Compiled by Chez Nell
Grade 10 Core Mathematics
2
GO MATH WORKBOOKS
Forward: Welcome to “GO MATH WORKBOOKS”. This workbook is designed to be text book and class work book in one. There are sufficient exercises to ensure that learners get the required practice. A detailed memorandum booklet is available for each workbook. The statement “You get out what you put in.” is very apt where maths is concerned. To succeed in mathematics one must be prepared to invest the time and effort to achieve that success. The partnership that you as a learner and this GO MATH WORKBOOK develop will be profitable if you allow it to be. Chez Nell : Mathematics Educator : Northwood School Norma Nell 2011
Grade 10 Core Mathematics
3
GO MATH WORKBOOKS
GRADE 10 CORE MATHEMATICS. PAPER ONE.
Topic:
Pages:
1.
Number System
(4 – 6)
2.
Mathematical Notation
(7 - 10)
3.
Algebraic Products
(11 – 13)
4.
Factors
(14 – 26)
5.
Algebraic Fractions
(27 – 32)
6.
Solution of Equations
( 33 – 68)
7.
Basic Logarithm Simplification
( 68 – 71)
8.
Exponents
( 71 – 86)
9.
Number Patterns
(87 – 98)
10. Straight Line Graphs
(99 – 110)
11. Parabola Graphs
(111 – 126)
12. Hyperbola Graphs
(127 – 131)
13. Exponential Graphs
(132 – 153)
14. Financial Mathematics
(154 – 167)
15. Probability Theory
(185- 206)
Grade 10 Core Mathematics
1.
4
GO MATH WORKBOOKS
Rational Numbers and Irrational Numbers
A common fraction can be written in the form: a ; a, b z ; b 0 b A mixed number is made up of two parts a whole number followed by a proper or decimal fraction. A terminating decimal is a decimal fraction that ends after a definite number of digits has been given, e.g. 1,23 To convert a terminating decimal into a common fraction change its denominator into 10, 100 etc. according to the number of decimal digits. Type equation here. 123 E.g.: 1.23 100 A recurring decimal is a decimal fraction or part thereof which goes on repeating itself without end.
E.g.: 1. 2 3 1,23232323 We use dots to abbreviate recurring fractions e.g.
0,34 5 0,34555555
0,3 4 5 0,345454545
0, 3 4 5 0,345345345 To convert a recurring decimal into a common fraction Method 1: Multiply it by appropriate powers of 10, and then use subtraction to eliminate the repeating part, e.g.
x 1,2323... 100 x 123,2323 100 x x 123,2323 1,2323 99 x 122 122 99 23 1 99 x
Grade 10 Core Mathematics
5
GO MATH WORKBOOKS
Method 2: In the denominator of the fraction to be formed write down a “9” for each of the recurring decimal and a “0” for each of the non- recurring decimal. In the numerator write down the decimal value as it is written and subtract the value 3456 345 3111 of the non - recurring decimals from this. e.g. 0,3456 9000 9000 Examples: 1. Convert 0,34 to fraction form: 34 3 31 . 90 90 2. Convert 1,34 5 to fraction form: 345 3 342 171 1,34 5 1 1 1 990 990 495 3. Convert 2,275 to fraction form: 275 2,2 75 2 999 Exercise 1: 1. Convert the following to decimals and whole numbers:
1 2 3 4 5 6 7 8 9 ; ; ; ; ; ; ; ; 2 2 2 2 2 2 2 2 2 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
6
2. Convert the following decimal fractions into common fractions a)
0,45
b) 1,25
c) 6,125
d) 0,824
e)
0,50
f) 2,5
g) 21,25
h) 0,05
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3. Use dots to indicate the recurring digits in the following: e. g. 0,4444 = 0,4 a) 0,5555…. b) 0,454 454…. c) 0,714 1414…. d) 123,12333…
e) 123,12323… f) 123, 1231313 …
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4. Convert the following recurring decimals into common fractions a)
0,6
e) 2,34 5
b) 0,7 8
c) 0,14
d) 45,345
f) 23,346 5
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
7
GO MATH WORKBOOKS
2: Mathematical Notations: 1.
Set Builder Notation: Used with brackets and states the range of values including the section of the number system involved. < & > sign means â&#x20AC;&#x153;not incudingâ&#x20AC;? ď&#x201A;Ł & ď&#x201A;ł sign means : includingâ&#x20AC;? e.g. ď ťx : ď&#x20AC;5 ď&#x20AC;ź x ď&#x20AC;ź 6; x ď&#x192;&#x17D; ď&#x192;&#x201A;ď ˝ This is read as: the set of all values of x such that x ranges between -5 and +6 where x is a real number.
2.
Interval Notation: Only used with Real numbers: Used with round and square brackets. ( ď&#x192;&#x17E; means â&#x20AC;?not includingâ&#x20AC;? [ ď&#x192;&#x17E; means â&#x20AC;&#x153; including. e.g. x ď&#x192;&#x17D; (ď&#x20AC;5;6) read as all the values of x that range between - 5 and + 6 but not including -5 & +6.
x ď&#x192;&#x17D; [ď&#x20AC;5;6) read as all the values of x ranging between -5 and 6 ; including -5 but not including 6. Exercise 2.1: 1. Express the following in interval notation: 1.1 .{đ?&#x2018;Ľ: đ?&#x2018;Ľ â&#x2030;¤ 2; đ?&#x2018;Ľđ?&#x153;&#x2013;â&#x201E;&#x153;} ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.2
{đ?&#x2018;Ľ: â&#x2C6;&#x2019;3 â&#x2030;¤ đ?&#x2018;Ľ â&#x2030;¤ 0; đ?&#x2018;Ľđ?&#x153;&#x2013;â&#x201E;&#x153;}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.3
{x:đ?&#x2018;Ľ < 2; đ?&#x2018;Ľđ?&#x153;&#x2013;â&#x201E;&#x153;}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.4
GO MATH WORKBOOKS
8 -1
3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.5
⃘ -2
5
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2. Express in set builder notation: 2.1 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.2 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.3 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
9
−4 to 2, including -4 and
2.4 not 2.
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3. The set of integers (Z) . NB. Integers must be separately graphed on a number line as it is only the whole numbers involved and no fractions in between.
{ x : 3 x 2; x }
-4 -3 -2 -1 0 1
2
4. Number line graphs:
means “ including.
O means ”not including” A set of real numbers can be represented on a line graph as follows: 1. Interval notation: [2;9)
2
o 9
5. Set Builder notation:
2
o 9
Exercise 2.2 : 1. Represent the following on a number line graph: 1.1 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.2
10
GO MATH WORKBOOKS
{ЁЭСе: тИТ2 тЙд ЁЭСе тЙд 2; ЁЭСе тИИ тДЬ}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.1
{ЁЭСе: ЁЭСе тЙе 6; ЁЭСе тИИ тДЬ}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.1
{ЁЭСе: ЁЭСе < тИТ6; ЁЭСе тИИ тДЬ}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.
GO MATH WORKBOOKS
11
Algebraic Products : 1. Use the FOIL method for expanding product of binomials. ( x 2)( x 4) x 2 2 x 4 x 8 x 2 2 x 8 Lasts
Firsts Combination of Outers & Inners 2. If the brackets have co-efficients multiply LASTLY by these.
2( x 3)( x 6) 2( x 2 3x 18) 2 x 2 6 x 36 3. If there is a co-efficient with a binomial squared multiply LASTLY be the co-efficient. 2( x 3) 2 2( x 6 x 9) 2
3.1
Multiply by 2 lastly
2 x 2 12 x 18
Multiply by -2 lastly
2( x 3) 2 2( x 2 6 x 9)
3.2
2 x 2 12 x 18
N.B Signs change!
4. The product between a binomial and trinomial must be carried out separately and collect like terms where possible “unless a pattern is reflected.” (a 2)(a 2 2a 3) No pattern . a 3 2a 2 3a 2a 2 4a 6 a 3 4a 2 7 a 6
4.1 If the trinomial part is formed by the square of each term and the product of the two terms in the binomial then the answer is simply the sum or difference of cubes. ( x 2)( x 2 2 x 4) Trinomial is formed x3 2x 2 4x 2x 2 4x 8 x 8 3
from the squares of each term and product of two terms
In this case leave out the second line and go straight to the answer. (2 x 3 y )(4 x 2 6 xy 9 y 2 ) 8 x 3 27 y 3
Simply write down the cube of each term. NB: the sign of the last term takes the sign from the binomial
Grade 10 Core Mathematics
12
GO MATH WORKBOOKS
Exercise 3.1: 1.
Simplify the following :
1.1
2( x 3)( x 4)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.2
–3(3 – 5x) + 3(3-5x)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.3
–2a2(a – b)2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.4
(x – 3)2 –2(x– 1)2 + 2x
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.5
(a – 2b)( a2 + 2ab + 4b2)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.6
13
GO MATH WORKBOOKS
( x 2) 2 3( x 2)( x 2)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.7
3( x 2)( x 3) 2( x 4) 2 6 x
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.8
4 x 3 y 2 xy y 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.9
32 x y 2x y x 5 y 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.10
p
q
4 p 2q 4 p q 16
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.
14
GO MATH WORKBOOKS
Factors :
4.1. Factors of Algebraic Expressions To factorise is the process of reducing many terms to one term. It is the opposite action of distribution. Procedure: Step 1 : First look for a HCF (if possible): 1.1 Look at the constants and choose the highest possible value, that can divide equally without a remainder, into the constant values in the expression. 1.2 Look at common variables and choose the lowest power (exponential value) of these as HCF. Step 2. Place the HCF outside a bracket and then divide the HCF into each term of the expression placing the answer inside the bracket. NB there must be the same number of terms inside the bracket as there is in the original expression. Step 3. Look at the expression inside the bracket and ascertain whether it can be factorised further. It could be one of the following; 3.1 The difference of two perfect squares. 3.2 A trinomial. 3.3 A quadrinomial ( 4 terms) Examples: HCF plus other expressions. 1. 2. 3. 4. 5.
2 x 4 2( x 2) 2 x 4 x 2 6 x 3 8 x 4 2 x(1 2 x 3 x 2 4 x 3 ) 2ax 4abx 6abcx ) 2ax(1 2b 3bc ) 2ax 2 8ay 2 2a( x 2 4 y 2 ) 2a( x 2 y )( x 2 y ) ab 4 ac 4 a(b 4 c 4 ) a(b 2 c 2 )(b 2 c 2 ) a(b 2 c 2 )(b c )(b c ) NB: The sum of two squares cannot be factorised at all.
4.2. Difference of two squares: Method: Write down the product ( two brackets) of the summand difference of the roots of each term. NB look at the bracket with the difference of the 2 terms and see if it can factorise further; NB: The sum of two squares cannot be factorised at all. Examples: 1. 2.
a 2 b 2 (a b)(a b) (b 4 c 4 ) (b 2 c 2 )(b 2 c 2 ) (b 2 c 2 )(b c )(b c )
NB DO NOT FORGET TO BRING DOWN THE SUM OF 2 SQUARES DOWN TO THE NEXT LINE
Grade 10 Core Mathematics
15
GO MATH WORKBOOKS
Exercise 4.1: 1.
x2 4
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.
x2 9
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3.
x 2 16
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.
2 x 2 50
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
5.
4x 2 9 y 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
6.
x 4 16
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
7.
GO MATH WORKBOOKS
16
( x y) 2 ( x y) 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
8.
4( x y) 2 9( x y) 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.3. Sum & Difference of two Cubes: Method: Open two sets of brackets viz. for a binomial and a trinomial. If factorizing the sum of cubes then the binomial will have a plus sign and the middle term of the trinomial will be negative (minus sign) Binomial bracket: In the binomial bracket place the cube root of each term (NB Divide an exponent by 3 to find its cube root.) Trinomial bracket: Square each term in the binomial to get the first and last terms the middle term is the product of the two term in the binomial. Examples:
Open two brackets with the correct signs.
Factorise: 1. a 3 b3 =
(
+
)(
-
+
)
(a b)(a ab b ) 2
=
2
In the binomial bracket enter the cube roots of the terms
2.
In the trinomial bracket enter the square of each term as Ist & last and then the product of the terms as the middle term.
a 3 b3 = (
-
)(
+
+
)
= (a b)(a 2 ab b 2 )
3.
8 x 3 27 y 6 (
)(
)
(2 x 3 y )(4 x 6 xy 9 y ) 2
2
2
4
Grade 10 Core Mathematics
17
GO MATH WORKBOOKS
Exercise 4.2: 1.
x3 y3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.
x3 y3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3.
8 x 3 27 y 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4.
64 x 3 125 y 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
18
4.4. Trinomials: The method used here is called “trial & error” In products of binomials we use the FOIL method to expand . The middle term of the expression formed is a combination of the products of the inner terms and the outer terms. i.e. the „OI‟ of FOIL. The reverse procedure is used to factorise trinomials. We find out the correct combination of factors of the First and Last terms of the trinomial. e.g. x 2 2 x 3 ( x 3)( x 1) Method: Draw a table and use the factors of the Ist and Last terms. Cross multiply them and either subtract or add to get the middle term. The sign of the last term informs one whether to add or subtract 1x 1x
x2 2x 3 ( x 3)( x 1)
1 3
x 2 8 x 12 ( x 2)( x 6)
1x 1x
1
3
2
4
6 12
NB Trinomial + + +
Brackets ( + )( + ) ( - )( - )
+ -
( + )( - ) ( + )( - )
-
Not necessary to work out
Must work out which bracket is negative and which is positive
Exercise 4.3: 1.
x 2 2x 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.
x 2 6x 5
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.
19
GO MATH WORKBOOKS
x 2 6x 8
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4.
x 2 2x 8
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
5.
x 2 7 x 12
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 6.
x 2 8x 12
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 7.
2 x 2 5x 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
8.
2 x 2 5x 12
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
20
3x 2 7 x 2
9.
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.5. FOUR OR MORE TERMS : Grouping into Brackets This involves a series of HCF‟s: Method: 1. Group pairs of terms with common variables into brackets. NB don‟t change the operation from addition and subtraction to multiplication. 2. Continue with HCF until fully factorised. Examples: 1.
2.
ab ac db dc (ab ac ) (db dc ) a(b c ) d (b c ) (b c )(a d ) 3. x 2 (a b) y 2 (a b)
3 px 3 py x y 3 p( x y ) ( x y ) ( x y )( 3 p 1)
(a b)( x 2 y 2 ) (a b)( x y )( x y )
Exercise 4.4: Factorise completely. 1.1 x(a-b) + y(a-b) ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2
2
1.2 p ( x + y) - q ( y + x ) ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
21
GO MATH WORKBOOKS
1.3 (m n) ( pn pm) ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.4 a b ax bx ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.5
a2 b2 a b
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.6
4x 2 2x 9 y 2 3 y
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
22
GO MATH WORKBOOKS
1.7 4( x y) 2 9( x y) 2 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.8
(2 x y ) 2 ( x 2 y ) 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ Exercise 4.5: Mixed types Factorise the following completely: 1.1 3a +6 ____________________________________________________________________ ____________________________________________________________________ _________________________________________________________________ 1.2
5x 2 10 xy 5 y 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.3
23
GO MATH WORKBOOKS
2x2 + 6x – 8x3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.4 a2 – 4 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.5
2x2 – 32
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.6 x(a-b) + y(a-b)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.7 p2( x + y) - q2( y + x )
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.8
24
GO MATH WORKBOOKS
(m n) ( pn pm)
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.9
a b ax bx
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.10
a2 b2 a b
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.11
(2 x y ) 2 ( x 2 y ) 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.12
4( x y) 2 9( x y) 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ __________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.13
25
GO MATH WORKBOOKS
4x 2 2x 9 y 2 3 y
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.14
x2 x 6
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.15
x 2 7 x 12
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ _________________________________________________________________ 1.16
2 x 2 24 x 70
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.17
9 x 2 42 x 45
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.18
26
GO MATH WORKBOOKS
x3 y3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.19 8 x 3 27 y 3 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
27
5. Algebraic Fractions: Multiplication & Division: NB. ALL TERMS MUST BE FULLY FACTORISED BEFORE ANY SIMPLIFICATION IS ATTEMPTED. Examples:
x2 1. x2 4 ( x 2) = ( x 2)( x 2) 1 = x2
Terms are factorised and simplified
x 2 4 x 1 x 2 2x 4 x x x 2x 4 x3 8
2.
All terms factorised first. And then common values are simplified.
( x 2)( x 2) x 1 ( x 2 2 x 4) x x x 2( x 2) ( x 2)( x 2 2 x 4) x 1 2x
4 x 2 x 2 8x 4 x 2 16 ( x 4) 4 ( x 4)( x 4 2 x( x 4) 4 2 x( x 4) 2
3.
5.1
Terms all fully factorised first and a –ve sign is used to reverse ( 4 – x ) as well as inverting the fraction after the division sign and changing the operation to multiplication.
Algebraic Fractions Addition & Subtraction
1. NB Before you can find a LCD (lowest common denominator) you must ensure that all denominators are fully factorised. 2. The next step is to get the LCD. Write down the product of the highest power of each type of factor. Remember look at each factor in each separate term to ascertain its power. 1 2 3 Example: 2 ( x 1)( x 2) ( x 2) ( x 1) 2 The highest power of ( x 2) is in the second term and is ( x 2) 2 and the highest power of ( x 1) is in the third term and is ( x 1) 2 thus the LCD = ( x 2) 2 ( x 1) 2 3. Divide each denominator into the LCD and multiply the answer by the numerator of each fraction. 4. Simplify to get the final answer.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
28
Examples.
1.
2 3 x3 x2 2( x 2) 3( x 3) ( x 3)( x 2) 2 x 4 3x 9 ( x 3)( x 2) 5x 5 ( x 3)( x 2)
LCD
Final Answer
Highest power of (x+3)
2.
1 3 2 2 ( x 3) ( x 3) ( x 3) 3 ( x 3)( x 3) 3( x 3) 2 ( x 3)( x 3)( x 3)
LCD
x 2 6 x 9 3x 9 2 ( x 3) 3
x 2 3x 2 ( x 3) 3
2 3 4 2 x 2 x 1 x 1 ( x 1) 2 2 3 4 ( x 1)( x 1) ( x 1)( x 1) ( x 1)( x 1) 2( x 1)( x 1) 3( x 1)( x 1) 4( x 1)( x 1) ( x 1)( x 1)( x 1)( x 1) 2
3.
Final Answer.
2 x 2 4 x 2 3x 2 3 4 x 2 8 x 4 ( x 1) 2 ( x 1) 2
3x 2 4 x 5 ( x 1) 2 ( x 1) 2
Denominators fully factorised.
LCD = product of the highest power of each type of factor Expanded form of previous line Final answer.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
29
Examples involving the change of signs.
4.
5.
2 3 4 (b 1) (1 b) (b 1)(1 b) 2 3 4 (b 1) (b 1) (b 1)(b 1) 2(b 1) 3(b 1) 4 (b 1)(b 1) 2b 2 3b 3 4 (b 1)(b 1) b5 (b 1)(b 1)
3 2 1 4 2 2 2 x 1 ( x 1) 1 x (1 x) 3 2 1 4 2 2 2 x 1 ( x 1) x 1 ( x 1) 3 2 1 4 2 2 ( x 1)( x 1) ( x 1) ( x 1) ( x 1)
3( x 1) 2( x 1) ( x 1) 4( x 1)( x 1) ( x 1)( x 1)( x 1)
3x 3 2 x 2 x 1 4 x 2 8 x 4 ( x 1)( x 1)( x 1)
4 x 2 10 x 2 ( x 1)( x 1)( x 1)
Use a negative to reverse the order of the denominator (1 – b) So just change the middle sign (1 + b) is the same as (b + 1) so no sign change needed.
Sign change to reverse term (1- x2)
Use a double sign change to change both brackets sign stays a +
Exercise 5.1: 1
6 x. 12 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
2.
4x 2 y 3 8x 3 y __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
3.
30
GO MATH WORKBOOKS
2x 4 4 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
4.
xy y y
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
5.
8x 2 4 x 4x
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
6.
x2 1 ( x 1) 2 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
7.
31
GO MATH WORKBOOKS
x 2 x 12 x 2 7 x 12
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
8.
a b ba __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
9.
a2 a a2 2
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
10.
x 2 x 12 4 x
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
11.
32
GO MATH WORKBOOKS
ab a 2 b 2 ab X b2 a2 a2
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
12.
x x2 2 x y y x2 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
14.
