1.1 MATRICES Definición.- Una matriz de orden mxn es un arreglo rectangular de nùmeros ( reales o complejos) aij , llamados elementos dispuestos en m lineas horizontales , llamadas filas y en n lineas verticales llamadas columnas ; de la forma :
a11 a12 .... a1n a21 a22 .... a2 n a31 a32 .... a3n A ......................... ......................... am1 am 2 .... amn mxn Las matrices se nombran con letras mayùsculas A , B , C , … . En forma abreviada la matriz anterior puede escribirse en la forma A = ( aij ) mxn con i = 1, 2 , 3 , …, m ; j = 1,2,3, ,… n , o Amxn . Los subíndices indican la posición del elemento dentro de la matriz , el primero denota la fila ( i ) y el segundo la columna ( j ) . Por ejemplo el elemento a 25 se ubica en la segunda fila y quinta columna de la matriz . La dimensiòn de una matriz es el nùmero mxn de elementos que tiene la matriz . MATRICES IGUALES.-Dos matrices son iguales cuando tienen la misma dimensiòn y cuando los elementos que ocupan los mismos lugares son iguales ., Si A =( a ij ) mxn y B = ( b ij ) mxn , entonces A = B si y solo si a ij = b ij para cada valor de i , j Las siguientes matrices no son iguales
1 2 3 A 0 5 6 Orden 2x3 Dimensiòn 6
1 0 B 2 5 3 6 Orden 3x2 Dimensiòn 6
ALGUNOS TIPOS DE MATRICES : 1.MATRIZ CUADRADA.- es aquella que tiene el mismo nùmero de filas que de columnas , es decir m = n , y se dice que la matriz cuadrada es de orden n .