431 ⋅m ⋅m ⋅sin ( 0 ⋅°) = 0 ⋅kN 2
m kN 2 N2 = ρB.n ⋅A2 ⋅1m ⋅cos ( α2) = 16.5 ⋅ ⋅0.431 ⋅m ⋅m ⋅cos ( 0 ⋅°) = 7.11 ⋅kN 3 m T2 = N2 ⋅tan ( ϕu.n) + cu.n ⋅A2 = 7.11 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.431 ⋅m = 4.19 ⋅kN 2
3.3 Pas nr 3 A3 = 0.571m
2
α3 = 34° 2
W3 = A3 ⋅ρB.n ⋅1m = 0.571 ⋅m ⋅16.5 ⋅
kN m
3
⋅m = 9.421 ⋅kN
strona 15
Stateczność skarpy "Fundamentowanie 2" S3 = ρB.n ⋅A3 ⋅1m ⋅sin ( α3) = 16.5 ⋅
kN 3
⋅0.571 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 2
m kN 2 N3 = ρB.n ⋅A3 ⋅1m ⋅cos ( α3) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.8 ⋅kN 3 m T3 = N3 ⋅tan ( ϕu.n) + cu.n ⋅A3 = 7.8 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.571 ⋅m = 4.59 ⋅kN 2
3.4 Pas nr 4 A4 = 0.5711m
2
α4 = 34°
kN 2 W4 = A4 ⋅ρB.n ⋅1m = 0.5711 ⋅m ⋅16.5 ⋅ ⋅m = 9.423 ⋅kN 3 m kN 2 S4 = ρB.n ⋅A4 ⋅1m ⋅sin ( α4) = 16.5 ⋅ ⋅0.5711 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 3 m kN 2 N4 = ρB.n ⋅A4 ⋅1m ⋅cos ( α4) = 16.5 ⋅ ⋅0.5711 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.81 ⋅kN 3 m T4 = N4 ⋅tan ( ϕu.n) + cu.n ⋅A4 = 7.81 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.5711 ⋅m = 4.6 ⋅kN 2
3.5 Pas nr 5 A5 = 0.571m
2
α5 = 34° 2
W5 = A5 ⋅ρB.n ⋅1m = 0.571 ⋅m ⋅16.5 ⋅
kN
⋅m = 9.421 ⋅kN 3 m kN 2 S5 = ρB.n ⋅A5 ⋅1m ⋅sin ( α5) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 3 m kN 2 N5 = ρB.n ⋅A5 ⋅1m ⋅cos ( α5) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.81 ⋅kN 3 m T5 = N5 ⋅tan ( ϕu.n) + cu.n ⋅A5 = 7.81 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.571 ⋅m = 4.6 ⋅kN 2
3.6 Pas nr 6 A6 = 0.571m
2
α6 = 34° 2
W6 = A6 ⋅ρB.n ⋅1m = 0.571 ⋅m ⋅16.5 ⋅
kN m
3
⋅m = 9.421 ⋅kN
strona 16
Stateczność skarpy "Fundamentowanie 2" S6 = ρB.n ⋅A6 ⋅1m ⋅sin ( α6) = 16.5 ⋅
kN 3
⋅0.571 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 2
m kN 2 N6 = ρB.n ⋅A6 ⋅1m ⋅cos ( α6) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.81 ⋅kN 3 m T6 = N6 ⋅tan ( ϕu.n) + cu.n ⋅A6 = 7.81 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.571 ⋅m = 4.6 ⋅kN 2
3.7 Pas nr 7 A7 = 0.571m
2
α7 = 34° 2
W7 = A7 ⋅ρB.n ⋅1m = 0.571 ⋅m ⋅16.5 ⋅
kN
⋅m = 9.421 ⋅kN 3 m kN 2 S7 = ρB.n ⋅A7 ⋅1m ⋅sin ( α7) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 3 m kN 2 N7 = ρB.n ⋅A7 ⋅1m ⋅cos ( α7) = 16.5 ⋅ ⋅0.571 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.81 ⋅kN 3 m T7 = N7 ⋅tan ( ϕu.n) + cu.n ⋅A7 = 7.81 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.571 ⋅m = 4.6 ⋅kN 2