7x 3x 2 x 2 y 5 y 5x
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
33
6. EQUATIONS: 6.1
SOLUTION OF LINEAR EQUATIONS:
The method used to solve linear equations is as follows: Remove all variables to the same side of the equal sign and all constants to the opposite side. Solve for the variable concerned
NB: these are equations thus what you do to one side you must do to the other to keep the balance. Examples: 2 x 4 10
1.
2x 6 x3
2.
4 x 5 10 x 4 x x 10 5 5 x 15 x3 5( x 2) 2( x 1)
3.
5 x 10 2 x 2 3x 12 x 4
Remove the +4 to the RHS by subtracting 4 from both sides.
Remove the -x to the LHS by adding +x to both sides and the -5 from LHS by adding +5 to both sides4 from both sides. Distribute to remove the brackets. Get the x’s to one side the contstants to the other side and solve for x
Exercise 6.1: 2 x 14 5 x ____________________________________________________________________
1.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
x 5 2x 3 ____________________________________________________________________
2.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
34
GO MATH WORKBOOKS
5 3x 6 4 x 5 2 x ____________________________________________________________________
3.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3 2x 6x 1 ____________________________________________________________________
4.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3( x 2) 2( x 1) ____________________________________________________________________
5.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1 8( x 5) 2( x 3) 10 4(2 x 3) ____________________________________________________________________
6.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4(2 x 7) 3(2 x 4) 8(5 x) 5( x 7) ____________________________________________________________________
7.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
6.2
35
GO MATH WORKBOOKS
Linear Equations with Fractions:
Method: Multiply each term by the LCD( lowest common denominator) to convert the question to whole numbers and then solve in the normal way. Examples: 1.
2.
x2 x2 3 LCD= 12 3 4 2 ( x 2) ( x 2) 3 3 4 2 4( x 2) 3( x 2) 18 4 x 8 3 x 6 18 x 20
3 2 3 x 2 1 7 x LCD = 20 4 5 152 3 x 81 7 x 30 45 x 8 56 x 45 x 56 x 8 30 11 x 22 x 2
( x 2) 12 ( x 2) 12 3 12 1 3 1 2 1 3
3 20 2 20 2 3 x 1 7 x 4 1 5 1
Exercise 6.2: 1.
y y 1. 2 4
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.
x x 3 5 10
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.
36
GO MATH WORKBOOKS
x x 1 4 3 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4.
x 1 x 3 2 4 4 2
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
5.
3x 2 x 1 0 5 5 10
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
6.
37
GO MATH WORKBOOKS
2x 7 x 5 0 6 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
7.
x 1 x 1 40 4 5
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
8.
7x 2 9x 2 2 3 5
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
9.
38
GO MATH WORKBOOKS
3x 4 2x 3 1 2 4
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
10.
3 x 5 2( x 5) 2 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
11.
x 1 x 2 x 1 x 2 3 4 2 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
12.
39
GO MATH WORKBOOKS
1 3 1 2 x x 2 10 3 3
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Variables in the base(denominator) Examples: 1.
2.
1 3 LCD = 2x x 2 2 3x 2 x 3 5 7 LCD = x(x-4) x x4 5( x 4) 7 x 5 x 20 7 x 2 x 20 x 10
Exercise 6.3:
4 1 0 3 3x ___________________________________________________________________ 1.
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
40
GO MATH WORKBOOKS
2 4 2 0 x 3 3x ____________________________________________________________________ 2.
___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3 1 9 2 x 2 2x ____________________________________________________________________ 3.
___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2 3 4 x 2x ____________________________________________________________________ 4.
3
___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
5.
1 1 2 x 2 3x 6x
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
41
GO MATH WORKBOOKS
5 2 x3 4 4 3x 12 x ____________________________________________________________________ 6.
___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
x 3 2 x3 x3 ____________________________________________________________________ 7.
___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
6.3 Quadratic Equations: 6.3.1 Solve by factorizing: Method: 1. Equate to zero, factorise and solve: x2 3x 4 e.g. .
x2 3x 4 0 ( x 4)( x 1) 0
x 4 or x -1 2. If already factorized simply solve the equation ( x 4)( x 1) 0 e.g. x 4 or x -1
3. If not in factorized form do the necessary steps to get the equation into factorized form before solving. x ( x 4) 12
e.g.
x 2 4 x 12 0 ( x 6)( x 2) 0 x 6 or x2
Grade 10 Core Mathematics
42
GO MATH WORKBOOKS
Exercise 6.4: Solve the following equations:
1. ( x 5)( x 2) 0 __________________________________________________________________ __________________________________________________________________
2. (a 6)(a 1) 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
3. x( x 1) 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
4. ( x 2)( x 3)( x 5) 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
5. x(2 x 5)(3x 2) 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 6. y 2 3 y 10 0
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
7. x 2 5x 6 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
43
GO MATH WORKBOOKS
8. x 2 7 x 6 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
9. x( x 1) 6 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
10. ( x 3)( x 2) 12 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
11. x 2 2 x 3 12 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ _________________________________________________________________
12. x( x 16) 3(24 5x) __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ _________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
6.3.2
GO MATH WORKBOOKS
44
SOLVING QUADRATIC EQUATIONS USING A FORMULA: Extension Work (Optional)
The formula is derived by completing the square with the general quadratic equation: ax 2 bx c 0 General Quadratic Formula: x
b b 2 4ac : 2a
NB: a ; b ; & c are constant values WHERE: a = coefficient of x2 ; b = coefficient of x ; c is the constant in equations written in the form: ax 2 bx c 0 NO x –values must be substituted into the formula. i.e. only the constant values are used. Examples: Solving quadratic equations using the general quadratic formula. Solve: 1. x 2 x 12 0
2.
b b 2 4ac x 2a
2x2 7x 6 0
1 1 4(1)( 12 2 1 1 48 x 2 1 49 x 2 1 7 x 2 8 6 x OR 2 2 x 4 OR 3
x
b b 2 4ac 2a
x
7 49 4( 2)(6) 2( 2)
x
7 1 4 8 6 x or 4 4 3 x 2or 2 x
Exercise 6.5:
b b 2 4ac Solve using x ; 2a (Answers rounded to 2 decimal places where necessary) NB: First expand if necessary and equate to zero before using the formula.
Grade 10 Core Mathematics
1.
45
GO MATH WORKBOOKS
x 2 4x 3 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
2.
2 x 2 x 10 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
3.
3x2 x 2 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
4.
46
GO MATH WORKBOOKS
x 2 6x 4 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
5.
2x 2 4 7x __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
6.
2 x( x 3) 3 0 __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________
Grade 10 Core Mathematics
6.4 A.
GO MATH WORKBOOKS
47
Simultaneous Equations: 2 linear equations:
Method: 1. 2. 3. 4.
Number the equations as 1 and 2. Rewrite one of them in terms of x or y . ( try not to have fractions involved) Substitute the new x or y value into the other equation and solve. Substitute this value into the changed equation to get the value of the other variable.
Example: Solve for x and y simultaneously if x 2 y 5 and x y 1 Change x y 1 Number (1) / x 2 y 5 (2) the the x y 1 equation equations to the x 1&2 formSubstitute 1 into 2 y 1 2y 5 Change one of the Substitute the value for equations to the x – 3y 6 x in the changed form or y - form y2 equation for y in the other equation x = 1 {from x 2 1} Substitute the value from above into the changed equation and solve for the second variable Exercise 6.6: Solve the following equations simultaneously.
x y 5 1. and x y 3 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
48
GO MATH WORKBOOKS
x 3 y 5 and 2 x 3 y 1 2. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x y 8 3. and 3x 2 y 21 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3x 2 y 60 and 3x 3 y 45 4. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
49
GO MATH WORKBOOKS
x y 36 5. and x 2 y 12 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x 2y 5 6. and 3x y 1 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6 x y 22 and 4 x y 8 7. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
50
GO MATH WORKBOOKS
2y x 3 8. and 4 x 3 y 10 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3x y 5 0 and 7 x 3 y 1 0 9. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
m 1 2k and 2k m 3 10. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
51
GO MATH WORKBOOKS
2 x 3 y 14 and x 5 y 0 11. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3x 4 y 24 and 7 x 4 y 16 12. ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3x y 2 13. and 6 x y 25 ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
52
GO MATH WORKBOOKS
2x 9 y 14. and x 36 4 y ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
53
Level of difficulty increased: Example: Find x and y if y
x x 11 and 3 y 14 4 5
x 11 4 -----(1) x y 11 4 Substitute 1 into 2: y
/
3y
x 14 -----(2) 5
1.
x x 3(11 ) 14 4 5 3x x 33 14 4 5 LCD 20 660 15 x 4 x 280 19 x 380 x 20 y 11
20 4
y 16
2.
x y x y 1 9 and 0 2 3 3 2 2 LCD = 6 LCD = 6 3 x 2 y 54 3 x 2 y 54 3 x 2 y 54 --------(1) and 2 x 3 y 3 0 -------(2) x
2 y 18 3
Substitute 1 into 2: 2 y 18) 3 y 3 0 3 4y 36 3 y 3 0 3 LCD 3 2(
4 y 108 9 y 9 0 13 y 117
y9 x 12
GO MATH WORKBOOKS
Grade 10 Core Mathematics
54
GO MATH WORKBOOKS
Exercise continued:
x y x y and 1 4 2 5 3 ____________________________________________________________________ 15.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x8 x y x y 2 y 8 and 2 3 2 3 ____________________________________________________________________ 16.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
55
GO MATH WORKBOOKS
1 1 1 1 9 1 and x y x y ____________________________________________________________________
17.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
6.5
56
GO MATH WORKBOOKS
Problems involving simultaneous equations:
Example: 1. The sum of two numbers is 4 and their difference is 6. 1.1 Let their numbers be x and y . Write down two equations in x and y. 1.2 Solve the equations and find the two numbers. Let one number be x and the other y x y 4 and x y 6
x y 4
----(1) and y 4 x Substitute 1 into 2
x y 6 -------(2)
x (4 x) 6 x4 x 6 2 x 10 x5 y 1
Exercise 6.7: 1.
The sum of two numbers is 54 and their difference is 6. Find the numbers.
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.
57
GO MATH WORKBOOKS
The sum of two numbers is 35 and their difference is 19. Find the numbers
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3.
In a two digit number, the sum of the digits is 12 and their difference is 4. Find the number if the tens digit is larger than the units digit.
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.
58
GO MATH WORKBOOKS
The length of a rectangle is twice the breadth, while the perimeter is 6m. Find the length and breadth of the rectangle. { Hint: P ď&#x20AC;˝ 2(l ď&#x20AC;Ť b) .}
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
5.
The perimeter of a rectangular flower bed is 26m. If the length exceeds the breadth by 3m, find its dimensions.
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
6.
59
GO MATH WORKBOOKS
A number consisting of two digits has the following properties. When the number is added to twice the tens digit the answer is 33. If the digits are reversed, the number obtained exceeds the original number by 63. What is the original number?
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
7.
A boy is 6 years older than his sister. In three years time he will be twice her age. What are their present ages?
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
8.
60
GO MATH WORKBOOKS
Tumi is twice as old as John. Two years ago she was three times as old as John was then. What are their present ages?
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
6.6
GO MATH WORKBOOKS
61
Linear Inequalities :
Linear inequalities are solved in the same manner that linear equalities are . Examples: 1.
Solve the following inequality and illustrate the answer on a number line. 2x 4 6 2x 4 6
2 x 10
Solution:
5 2.
x5
Solve the following inequality and represent the answer on a number line: 4 2x 2 8 4 2x 2 8
2 2 x 10
-1
1 x 5
5
Exercise 6.8: Solve the following inequalities and illustrate the answers on a number line: 2x 6 8 1. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.
3x 6 x 14
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.
62
GO MATH WORKBOOKS
2 x 7 5x 14
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.
3x 7 3x 14 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
5.
6 2 x 14
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
6.
63
GO MATH WORKBOOKS
5 2 x 3 15
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Exercise 6.9: 1. Find the possible solutions of the following linear inequalities and illustrate the answers on a number line . 1.1
3x 2 x 14
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2
5x 3 3x 15
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.3
64
GO MATH WORKBOOKS
1 2x x 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4( x 4) 7( x 2) 1 1.4 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4(2 x 1) 5x 2 1.5 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2( x 1) 2(2 x 1) 2 x 1.6 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
65
GO MATH WORKBOOKS
2( x 3) 5x 78 1.7 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3( x 2) 7( x 3) 3 2 4 ___________________________________________________________________ 1.8
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x2 7 3 x 3 8 2 ___________________________________________________________________ 1.9
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
66
GO MATH WORKBOOKS
4 x 2x 1 x2 2 3 ___________________________________________________________________ 1.10
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3x 1 3x 3 19 4 8 8 ___________________________________________________________________ 1.11
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
5 3x 3( x 5) 2 ___________________________________________________________________ 1.12
x
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
67
GO MATH WORKBOOKS
x 2 1 3x 2 5 3 ___________________________________________________________________ 1.13
3
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.14 1 x 3 5 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.15 1 1 2 x 7 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x3 4 2 ___________________________________________________________________ 1.16
3
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
68
GO MATH WORKBOOKS
2x 3 4 3 ___________________________________________________________________ 1.17
2
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2 2x 3 4 ___________________________________________________________________ 1.18
2
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 7.
LOGARITHMS:
Calculations using basic logarithms : Calculator work: NB a logarithm is an exponent: 32 9 In logarithm form this is written as log 3 9 2 and is read : the logarithm of 9 to the base 3 is 2 ( i.e. the exponent of the base 3 is 2 to give the number 9)
Example: Solve for x in the following: : x
log 5 log 2
log 5 log 2 0,6989700043 Answer: x Answer to 2 decimal digits. 0,3010299957 x 2,32 (Simply enter values as given into your calculator using the fraction and log facility) x
Grade 10 Core Mathematics
69
GO MATH WORKBOOKS
Exercise 7.1: Solve for x giving answers to 2 decimal digits. log 1000 . log 100 ___________________________________________________________________
1.
x
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ log 12 log 4 ___________________________________________________________________
2.
x
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ log 300 log 200 ___________________________________________________________________
3.
x
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.
x
70
GO MATH WORKBOOKS
log 15,5 log 3
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
5.
x
2 log 25 3 log 15
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6.
x
5 log 50 2 log 8 2 log 25 6 log 6
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
7.
x
71
GO MATH WORKBOOKS
10 log 450 log 500 12 log 60 6 log 65
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 8.
Exponents:
N.B. The basic laws must always be applied. 1.
Law: a m .a n a m n
When multiplying like bases you must add the exponents. Do not multiply the bases except in the following case: 23.33 8.27 216. e.g. BUT 23.33 63 216 am = a mn n a When dividing the bases subtract the exponents: the following exception.
2.
Law:
3
63 6 33 27 3 2 2
3. Law: (a m ) n a mn When raising a power to a power you must multiply the exponents. 4. 5.
Law: (a m ) 0 1 Any value raised to the power of “zero” will equal 1.
N.B. 1. Never multiply the bases 2. Never divide the bases 3. Never multiply a base by an exponent. 4. If bases are separated by plus or minus signs you MUST FACTORISE before simplifying.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
72
Prime Base Factorising It is important to remember to use prime bases in simplifying with exponents ( especially if no calculators are allowed. NB when reducing bases by factorizing, always use the lowest possible bases. e.g for 16 rewrite as 2 4 and not as 4 2 . Use prime numbers for bases and not composite ones. Once you have factorised using prima bases then the normal laws apply. Example 1:
ď&#x20AC;¨ ď&#x20AC;Š
4 3
4 3 3
Simplify 125 ď&#x20AC;˝ 5 (Now use law 3 and raise a power to a power by multiplying the exponents:)
125 ď&#x20AC;˝ ď&#x20AC;¨5 4 3
ď&#x20AC;Š
4 3 3
ď&#x20AC;˝5
3 4 ď&#x201A;´ 1 3
ď&#x20AC;˝ 5 4 ď&#x20AC;˝ 625
Example 2: Simplify without the use of a calculator. 5 a ď&#x20AC;Ť 3.5 2 a ď&#x20AC;1 Use law 1 25 a ď&#x20AC;1 in the numerator 5 a ď&#x20AC;Ť 3.5 2 a ď&#x20AC;1 53a ď&#x20AC;Ť 2 aď&#x20AC;Ť 4 ď&#x20AC;˝ 2aď&#x20AC;2 ď&#x20AC;˝ 5 Answer: (5 2 ) a ď&#x20AC;1 5
Prime base factorize and use law 3 to simplify
Use law 2 to get the answer.
Follow the procedures as set out for any of the following types of simplifications with exponents. Exercise 8.1: 1.
đ?&#x2018;&#x17D;3 Ă&#x2014; đ?&#x2018;&#x17D;2
___________________________________________________________________ ___________________________________________________________________ 2.
đ?&#x2018;?2 Ă&#x2014; đ?&#x2018;?4
___________________________________________________________________ ___________________________________________________________________ 3.
đ?&#x2018;&#x17D;3 đ?&#x2018;? 2 Ă&#x2014; đ?&#x2018;&#x17D;2 đ?&#x2018;? 4
___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.
73
GO MATH WORKBOOKS
2đ?&#x2018;&#x17D;đ?&#x2018;? 2 Ă&#x2014; 3đ?&#x2018;&#x17D;4 đ?&#x2018;? 6
____________________________________________________________________ ____________________________________________________________________ 5.
2đ?&#x2018;&#x17D;(3đ?&#x2018;&#x17D; + 2đ?&#x2018;?)
____________________________________________________________________ ____________________________________________________________________ 6.
2đ?&#x2018;&#x17D;2 đ?&#x2018;?(3đ?&#x2018;&#x17D;đ?&#x2018;? 3 â&#x2C6;&#x2019; 2đ?&#x2018;&#x17D;4 đ?&#x2018;?)
____________________________________________________________________ ____________________________________________________________________ 7.
3(2đ?&#x2018;&#x17D;2 đ?&#x2018;? 3 )3
____________________________________________________________________ ____________________________________________________________________ 8.
3đ?&#x2018;&#x17D;0 (2đ?&#x2018;&#x17D;2 đ?&#x2018;? 3 )0
___________________________________________________________________ ___________________________________________________________________ NB. Prime base factorizing first then apply the laws.
9.
2 xď&#x20AC;Ť3 2 x 2 x ď&#x20AC;1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
10.
74
GO MATH WORKBOOKS
2 x 1 2 x 3 2 x 2 .2 x
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4 x 1 8 x 1 32 x 1 ___________________________________________________________________
11.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5 x 25 x 1 5.125 x ___________________________________________________________________
12.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
14.
75
GO MATH WORKBOOKS
7 x 2 49 x 2 7 3 x2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 15.
6 n1 .12 n1 .2 n 18 n 2 .8 n1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
16.
6 n 212 2 n1 4 2 n 3 8 3 n1 9 n1 3 n
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
76
GO MATH WORKBOOKS
If the bases are separated with plus or minus signs one must FACTORISE FIRST.. It is easier to split the bases as shown because it is easier to see the HCF. Factorise and simplify. NB the base with the variable exponent should always cancel leaving pure numerical values. Exercise 8.2:
1.
2 x3 2 x 2 x 1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.
2 x 1 2 x 3 2 x2 2 x
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.
77
GO MATH WORKBOOKS
3 x 3 x2 3 x 1 3 x
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.
5 2 x 4.5 x 5 x 2.5 x 1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
5.
3 n .3 4 6.3 n .31 7.3 n .3 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
78
2 n .2 5 3.2 n .2 2 5.2 n 2 3
6
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ EXPONENTIAL EQUATIONS There are two types of exponential equations: 1. The unknown(variable) in the exponent: 2. The unknown(variable) in the base: 1.
Variable in the exponent: Method: 1.1 Equate the bases using prime base factorizing. 1.2 If the bases are now equal then the exponents are also equal, thus simply equate the exponents and simplify further. 2 2 x 16
Example 1.
22x 24 2x 4
Rename 16 to the base 2 and equate the bases.
x2 2.3 x ( x 3) 54 3 x ( x 3) 27
First divide by the coefficient „2‟
3 x ( x 2 ) 33
Example 2:
x 2 2x 3 0 ( x 3)( x 1) 0 x3 or x 1
Rename 27 to the base 3 and equate the bases.
Equate the exponents and solve for x.
Grade 10 Core Mathematics
2.
GO MATH WORKBOOKS
79
Variable in the base: Method: 2.1 Raise the power of the exponent of the variable base to its multiplicative inverse. This will give a new exponent with the value of 1. As it is an equation you must do the same to both sides of the equal sign. Example. 2 3
x 16 3
23 2 x 24 x 2 4 2 3
x 26 x 64
NB. You must first remove any coefficient values prior to solving for the variable:
More advanced equations: Extension Work Variables separated by + or – signs: This involves factorizing. 2 x 3.2 x 16
1.
