Week 10- Oval Pavilion Site Visit

Page 1

Oval Pavilion Site Visit The first place we stopped on our visit was at the south end of the building development where a retaining wall was undergoing the final stages of construction. The construction of this wall was increasingly important as it plays a pivotal role in ensuring the building site does not become flooded as it sits at a lower ground level than the adjacent playing ground. Form ply was used to create the formwork in which concrete and reinforcing bars where then placed to create the wall. As the wall is also functioning as a retaining wall it means it is holding back soil which therefore means it requires reinforcement bars to prevent buckling and breaks. On the front side of the wall, waterproof membrane in the underground section of the wall is also being placed to ensure that the wall remains waterproof which is integral to maintaining the walls optimum strength (Ching, 2008.)

Figure 1: First point of discussion during site visits where retaining walls were being constructed.

There was also pattern work on the concrete walls, which was made from origin, which leaves the impression of timber on the concrete. This process is more time consuming and expensive than creating a plain concrete wall however this adds a distinct design element creating a more aesthetically appealing finish. Most of the building is made out of a combination of steel and wood. The type of timber used changes throughout the building to fit the purpose at which it is needed. Due to timbers lightweight nature and


the fact that it is easy to handle means that the studwork has been made of timber. This has allowed for a faster build of these sections, which in turn also saves in overall labour costs. Concrete blocks have also been used in the construction to create masonry walls. These masonry walls serve a retaining wall function and are laid out in a checker pattern (Figure 2) to allow for reinforcing bars (both horizontal and vertical) to be placed at the correct distances apart to allow for the wall to hold the weight and forces that will be placed upon it.

Figure 2 and 3: checker block-work patter and figure showing ply formwork and reinforcing bars that create in-situ concrete walls.

Some of the timber posts join to the steel beams through tongue and grove joins. This is where a grove is made in the timber and then there is a point in the steel which slots into the timber hole, which creates a flush and strong join, which is able to support the roof structure (Ching, 2008.) (Figure 4)

Figure 4: Timber and steel tongue and grove join which bolts further secure this join.


The purlins of the roof structure run horizontal and then there are four main steel members that run north to south through the structure. The roof of this building has been designed and constructed slightly differently to traditional roofs as there is a layer of timber before the battens and final roof to help insulate the building for noise. This timber is compressed sheeting which is a material, which suits the purpose of noise insulation (Ching, 2008.) The building is also being fitted with toughened glass. Although this is more expensive it is practical within the context of the building as it is right next o the sports ground that therefore means it has increased chances of having a sports ball hit a window, which would break normal strength glass. Toughened glass is able to withstand hits that spread force equally across the window but are however very weak when it comes to high force impacts through a small point (Ching, 2008.) Steel mullions act as the main form of structural support around the windows. There is cladding being attached to the eastern side of the building which is a tongue and grove system (as described through the join of the timber post and steel beam above.) This particular type of joining system is especially designed for walls rather than floors as it has a wider gap between the planks. This allows installation to be completed in a way so that the next piece added hides the nails attaching the cladding of the previous piece. This creates a seamless finishes and really allows the cladding to be the main focus rather than lots of nail or screw heads.

Figure 5: Tongue and Grove Joint


Nail head, which is covered buy next layer of cladding.

Figure 5: Cladding being attached to the eastern wall

Z purlins are used throughout the building as they are designed to allow for overlap to create purlins the length desired, while C purlins do not allow for this overlap, which therefore makes them more limiting in the construction process. The Z purlins are also made of galvanised steel as this is very lightweight which means that less labourers are required to help lift and support larger spans than if it was made out of another material.

Figure 6: Henry holding a galvanised steel Z purlin


Push Props where also used during construction to take the support of the heavy roof structure before the walls and further strengthening could be put in place as seen in figure 7.

Push  Props Â

Figure 7: Push Props

The bracing rods have been embed into the timber walls and ceilings to ensure that the plasterboard can be fixed smoothly, creating level walls. The gutters used across the building are box gutters, which then have a flashing that sits over the top of the whole design. This creates a seamless finish and means that there are no gutters detracting from the roof structure as the gutter blends into the edge of the roof.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.