3.8 Pas nr 8 A8 = 0.571m
2
α8 = 34° 2
W8 = A8 ⋅ρB.n ⋅1m = 0.571 ⋅m ⋅16.5 ⋅
kN m
S8 = ρB.n ⋅A8 ⋅1m ⋅sin ( α8) = 16.5 ⋅
kN m
N8 = ρB.n ⋅A8 ⋅1m ⋅cos ( α8) = 16.5 ⋅
3
⋅m = 9.421 ⋅kN
⋅0.571 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 5.27 ⋅kN 2
kN m
3
3
⋅0.571 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 7.81 ⋅kN 2
T8 = N8 ⋅tan ( ϕu.n) + cu.n ⋅A8 = 31.9 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.571 ⋅m = 18.79 ⋅kN 2
3.9 Pas nr 9 A9 = 0.431m
2
α9 = 34° 2
W9 = A9 ⋅ρB.n ⋅1m = 0.431 ⋅m ⋅16.5 ⋅
kN m
S9 = ρB.n ⋅A9 ⋅1m ⋅sin ( α9) = 16.5 ⋅
kN m
3
3
⋅m = 7.112 ⋅kN
⋅0.431 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 3.98 ⋅kN 2
strona 17
Stateczność skarpy "Fundamentowanie 2" N9 = ρB.n ⋅A9 ⋅1m ⋅cos ( α9) = 16.5 ⋅
kN m
3
⋅0.431 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 5.9 ⋅kN 2
T9 = N9 ⋅tan ( ϕu.n) + cu.n ⋅A9 = 5.9 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.431 ⋅m = 3.48 ⋅kN 2
3.10 Pas nr 10 A10 = 0.144m
2
α10 = 34° 2
W10 = A10 ⋅ρB.n ⋅1m = 0.144 ⋅m ⋅16.5 ⋅
kN m
S10 = ρB.n ⋅A10 ⋅1m ⋅sin ( α10) = 16.5 ⋅
kN m
N10 = ρB.n ⋅A10 ⋅1m ⋅cos ( α10) = 16.5 ⋅
3
3
⋅0.144 ⋅m ⋅m ⋅sin ( 34 ⋅°) = 1.33 ⋅kN
kN m
⋅m = 2.376 ⋅kN
3
2
⋅0.144 ⋅m ⋅m ⋅cos ( 34 ⋅°) = 1.97 ⋅kN 2
T10 = N10 ⋅tan ( ϕu.n) + cu.n ⋅A10 = 1.97 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.144 ⋅m = 1.16 ⋅kN 2
( T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10) ( S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10)
n =
1.4 ⋅kN + 4.19 ⋅kN + 4.59 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN + 66.28 ⋅kN + 3.48 ⋅kN + 1.16 ⋅kN + 36.52 ⋅kN + 13.77 ⋅kN n = 0 ⋅kN + 0 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 16.25 ⋅kN + 3.98 ⋅kN + 1.33 ⋅kN + 14.86 ⋅kN + 6.37 ⋅kN
= 2.166 > 1
M0 = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 M0 = 0 ⋅kN + 0 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 5.27 ⋅kN + 16.25 ⋅kN + 3.98 ⋅kN + 1.33 ⋅kN + 14.86 ⋅kN + 6.37 ⋅kN
= 69.14 ⋅kN
Mu = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 + T11 + T12 Mu = 1.4 ⋅kN + 4.19 ⋅kN + 4.59 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN + 4.6 ⋅kN ... = 149.79 ⋅kN + 66.28 ⋅kN + 3.48 ⋅kN + 1.16 ⋅kN + 36.52 ⋅kN + 13.77 ⋅kN Mu M0
=
149.79 ⋅kN = 2.166 69.14 ⋅kN
. > 1.