2 x (1 3) 16
1.1
2x 4 2 x 22 x2
Use 2 x as the HCF
Equate the bases thus and then the exponents.
NB Clues to let you know when a simple HCF must be used are: 1. Terms separated by plus and minus signs and 2. the variable exponents have the same value. i.e the coefficients of the variables exponents are equal in value. 2.
Variables separated by + or – signs BUT the values of the coefficients of the variables exponents are not equal. i.e. one is double the other. This involves a trinomial and needs to be factorised accordingly. 22x 2 x 8 0 The exponent of the 1st 2.1 (2 x 4)(2 x 2) 0 term is double that of 2x 4 0 the 2nd . i.e The 2x 4 2x 2 0 expression is a trinomial. 2 x 2 2 or 2 x 2 The variable base is 2 x x2 x 1
Grade 10 Core Mathematics
2.2
80
GO MATH WORKBOOKS
2.32 x 12.3 x 54 0 (2.3 x 6)(3 x 9) 0
2.3 x 6 0 3x 3
3x 9
or
3 x 32 x2
x 1
The exponent of the 1st term is double that of the 2nd . i.e The expression is a trinomial. The variable base is 3 x
NB a substitution method can be utilized here: Let 3 x = k [ thus 32 x k 2 ] 3 x 2k 2 12k 54 0 2(k 2 6k 27 0 (k 3)(k 9) 0 k 3 or k 9 3x 9 3x 3 x 1
Substitute 3 x for k at this point and solve for x
or 3 x 3 2 x2
Exercise 8.3: 1. Solve for x without the use of a calculator:
1.1
2x = 8
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.2
81
GO MATH WORKBOOKS
3 x 81
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.3
x3 = 27
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.4
5x
4
3
= 80
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.5
82
GO MATH WORKBOOKS
2 x 16 x 1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.6
3.2x = 48
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.7
5.42 x 40
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.1
83
GO MATH WORKBOOKS
2 x яАл 2 xяАл3 яА╜ 18
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2
2ЁЭСе+1 тИТ 2ЁЭСе = 4
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.3
2ЁЭСе + 2ЁЭСетИТ2 = 5
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.4
84
GO MATH WORKBOOKS
22đ?&#x2018;Ľâ&#x2C6;&#x2019;1 â&#x2C6;&#x2019; 22đ?&#x2018;Ľ = 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.5
32 x ď&#x20AC; 5.3 x ď&#x20AC;Ť 6 ď&#x20AC;˝ 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.6
22đ?&#x2018;Ľ â&#x2C6;&#x2019; 2. 2đ?&#x2018;Ľ + 1 = 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.7
85
GO MATH WORKBOOKS
4.22đ?&#x2018;Ľ â&#x2C6;&#x2019; 5. 2đ?&#x2018;Ľ + 1 = 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.8
9. 32đ?&#x2018;Ľ â&#x2C6;&#x2019; 10. 3đ?&#x2018;Ľ + 1 = 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
1.9
2 3
1 3
đ?&#x2018;Ľ â&#x2C6;&#x2019; 2đ?&#x2018;Ľ + 1 = 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics 1
86
GO MATH WORKBOOKS
1
1.10 đ?&#x2018;Ľ 2 + 5đ?&#x2018;Ľ 4 + 6 = 0 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2
1
1.11 đ?&#x2018;Ľ 5 + 4đ?&#x2018;Ľ 5 â&#x2C6;&#x2019; 12 = 0 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
9.
GO MATH WORKBOOKS
87
Number Patterns:
Number patterns are limited to a first order difference and are basically linear in character. General Formula is: Tn an c where d1 a T2 T1 common difference Tn an c General formula for any sequence. To calculate the components of a sequence and its nth formula: 1.
Given a sequence as follows: 4;7;10.....
Tn an c
T1 4
d1 a 3
T2 4 3 7
T3 10 3(3) c c 1
T3 4 3 3 10
Nth formula for the sequence is Tn 3n 1 General formula for the specific sequence: 4;7;10..... Tn 3n 1
The 10th term of the sequence is:
T10 3(10) 1 T10 31
2.
Given the 1st term and the common difference: T1 5 and d1 a 6 T1 5 T2 5 6 11 T3 5 6 6 17 T3 17 6(3) c c 1 Tn 6n 1 Tn 6n 1
The 10th term of the sequence is: T10 6(10) 1 T10 59
3.
Given the sequence below , Find an expression for the general term. 1;6;11;16;21........
d1 a 6 1 5 T4 16 5(4) c c 16 20 4 Tn 5n 4
The General term is Tn 5n 4
Grade 10 Core Mathematics
GO MATH WORKBOOKS
88
4.
In the sequence below , Find the common difference and the general (nth) term. 4; 9; 14 ; 19…… The common difference is d1 T2 T1 9 4 5 Next 3 terms are 24 ; 29 ; 34. Tn an c Tn an c T1 4 T3 5(3) c
d1 a 5
T2 4 5 9 T3 4 5 5 14
14 15 c c 1
Tn 5n 1
Exercise 9.1: 1. Mina invests R8000,00 in a plan where the growth is as follows: 0 1 2 3 4 5 8000 8440 8880 9320
No of yrs passed :n Value of investment (in R) :A
6
1. Find the rule for this investment plan. 1.1 Use the rule to find the values for the next 3 years. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2
Use the rule to find the value after 23 years.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.3
89
GO MATH WORKBOOKS
If the value after n years was R13 280 , what is the value of n?
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.
A class is given the sequence 3; 5; 7;….. to continue for 4 more terms. 2.1 Explain in a sentence how you would complete it.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.2
Find a rule in the form of Tn an c for the given sequence.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
2.3
90
GO MATH WORKBOOKS
Find the 20th term using the formula in 2.2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 3.
Given the sequence 7; 10; 13;â&#x20AC;Ś.. 3.1 Find a general term or rule for this sequence.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 3.2
Find the 50th term
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
91
GO MATH WORKBOOKS
4. Find a rule or general term for each of the following sequences and then find the 10th term for each one. 4.1 1; 6; 11; 16; 21;…. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.2 13; 23; 33; 43;…. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.3 6; 9; 12; 15;…. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.4 22; 20; 18; 16;…. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
92
GO MATH WORKBOOKS
4.5 7; 2; -3 ;-8;….. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.6 7; 11; 15; 19;…. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5. Use the general terms below to find the first 5 terms of each sequence and then find the 20th term for each one. 5.1 Tn = n – 5 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.2
Tn = 3n – 5
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
5.3
93
GO MATH WORKBOOKS
Tn = -2n – 5
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.4
Tn = 4n + 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.5
Tn = 2 – 3n
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6.
The following sequences are given: A. For each one write down the next 3 terms B. The nth term ( i.e. Tn = an + c) C. The 50th term. 6.1
3; 9; 15; 21;…..
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
6.2
94
GO MATH WORKBOOKS
2; 9; 16 ; 23; …..
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6.3
2; -3; -8; -13;….
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6.4
3; -1; -5; -9;…
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
95
GO MATH WORKBOOKS
20; 27; 34; 41;…….
6.5
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ Exercise 9.2: The following are all number patterns. In each sequence :
Find the rule for the nth term Tn
Find the value of the 50th term.
Graph the relationship.
1.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
96
2.
___________________________________________________________________
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
97
GO MATH WORKBOOKS
4. From the diagram below: 4.1 4.2 4.3
fig1
Determine the next 3 terms. Determine the nth term formula Determine the 20th term.
Fig 2
Fig 3
Fig 4
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.
From the diagram below: 5.1 5.2 5.3
Determine the next 3 terms. Determine the nth term formula Determine the 20th term.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
6.
98
GO MATH WORKBOOKS
From the diadram below: 6.1 6.2 6.3
Determine the next 3 terms. Determine the nth term formula Determine the 20th term.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
10.
GO MATH WORKBOOKS
99
STRAIGHT LINE GRAPHS:
General Equation : y mx c Written in this form : y mx c
1.
y - intercept
Gradient The Table Method: Draw a table using x-values of -2 ; 0;& +2. Change the equation to the y-form and by substitution calculate the corresponding y-values. Example: Sketch the graph of
X Y
-2 -1
0 3
2 5
Plot the above points on a Cartesian plane. Lable and name the graph. 4
fx = 2x+3
2
-5
5
-2
1.
Exercise 10.1: Change the following equations to the y-form. 1.1
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
100
GO MATH WORKBOOKS
1.3 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.
Sketch the following linear functions using the table method:
y x3 2.1 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
101
GO MATH WORKBOOKS
y 2x 4 22. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2 y 4x 8 2.3 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
102
GO MATH WORKBOOKS
3 y 6x 3 2.4 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2y x 6 2.5 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
103
GO MATH WORKBOOKS
4 y 8x 8 0 2.6 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
104
Method 2 : Dual Intercept Method. Sketching linear graphs ( straight line) the best method to us is the Dual Intercept method. This method finds the values where the line cuts ( intercepts) the x- axis and y-axis. NB The only time that this method is not used is sketching any line passing through the origin. Use substitution to find another point or use the gradient. METHOD: To find the x – intercept substitute zero for x – intercept substitute zero for y and To find the y – intercept substitute zero for x. Example: Sketch the graph of 2 y 3x 6 using the dual intercept method.
2(0) 3x 6 2 y 3(0) 6 Let x = 0 2 y 6 and Let y = 0 3x 6 x y 2 y3
3
2
x
2y + 3x = 6
Grade 10 Core Mathematics
105
GO MATH WORKBOOKS
Exercise 10.2: Use the” dual intercept method” to sketch the following:
y x3 1. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
y 2x 4 2. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
106
GO MATH WORKBOOKS
2 y 4x 8 3 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3 y 6x 3 4. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
107
GO MATH WORKBOOKS
2y x 6 5. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6.
4 y 8x 8 0
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
108
GO MATH WORKBOOKS
Gradients of straight lines: 1. 2.
In the y- form of the equation simply use the m- value( co-efficient of x) as this represents the gradient . Given at least 2 points that lie on a given line, then calculate the gradient y y1 y y1 y 2 or 2 using: m x x1 x2 x2 x1 i.e the difference between the y – values divided by the difference between the x – values.
3.
Parallel lines have the same gradients i.e. their m – values are the same i.e y 2 x 6 . Is parallel to y 2 x 10
4.
Perpendicular lines have inverse gradients. i.e. m1 m2 1
1 y 2 x c is perpendicular to y x c 2
m1 m2 1 2 1 1 1 2 Domain & Range Domain represents all the x – values Range represents all the y – values. The domain is also referred to as the independent value and is made up of all the numbers in the number system. The range is referred to as the dependent value because you can only find why if you know x. The x and y values together form a ordered pair and represent a point on a Cartesian plane. x is always written first.
Grade 10 Core Mathematics
109
GO MATH WORKBOOKS
Functions and Relations: A function occurs when the x-value is not repeated i.e there is one x-value for one y-value. e.g. 1. (3 ; 4) ; (4 ;5) ; (5;6) 2. (3;4) ; (4;4) ; 5;4) [the y-value can be repeated in a function. A non- function occurs when the x-value is repeated. i.e more than one x-value for a y-value. e.g. 1. (2;3) ; (2;4); (3;5) 2. (3;4) ; (3;5); (3;6) Graph representations of functions and non- functions. Graphs of Functions:
Graphs of Non- Functions:
Grade 10 Core Mathematics
GO MATH WORKBOOKS
110
A pencil test can be used to see if a particular graph is function or a non- function. i.e. A vertical line test: 1. If the line cuts the graph at only once then the graph represents a function. 2. If it cuts more than once then the graph represents a non-function. The reason however is due to the fact that the x-value is not repeated for a function and is repeated for a non-function .
Domain and Range of graphs: It is easy to read the domain and range from graph representations.
(-2;4)
Domain: x R Range: y R
Domain: { x 2 ; x R } Range: { y 4 ; y R }
(4 ; 6)
8
Domain: { x 4 ; x R }
{Domain: x R }
Range: { y 6 ; y R }
Range: { y 8 ; y R }
6
-6
6
Domain:{ 6 x 6 ; x R .} Range: { 6 y 6 ; y R }
-6
Grade 10 Core Mathematics
11.
GO MATH WORKBOOKS
111
Parabola Graphs:
General Equation: y ax 2 c OR y ax 2 q Two methods can be utilized to sketch a parabola graph: 1. Table method. 2. A „5 point‟ method. Method: Table: A. Sketch the graph of y x 2 4 X Y
-3 5
-2 0
-1 -3
0 -4
1 -3
2 0
3 5
y 4
f x = x 2-4
2
-10
-5
-2
1
-1
-2
-3 -4
2
x
5
10
Grade 10 Core Mathematics
112
GO MATH WORKBOOKS
Exercise 11.1: Sketch the following graphs using a table method: Use x –values of -3 to 3 for each table.( as in the example above) 1. y x2 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
113
GO MATH WORKBOOKS
2. y x2 1 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
114
GO MATH WORKBOOKS
3. y x2 2 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
115
GO MATH WORKBOOKS
4. y x2 1 ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
5.
116
GO MATH WORKBOOKS
y x2 2
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
117
GO MATH WORKBOOKS
Exercise 11.2: A. Sketch the following graphs on the same set of axes: 1. y x2 2. y x2 1 3. y x2 1 What deduction can be made? ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
118
GO MATH WORKBOOKS
B. Sketch the following graphs on the same set of axes: 1. y x2 2. y 2x 2 1 3. y x2 2 What deduction can be made? ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
119
GO MATH WORKBOOKS
C. Sketch the graphs of the following equations: 1. y x2 2. y x2 What deduction can be made? ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
120
GO MATH WORKBOOKS
D. Sketch the graphs of the following on the same set of axes: y x 1 and y x 2 1. 2. Write down the coordinates of the point(s) of intersection for the two graphs. ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
121
GO MATH WORKBOOKS
E. Sketch the graphs of the following on the same set of axes: 1. y x 2 and y x 2 2. Write down the coordinates of the point(s) of intersection for the two ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
122
Sketch of a parabola using a 5 point method. 1.
x –intercepts at y = 0 :
2.
y- intercept at x = 0
3.
Turning point: for the same.
4.
Get two further points using substitution:
y ax 2 c the y- intercept and the turning point are
Example: A. Sketch the graph of y x 2 4
4
Method: 2
1.
x – intercepts at y = 0: x2 4 0
qx = x 2-4
-5
5
( x 2)( x 2) 0 x = 2 or x = -2 2.
y – intercept at x = 0: y in = -4
3.
Turning point: (0; -4)
4.
Substitution:
10
-2
-4
At x = 1 thus y = (1)2 – 4 = -3 plot point ( 1; -3) At x = -1 thus y = (-1)2 –4 = -3 plot point ( -1; -3) 8
B. Sketch the graph of y 2 x 2 18
6
4
1.
x – intercepts at y = 0: 2 x 2 18 0 2( x 2 9) 0 2( x 3)( x 3) 0 x = 3 or x = -3
2
-4
-2
2
-4
-6
-8
-10
2.
y – intercept at x = 0. y-int = -18
-12
-14
-16
-18
3.
Turning point : ( 0; -18) -20
4.
4
-2
By substitution: at x = 2 y = 2(2)2 – 18 =8 – 18 =- 10. plot point (2; -10) at x = -2 y = 2(-2)2 –18 = 8 – 18 = -10 plot point ( -2 ; -10)
qx = 2x 2-18
6
8
10
12
Grade 10 Core Mathematics
GO MATH WORKBOOKS
123
Exercise 10.3: Use a point by point method to sketch: y x2 9
9.
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ________________________________________________ ____________________ _______________________________________________ _____________________ 3
2
1
-14
-12
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
2.
y x 2 9
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ________________________________________________ ____________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
124
9
8
7
6
5
4
3
2
1
-12
-10
-8
-6
-4
-2
2
4
6
8
10
12
14
-1
-2
-3
-4
y 2x 8 1.3 ___________________________________________________________________ 2
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6
5
4
3
2
1
-12
-10
-8
-6
-4
-2
2 -1
-2
-3
-4
-5
-6
-7
4
6
8
10
12
14
Grade 10 Core Mathematics
GO MATH WORKBOOKS
125
y 3x 2 12
1.4
___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6
5
4
3
2
1
-12
-10
-8
-6
-4
-2
2 -1
-2
-3
-4
-5
-6
-7
4
6
8
10
12
14
Grade 10 Core Mathematics
GO MATH WORKBOOKS
126
Finding Equations of Parabolas:
A.
Given the turning point and any other point Method: Use the general form of the equation : y ax 2 q Example :
-2
2 -8
y ax 2 q
y ax 2 8
sub Minimum value of - 8 for q
0 a (2) 8
sub point (2;0) for x and y
2
0 4a 8
solve for a and sub back into equation.
4a 8 a2 y 2x 2 8 B.
Given the two x – intercepts and any other point. Method: Use the general form of the equation: y a( x x1 )( x x2 ) NB x1 and x 2 refer to the roots or x – intercepts Example (1;3) -2
2
y a( x x1 )( x x2 ) y a( x 2)( x 2) sub the x – intercepts changing their signs when you do so. 3 a(1 2)(1 2) sub the other point in for the x and y values 3 a(1)(3) 3 3a solve for a and sub back into equation a 1 y 1( x 2)( x 2) y x 2 4
Grade 10 Core Mathematics
12.
GO MATH WORKBOOKS
127
Hyperbola Graphs:
Sketching: Use a table method (on the calculator or on paper) Example: Sketch the graph of y
y
1. X Y
6 x -3 -2
-2 -3
6 x
-1 -6
1 6
2 3
3 2
8
6
f x =
6 x
4
2
-10
-5
5
-2
-4
-6
-8
Asymptotes are are : x 0 and y 0 Domain: x (; ) x 0 . y (; ) y 0 . Range:
10
Grade 10 Core Mathematics
GO MATH WORKBOOKS
128
Exercise 12.1: Complete the tables and use the values to sketch the graphs of: 1.
y
X Y
-3 2
6 x -2 3
-1
1
2
3 -2
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
y 2. X Y
8 x
-8 -1
-4
-2
-1
1
2
4
8 1
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
4
6
8
10
12
Grade 10 Core Mathematics
3.
y
X Y
-8 1
GO MATH WORKBOOKS
129
8 x -4
-2
-1
1
2
4
8 -1
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
4.
y
X Y
-4 -1
4 x -2
-1
1 4
2
4
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
4
6
8
10
12
Grade 10 Core Mathematics
5.
y
X Y
-4
GO MATH WORKBOOKS
130
4 x -2 2
-1
1
2
4 -1
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
Shifts with hyperbola graphs:
k q x The q- value gives the vertical shift of the graph. It also gives the new horizontal asymptote. y
Example:
y
4 2 x Asymptotes are : x 0 and y 2 Domain: x (; ) x 0 . y (; ) y 2 . Range:
4
6
8
10
12
Grade 10 Core Mathematics
131
GO MATH WORKBOOKS
Exercise 12.2: Write down the : Asymptotes, Domain & Range of each of the following:
8 3 x ___________________________________________________________________ 1.
y
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
10 6 x ___________________________________________________________________ 2.
y
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
9 6 x ___________________________________________________________________ 3. y
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
13.
GO MATH WORKBOOKS
132
Exponential Graphs:
General formula :
a>0,a1,x y>0
y = ax
A. To sketch the graph y = ax (a) x and y > 0 y = ax lies above the x – axis in quadrants 1 and 2. b) (i) If a > 1 , then as x increases , y increases. (ii) If 0 < a < 1 , then as x increases , y decreases. (i)
y = 2x [Where „a‟ is a whole number]
X Y
-2
-1
1 4
1 2
(ii)
y = ( 12 )x. [Where „a‟ is a fraction]
X Y
-2 4
-1 2
0 1
0 1
1 2
e.g. y = 2 x e.g. y = ( 12 )x.
2 4
1
2
1 2
1 4
x
1 y or y 0,5 x 2 These 2 graphs are mirror images of each other, the axis of symmetry being the yaxes (x = 0 ). The x- axes is a vertical asymptote, as y will never equal zero.
y = 0,5x
y = 2x y
1 x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
133
Exercise 13.1: Complete the tables and use the values to sketch the graphs of: y 2x -2 1 4
1. X Y
-1
0 1
1
2 4
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
y 2x 1 -2 -1 5 4
2. X Y
0 2
1
2 5
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
4
6
8
10
12
Grade 10 Core Mathematics
y 2x 1 -2 -1 3 4
3. X Y
GO MATH WORKBOOKS
134 0 0
1
2 3
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
y 2.2 x -2 -1 1 2
4. X Y
0 2
1
2 8
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
4
6
8
10
12
Grade 10 Core Mathematics
5. X Y
y 2.2 x -2 -1 1 2
GO MATH WORKBOOKS
135 0 -2
1
2 8
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
-1
-2
-3
-4
-5
Functional Notation Graph Interpretation: Exercise 13.2: 1. 1.1
If f ( x) 4 x 3 find: f (4)
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 1.2
f (7)
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
12
Grade 10 Core Mathematics
136
GO MATH WORKBOOKS
f (a b) 1.3 ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2. If g ( x) 3x 2 x 6 . Find: g (2) 2.1 ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
g (3) 2.2 ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
g (a b) 2.3 ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3. Sketch the graph of 2 y 4 x 8 using the dual intercept method. ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
137 6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
12
-1
-2
-3
-4
-5
Sketch the graphs of y x 3 and 2 y 3x 6 on the same system of axes and:
4.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
-1
-2
-3
-4
-5
4
6
8
10
12
Grade 10 Core Mathematics
4.1
GO MATH WORKBOOKS
138
write down the co-ordinates of the point of intersection. _______________________________________________________________
___________________________________________________________________ ____________________________________________________________________
8 8 and y on the same system of axes. x x ____________________________________________________________________ Sketch the graph of y
4.2
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
-1
-2
-3
-4
-5
4.2.1 Write down the domain and range for the two graphs above. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
10
12
Grade 10 Core Mathematics
4.2.2
GO MATH WORKBOOKS
139
Write down the asymptotes of the two graphs above.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ Sketch the graphs of y x 2 4 and y x 2 4 on the same system of axes. ____________________________________________________________________ 4.3
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
-1
-2
-3
-4
-5
4.3.1
Write down the domain and range of the graphs above:
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
12
Grade 10 Core Mathematics
GO MATH WORKBOOKS
140
Sketch the graphs of y 2 x and y 2 x 2 on the same system of axes. ____________________________________________________________________ 4.4
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
6
5
4
3
2
1
-10
-8
-6
-4
-2
2
4
6
8
10
-1
-2
-3
-4
-5
4.4.1 Write down the asymptotes of the two graphs ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
12
Grade 10 Core Mathematics
5.
GO MATH WORKBOOKS
141
Write down the gradients; x and y intercepts of the following graphs: 5.1
5.2 8 6 4
-2
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.3
5.4
y 8
-3
-2 -9
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
142
6. Write down the domain and range; the mapping and whether the graph represents a function or a no-function for each of the following: 6.1
6.2
(2 ; -9)
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
6.3
6.4
-12
12
-4
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
6.5
GO MATH WORKBOOKS
143
6
6.6
-7
7
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
6.7 O (3; 9)
6.8
• 0
•(-4 ; -4)
8
-4
• 4
-9
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
144
7. Find the equations of the following graphs: 7.1
7.2 y (4 ; 2)
2
x
-4
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ y (2 ; 9)
7.3 (0;1 0
x
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
145
7.4 y (0;9)
(2 ; 5)
0
x
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 7.5 y
x
0 -2 (2 ; -4)
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
146
8. đ?&#x2018;&#x201C; đ?&#x2018;Ľ = 3đ?&#x2018;Ľ 2 â&#x2C6;&#x2019; 12 and đ?&#x2018;&#x2022; đ?&#x2018;Ľ = đ?&#x2018;&#x161;đ?&#x2018;Ľ + đ?&#x2018;? are depicted below.
-2
0
2
h f -6
S
-12
8.1 Find the equation of đ?&#x2018;&#x2022;. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 8.2 Write down the domain and range of đ?&#x2018;&#x201C;. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 8.3 For which value(s) of x is đ?&#x2018;&#x201C; decreasing. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
147
GO MATH WORKBOOKS
Use algebraic methods to find the coordinates of đ?&#x2018; , the point of intersection of đ?&#x2018;&#x201C; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2022;. ____________________________________________________________________ 8.4
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 8.5 Give the new equation of đ?&#x2018;&#x201D; if đ?&#x2018;&#x201C; is reflected on the x â&#x20AC;&#x201C; axis. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
148
Further Graph Interpretation: Find a and c in the following: 1. đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?
2.
đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3.
đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;Ľ 2 + đ?&#x2018;?
4.
đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;Ľ 2 + đ?&#x2018;?
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
5. đ?&#x2018;Ś = đ?&#x2018;&#x17D; đ?&#x2018;Ľ
GO MATH WORKBOOKS
149 6.
đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 7. đ?&#x2018;Ś =
đ?&#x2018;&#x17D; đ?&#x2018;Ľ
đ?&#x2018;&#x17D;
8. đ?&#x2018;Ś = + đ?&#x2018;? đ?&#x2018;Ľ
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics đ?&#x2018;&#x17D;
9. đ?&#x2018;Ś = đ?&#x2018;Ľ + đ?&#x2018;?
GO MATH WORKBOOKS
150
10. đ?&#x2018;Ś = đ?&#x2018;&#x17D;đ?&#x2018;? đ?&#x2018;Ľ
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ F
11. The graphs of đ?&#x2018;&#x201C; đ?&#x2018;Ľ = â&#x2C6;&#x2019;đ?&#x2018;Ľ 2 + 4 and đ?&#x2018;&#x201D;(đ?&#x2018;Ľ) = 3đ?&#x2018;Ľ + 4 are sketched alongside. 11.1 Calculate the coordinates of A, B, C and D.
y g
_______________________________________________ _______________________________________________
C
_______________________________________________ _______________________________________________ _______________________________________________
A
_______________________________________________
B x
D
_______________________________________________ f
_______________________________________________ _______________________________________________ E
Grade 10 Core Mathematics
151
GO MATH WORKBOOKS
11.2 Determine the coordinates of E. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
11.3 Calculate the length of FB. ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 11.4 List an expression for đ?&#x2018;&#x201D; đ?&#x2018;Ľ â&#x2C6;&#x2019; đ?&#x2018;&#x201C; đ?&#x2018;Ľ . ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
152
11.5 For which values of x is đ?&#x2018;&#x201D;(đ?&#x2018;Ľ) â&#x2030;Ľ đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ E
y
G
F
12. D
S
P
B x
A H g
f
T
C
The graphs of đ?&#x2018;&#x201C; đ?&#x2018;Ľ = đ?&#x2018;Ľ 2 â&#x2C6;&#x2019; 9 đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x201D; đ?&#x2018;Ľ = 2đ?&#x2018;Ľ + 6 are sketched above. 12.1
Calculate the coordinates of A, B , C and D.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
12.2
153
GO MATH WORKBOOKS
State the lengths of OC, AB and OD
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 12.3
Calculate the coordinates of E.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 12.4
IF đ?&#x2018;&#x201A;đ?&#x2018;&#x2020; = 1 Find FT.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 12.5
If đ?&#x2018;&#x201A;đ?&#x2018;&#x192; = â&#x2C6;&#x2019;4 Find GH.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 12.6
Calculate the length of AD.
____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
14.
154
GO MATH WORKBOOKS
Financial Maths:
No business can exist without the information given by figures. Borrowing, using and making money is the heart of the commercial world thus the principle of interest and interest rate calculations are extremely important. This leads into an examination of the principles involved in assessing the value of money over time and how this Information can be utilized in the evaluation of alternate financial decisions. Remember that the financial decision area is a minefield in the real world, full of tax implications, depreciation allowances, investment and capital allowances etc. The basic principles in financial decision making are established through the concept of interest and present value: –
Definition of interest: Interest is the price paid for the use of borrowed money Interest is paid by the user of the money to the supplier of it. It is calculated as a fraction of the amount borrowed or saved over a certain period of time. This fraction is also known as interest rate and is expressed as a percentage per year (per annum).
Simple interest is computed on the principle for the entire term of the loan and is thus due at the end of term. I = Prt I is the interest paid or earned P is the principle or Present value r is the interest rate per annum t is the time or term of loan
A P(1 in) A ( Amount ) New Price per time period P Original Price(Cost )(Principl e) r i Interest rate used for growth : i 100 n the relevant time period. P
A (1 in )
Grade 10 Core Mathematics
GO MATH WORKBOOKS
155
Simple Interest ( Growth) Simple Interest:(Growth) NB interest is calculated on the original investment for each time period. i.e. The interest earned is a constant. Formula:
A P(1 ni) Where:
A Future Value (Future amount.) P present Value (original amount.) r ) 100 n Number of interest periods.
i interest level(i
(When using i use the decimal of the interest rate quoted (or use
r for i) 100
Example 1: A Principle of R300,00 is invested in a Bank at 10% Simple Interest for a number of years; Complete the table below: Principle Interest period(yrs) Simple Interest (%) Interest
300 1
300 2
300 3
300 4
300 5
300 6
300 N
10
10
10
10
10
10
R
30
60
90
120
150
180
300 100in
Amount
330
360
390
420
450
480
200
300 100in
Example 2:Invest R300,00 @ 15% per annum( per year) Year 0
R300
Simple Interest p.a
Year 1
R345
45
Year 2
R390
45
Year 3
R435
45
Year 4
R480
45
Year 5
R525
45
The value of the investment increases at a constant value of R45 per year. The relevant graph for simple growth is a straight line:
Grade 10 Core Mathematics
156
GO MATH WORKBOOKS
Exercise 14.1: Question 1: Peter deposits R8500,00 for 8 years into a savings account. 1.1 If the money earns a simple interest rate of 12% per annum. How much will he have at the end of the investment period. ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 1.2
If he had received an interest rate of 20% , how much more would he have earned in interest?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
157
GO MATH WORKBOOKS
Question 2: John invests R20 000,00 into a capital venture that will earn him a simple interest of 10% for the first 5 years and then 15% for the last 5 years. What is his investment worth at the end of the 10 years? ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ Question 3: 3.1
Mrs Vezi invests R10 000,00 at 12,5% simple interest per annum.
How much interest will she earn after 5 years?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 3.2
How much interest will she earn after 10 years?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.3
158
GO MATH WORKBOOKS
What is the final amount in her account after 15 years if she does not have any withdrawals?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ Question 4: 4.1
Calculate the Principle if James received an amount of R7500,00 earned in simple interest at a rate of 10% over 5 years.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 4.2
Calculate the Principle if James received an amount of R37500,00 earned in simple interest at a rate of 15% over 10 years.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
159
Question 5: A loan of R100 is made at 10% simple interest p.a. 5.1
A line graph is used to display the amount at the end of each year. Draw this graph on the grid below. y
200 190 180 170
A m o u n t
160 150 140 130 120 110 100
0
5
10
x
15
20
25
Years
5.2
What do you notice about the increase every year? How is this displayed in the graph? ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.3
If R100 is borrowed at 5% p.a. Simple Interest for 4 years display this on the same graph and show clearly how the two graphs differ from one another. ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
30
Grade 10 Core Mathematics
GO MATH WORKBOOKS
160
5.4
If R100 is borrowed at 15% p.a simple interest for 4 years explain without drawing the graph how the graph would differ from the other two (2). ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ COMPOUND INTEREST Compound interest arises when, in a transaction over an extended period of time, interest due at the end of a payment period is not paid, but added to the principal. Interest also earns interest i.e. it is compounded. The amount due at the end of transaction period is referred to as the compounded amount or accrued principal. Interest periods can vary : daily, monthly, quarterly, half-yearly or yearly. FOR GRADE 10 PURPOSES INTEREST IS ONLY CALCULATED YEARLY
Formula: Compound Growth:
A P(1 i ) n A = Amount or Future Value P = Principal or Initial value i rate of interest per annum i
r 100
n = number of years invested Compound Interest(Growth): Interest is calculated on the new amount each time period. i.e. Earn interest on interest, thus interest increases each year.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
161
Example 1: Year 0
R300
Compound Interest p.a.
Year 1
R345
45
Year 2
R396,75
51,75
Year 3
R456.26
59,51
Year 4
R524,70
68,44
Year 5
R603,41
78,71
The amount increases at a constant interest rate however it is calculated on the increasing amount each time period. The relevant graph for compound growth is curve shaped.
Example 2: Vusi invests R1000,00 at 12% compound interest for 5 years: 2.1 Write down a formula for the compound interest to be calculated over n yrs at r % p.a. n
r n Answer: A P 1 or A P1 i 100
2.2 Use the formula to calculate the final amount earned after the 5 years to the nearest cent. A P1 i n
Answer:
A 10001 0,125 A R1762,34
2.3 How much interest was earned on his investment:
i A P Answer: i 1762,34 1000 Ci R762,34
Grade 10 Core Mathematics
GO MATH WORKBOOKS
162
2.4 Calculate what he would have earned in simple interest for the same time period: Pr t 100 1000 12 5 Si 100 Si R600. Si
Answer:
1.
It can be deduced that it is more beneficial to invest money at compound interest:
2.
If the number of interest periods are increased then it can be deduced that the interest earned would increase accordingly:
i.e Calculating interest: 1. annually 2. half- yearly 3. quarterly 4. monthly 5. daily.
Example: R1000 invested at compound interest for 5 years at 12% p.a. Principle
Interest
A P(1
r tm ) 100m
Time Period = 5yrs Yearly
Half-Yearly
Monthly
Daily
m =4
m = 12
m= 365,25
m= no of time periods p.a.
m =1
R1000
R1762,34
R1790,85
R1806,11
R1816,70 R1821,94
R762,34
R790,85
R806,11
R816,70
12%
Compound Interest
m =2
Quartely
Ci = A – P It can be deduced from the table above that the more time periods involved in the calculation of compound interest the better the return on investment: The majority of Banks and investment companies employ daily interest calculations for principles invested with them.
R821,94
Grade 10 Core Mathematics
163
GO MATH WORKBOOKS
Exercise 14.2: 1. Charlie wants to invest R7000,00 : There are 2 choices for him: What would the better choice be? Show all your working. 1.1
Invest R 7000,00 at 12% simple interest per annum over 5 years.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2
Invest R7000,00 at 12% compound interest over 5 years.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2. R12000,00 is invested in a savings account in FNB. The interest is compounded annually at 15%. How much money will be in the savings account after 10 years? ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
164
GO MATH WORKBOOKS
3. R20 000,00 is invested for 15 years at 12% p.a. Calculate the value of the investment if the interest is calculated: 3.1
At simple interest.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3.2
At compound interest.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ______________________________________________________________ 4. R5000 was invested in order to fund a small business. After 5 years R7000 was paid out from the profits. The amount was profit only 4.1
Calculate a simple interest rate that would yield the same return.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.2
165
GO MATH WORKBOOKS
Calculate a compound interest rate that would provide the same return.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 5. An investment doubles over a period of 8 years. Determine a rate of interest correct to 2 decimal places which would make this possible if the interest was calculated as follows: 5.1
simple interest.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ __________________________________________________________________ ____________________________________________________________________ 5.2
compound interest.
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
166
6. The Ndlovu family uses a loan of R7200,00 to buy furniture They repay the loan at the end of 3 years. How much would they have to repay if the interest is calculated as: 6.1
16% p.a. simple interest?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6.2
13% p.a. compound interest?
___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 7. Use the simple and compound interest formulae and complete the table below. R1000 invested in a savings account for 5 years at 15% p.a. Simple interest A P(1 ni)
Compound interest A P(1 i) n
End of 1st year
A=
End of 1st year
End of 2nd year
A=
End of 2nd year
A=
End of 3rd year
A=
End of 3rd year
A=
End of 4th year
A=
End of 4th year
A=
End of 5th year
A=
End of 5th year
A=
A=
Grade 10 Core Mathematics
GO MATH WORKBOOKS
167
8. Use a table to draw two graphs on the same system of axes showing the difference between simple and compound interest . Use a the system of axes below for your graphs.
y 2100 A m o u n t
2000 1900 1800 1700 1600
i n R a n d s
1500 1400 1300 1200 1100 1000 5
0
10
15
x
20
25
no of years
8.1
What kind of graph does the simple interest formula produce?
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 8.2
Find the gradient of the line.
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
30
Grade 10 Core Mathematics
8.3
GO MATH WORKBOOKS
168
What is the difference in the value of A for simple and compound interest after 5 years?
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 8.4
Use the formula to calculate the difference in A, ( the accumulated value of the investment), after 10 years.
____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Exchange Rates in the Money Market: Currency Cross rates can be checked in the Business Section of local newspapers. Extract of rates from Natal Mercury Business Report on 12 .3 . 2009 Currency Cross Rates 13 :03:2009 CURRENCY
$
€
R 9.9837
£
¥
A$
NZ$
USD
1
0.7747 0.7157
98.1100
1.5253 1.9117
ZAR
0.1002 1
0.0776 0.0717
9.8270
0.1528 0.1915
EUR
1.2909 12.8880 1
GBP
1.3972 13.9492 1.0823 1
137.0793 2.1312 2.6710
JPY
0.0102 0.1018
0.0079 0.0073
1
0.0155 0.0195
AUD
0.6556 6.5453
0.5079 0.4692
64.3209
1
NZD
0.5231 5.2225
0.4052 0.3744
51.3213
0.7979 1
0.9239
126.6502 1.9690 2.4678
1.2533
Grade 10 Core Mathematics
GO MATH WORKBOOKS
169
Examples : R1000 will buy 1.1
$100 (to nearest dollar)
1.2
£72(to nearest pound)
1.3
€78(to nearest Euro)
1.4
¥9827(to nearest Yen)
Exercise 14.3: 1.Copy and complete the following currency table:
CURRENCY
$
USD
1
ZAR
0.133 1
EUR 2
JPY
£
7,5
13
GBP
€
R
NZD
5
NZ$
0.0666
20
1
300
0.1428
1
15
0.933 7
A$
150
O,05
AUD
¥
1 0.333 0.01
0,0105 1
0,3335
1
Use the table above for questions 2 to 4. 2
You have R1000 to spend in each of the above countries. How much of the local money can be purchased in each of the countries. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3
What will it cost you in Rands to purchase the following currencies:
3.1
$800.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
170
GO MATH WORKBOOKS
3.2 ¥2000. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3.3 A$500. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 3.4 €2000. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3.5 £5000. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ How many rands can be exchanged for the following: 3.6 $200 ____________________________________________________________________ ___________________________________________________________________ 3.7 ¥1500 ____________________________________________________________________ ___________________________________________________________________
3.8 A$150 __________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
171
GO MATH WORKBOOKS
3.9 €350. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.10
£750.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Cost of Hire Purchase: A hire purchase agreement is a short - term loan It is calculated using simple interest The lending company also adds insurance to the cost to cover the loan amount. Example: Andy buys a plasma TV set for R12000,00 He buys the TV using hire purchase agreement involving monthly payments over 3 yrs. The simple interest rate is 14% p.a. calculate Andy,s monthly installment if a monthly insurance premium of R10 is added . Solution:
A P(1 ni)
A 12000[1 3(0,14)] A R17040 Monthly installments are = R
17090 10 36
= R473.33 + R1 = R483 .33
Grade 10 Core Mathematics
172
GO MATH WORKBOOKS
Exercise 14.4: 1.
A couple buy new furniture for their home. The furniture costs R120 000,00 They pay for it using a hire purchase loan. The interest rate is 12% p.a. over a 5year period. Calculate the monthly repayment if there is no insurance added.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
2.
Sihle buys a washing machine for R6500,00. He pays 15% of the value in cash as a deposit and uses a hire purchase agreement to pay the balance over 36 months. The interest rate is 10% p.a. Calculate his monthly installments if an insurance premium of R6,50 is added monthly.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.
173
GO MATH WORKBOOKS
Mr Moosa sees an advert in the newspaper for a surround sound audio system. The advert is worded as follows: â&#x20AC;&#x153;Pay ONLY R299,99 R7500.
per month for 36 months!â&#x20AC;? The cash price is
Assume that no insurance premium is added. Calculate: 3.1
how much interest is paid over 3 years?
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3.2
The interest rate per annum if the advertisement refers to a hire purchase agreement.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.
174
GO MATH WORKBOOKS
Ms Bokapane buys a washing machine from a appliance store . She asks 1 for a quote to buy the machine through a hire purchase contract over 1 2 years. The following quote was received by her:
QUOTATION: Purchase price
R3800,00
10% cash deposit
R 380,00
Balance owing
R3420,00
Finance charges(interest)
R 820,00
Insurance over 18 months
R 684,00
Total amount to be paid
R4924,80
Monthly payment
R 273,60
1.1
Why do you think Ms Bokopane has to pay insurance costs?