________________________________________________________________________ 4.Sprawdzenie statecznośći skarpy -grunt lużny,płaszczyzna poślizgu równoległa do płaszczyzny skarpy. Kąt nachylenia skarpy 26 deg Założenia projektowe
strona 18
Stateczność skarpy "Fundamentowanie 2"
H = 3.5m ; nachylenie 1:1,5 Rodzaj gruntu
Piasek drobny
ID = 0.5 ρB.n = 16.5
kN m
3
cu.n = 0kPa
ϕu.n = 30.5° ρD.n = 16.5
kN m
3
________________________________________________________________________
________________________________________________________________________
4.1 Pas nr 1 A - pole powierzchni danego pasa α - kąt nachylenia powierzchni poślizgu do terenu S - siła zsuwająca T - siła utrzymająca W - ciężar bryły pasa N - siła normalna
strona 19
Stateczność skarpy "Fundamentowanie 2" A1 = 0.049m
2
α1 = 26°
kN 2 W1 = A1 ⋅ρB.n ⋅1m = 0.049 ⋅m ⋅16.5 ⋅ ⋅m = 0.809 ⋅kN 3 m kN 2 S1 = ρB.n ⋅A1 ⋅1m ⋅sin ( α1) = 16.5 ⋅ ⋅0.049 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 0.35 ⋅kN 3 m kN 2 N1 = ρB.n ⋅A1 ⋅1m ⋅cos ( α1) = 16.5 ⋅ ⋅0.049 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 0.73 ⋅kN 3 m T1 = N1 ⋅tan ( ϕu.n) + cu.n ⋅A1 = 0.73 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.049 ⋅m = 0.43 ⋅kN 2
4.2 Pas nr 2 A2 = 0.148m
2
α2 = 26° 2
W2 = A2 ⋅ρB.n ⋅1m = 0.148 ⋅m ⋅16.5 ⋅
kN
⋅m = 2.442 ⋅kN 3 m kN 2 S2 = ρB.n ⋅A2 ⋅1m ⋅sin ( α2) = 16.5 ⋅ ⋅0.148 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 1.07 ⋅kN 3 m kN 2 N2 = ρB.n ⋅A2 ⋅1m ⋅cos ( α2) = 16.5 ⋅ ⋅0.148 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 2.19 ⋅kN 3 m T2 = N2 ⋅tan ( ϕu.n) + cu.n ⋅A2 = 2.19 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.148 ⋅m = 1.29 ⋅kN 2
4.3 Pas nr 3 A3 = 0.246m
2
α3 = 26°
kN 2 W3 = A3 ⋅ρB.n ⋅1m = 0.246 ⋅m ⋅16.5 ⋅ ⋅m = 4.059 ⋅kN 3 m kN 2 S3 = ρB.n ⋅A3 ⋅1m ⋅sin ( α3) = 16.5 ⋅ ⋅0.246 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 1.78 ⋅kN 3 m kN 2 N3 = ρB.n ⋅A3 ⋅1m ⋅cos ( α3) = 16.5 ⋅ ⋅0.246 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 3.6 ⋅kN 3 m T3 = N3 ⋅tan ( ϕu.n) + cu.n ⋅A3 = 3.6 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.246 ⋅m = 2.12 ⋅kN 2
4.4 Pas nr 4 A4 = 0.345m
2
α4 = 26° 2
W4 = A4 ⋅ρB.n ⋅1m = 0.345 ⋅m ⋅16.5 ⋅
kN m
3
⋅m = 5.692 ⋅kN
strona 20
Stateczność skarpy "Fundamentowanie 2" S4 = ρB.n ⋅A4 ⋅1m ⋅sin ( α4) = 16.5 ⋅
kN 3
⋅0.345 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 2.5 ⋅kN 2
m kN 2 N4 = ρB.n ⋅A4 ⋅1m ⋅cos ( α4) = 16.5 ⋅ ⋅0.345 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 5.12 ⋅kN 3 m T4 = N4 ⋅tan ( ϕu.n) + cu.n ⋅A4 = 5.12 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.345 ⋅m = 3.02 ⋅kN 2
4.5 Pas nr 5 A5 = 0.444m
2
α5 = 26°
kN 2 W5 = A5 ⋅ρB.n ⋅1m = 0.444 ⋅m ⋅16.5 ⋅ ⋅m = 7.326 ⋅kN 3 m kN 2 S5 = ρB.n ⋅A5 ⋅1m ⋅sin ( α5) = 16.5 ⋅ ⋅0.444 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 3.21 ⋅kN 3 m kN 2 N5 = ρB.n ⋅A5 ⋅1m ⋅cos ( α5) = 16.5 ⋅ ⋅0.444 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 6.58 ⋅kN 3 m T5 = N5 ⋅tan ( ϕu.n) + cu.n ⋅A5 = 6.58 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.444 ⋅m = 3.88 ⋅kN 2