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
1.2
Calculate the interest rate per year. (Note: the interest charged is calculated on the balance owing i.e. R3420,00 .The insurance is not included in this calculation)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
175
Cost of Inflation Inflation is the continuous increase in the cost of goods and services over a period of time. The rate of inflation is given as percentage per annum. It is the average increase (as a percentage ) in the cost of goods and services from one year to the next. The compound increase formula is used in inflation problems. Example: A car costs R80 000,00, and the average rate of inflation is expected to be 8,05% p.a. over the next 5 years. 1. Calculate the expected price of the same model of car in 5 years time, based on the stated inflation rate. 2. How much would the same model car cost 5 years ago, based on the same rate of inflation? Solution : A P(1 i ) n
A P(1 i ) n
80000 P(1 0,0805) 5
A 80000(1 0,0805) 5 A R117818,00
1.
2.
P
80000
(1 0,0805) 5 P R54320,80
Exercise 14.5: 1.
The average rate of inflation over the last 10 years was 7,3% p.a. The current price of a 2,5kg packet of white sugar is R10,25. 1.1
Calculate the expected price of sugar in 10 years time if the rate of inflation continues at the same level.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
1.2
176
GO MATH WORKBOOKS
How much did the 2,5kg packet cost 10yrs ago (the rate of inflation continues at the same level.)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
2.
A kettle costs R180,00. Determine the expected cost of a similar kettle in 5 years time , based on an inflation rate of 18% p.a.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.
A block of 500grams margarine costs R16,19 . Determine the cost in 10 years time if the price is expected to rise by 9% p.a. as a result of inflation.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.
177
GO MATH WORKBOOKS
The current annual fees for a Bachelor of Commerse degree at UKZN are R20500,00. Determine the expected cost of studying the same degree in years time if the fees are to increase by 9% p.a. as a result of inflation. Give the answer correct to the nearest rand.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
178
TIME LINES USED FINANCIAL CALCULATIONS Time lines are useful when dealing with complicated problems, such as changes in the interest rate during an investment period or when several deposits or withdrawals are made from a savings account. It helps to summarise the information and give a visual representation of the data in an ordered manner. Example: R7000 is deposited into a savings account , and 4 years later another R5000 is added to the savings. Calculate the value of the savings at the end of 7 years if the interest rate is 12% p.a. for the first 3 years and then increased to 13,5% for the remaining period. Solution: T0
T1
T2
R7000
T3
T4
T5
R5000 12% p.a.
13,5 % p.a.
T6 etc indicates the time period of the investment.
Balance after 3 years :
Balance after 4 years :
Balance after 7 years:
A 7000(1 0,12) 3 A R9834,496
A 9834,496(1 0,135) 5000 A R16162,152 A 16162,152(1 0,135) 3 A R 23631,26(nearest cent )
T6
n (years) Interest rates
Grade 10 Core Mathematics
GO MATH WORKBOOKS
179
Example 2: In order to save for her sons University fees , Mrs Gumede deposits R8000 into a savings account at the end of January when her son is 10 years old. The rate of interest is 14% p.a. compounded annually. When her son is 18yrs old he starts a University course which has a duration of 3 years. The first fees are R9000 , payable at the end of January . The fees increase by 10% each year. Calculate: 1.
the second and third years fees.
2.
the balance in the account after the first years fees have been paid.
3.
the balance in the account after the second years fees are paid.
4.
how much additional cash will be needed to cover the third years fees?
T0
T8
R8000
T9
T10
(R9000)
n (years)
14% p.a.compounded annually NB the bracket around R9000 indicates a withdrawal. 2.
Second years fees ( fees at T9):
9000 (0.1)(9000) R9900 Third years fees ( fees at T10) 9900 (0.1)(9900) R10890 3.
Balance at T8: 8000(1 0.,14)8 9000 R22820,69 9000 R13820,69 (to nearest cent)
4.
Balance at T9:
13820,69(1 0,14) 9900 R5855,59 (to nearest cent) 5.
Money in savings account at T10:
5855,59( I 0,14) R6675,37 Additional cash required: 10890 6675,37 R4214,63 (to nearest cent)
Grade 10 Core Mathematics
180
GO MATH WORKBOOKS
Exercise 14.6: 1. Jack deposits R1000 into a savings account . One year later he adds R2000 to the savings. At the end of the second year he deposits R4000 into the same account, and finally he adds R8000 to the savings account at the end of the 3rd year. Calculate the amount (A) in Jacks account at the end of the 4th year if the interest is calculated at 11,5% compounded annually. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
181
GO MATH WORKBOOKS
2. R6500 is deposited into a savings account , and 3 years later R7400 is added to the savings. At the end of 5 years , R5800 is withdrawn from the account. How much money will be in the account at the end of 10 years if the interest rate is 11% p.a.? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
182
GO MATH WORKBOOKS
3. R21000 is invested where the interest rate is 7,5% p.a for the 1st 3 years. The rate is then then increased to 8,25% p.a. for the next 4 years. Calculate the value of the investment at the end of the 7 years. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
183
GO MATH WORKBOOKS
4. Mrs Smith invests R8000 for in a savings account when her two sons are 7 and 10 years old. She pays each of them R15000 in the year they turn 21. 4.1
Calculate how much money is in the savings account after she has paid her younger son. The interest rate is 14% p.a. compounded annually.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
4.2
Is this fair on the sons? Explain your answer.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
184
GO MATH WORKBOOKS
5. Mr Ndlovu places R52000 in the bond market as a fixed saving for 12 years. The interest paid during first 5 years is 10,5% p.a. It is then increased to 12 % p.a. for the next 3 years, and then finally increased to 14% for the last 4 years. In each case the interest compounded annually. Calculate how much Mr Ndlovu will have in his savings account at the end of the 12 year period. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
185
15 Probability Theory: The language of probability:
Probability tells us how likely something is to happen. We often use the word chance for probability. The thing you want to happen is called an event. An experiment etc that you are carrying out is called a trial. The result of a trial is called an outcome. some outcomes always happen . We say they are certain to happen. Some outcomes never happen. We say they are impossible. Some outcomes are not certain, but they are not impossible either. They may or may not happen. These probabilities are greater than 0, but less than 1.
A probability of
1 means that there is a 50-50 chance or an even chance 2
of the outcome occurring. We can write probabilities as fractions, decimals or percentages. To compare probabilities we compare the sizes of the fractions, decimals or percentages. Probabilities can be placed on a probability line as shown below: Fractions
0
1 2
1
Decimals Percentages
0 0%
0,5 50%
1 100%
Impossible
Even chance
Certain
Example Activity 1: Task: Rank the following activities from lowest to highest probability: Event Probability
Answer: Event Probability %
1 3 5
1 3 5
60%
Answer: 0,25 ; 30%;
2 0,25
3 78%
4 1 3
5 30%
2 0,25
3 78%
4
5 30%
25%
78%
1 3
33 13 %
1 3 ; ; 78% at events 2; 5; 4; 1; 3 3 5
30%
Grade 10 Core Mathematics
186
GO MATH WORKBOOKS
Example Activity 2: All the learners in Grade 10 at Northwood were asked what they wanted to do when they left school. Different people worked out the results of the survey and gave the results in different ways. Results: Do nothing Get a job
0,15 60%
Go to University
1 25
Go to Technikon Don‟t know
12% 9 100
a)
Arrange the results in order of probability of poularity of options, starting from least popular choice.
b)
The probabilities add up to 1 . Explain why this is so.
Answer: Do Nothing
0,15
Get a Job
60%
Go To University
1 25
15 100 60 100 4 100
Go to Technikon
12%
12 100
Don‟t Know
9 100
9 100
a)
Go to University; don‟t know; go to Technikon; do nothing; get a job.
b)
15 60 4 12 9 100 1 100 100
All grade 10 surveyed all gave answers so 100% or value of 1.
Grade 10 Core Mathematics
187
GO MATH WORKBOOKS
Exercise 15.1: 1.
There is a hot-drink vending machine in a office block. A survey found that the probability that an office worker , buying a drink from this machine, would choose: Soup
is
Coffee
is
Tea
is
Hot Chocolate
is
1 20 2 5 3 10 1 4
Which drink bought from the machine is: Most likely to be chosen? Least likely to be chosen? Arrange the drinks in order of popularity. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
188
Listing Outcomes: When a coin is tossed into the air there are two possible outcomes: Heads or Tails. When a dice is thrown, there are 6 possible outcomes: 1; 2; 3; 4; 5; 6. For any event , you can usually list all the possible outcomes. Outcomes which give the “event” you are interested in are called favourable outcomes for that event. e.g. Consider “getting an even number” when you throw a dice.
The activity is to “throw the dice”
All the possible outcomes are : 1, 2, 3, 4, 5, 6
The event you are interested in is “ getting an even number”
The favourable outcomes are 2. 4 and 6.
e.g. A coin is flipped and a dice is thrown at the same time, and you want to get a head and an even number.
Coin Outcomes
The activity is “flip” the coin and toss a dice” All the possible outcomes can be worked out in a table as follow.
1 H, 1 T,1
H T
Dice Outcomes 2 3 H, 2 H, 3 T, 2 T, 3
4 H, 4 T, 4
5 H, 5 T, 5
The event you are interested in is “ a head and an even number” The favourable outcomes are (H, 2), (H, 4) and (H, 6).
Example Activity 3: Look at each of the activities in turn: List all the possible outcomes for the activity. List all the favourable outcomes for each named event. 3.1
Activity: throw a dice. Event 1:
get a 1
Event 2:
get a multiple of 3.
Event 3: get a prime number.
The possible outcomes are 1, 2, 3, 4, 5, 6. Event
1. get a 1 2. Get a multiple of 3 3. Get a prime number
Favourable outcomes 1 3;6 2; 3; 5
6 H, 6 T, 6
Grade 10 Core Mathematics
3.2
GO MATH WORKBOOKS
189
Activity: take a coin from a purse containing a 5c coin, a 10c coin, a 20c coin, a 50c coin, a R1 coin, a R2 coin and a R5 coin. Event 4: get a 20c piece.
Event 5: get a silver piece
Event 6: get a coin worth less than 50c. ď&#x192;&#x2DC;
The Possible outcomes are : Get a 5c ; 10c; 20c; 50c; R1; R2; R5. Event
4. Get a 20c coin 5. Get a silver coin 6. Get a coin worth less than 50c 3.3
Favourable Outcomes 20c R1; R2; R5 5c; 10c; 50c
Activity: take a letter from the word PROBABILITY Event 7: get a T
Event 8: get a vowel
Event 9: get a consonant. ď&#x192;&#x2DC;
The possible outcomes are : P; R ; O ; B ; A ; B ; I ;L; I ; T; Y. Event
7. Get a T 8. Get a vowel 9. Get a consonant
Favourable Outcomes T O; A; I P;R;B;L;T;Y
Exercise 15.2: 2.1 In my left-hand pocket I have a 50c coin, a 20c coin and a 10c coin. In my right-hand pocket I have R1 coin, a R2 coin and a R5 coin. 2.1.1
I choose one coin at random from either pocket. List all the possible outcomes.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.1.2
190
GO MATH WORKBOOKS
I choose all outcomes that satisfy the condition : the total must be greater than R2,50.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
2.2 I roll dice: 2.2.1
List all the possible outcomes ( that is , possible pairs of numbers)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
2.2.2
To get my score I must multiply the value shown on the dice by the value shown on the other dice. List all outcomes that satisfy the condition: the score must be a multiple of 6.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
191
GO MATH WORKBOOKS
Sample Spaces: Suppose you have taken the four picture cards of the suit of hearts from a pack. You shuffle them and draw a card at random. You could describe what you have done as a statistical experiment or trial, since there are no laws determining which card you will draw. The fact that you draw an ace, say , is an outcome. We can represent all possible Outcomes in set notation, S A; K ; Q; J . The possible outcomes can also be represented in a venn diagram.
A; K;Q and J are called elements of the sets.
S
K
A
Q
J
Venn Diagram
This set is referred to as the probability space or sample space
Grade 10 Core Mathematics
GO MATH WORKBOOKS
192
Example Activity 4: Consider the rolling of an ordinary cubical dice, where the number on the upper face, when it comes to rest, is used. 4.1 Describe the experiment or trial involved. 4.2 Give an example of an outcome in this case. 4.3 Write down the sample space of the experiment. 4.4 Represent the sample space be means of a venn diagram.
S
Answers: 4.1 4.2 4.3
Rolling the dice. 4
4.4
S 1;2;3;4;5;6
1 4
2 3 5 6
Exercise 15.3: 3.1
Consider the tossing of a coin: 3.1.1 Describe a trial
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3.1.2
Give an example of an outcome.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.1.3
193
GO MATH WORKBOOKS
Write down the sample space, S of the experiment.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3.1.4
Represent the sample space by means of a venn diagram.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3.2
The diagram below shows a four sided spinner with sides labeled 1, 2, 3and 4 respectively. 3.2.1 Describe a trial using such a spinner.
___________________________________________________________
1
___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________
2
4 3
___________________________________________________________ 3.2.2
Give an example of an outcome.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.2.3
194
GO MATH WORKBOOKS
Write down the sample space, S for the experiment.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 3.2.4
Give a venn diagram for S.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Events: A bag contains 3 blue and 5 white counters; The blue counters are labled b1; b2 and b3. While the white counters are labled w1; w2; w3â&#x20AC;Śâ&#x20AC;Ś.w5. Suppose the trial consists of drawing out a counter, after the bag has been given a good shake, and then replacing the counter. The sample space here is: S = {b1; b2; b3; w1; w2; w3;w4 ;w5.} The number of possible outcomes in the sample space, S , is denoted by n(S). Here n(S) = 8 The drawing of a blue counter , no matter what its lable is, can be represented by the set B ={ b1; b2; b3} A few of the outcomes or elements of S are involved in the situation described by B. We call the drawing of blue counter ( no matter the lable) an event. The number of outcomes in event B is the number of elements in B. This number is denoted by n(B), which equals 3. Another event related to drawing counters from the bag, would be that of drawing a white counter. We can represent this event by the set : W = { w1; w2; w3;w4 ;w5} n(W) = 5 The sets B and W are subsets of S. The sample , S, is the universal set. Definition: An event is a set which consists of one or more of the elements of the sample space.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
195
Union & Intersection: In a shoe box there are cards numbered from1 to 10.
S 1;2;3;4;5;6;7;8;9;10 Consider the events: Drawing a factor of 6: X = { 1 ;2 ;3 ; 6} Drawing a factor of 9: Y = {1; 3 ;9}
The union of these sets is all the elements in X or Y. X or Y ={ 2;6;1;3;9} The intersection of these sets all the elements that are both in X and in Y NB: 1. For an event to occur, it is not necessary for all the outcomes of the event to occur. If any one of the outcomes is the result of a trial , the event is said to have occurred. B thus occurs if any blue counter is drawn. It is not necessary to draw all three blue counters before we can say that B has occurred. 2. The sets W and B are to be disjoint since they have no elements which belong to both sets. Example: 1. A trial for this question is the rolling of a normal dice. Write down the sample space, S. Describe the event, E , where an even number is obtained on rolling the dice, in terms of a set. Use set notation to describe the event, O , of obtaining an odd number. Describe the event, F of obtaining a factor of 6, in set notation. Write down: n(S) n(E) n(O) Represent S and the sets, E, O and F, in a single venn diagram. Answers: 1.1 1.2 1.3 1.4 1.5.1 1.5.2 1.5.3 1.5.4
S 1;2;3;4;5;6 E 2;4;6 O 1;3;5 F 1;2;3;6 n(S ) 6 n( E ) 3 n(O) 3 n( F ) 4
1.6
O
E
1
2
3
4
5 F
6
Grade 10 Core Mathematics
196
GO MATH WORKBOOKS
Exercise15. 4: 4.1
The trial to be considered in this instance is the spinning of a coin.
4.1.1 Represent the sample space, S, in set notation. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 4.1.2 Write down a set for the event, H, of obtaining a head. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 4.1.3 Write down a set for the event, t , of obtaining a tail. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
4.1.4 What is the value of each of the following: 4.1.4.1 n(S )
____________________________
4.1.4.2 n(H ) ____________________________
4.1.4.3 n(T ) ____________________________
Grade 10 Core Mathematics
197
GO MATH WORKBOOKS
4.1.5 Represent S, H and T in a single venn diagram. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
4.2
Max has a bag containing three(3) red , four(4) blue and six(6) green marbles. The bag is shaken and a marble is withdrawn. The colour of the marble is noted and the marble is replaced.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 4.2.1 Write down a sample space , S, for this experiment. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
4.2.2 Express the event of drawing a green marble, G, in terms of a set. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
198
GO MATH WORKBOOKS
4.2.3 Write down a set, B, or R, to represent the event of drawing either a red or a blue marble. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 4.2.4 Write down: 4.1.4.1 n(S ) _____________________________ 4.1.4.2 n(G) _____________________________ 4.1.4.3 n(BorR) _____________________________
Calculating Probabilities:
Outcomes which have an equal chance of happening are called equally likely outcomes. For example: when you throw a fair dice , each outcome in a sample space S 1;2;3;4;5;6 is likely to occur. When all the outcomes of an activity are equally likely , you can calculate the probability of an event happening by using the following definition: P(E) =
=
number of favourable possibilities Total number of possible outcomes
n( E ) n( S )
For example: when you throw a fair dice the possible outcomes are S 1;2;3;4;5;6 i.e the total number of possible outcomes: n(S ) 6 Event 1: Get a 4: The only possible outcome is a 4 i.e. E = {4} i.e. number of favourable outcomes : n( E ) 1 Probability of getting a 4 = P(4) =
n( E ) 1 n( S ) 6
Grade 10 Core Mathematics
GO MATH WORKBOOKS
199
Event 2: Get a number more than 2: Favourable outcomes : E 3;4;5;6 Number of favourable outcomes : n( E ) 4 Probability of getting more than 2 = P(more than 2) n( E ) 4 2 = n( S ) 6 3 Event 3: Get a number more than 6: Favourable outcomes written as the “empty set.” E = { } For example: Number of favourable outcomes : n( E ) 0 Probability of getting more than 6 = P(more than 6) n( E ) 0 0 = n( S ) 6 Event 4: Get a number less than 10: Favourable outcomes: E 1;2;3;4;5;6 Number of favourable outcomes: n( E ) 6 Probability of getting a number less than 10 = P(less than 10) n( E ) 6 1 = n( S ) 6 i.e. It is certain that you will get a number less than 10 when you roll a dice.
Probability can be either found by theory or experiment. The theory method relies on logical thought; the experimental method relies on the results of repetition of many, many trials..
Example: Need to find the probability of getting a head when tossing an unbiased coin. Theory method: Unbiased means that both events (head or tail) are equally likely to occur. There are two (2) possible outcomes: S H ; T There is one favourable outcome: E H So , the probability of getting a head is
1 or 0,5. 2
Experimental method: Suppose you toss an unbiased coin 100 times, and count the number of heads you obtain. Suppose you get 49 heads. The relative frequency of getting a head is therefore
49 or 0,49. Only after 100
many,many trials does the relative frequency give a good value for the probability.
Grade 10 Core Mathematics
200
GO MATH WORKBOOKS
Mutually exclusive and complimentary events. Mutually Exclusive Events
The events A and B exclude each other.
If A happens B cannot happen.
If B happens A cannot happen.
Both events cannot happen at any one trial.
The sets of outcomes for the events are disjoint( Have no elements in common)
For two mutually exclusive events A, B: P(A and B) =0
P(A and B) =
n( AorB) n( A) n( B) = n( S ) n( S ) n( A) n( B) = = P(A) + P(B) n( S ) n( S )
Complimentary events: For any two(2) complimentary events R and Q. > >
n( R) n(Q) n(S ) . n( R) n(Q) P( R) P(Q) n ( S ) n( S ) n( R) n(Q) n( S ) 1 = = n( S ) n( S )
It is useful to write this in the form P(Q) = 1- P(R).
Q can also be written R or “not R “
Example: A bag contains three(3) red balls, five (5) white balls, two(2) green balls and four(4) blue balls. 1. Calculate the probability that a red ball will be drawn from the bag. 2.
Calculate the probability of that a ball which is not red will be drawn.
Grade 10 Core Mathematics
201
GO MATH WORKBOOKS
Solution: Let R be the event that a red ball is drawn: n( R ) 3 1. P(R) = n( S ) 14 2. R and R are complimentary events. 3 11 14 14 P( R ) P( B) P(W ) P(G )
P( R ) 1 P( R) 1
Note: Alternatively
4 5 2 11 14 14 14 14 Exercise 15.5: [Use venn diagrams when necessary:]
5.1
250 tickets were sold for a raffle. Stephanie bought 10 tickets. What is the probability that Stephanie:
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 5.1.1 wins the prize? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 5.1.2 Does not win the prize? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
202
GO MATH WORKBOOKS
5.2
There are 250 cars in the car park. 165 are Volkswagen. What is the probability that the first car to leave the car park is: 5.2.1 a Volkswagen? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 5.2.2 not a Volkswagen ? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 5.3
Jon has 14 loose socks in a drawer. Four of these socks are black and three are white. Calculate the probability that the first sock taken at random from the drawer is. 5.3.1 black. 5.3.2 not black. 5.3.2. white 5.3.4 not white 5.3.5 black or white 5.3.6 not black nor white.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 5.4
A packet contains 20 fruit â&#x20AC;&#x201C; flavoured sweets. There are four(4) pineappleflavoured, five(5) melon-flavoured, two(2) lemon-flavoured, three(3) bananaflavoured and six(6) strawberry-flavoured sweets.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
203
GO MATH WORKBOOKS
5.4.1 Derek picks a sweet from the packet without looking.What is the probability that he picks either a melon-flavoured or lemon-flavoured sweet? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 5.4.2 Albert doesnâ&#x20AC;&#x;t like banana-flavoured or melon-flavoured sweets. He likes all other flavours. What is the probability that he picks a sweet that he likes? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
204
Probability Trees: Tree diagrams are used to count the various ways in which outcomes happen. Example: A bag has 6 red beads and 4 blue beads in it. First one bead is drawn and then a second without the first been put back. Calculate the probability that : 1. 2. 3.
the first bead drawn is red both beads are blue. one bead is red and the other is blue in any order.
Solution:
5 9
Red 6 10
Blue 4 9
6 9 4 10
Blue 3 9
1.1
1 3 4 15
Red
4 15
Blue
2 15
There are 6 red beads and 10 beads in total: P(first red) =
1.2
Red
6 3 10 5
The probability of getting one blue bead first and blue bead second has to be calculated. The probabilities along the path therefore have to be multiplied. P(BB) =
4 3 2 10 9 15
[NB: there is no replacement so there are 3 blue beads left after the Ist blue bead is drawn and 9 beads in total] 1.3
Either red then blue or blue then red. The probabilities for the separate cases are thus added: P( RBorBR )
4 4 8 15 15 15
Grade 10 Core Mathematics
205
GO MATH WORKBOOKS
Exercise 15.6: 1. A coin and a dice are thrown together. 1.1 Draw a tree diagram to show all the possible outcomes. 1.2 What is the probability of obtaining: 1.2.1 A head on a coin and 1 on the dice? 1.2.2 A tail on the coin and an even number on the dice? ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
206
GO MATH WORKBOOKS
2. A bag has 6 red beads and 4 blue beads in it. First one bead is drawn and then a second without the first being put back. Calculate the probability that: 2.1 the first bead drawn is red. 2.2 both beads are blue. 2.3 one bead is red and the other blue in any order. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Compiled by Chez Nell
Grade 10 Core Mathematics
2
GO MATH WORKBOOKS
Forward: Welcome to “GO MATH WORKBOOKS”. This workbook is designed to be text book and class work book in one. There are sufficient exercises to ensure that learners get the required practice. A detailed memorandum booklet is available for each workbook. The statement “You get out what you put in.” is very apt where mathematics is concerned. To succeed in mathematics one must be prepared to invest the time and effort to achieve that success. The partnership that you as a learner and this GO MATH WORKBOOK develop will be profitable if you allow it to be. Chez Nell: Mathematics Educator : Northwood School Norma Nell 2011
Grade 10 Core Mathematics
3
GO MATH WORKBOOKS
GRADE 10 CORE MATHEMATICS. PAPER TWO:
Topic:
Pages:
1.
Analytical Geometry
(4 – 21)
2.
Triangles & Quadrilaterals
(22 – 40)
3.
Trigonometry
(41 - 67)
4.
Data Handling
(68 – 100)
5.
Volumes & Surface Area
(101 - 115)
Grade 10 Core Mathematics
GO MATH WORKBOOKS
4
PAPER TWO: 1.
ANALYTICAL GEOMETRY
Analytical geometry - Studies the properties of geometric figures Algebraically. This is pursued by the means of examining significant points (co-ordinates) of these figures in a Cartesian Plane. Hence also referred to as Co-ordinate Geometry.
Formulae: 1.
Length of a line:
A(2 ; 5)
B(-4 ; -3)
Length of AB = (x1 x 2 ) 2 (y 1 y 2 ) 2 = (6) 2 (8) 2 = 100 = 10 2.
Mid – Point of a line
(x x 2 ) (y 1 y 2 ) ; Mid – point = 1 2 2 A(2 ; 5) C (x ; y )
B(-4 ; -3)
y Mid – Point AB = C (-1; 1) 3.
Gradient of Straight Line: Gradient is represented using the symbol „m‟ [from y= mx+c] M=
y [ i.e the difference in y divided by the difference in x] x
A(2;4)
m
B(3:6)
y y1 y 2 6 (4) 10 2 x x1 x2 3 (2) 5 1
Parallel Lines have the same gradients: m1 m2 Perpendicular lines have inverse gradients: m1 m2 1
Grade 10 Core Mathematics
5
GO MATH WORKBOOKS
Exercise 1.1: Distance between points: 1.
Find the distance between the given pairs of points: 1.1 (2 ; 3) and (4 ; 5)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 1.2 (6 ; 1) and ( -6 ;6) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.3 (3 ; -7) and (-1 ; 3) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
6
GO MATH WORKBOOKS
1.4 (-4 ; 3) and (0 ; 0) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.5 (-2 ; 1) and -4 ; -1) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.6 (-3 ;-1) and (4 ; -6) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.
7
GO MATH WORKBOOKS
Given the coordinates of the vertices of ď &#x201E;ABC , in each case ( 2.1 to 2.5) Determine: A. the perimeter of the triangle. B. Whether the triangle is equilateral, isosceles or scalene. C. Whether or not the triangle has a right angle. 2.1
A(1 ; -3) ; B(7 ; 3); C(4 ; 6)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.2
A(5 ;1) ; B(1 ; 3) ; C(1 ; -2)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
8
GO MATH WORKBOOKS
2.3 A(-2 ; -3) ; B(-4 ; 1) ; C(4 ; 5) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2.4
A(0 ; 0) B( 3 ; 1) ; C( 3 ; -1)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.5
9
GO MATH WORKBOOKS
A(2 ; -1) B(-3 ;4) ;C(4; 5)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 3.
Show that: 3.1
A(-3 ; 2) , B(3 ;6), C(9 ;-2) and D(3 ; -6) are vertices of a parallelogram.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
10
GO MATH WORKBOOKS
3.2 (6 ;-4) , (5 ;3) (-2 ; 2) and (-1 ; -5) are vertices of a square. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Mid-points of lines: 4.
Calculate the coordinates of the midpoints of the line joining the following points: 4.1 (-3 ;1) and (1 ; 5)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
11
GO MATH WORKBOOKS
4.2 (-2 ; 3) and (6 ; 3) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.3 (4 ; -1) and (-1 ; 3) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.4 (0 ;0 ) and (3 ; -8) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.5 ( 3;1) and (3 3;ď&#x20AC;1) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
5.
12
GO MATH WORKBOOKS
Determine the values of x and y if: 5.1 (-3 ; 2) is the mid-point of the line joining (-1 ; 5) and (x ; y).
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.2
(-1 ; y) is the mid-point of the line joining (0 ; -2) and x ; 8)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
5.3
13
GO MATH WORKBOOKS
(x ; y) is the centre of a circle on diameter AB where A(-2 ; -1) and B(-1 ; 9).
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.4 (x ; 3) is the centre of a circle with diameter MN. M (5 ; -2) and N(-7 ; y) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
14
Exercise 1.2: Formulae: AB ( x1 x2 )2 ( y1 y2 )2
Gradient = m =
x x y y2 Mid-point = 1 2 ; 1 2 2
y1 y2 x1 x2
1.
AB is a straight line on a Cartesian plane where A(-3; -4) and B( 2 ; 6) Calculate the following:
1.1
the length of AB in units.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.2
the co-ordinates of the mid – point ( C ) of line AB.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.3
the gradient of line AB.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.4
15
GO MATH WORKBOOKS
show that points A;B and C are collinear.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
16
2. y
D
A C 0
x
B
The Points A(-4 ;3) ; B(-4 ; -4) ; C(6 ; 1) and D(6 ; 8) lie on a cartesian plane. Determine: 2.1
the length of AD.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.2
the mid-point of DC
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.3
17
GO MATH WORKBOOKS
the gradient of BC
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.4
show that ABCD is a parallelogram.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.5
the co-ordinates of the point of intersection of the diagonals AC & BD
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
18
3.
4
A(-3;3) C(8;2)
2
-5
5
-2
B(3;-3) -4
The figure above represents a triangle on a Cartesian plane. A( -3 ;3) ; B(3 ; -3) and C(8 ; 2) 3.1 Calculate the perimeter (distance around) of ď &#x201E;ABC .
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
10
Grade 10 Core Mathematics
19
GO MATH WORKBOOKS
3.2 Prove that triangle ABC is right angled at B.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
3.3 Give the coordinates of the mid -point of AC, AB & BC ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
20
GO MATH WORKBOOKS
4. Determine whether the following triangles are Isosceles, Equilateral or Scalene. 4.1
A(1;2) , B(6;3) and C (6;1)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
P(ď&#x20AC;4;1) , Q(3;0) and R(1;ď&#x20AC;3) 4.2 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.3
21
GO MATH WORKBOOKS
U (5;2) , V (1;1) and W (13;1)
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
22
1. Triangles: Theorems: 1.
The sum of the angles of a triangle equals 180ď&#x201A;° A
E
2 1
3
D
C
B
Given: â&#x2C6;&#x2020;ABC. RTP: đ??´ + đ??ľ + đ??ś = 180ď&#x201A;° Proof: Produce BC to D and draw CE parallel to AB. đ??ś2 = đ??´ (đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;Ą ď&#x192;?, đ?&#x2018; đ??´đ??ľ ď źď ź đ??śđ??¸) đ??ś3 = đ??ľ (đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x;đ?&#x2018;&#x; ď&#x192;?, đ?&#x2018; đ??´đ??ľď źď ź đ??śđ??¸) But đ??ś1 + đ??ś2 + đ??ś3 = 180ď&#x201A;° ( ď&#x192;?, đ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x203A; đ?&#x2018;&#x17D; đ?&#x2018; đ?&#x2018;Ą đ?&#x2018;&#x2122;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019;) ď &#x153;đ??´ + đ??ľ + đ??ś = 180ď&#x201A;° 2.
The exterior angle of a triangle is equal to the sum of the interior opposite angles A E
2 1
B
Given: â&#x2C6;&#x2020;ABC with BC produced to D. RTP: đ??´đ??ś đ??ˇ = đ??´ + đ??ľ Proof: Draw CE parallel to AB. đ??ś1 = đ??´ (đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;Ą ď&#x192;?, đ?&#x2018; đ??´đ??ľ đ??źđ??ź đ??śđ??¸ đ??ś2 = đ??ľ (đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x;đ?&#x2018;&#x; ď&#x192;?, đ?&#x2018; đ??´đ??ľ đ??źđ??ź đ??śđ??¸
C
3
D
Grade 10 Core Mathematics
3.
GO MATH WORKBOOKS
23
In an isosceles triangle , the sides opposite the equal angles are equal. A 1 2
ď&#x201A;ˇ
ď&#x201A;ˇ
B
C
D
Given: â&#x2C6;&#x2020;đ??´đ??ľđ??ś đ?&#x2018;¤đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2022; đ??ľ = đ??ś RTP: AB = AC. Proof: Construct AD to bisect đ??´ , cutting BC at D. In â&#x2C6;&#x2020;đ??´đ??ľđ??ˇ đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; â&#x2C6;&#x2020;đ??´đ??śđ??ˇ đ??´1 = đ??´2 (đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x203A;đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x;đ?&#x2018;˘đ?&#x2018;?đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x153;đ?&#x2018;&#x203A;) đ??ľ=đ??ś ( đ?&#x2018;&#x201D;đ?&#x2018;&#x2013;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x203A;) AD is common â&#x2C6;&#x2020;đ??´đ??ľđ??ˇ â&#x2030;Ą â&#x2C6;&#x2020;đ??´đ??śđ??ˇ (đ??´đ??´đ?&#x2018;&#x2020;) â&#x2C6;´ đ??´đ??ľ = đ??´đ??ś Conversely: The angles opposite equal sides of a triangle are equal. 4.
The Mid â&#x20AC;&#x201C; Point Theorem. The line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half its length. 1
RTP: DE â&#x20AC;&#x2013; đ??ľđ??ś and đ??ˇđ??¸ = 2 đ??ľđ??ś A
D
1
E
F
2
B
C
Proof: Construct EF = DE and join FC. đ??źđ?&#x2018;&#x203A; â&#x2C6;&#x2020;đ??´đ??ˇđ??¸ đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; â&#x2C6;&#x2020;đ??śđ??šđ??¸ AE = CE ( Given) DE = EF ( by construction) đ??¸1 = đ??¸2 (đ?&#x2018;&#x2030;đ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;?đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;Ś đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018; ) â&#x2C6;&#x2020;đ??´đ??ˇđ??¸ â&#x2030;Ą â&#x2C6;&#x2020;đ??śđ??šđ??¸ ( đ?&#x2018;&#x2020;đ??´đ?&#x2018;&#x2020;) â&#x2C6;´ đ??´đ??ˇ đ??¸ = đ??śđ??š đ??¸ â&#x2C6;´ đ??´đ??ľâ&#x20AC;&#x2013;đ??šđ??ś ( đ??´đ?&#x2018;&#x2122;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;&#x203A;đ?&#x2018;&#x17D;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x2019; đ?&#x2018;&#x2019;đ?&#x2018;&#x17E;đ?&#x2018;˘đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;) BD = DA (given) BD= FC ( proved above) â&#x2C6;´ đ??ˇđ??śđ??šđ??ľ đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x17D; đ?&#x2018;?đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018;&#x201D;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x161; ( đ?&#x2018;&#x153;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019; đ?&#x2018;?đ?&#x2018;&#x17D;đ?&#x2018;&#x2013;đ?&#x2018;&#x; đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x2018;đ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;&#x17E;đ?&#x2018;˘đ?&#x2018;&#x17D;đ?&#x2018;&#x2122; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;?đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122;) â&#x2C6;´ đ??ˇđ??š = đ??ľđ??ś ( đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x2018;đ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x201C; đ?&#x2018;&#x17D; đ?&#x2018;?đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018;&#x201D;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x161;) 1 đ??ˇđ??¸ = 2 đ??ľđ??ś and đ??ˇđ??¸â&#x20AC;&#x2013;đ??ľđ??ś
Grade 10 Core Mathematics
GO MATH WORKBOOKS
24
Congruence: Definition: Two triangles are said to be congruent if they are equal in all respects. There are four cases of congruence: i.e. methods of proving triangles are congruent. â&#x;šTwo angles and one corresponding side are equal. ( AAS). â&#x;šTwo sides and the angle between them are equal. (SAS). â&#x;šThree sides are equal. (SSS) â&#x;šRight angle, hypotenuse and one further side are equal. (RHS) NB: If two parallel lines are cut by a transversal the angles formed are: Alternate angles, which are equal. ď&#x201A;ˇ ď&#x201A;ˇ
Corresponding angles, which are equal. ď&#x201A;ˇ
ď&#x201A;ˇ
Co-interior angles, which are supplementary. x x + y = 180ď&#x201A;° y
L1
1 4
2 3
L2
If two lines intersect then two types of angles are formed. ( đ?&#x2018;łđ?&#x;? & đ?&#x2018;łđ?&#x;? ) 1. Adjacent supplementary angles ( angles on a straight line) i.e. 1 + 2 = 180° & 3 + 4 = 180°. 2. Vertically opposite angles. đ?&#x2018;&#x2013;. đ?&#x2018;&#x2019; 1 = 3 & 2 = 4
Grade 10 Core Mathematics
GO MATH WORKBOOKS
25
Exercise 3.1: 1. In the sketch below, AB = CD and đ??´đ??ľ đ??ś = đ??ˇđ??ś đ??ľ . A
D E
B
C
Prove that: 1.1 â&#x2C6;&#x2020;đ??´đ??ľđ??ś â&#x2030;Ą â&#x2C6;&#x2020;đ??ˇđ??śđ??ľ _________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 1.2 â&#x2C6;&#x2020;đ??´đ??ľđ??¸ â&#x2030;Ą â&#x2C6;&#x2020;đ??ˇđ??śđ??¸ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.
GO MATH WORKBOOKS
26
In the sketch below đ?&#x2018;&#x201E;đ?&#x2018;&#x2026; = đ?&#x2018;&#x2020;đ?&#x2018;&#x2021; ; đ?&#x2018;&#x192;đ?&#x2018;&#x2026; = đ?&#x2018;&#x192;đ?&#x2018;&#x2020; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x192;đ?&#x2018;&#x2026; đ?&#x2018;&#x201E; = đ?&#x2018;&#x192;đ?&#x2018;&#x2020;đ?&#x2018;&#x201E;. P
Q
2.1
R
S
T
Prove â&#x2C6;&#x2020;đ?&#x2018;&#x192;đ?&#x2018;&#x2026;đ?&#x2018;&#x201E; â&#x2030;Ą â&#x2C6;&#x2020;đ?&#x2018;&#x192;đ?&#x2018;&#x2020;đ?&#x2018;&#x2021;.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 2.2
Deduce that PQ = PT
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.
GO MATH WORKBOOKS
27
Prove that â&#x2C6;&#x2020;đ??´đ??¸đ??ˇ â&#x2030;Ą â&#x2C6;&#x2020;đ??ľđ??śđ??ˇ in the diagram below: Given: AD = BD ; AE = BC; AE ď &#x17E; BD and BC ď &#x17E; AD. A C
F D E
B
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ __________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.