4.6 Pas nr 6 A6 = 0.542m
2
α6 = 26°
kN 2 W6 = A6 ⋅ρB.n ⋅1m = 0.542 ⋅m ⋅16.5 ⋅ ⋅m = 8.943 ⋅kN 3 m kN 2 S6 = ρB.n ⋅A6 ⋅1m ⋅sin ( α6) = 16.5 ⋅ ⋅0.542 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 3.92 ⋅kN 3 m kN 2 N6 = ρB.n ⋅A6 ⋅1m ⋅cos ( α6) = 16.5 ⋅ ⋅0.542 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 8.04 ⋅kN 3 m T6 = N6 ⋅tan ( ϕu.n) + cu.n ⋅A6 = 8.04 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.542 ⋅m = 4.74 ⋅kN 2
4.7 Pas nr 7 A7 = 0.641m
2
α7 = 26°
kN 2 W7 = A7 ⋅ρB.n ⋅1m = 0.641 ⋅m ⋅16.5 ⋅ ⋅m = 10.576 ⋅kN 3 m kN 2 S7 = ρB.n ⋅A7 ⋅1m ⋅sin ( α7) = 16.5 ⋅ ⋅0.641 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 4.64 ⋅kN 3 m kN 2 N7 = ρB.n ⋅A7 ⋅1m ⋅cos ( α7) = 16.5 ⋅ ⋅0.641 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 9.51 ⋅kN 3 m
strona 21
Stateczność skarpy "Fundamentowanie 2" T7 = N7 ⋅tan ( ϕu.n) + cu.n ⋅A7 = 9.51 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.641 ⋅m = 5.6 ⋅kN 2
4.8 Pas nr 8 A8 = 0.622m
2
α8 = 26°
kN 2 W8 = A8 ⋅ρB.n ⋅1m = 0.622 ⋅m ⋅16.5 ⋅ ⋅m = 10.263 ⋅kN 3 m S8 = ρB.n ⋅A8 ⋅1m ⋅sin ( α8) = 16.5 ⋅
kN m
N8 = ρB.n ⋅A8 ⋅1m ⋅cos ( α8) = 16.5 ⋅
3
⋅0.622 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 4.5 ⋅kN 2
kN m
3
⋅0.622 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 9.22 ⋅kN 2
T8 = N8 ⋅tan ( ϕu.n) + cu.n ⋅A8 = 9.22 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.622 ⋅m = 5.43 ⋅kN 2
4.9 Pas nr 9 A9 = 0.382m
2
α9 = 26°
kN 2 W9 = A9 ⋅ρB.n ⋅1m = 0.382 ⋅m ⋅16.5 ⋅ ⋅m = 6.303 ⋅kN 3 m S9 = ρB.n ⋅A9 ⋅1m ⋅sin ( α9) = 16.5 ⋅
kN m
N9 = ρB.n ⋅A9 ⋅1m ⋅cos ( α9) = 16.5 ⋅
3
⋅0.382 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 2.76 ⋅kN 2
kN m
3
⋅0.382 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 5.67 ⋅kN 2
T9 = N9 ⋅tan ( ϕu.n) + cu.n ⋅A9 = 5.67 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.382 ⋅m = 3.34 ⋅kN 2
4.10 Pas nr 10 A10 = 0.127m
2
α10 = 26°
kN 2 W10 = A10 ⋅ρB.n ⋅1m = 0.127 ⋅m ⋅16.5 ⋅ ⋅m = 2.095 ⋅kN 3 m S10 = ρB.n ⋅A10 ⋅1m ⋅sin ( α10) = 16.5 ⋅
kN m
N10 = ρB.n ⋅A10 ⋅1m ⋅cos ( α10) = 16.5 ⋅
3
⋅0.127 ⋅m ⋅m ⋅sin ( 26 ⋅°) = 0.92 ⋅kN
kN m
3
2
⋅0.127 ⋅m ⋅m ⋅cos ( 26 ⋅°) = 1.88 ⋅kN 2
T10 = N10 ⋅tan ( ϕu.n) + cu.n ⋅A10 = 1.88 ⋅kN ⋅tan ( 30.5 ⋅°) + 0 ⋅kPa ⋅0.127 ⋅m = 1.11 ⋅kN 2
(
+
+
+
+
+
+
+
+
+
) strona 22
Stateczność skarpy "Fundamentowanie 2" n =
( T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10) ( S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10)
0.43 ⋅kN + 1.29 ⋅kN + 2.12 ⋅kN + 3.02 ⋅kN + 3.88 ⋅kN + 4.74 ⋅kN ... + 5.6 ⋅kN + 5.43 ⋅kN + 3.24 ⋅kN + 1.11 ⋅kN n = = 1.203 > 1 0.35 ⋅kN + 1.07 ⋅kN + 1.78 ⋅kN + 2.5 ⋅kN + 3.21 ⋅kN + 3.92 ⋅kN ... + 4.64 ⋅kN + 4.5 ⋅kN + 2.76 ⋅kN + 0.92 ⋅kN
strona 23