GO MATH WORKBOOKS
28
Prove that â&#x2C6;&#x2020;đ??´đ??ľđ??ˇ â&#x2030;Ą â&#x2C6;&#x2020;đ??´đ??ľđ??ś in the diagram below: Given: AD = BC ; đ??ľđ??´đ??ˇ = đ??´đ??ľ đ??ś D
A
C
B
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
29
Similarity: Two triangles are said to be similar if they are equiangular or conversely if the ratios of their corresponding sides are in proportion. Examples: A
A r
D x
r
D
E 6cm
8cm
3cm
2cm
E 4cm
y x
B
F
F
y
C
B
Юљ╝ЮЉЏ РѕєРђ▓ ЮЉаЮљ┤ЮљхЮљХ ЮЉјЮЉЏЮЉЉ ЮљИЮљиЮљ╣: Юљ┤ = ЮљИ (ЮЉћЮЉќЮЉБЮЉњЮЉЏ)
C
Юљ╝ЮЉЏ РѕєРђ▓ ЮЉаЮљ┤ЮљхЮљХ ЮЉјЮЉЏЮЉЉ ЮљИЮљиЮљ╣: Юљ┤Юљх 6 = =2 ЮљИЮљи 3 ЮљхЮљХ
Юљх = Юљи (ЮЉћЮЉќЮЉБЮЉњЮЉЏ) ЮљХ = Юљ╣ (ЮЉћЮЉќЮЉБЮЉњЮЉЏ) Рѕ┤ РѕєЮљ┤ЮљхЮљХ ле РѕєЮљИЮљиЮљ╣ ( Юљ┤Юљ┤Юљ┤) Юљ┤Юљх ЮљхЮљХ Юљ┤ЮљХ Рѕ┤ ЮљИЮљи = ЮљиЮљ╣ = ЮљИЮљ╣
4cm
ЮљиЮљ╣ Юљ┤ЮљХ
4
=2=2 8
=4=2 Рѕ┤ РѕєЮљ┤ЮљхЮљХ ле РѕєЮљИЮљиЮљ╣ (ЮЉаЮЉќЮЉЉЮЉњЮЉа ЮЉќЮЉЏ ЮЉЮЮЉЪЮЉюЮЉЮЮЉюЮЉЪЮЉАЮЉќЮЉюЮЉЏ) ЮљИЮљ╣
Triangles: Properties: 1. The sum of the interior angles is 180№ѓ░. 2. The exterior angle of a triangle is equal to sum of the interior opposite angles. 3. Isosceles triangles have two sides equal and the angles opposite these sides are also equal. 4. Equilateral triangles have all three sides and all three angles equal. 5. Scalene triangles have no sides or angles equal.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
30
Quadrilaterals:
Number None
opposites sides parallel
Both pairs
Both pairs
One pair Both pairs
One pair
Square
Rectangle
Rhombus
Both pairs None
All four sides None
Opposite angles equal
One pair
None
Adjacent sides equal
One pair
None opposites sides equal
Parallelogram
Property
Trapezium
Kite
Properties of Quadrilaterals
One pair Consecutive angles equal
Both pairs All four angles none only one
Line of symmetry
only two
four
Diagonals are equal
Diagonals bisect each other
Diagonals are perpendicular
Grade 10 Core Mathematics
GO MATH WORKBOOKS
31
Relationship between sides and angles:
Number of sides of a polygon 3 4 5 6 7 8 9 10 n Sum of interior angles 180º 360º 540º 720º 900º 1080º 1260º 1440º (n-2)180º Size of one interior angle of regular polygons 60º
90º
108º 120º 128,570º
135º
140º
144º
(n-2)180º n
The pattern is (number of sides-2)180º Sum of interior Angles = (n-2)180º Number of sides of a polygon 3 4 5 6 7 8 9 Sum of exterior angles 360º 360º 360º 360º 360º 360º 360º
Number of sides of a polygon 4 5 6 7 8 9 Number of Triangles in a Regular Polygon 2 3 4 5 6 7
3 1
10 360º
10 8
Exercise 3.2: 1
Find the values of the variables in the following (i.e. x ; y & z) 1.1
AB//DC and AB=DC A
B
x
z
62 D
y C
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.2
GO MATH WORKBOOKS
32
PQRS is a rectangle: P
Q
36
y x
S
R
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 1.3
ABCD is a rhombus: A
B
y
35
x D
C
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.3
GO MATH WORKBOOKS
33
LMNO is a trapezium with LM // PO and LM = LP ; đ??ż = 105° and đ?&#x2018;&#x192;đ?&#x2018;&#x20AC;đ?&#x2018;&#x201A; =L 65° 105°
M
ď&#x201A;Ž
x
65°
y z
ď&#x201A;Ž
P
O
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
1.5
ABCD is a kite. AB = AC & BD = CD. đ??´đ??ś đ??ľ = 60ď&#x201A;°, đ??ˇđ??ľ đ??ś = 70° A x
B
60ď&#x201A;°
y 70ď&#x201A;°
C
z
D
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.6
34
GO MATH WORKBOOKS
ABCDEF is a regular hexagon.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
35
Paralellograms: Theorem A Given: Parallelogram ABCD RTP: AB = CD ; AD = BC; đ??´ = đ??ś đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ??ľ = đ??ˇ Proof: Construct diagonal BD đ??ľ1 = đ??ˇ2 (đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;&#x203A;đ?&#x2018;&#x17D;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018; đ??´đ??ľâ&#x20AC;&#x2013;đ??śđ??ˇ) đ??ˇ1 = đ??ľ2 (đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;&#x17D;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018; đ??´đ??ˇâ&#x20AC;&#x2013;đ??ľđ??ś) đ??ľđ??ˇ = đ??ľđ??ˇ (đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x161;đ?&#x2018;&#x161;đ?&#x2018;&#x153;đ?&#x2018;&#x203A;) â&#x2C6;´ â&#x2C6;&#x2020;đ??´đ??ľđ??ˇ â&#x2030;Ą â&#x2C6;&#x2020;đ??śđ??ˇđ??ľ (đ??´đ??´đ?&#x2018;&#x2020;) â&#x2C6;´ đ??´đ??ˇ = đ??ľđ??ś â&#x2C6;´ đ??´đ??ľ = đ??śđ??ˇ đ??ľ1 = đ??ˇ2 đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ??ˇ1 = đ??ľ2 đ??´đ??ľ đ??ˇ = đ??śđ??ˇđ??ľ đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ??´đ??ˇđ??ľ = đ??śđ??ľ đ??ˇ Theorem B: Converse to A: States that if the opposite sides of a quadrilateral are equal then the quadrilateral is a parallelogram. Theorem C: Converse to A: States that if the opposite angles of a quadrilateral are equal then the quadrilateral ios a parallelogram. To prove that a quadrilateral is a parallelogram one must be able to prove at least two of the properties of this particular shape, Properties concerned are: 1.
both pairs of opposite sides are parallel.
2.
both pairs of opposite sides are equal.
3.
opposite angles are equal.
4.
the diagonals bisect each other.
Hint: a good method is to prove that one pair of opposite sides are equal and parallel. Examples: 1. Prove that ABCD is a parallelogram.
4
B (0 ; 3) 2
A (-4 ; 0) -10
C (1 ; 0)
-5
-2
D (-3 ; -3) -4
5
10
Grade 10 Core Mathematics
GO MATH WORKBOOKS
36
Proof: đ??´đ??ľ =
(0 + 4)2 + (3 â&#x2C6;&#x2019; 0)2 = 5
đ??ˇđ??ś =
(1 + 3)2 + (0 + 3)2 = 5
3
đ?&#x2018;&#x161;đ??´đ??ľ = 4 3
đ?&#x2018;&#x161;đ??ˇđ??ś = 4
ABCD is a parallelogram ( one pair of opposite sides are equal and parallel) 2. ABCD is a quadrilateral with AB = CD & AD = BC A 2
B 1
1
D
2.1
2.2
2 1 C
RTP: â&#x2C6;&#x2020;đ?&#x2018;¨đ?&#x2018;Ťđ?&#x2018;Ş â&#x2030;Ą â&#x2C6;&#x2020;đ?&#x2018;¨đ?&#x2018;Šđ?&#x2018;Ş Proof: đ??źđ?&#x2018;&#x203A; â&#x2C6;&#x2020;đ??´đ??ˇđ??ś đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; â&#x2C6;&#x2020;đ??´đ??ľđ??ś đ??´đ??ˇ = đ??ľđ??ś ( đ?&#x2018;&#x201D;đ?&#x2018;&#x2013;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x203A;) đ??śđ??ˇ = đ??´đ??ľ ( đ?&#x2018;&#x201D;đ?&#x2018;&#x2013;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x203A;) đ??´đ??ś = đ??´đ??ś (đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x161;đ?&#x2018;&#x161;đ?&#x2018;&#x153;đ?&#x2018;&#x203A; đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x2018;đ?&#x2018;&#x2019;) â&#x2C6;&#x2020;đ?&#x2018;¨đ?&#x2018;Ťđ?&#x2018;Ş â&#x2030;Ą â&#x2C6;&#x2020;đ?&#x2018;¨đ?&#x2018;Šđ?&#x2018;Ş (đ?&#x2018;şđ?&#x2018;şđ?&#x2018;ş) RTP: đ?&#x2018;¨đ?&#x2018;Šâ&#x20AC;&#x2013;đ?&#x2018;Ťđ?&#x2018;Ş đ?&#x2019;&#x201A;đ?&#x2019;?đ?&#x2019;&#x2026; đ?&#x2018;¨đ?&#x2018;Ťâ&#x20AC;&#x2013;đ?&#x2018;Šđ?&#x2018;Ş Proof: đ??´2 = đ??ś2 (đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; 2.1 â&#x2C6;&#x2020;đ??´đ??ˇđ??ś â&#x2030;Ą â&#x2C6;&#x2020;đ??´đ??ľđ??ś đ??´đ??ˇâ&#x20AC;&#x2013;đ??ľđ??ś ( alternate angles equal) đ??´1 = đ??ś1 (đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; 2.1 â&#x2C6;&#x2020;đ??´đ??ˇđ??ś â&#x2030;Ą â&#x2C6;&#x2020;đ??´đ??ľđ??ś đ??´đ??ľâ&#x20AC;&#x2013;đ??ˇđ??ś ( alternate angles equal)
2.2
)
)
RTP: ABCD is a parallelogram Proof: đ??´đ??ľ = đ??śđ??ˇ & đ??´đ??ľâ&#x20AC;&#x2013;đ??śđ??ˇ (đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;) đ??´đ??ˇ = đ??ľđ??ś & đ??´đ??ˇâ&#x20AC;&#x2013;đ??ľđ??ś (đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;Łđ?&#x2018;&#x2019;) ABCD is a parallelogram ( both pairs opposite sides equal and parallel)
Grade 10 Core Mathematics
GO MATH WORKBOOKS
37
Exercise 3.3: 1.
A (0 ; 4)
B( 5 ; 4)
C ( 2 ; -3)
D ( -3 ; -3)
Prove with reasons that the shape above is a parallelogram. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 2
PRSQ is a parallelogram. RS = ST & TR is a straight line. Prove: 2.1 QA = AT. 2.2 PT // QS. T
A
P
Q
S
R
2.1 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
38
2.2 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 3. FBCD is a parallelogram. AF = FB. Prove that FE = ED
A
F
1 2
1 2
E
D
3
2
B
1
C
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.
F
A 2
1
B 2
1
1
D
GO MATH WORKBOOKS
39
2
E
2
1
C
In the figure above, ABCD is a parallelogram. đ??´đ??ˇ = đ??´đ??¸ đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ??šđ??ś = đ??ľđ??ś. Prove that đ??´đ??¸đ??śđ??š is a parallelogram. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
40
5.
P 2
Q 1
2
S
1
R
In the figure above â&#x2C6;&#x2020;đ?&#x2018;&#x192;đ?&#x2018;&#x201E;đ?&#x2018;&#x2026; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; â&#x2C6;&#x2020;đ?&#x2018;&#x192;đ?&#x2018;&#x2020;đ?&#x2018;&#x2026; are isosceles triangles with đ?&#x2018;&#x192;đ?&#x2018;&#x2020; = đ?&#x2018;&#x192;đ?&#x2018;&#x2026; = đ?&#x2018;&#x201E;đ?&#x2018;&#x2026; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x192;đ?&#x2018;&#x201E;â&#x20AC;&#x2013;đ?&#x2018;&#x2020;đ?&#x2018;&#x2026;. Prove that PQRS is a parallelogram. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
4.1
GO MATH WORKBOOKS
41
Trigonometry:
Use the sketches that follow and complete the tables. The angle sizes at A are 30º ; 45º and 60º. Measure the sides accurately and write the ratios down in decimal form. The task is to compare the ratios of the different sides of the 3 triangles formed. Decimal answers to 3 places. WHAT CONCLUSIONS CAN BE MADE? Task 1: 30º E
F G
30 A
B
C
D
Measure the sides as indicated in the table below and represent the answers first as a fraction and then as a decimal. Compare your answers and come to a conclusion. NB: it is important to be very accurate.
AGB BG @30º= _____= AB
AFC FC @30º=______= AC
AED ED @30º=_____= AD
AB @30º=______= AG
AC @30º=______= 0, AF
AD @30º=_____= AE
BG @30º=______= AG
FC @30º=______= AF
ED @30º=_____= AE
AGB
AFC
AB BG @30º= _____=
AC FC @30º=______=
AED AD ED @30º=_____=
AG AB @30º=______=
AF AC @30º=______= 0,
AE AD @30º=_____=
AG BG @30º=______=
AF FC @30º=______=
AE ED @30º=_____=
Grade 10 Core Mathematics
GO MATH WORKBOOKS
42
Task 2: 45º
E
F
G
45 A
B
C
D
Measure the sides as indicated in the table below and represent the answers first as a fraction and then as a decimal. Compare your answers and come to a conclusion. NB: it is important to be very accurate.
AGB BG @45º= _____= AB
AFC FC @45º=______= AC
AED ED @45º=_____= AD
AB @45º=______= AG
AC @45º=______= AF
AD @45º=_____= AE
BG @45º=______= AG
FC @45º=______= AF
ED @45º=_____= AE
AGB
AFC
AB BG @45º= _____=
AC FC @45º=______=
AED AD ED @45º=_____=
AG AB @45º=______=
AF AC @45º=______=
AE AD @45º=_____=
AG BG @45º=______=
AF FC @45º=______=
AE ED @45º=_____=
Grade 10 Core Mathematics
43
GO MATH WORKBOOKS
Task 3: 60º E
F
G
60 A
B
C
D
Measure the sides as indicated in the table below and represent the answers first as a fraction and then as a decimal. Compare your answers and come to a conclusion. NB: it is important to be very accurate.
AGB BG @60º= _____= AB AB @60º=______= AG BG @60º=______= AG
AFC FC @60º=______= AC AC @60º=______= AF FC @60º=______= AF
AED ED @60º=_____= AD AD @60º=_____= AE ED @60º=_____= AE
AGB
AFC
AB BG @60º= _____=
AC FC @60º=______=
AED AD ED @60º=_____=
AG AB @60º=______=
AF AC @60º=______=
AE AD @60º=_____=
AG BG @60º=______=
AF FC @60º=______=
AE ED @60º=_____=
Grade 10 Core Mathematics
GO MATH WORKBOOKS
44
Summary:
C
C h
r y
30Âş
A
x
B
O
30Âş
a
A
B
x ď&#x20AC;˝ a ď&#x20AC;˝ adjacent y ď&#x20AC;˝ o ď&#x20AC;˝ opposite r ď&#x20AC;˝ h ď&#x20AC;˝ hypotenuse In general format ď &#x201E;ACB y BC @30Âş = tan30Âş = x AB AB x @30Âş = cos30Âş = AC r y BC @30Âş = sin30Âş= r AC
Correct Trigonometric format ď &#x201E;ACB y o tan30Âş = OR x a x a cos30Âş = OR r h y o sin30Âş = OR r h
ď &#x201E;ACB đ??´đ??ľ đ??ľđ??ś đ??´đ??ś đ??ľđ??ś đ??´đ??ś đ??ľđ??ś
@30Âş = cot30Âş = @30Âş = sec30Âş =
đ?&#x2018;Ľ
cot30Âş =
đ?&#x2018;Ś đ?&#x2018;&#x;
@30Âş = cosec30Âş=
đ?&#x2018;Ľ
sec30Âş = đ?&#x2018;&#x;
đ?&#x2018;Ś
đ?&#x2018;Ľ đ?&#x2018;Ś đ?&#x2018;&#x;
ď &#x201E;ACB OR
đ?&#x2018;&#x17D;
đ?&#x2018;&#x153; đ?&#x2018;&#x2022;
OR đ?&#x2018;Ľ đ?&#x2018;Ľ đ?&#x2018;&#x; đ?&#x2018;&#x2022; cosec30Âş = OR đ?&#x2018;Ś đ?&#x2018;&#x153;
N B: In the above table , the right hand side is the correct way to represent the different trigonometric ratios. It important to remember that a trig ration must be followed by a specific angle size or a variable representing an angle. After the equal sign a ratio is written: e.g. đ?&#x2018;Ąđ?&#x2018;&#x17D;đ?&#x2018;&#x203A;60° = 1,732 â&#x20AC;Ś ..A trig function cannot stand on its own and must be written with an angle or a variable (denoting an angle).
Grade 10 Core Mathematics
sin x
y r
cos x
x r
tan x
y x
cos ecx sec x
r x
cot x
x y
r y
GO MATH WORKBOOKS
45
1 cos ecx 1 cos x sec x
sin x
tan x
1 cot x
tan x
sin x cos x
cot x
cos x sin x
cos 2 x sin 2 x 1
Grade 10 Core Mathematics
GO MATH WORKBOOKS
46
4.2 Pythagoras in trigonometry: Solving basic equations & solution of triangles. Example: Using Pythagoras:
y
(3 ;4)
x
0
Complete the triangle by joining the point (3;4) to the x – axis to form a right –angled triangle. Use Pythagoras theorem to calculate r (hypotenuse). You are now ready to find the values of the different ratios for . As follows below:
y
(3 ;4) 4
r 2 x 2 y 2 (pythagoras theorem) 4 sin 5 r 2 32 4 2 3 cos r 2 25 5 r5 4 Tan 3
0
3
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
47
Exercise 4.1: In each of the cases below calculate the length of the radius and the find all the trig ratios for y 15 e.g tan x 8 2.
y
y
(6 ;8)
(8 ;15)
0
x
0
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
48
2.
4.
y
y
(7 ;24)
(9 ;12)
0
x
0
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
49
5.
6.
y
y (44 ;33)
0
(40;9)
x
0
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
50
In each of the cases below calculate the length of the radius and use the values from the sketch to answer the questions that follow: 7.
8.
y
y
ď&#x201A;ˇ (11;60) ;40)
ď&#x201A;ˇ (20;21) ;16)
ď ą
ď ą
x
0 7.1 đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x153;&#x192; =
0 8.1 đ?&#x2018;Ąđ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x153;&#x192; =
___________________________________________________________________ ___________________________________________________________________ 7.2
đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x153;&#x192; đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x153;&#x192;
=
8.2 đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;2 đ?&#x153;&#x192; =
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 7.3đ?&#x2018; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;2 đ?&#x153;&#x192; + đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; 2 đ?&#x153;&#x192;
8.3 1 â&#x2C6;&#x2019; đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; 2 đ?&#x153;&#x192; =
____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
x
Grade 10 Core Mathematics
51
GO MATH WORKBOOKS
4.3 Equations in trigonometry: Solving for given a ratio: i.e Solving basic equations: [NB: is a variable and represents an angle.] Example: Solve for where [0 ;90 ] 1.
sin 0,5
30
Method: use you calculator as follows: enter {shift} {sin-1 } followed by the ratio 0,5 then equals (=) 2. Tan x = 3,456 x = 73,86º Method: use you calculator as follows: enter {shift} {tan-1 } followed by the ratio 0,5 then equals (=) NB: The functions sin;cos;tan on the calculator convert trig functions to decimal ratios. The functions sin-1;cos-1;tan-1 convert trig ratios back to angles. Exercise 4.2: Solve for x where x [0 ;90 ] sin x 0,336 . 1. 7. sin( x 10 ) 0,800 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
cos x 0,786 2. 8. cos( x 15 ) 0,642 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
tan x 1,732 3. 9. tan(x 25 ) 5,482 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
52
GO MATH WORKBOOKS
2 sin x ď&#x20AC;˝ 0,412 4. đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;?đ?&#x2018;Ľ = 1,1223 10. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3 cos x ď&#x20AC;˝ 1,236 5. đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;?đ?&#x2018;Ľ = 1,743 11. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 6. đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;Ąđ?&#x2018;Ľ = 2,1445 12. 2 tan(x ď&#x20AC; 30ď Ż ) ď&#x20AC;˝ 11,3426 ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
53
GO MATH WORKBOOKS
4.4 Solving Triangles:
B h y A y r x cos r y tan x
C
x
sin
BC AB AC cos AB BC tan AC
sin or
Exercise 4.3 : 1.
A
C D
B
BC AC BD sin A AB sin A
Task complete all ratios for above triangle: ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
54 _S
_B _T 1.
2. _C
_A
_P
_R
_Q
_N _0 3.
_L
_M
In diagram 1 & 2: Find the ratios for: 2.1
sin A
2.7
sinP
___________________________________________________________________ ____________________________________________________________________ 2.2
cosA
2.8
cosP
___________________________________________________________________ ____________________________________________________________________ 2.3
tanA
2.9
tanP
___________________________________________________________________ ____________________________________________________________________ 2.4
sinB
2.10
sinT
___________________________________________________________________ ____________________________________________________________________ 2.5
cosB
2.11
sinS
___________________________________________________________________ ____________________________________________________________________ 2.6
tanB
2.12
cosS
___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
55
GO MATH WORKBOOKS
In diagram 3: Write down two possible values for: 3.1 sinL __________________________________________________________ ____________________________________________________________________ 3.2 cosL ___________________________________________________________________ ____________________________________________________________________ 3.3 tanL ___________________________________________________________________ ____________________________________________________________________ 3.4 sinN ___________________________________________________________________ ____________________________________________________________________
3.5 cosN ___________________________________________________________________ ____________________________________________________________________
3.6 tanN ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
56
Exercise 4.4 1.
2. C
C
30cm 15 cm 35ď&#x201A;°
56ď&#x201A;°
B
A
B
A
Calculate the lengths of BC and AB
Calculate the lengths of AC & AB
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ 3.
S
B
4.
C 24 cm
14 cm
2
P
12 cm
Q
26ď&#x201A;° 32ď&#x201A;°
1
8 cm
R
A
D
In the diagram above: PQ = 12 cm; In the diagram above: AB = 24 cm BAË&#x2020; C ď&#x20AC;˝ 26 ď Ż and CAË&#x2020; D ď&#x20AC;˝ 32 ď Ż QR = 8 cm and SR = 14 cm. đ?&#x2018;&#x2026; = 90° đ??ľ & đ??ˇ = 90° Calculate: Calculate : Ë&#x2020; Ë&#x2020; 3.1. the size of Q1 and Q2 4.1. AC ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
57
3.2. the length of PS. 4.2. the length of CD ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ _____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 3.5
Solution of Triangles ( problem/reality questions)
A ladder rests 4 metres up a wall and has an angle at the foot of the ladder of 45. Calculate the length of the ladder.
Ladder 4m 45º Answer: 4m 4 Ladder L L sin 45 4 4 L sin 45 Ladder 5,7 metres NB: sin 45
L sin 45 4 sin 45 sin 45 4 L sin 45
A x
Angle of depression
y B
Angle of elevation
Line 1 Lines 1 and 2 are parallel. The angle of elevation from B to A is yº The angle of depression from A to B is xº
Line 2
Grade 10 Core Mathematics
GO MATH WORKBOOKS
58
Exercise 4.5: 1.
A swimmer crosses a swiftly flowing river and is washed downstream by the current. He reaches the opposite bank and by swimming a distance of 100m.
100m
River Current flow
35ยบ Task: If the angle he swam was 35ยบ with the near side bank , calculate the actual width of the river. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
2.
GO MATH WORKBOOKS
59
Calculate the height of the taller building if the distance between the buildings is 10m. The angle between a line from the top of the tall building (excluding the roof) to the bottom of the short one is 35ยบ. Task: Calculate the height of the taller building.
35ยบ
Height of building 10m
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
60
Cliff Face
Height of cliff
Surface of Sea
50ยบ
1200m 3.
In the diagram above , a yacht is anchored 1200m from the base of a cliff. The angle of elevation from the yacht to the top of the cliff is 50ยบ. Calculate the height of the cliff. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
61
4.6 Graphs in Trigonometry : Sketching graphs of trigonometric functions by table method where x [0 ;360 ] Method: Draw up a table using x –values of [ 0º ; 30º ; 60º ; 90º ;120º ; 150º ; 180º ;210º ; 240º ; 270º ;300º ; 330º ; 360º] Use your calculator to get the corresponding y – values Plot these points on a Cartesian plane and make an accurate sketch joining the points in a smooth curve shape. Example 1: Sketch the graph of f ( x) sin x where x [0 ;360 ] X y = sinx
0º 0
90º 1
180º 0
270º -1
360º 0
y
0
90
180
270
360
f x = sin x
x
Grade 10 Core Mathematics
GO MATH WORKBOOKS
62
Exercise 4.4: Copy and complete the following table and sketch the graph of y sin x 0º 90º 180º 270º 360º 0 -1
1. X y = sinx y 2
1
x 0 90
180
360
270
-1
-2
2.
Copy and complete the following table and sketch the graph of y cos x Decimals to nearest 1 decimal place
X
0º 1
y cos x
90º 0
180º
270º
360º 1
y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
3. X y = sinx +1 y sin x 1
GO MATH WORKBOOKS
63
Copy and complete the following table and sketch the graph of y sin x 1 0º 90º 180º 270º 360º 0 1 0 -1 0 +1 +1 +1 +1 +1
y 2
1
x 0 90
180
360
270
-1
-2
4.
Copy and complete the following table and sketch the graph of y cos x 1
X y = cos x +1
0º 1 +1
90º 0 +1
180º +1
270º 0 +1
360º +1
y cos x 1 y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
5.
GO MATH WORKBOOKS
64
Copy and complete the following table and sketch the graph of y sin x 1
X y = sinx -1 y sin x 1
0º 0 -1
90º -1
180º 0 -1
270º -1
360º 0 -1
y 2
1
x 0 90
180
270
360
-1
-2
6.
Copy and complete the following table and sketch the graph of y cos x 1 0º 90º 180º 270º 360º
x y = cosx -1
y cos x 1 y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
7.
GO MATH WORKBOOKS
65
Copy and complete the following table and sketch the graph of y cos x
X y = -cosx
0º -1
90º
180º 1
270º
360º -1
y 2
1
x 0 90
180
270
360
-1
-2
8. X y = -sinx
Copy and complete the following table and sketch the graph of y sin x 0º 90º 180º 270º 360º 0 -1 1 0
y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
9.
GO MATH WORKBOOKS
66
Copy and complete the following table and sketch the graph of y cos x 1
x y = -cosx +1 y cos x 1
0º
90º
180º
270º
360º
y 2
1
x 0 90
180
360
270
-1
-2
10.
Copy and complete the following table and sketch the graph of y sin x 1
x y = -sinx +1 y sin x 1
0º
90º
180º
270º
360º
y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
11. X y = tanx
GO MATH WORKBOOKS
67
Copy and complete the following table and sketch the graph of y tan x 0º 0
90º ∞
180º
270º ∞
360º 0
y 2
1
x 0 90
-1
-2
180
270
360
Grade 10 Core Mathematics
5.
68
GO MATH WORKBOOKS
DATA HANDLING:
Statistics : A branch of mathematics concerned with collection, interpretation and analyses of data. “The science of making decisions in face of uncertainty” Data: Name given to the collection of information usually expressed in numerical form. Data Handling involves:
Collecting data for a particular purpose.
Sorting data.
Representing data in tables, charts or graphs.
Analyzing the results.
Coming to conclusions.
Once collected data must be “interpreted” or analyzed . Only then can conclusions be made . Interpreting is Pictoral or Arithmetic.
Pictoral Methods: Graphs: Bar; Histograms; Frequency Polygons; Pie Charts; Line and Broken Line graphs.
Arithmetic:
Measures of Central Tendency: Mean; Median Mode.
Measures of Dispersion: Range; deciles; percentiles; quartiles and interquartile range.
5.1
Displaying Data:
A Bar Graph is a diagram consisting of a series of columns(bars) that are parallel(vertical or horizontal) that the length show frequency.
Example: 80 households surveyed & number of children in each household. Number of children Per family 0 1 2 3 4 5
Frequency 8 14 20 17 10 11
Grade 10 Core Mathematics
69
GO MATH WORKBOOKS
Vertical Bar Graph depicts the data:
Number of children per family 80 households f r e q u e n c y
Number of children per family Exercise 5.1: An educator was trying to ascertain why certain learners were not doing set homework . She asked the learners to calculate the number of hours spent watching TV the previous night. The time was rounded up to the nearest hour. The following data was collected by an educator. 1 2 2 1 0 1 3 1 0 0 2 1 0 1 1 1 3 1 1 1 0 1 2 3 3 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 3 3 1 2 0 1 3 0 1 3 1.
How many learners in the class?
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
2.
70
GO MATH WORKBOOKS
Draw up table to tally the numbers of learners who watched TV for 0 hrs, 1 hr, 2hrs and for 3 hrs.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.
Draw a bar graph to show the results.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.
71
GO MATH WORKBOOKS
Was the educator correct in thinking that the learners were not doing the set homework because they were watching too much TV. Validate your answers.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.2
Compound Bar Graphs:
Dual bar graphs : Used when two different sets of information given for connected topics: Example: 20 people recorded which TV station they watched at 8:15 p.m. on two consecutive nights in July 2004. First Night Second Night TV1 6 7 TV2 4 1 TV3 6 6 M-NET 3 4 E-TV 1 2
Grade 10 Core Mathematics
72
GO MATH WORKBOOKS
Dual Bar Graph :
f r e q u e n c y
TV 1
TV 2
TV 3 TV Stations
MNET
E - TV
Grade 10 Core Mathematics
5.3
73
GO MATH WORKBOOKS
Sectional Bar Graphs:
Airport survey: 100 passengers traveling overseas - “which countries were traveled to” Passengers USA Male 12 Female 6 Total 18
UK 15 17 32
GERMANY HOLLAND INDIA 8 5 4 3 11 5 11 16 9
AUSTRIA 9 5 14
f r e q u e n c y
USA
UK
GER HOLL COUNTRIES
IND
AUST
Grade 10 Core Mathematics
GO MATH WORKBOOKS
74
Exercise 5.2:
Ave Temp in ยบC
Jan July
The Average day-time temperature for 9 provincial capital cities were recorded. Eastern Free State Gauteng KwaZulu- Mpuma- Northern Limpopo North west Cape BloemNatal langa Cape fontein JHB PMB KimberPoloMafikeng Bisho Nelspruit ley kwane 22 14
23 8
20 10
23 13
24 15
25 11
23 12
24 12
Task: 1.
Draw a dual bar graph to illustrate the above information.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.
Which province has the greatest difference in temperature between January and July?
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Western Cape Cape Town 21 12
Grade 10 Core Mathematics
3.
GO MATH WORKBOOKS
75
Why would somebody need to know the average temp in ºC of the various cities in Jan and July?
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 5.4 Pie Charts: Example: 70% of the Earth‟s structure is water; rest is land 11% of the Earths surface is habitable ; 6% is too cold. 4% is mountainous; 9% is too dry.
Water Land-Habit Land – cold Land – Mountainous Land – Dry
%
Calculation of % of 360º
Angle written correct to whole no
70 11 6 4 9 100
252º 39.6º 21.6º 14.4º 32.4º 360º
252º 40º 22º 14º 32º 360º
Grade 10 Core Mathematics
GO MATH WORKBOOKS
76
Exercise 5.3: 240 learners were asked what they intended doing on leaving school. The results were: 80 wanted to attend University 86 wanted to attend Technikon 64 wanted to get a job 10 did not know 1.
Copy and complete the table:
Go to University
No of learners 80
Go to Technikon
86
Get a job
64
Don‟t Know
10
Total
240
Calculation 80 360 240
Angle 120º
64 360 240 15º ……
2.
Illustrate this information on a pie chart.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.
77
GO MATH WORKBOOKS
Illustrate the same information as a bar graph.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.
Compare the two displays and identify:
One feature that the pie chart shows better. One feature that the bar graph shows better. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
5.5
GO MATH WORKBOOKS
78
Broken Line Graphs.
Can Help: Find Patterns or Trends Spot relationships between data Find & predict values not given in the data Example: Norma is in hospital. Every 3 hrs her temperature is taken and the points are plotted on a graph. When data is collected in time intervals it is usual to plot them in this way.
40
39.5
39 38.5
38 37.5
37 0:00
3:00
6:00
9:00
12:00
15:00
18:00
Grade 10 Core Mathematics
5.6
GO MATH WORKBOOKS
79
Misleading Statistics:
Statistics are notorious for being a way that people use to make false and misleading arguments. 1. 2.
Statistics can be made up. Charts and graphs are drawn so that they also mislead.
CHECK: 1. Does it have a title. 2. Are both axes labeled. 3. Are the units included. 4. Are the scale units equal distances apart. 5.7
Measures of Central Tendency(M.O.C.T.)
Measures of central tendency of ungrouped data If one number can be compared with another ---- then this is called a measure of central tendency. 3 different Measures Of Central Tendency are: 1. Mean The average of the scores. 2.
Mode The most repeated score.
3.
Median ( Midlemost) in a ordered set of data.
5.8
Frequency Tables:
NB Must use all the data when finding one of the M.O.C.T‟s. Example: Value Frequency
3 1
4 4
5 3
6 2
Mode = 4 4,5 Median = 4,5 [3 4 4 4 4 5 5 5 6 6] Mean = 4,6 5.9
Discrete and continuous data. 1.
2.
Discrete Data: Information collected by “counting”. Number of children cannot include fractions. But scores can include fractions. Continuous Data: Collected by “measurement” Suitable degree of accuracy( not always exact.)
Grade 10 Core Mathematics
5.10
80
GO MATH WORKBOOKS
Stem & Leaf Diagrams
Example: Heights in cms. 147; 145; 157; 159; 154; 164; 161; 164; 162; 166; 163; 162; 171; 172; 171 Stem 14 15 16 17
Leaf 57 579 1223446 112
Tally Table Hts in cms 140 – 149 150 – 159 160 – 179 180 – 189
// /// ///// // ///
Measures of central tendency (MOCT) from stem and leaf diagrams. Median & Mode. Example: 33; 57; 46; 28; 68; 32; 60; 65; 54; 54; 40; 46; 45 ;26. Stem 2 3 4 5 6
Leaf 68 23 0566 447 0589
There are 2 modes (46) and (54) thus Bimodal Number: 15 data items. Median is 46 Mean = 48,2
Grade 10 Core Mathematics
5.11
GO MATH WORKBOOKS
81
Grouped Data:
If dealing with many values it is easier to group data into sub sets. Groups of „5‟ as an example. 1–5 6 – 10 11 – 15 16 – 20
Measures of Central Tendency in Grouped Data: Example: Width of leaf (mm) No of leaves
11 – 20
21 - 30
31 – 40
41 - 50
51 – 60
2
6
8
5
4
Mode: Modal class is the class (group) with the highest frequency e.g. 31 – 40 above. Mean: To find the mean we must find a value to represent each class thus take the average of each class by adding 1st and last terms. 11 20 e.g 15,5 2 Width of leaf (mm) Mid point No of leaves
11 – 20
21 - 30
31 – 40
41 - 50
51 – 60
15.5 2
25.5 6
35.5 8
45.5 5
55.5 4
sum of midpo int s no of leaves 917.5 mean 25 mean 36.7 mean
Grade 10 Core Mathematics
5.12
82
GO MATH WORKBOOKS
HISTOGRAMS:
Bar graph used for Discrete Data. Histogram used for Continuous Data.
F r e q u e n c y 1-5
6-10 11-15 16-20 21-25 26-30 31-35
Number of items bought
5.13
FREQUENCY POLYGONS:
Histograms and Frequency Polygons are frequency graphs. Histograms-----Bar graph. Frequency polygon-----Line graph. A frequency Polygon is a 2 dimensional shape made of line segments joined up. NB: We can use the midpoints of the bars of a histogram as the points for the frequency polygon. Donâ&#x20AC;&#x;t start the histogram at zero BUT leave a space then start the bars. The Frequency polygon will then start and end on the bottom axis.
Grade 10 Core Mathematics
5.14
GO MATH WORKBOOKS
83
MEASURES OF DISPERSION.
RANGE: This is a simple measure of the spread of data. Range = Maximum Value minus Minimum Value. Range cannot be used for grouped data as it ignores the distribution of values lying between the maximum and minimum values. Example: 2 classes scores in a maths test are as follows: Class 1:
22; 48; 52 ; 54; 64; 66; 76; 86; 88; 92; 100. Range = 100 â&#x20AC;&#x201C; 22 = 78
Class 2:
56; 58; 609; 62; 66; 66; 78; 78; 78; 80; 82. Range = 82 â&#x20AC;&#x201C; 56 = 26
Class 1 :
2
Scattered between 22 and 100
8 4 2 6 4 6 8 6 2
1 2 3 4 5 6 7 8 9 10
Class 2: Bunched between 56 and 82.
6 0 8 0
8 2 6 6 8 8 2
Measures of Dispersion: A Median is sometimes a better measurement of Central Tendency than the mean. Median divides the ordered data into 2 halves. Further subdivisions are : Quartiles: Points that divide into quarters. Deciles: points that divide into tenths Percentiles: points that divide into hundredths
Grade 10 Core Mathematics
GO MATH WORKBOOKS
84
There are 3 quartiles. Q1 – Lower quartile Q2 – Median (M) Q3 – Upper Quartile Percentiles are first and second.
75 for a test. To compare her marks with the rest of her class we can 90 calculate the percentile in which her mark falls. Arrange all marks in descending order. Meg gets
100 learners 80% got better than 75 thus Megs mark is in the 80th percentile. If a mark is in the 99th percentile then 99% of the marks are below that
value. If a mark is in the 60th percentile then 60% of the learners scored lower
than this mark. The lower quartile is 25 percentile. The upper quartile is 75 percentile. Study of the values of quartiles, deciles and percentiles give us an idea of the spread of data.
5.15
CALCULATING QUARTILES:
22; 48; 52; 54; 64; 66; 76; 88; 92; 100 82. Q1
M
Q3
Q3 Dividing data into 4 quartiles: ± 25% data below Q1 ±
50% data below M.
± 75% data below Q3 Class 1: ± 25% marks less than 52 ± 50% marks less than 66
56; 58; 60; 62; 66; 66; 78; 78; 78; 80;
Q1
M
Grade 10 Core Mathematics
GO MATH WORKBOOKS
85
± 75% marks below 78. Class 2: ± 25% marks less than 60 ± 50% marks less than 66 ± 75% marks below 78 INTER-QUARTILE RANGE: Lie between the two quartiles (lower and upper) The Inter- quartile range = Q3 – Q1 It measures a better dispersion than the range as it is not affected by extreme values. It is based on middle half of the data. i.e 50% of the data lies here. Example; Class 1: IQR : 88 -52 = 36 Class 2: IQR : 78 – 60 = 18 Class 2 has a smaller IQR which tells us that marks are not as spread out around the median as for class 1. Semi Inter-quartile range: It is half the IQR. Q Q1 SIQR = 3 2 Values for Quartiles are not necessarily part of the data given. e.g. Class 3:
20; 39; 40; 43; 43; 46; 53; 58; 63; 70; 75; 91; . Q1
46 53 49,5 2 40 43 Q1 41,5 2 63 70 Q3 66,5 2 Range = 91 – 20 = 70 M
M
Q3
Range shows marks widely spread 25% lie below Q1 = 41,5 50% lie below Q2 = M = 49,5 75% lie below Q3 = 66,5 IQR = 66,5 – 41,5 = 25 25 12,5 SIQR = 2
Grade 10 Core Mathematics
GO MATH WORKBOOKS
86
Exercise 5.4: 1.
A company wanted to evaluate the training program in its factory. They gave the same task to trained and untrained employees and timed each one in seconds.
Trained: 121 137 120 118 Untrained: 135 142 134 139 1.1
131 125
135 134
130
128
130
126
132
127
129
126 140
147 142
145
156
152
153
149
145
144
Draw a back â&#x20AC;&#x201C; to â&#x20AC;&#x201C; back stem & leaf diagram to show the two sets of data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 1.2
Find the medians and quartiles for both sets of data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ _____________________________________________________________ 1.3
Find the Inter-quartile Range for both sets of data.
____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
1.4
87
GO MATH WORKBOOKS
Comment on the results.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2..1
The heights, measured to nearest cm, of 75 girls picked at random at Glory High School, Are shown on the following frequency table: Height (h) in cm 135 h < 140 140 h < 145 145 h < 150 150 h < 155 155 h < 160 160 h < 165 165 h < 170 170 h < 175 175 h < 180
Frequency 2 5 10 17 19 15 4 2 1
Draw a histogram to illustrate this data: ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
88
GO MATH WORKBOOKS
2.2 The heights, measured to nearest cm, of 75 boys picked at random at Glory High School, Are shown on the following frequency table: Height (h) in cm Frequency 0 135 h < 140 1 140 h < 145 7 145 h < 150 11 150 h < 155 15 155 h < 160 18 160 h < 165 15 165 h < 170 6 170 h < 175 2 175 h < 180 On the same set of axes as the histogram draw a frequency polygon to illustrate this data. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
2.3
89
GO MATH WORKBOOKS
Use the frequency tables and the two graphs to help answer the following questions. For each group of learners state: 2.3.1 The modal class.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.3.2
The median height.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.3.3
The lower quartile
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.3.4
The upper quartile
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 2.4 Are the girls in the sample taller than the boys or are the boys taller? Use the statistical measures in 2.3 to back up your conclusions.
Grade 10 Core Mathematics
GO MATH WORKBOOKS
90
Exercise 5.5: Example: 1.
The following marks were recorded for a maths class: 28 53 75 63
45 75 63
36 58 75 63
36 60 78 67
36 60 81 68
38 60 83 68
45 71 84 69
42 71 84 76
45 75 90 79
1.1 1.2 1.3 1.4
Do a stem and leaf diagram for the data Find the median, mode and mean for the data Find the lower and upper quartile Calculate: 1.4.1 the interquartile range 1.4.2 the semi-interquartile range 1.4.3 the range for the class 1.5 Write down the maximum and minimum scores. 1.6 Do a box and whisker diagram using the five-number summary
Answer: Stem 2 3 4 5 6 7 8 9
Leaf 8 6668 2555 38 0003337889 115555689 1344 0
Mode = 75 ; Mean = 62.9 ; Number = 35 Interquartile range = 30 ; Semi- interquartile ; range = 15 Range = 62 Standard Deviation = 16.6 Lowest = 28 ; Q1 = 45 ; Median = 67 ; Q3 = 75 ; Highest = 90
90
28 45 0
10
20
30
40
67 50
60
70
75 80
90
100
x Q2 62.9 67 4.1 0 Data is negatively skewed i.e. skewed to the left. The marks are concentrated to the right of the median and spread out to the left of median.
2.
The following marks were recorded for a maths class:
Grade 10 Core Mathematics
45 75 84
54 53 75 63
46 58 75 92
GO MATH WORKBOOKS
91 44 81 78 67
22 60 60 68
28 54 37 68
37 71 56 69
56 71 25 76
45 44 90 98
2.1 Do a stem and leaf diagram for the data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.2 Find the median, mode and mean for the data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
2.3 Find the lower and upper quartile.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
2.4 Calculate:
Grade 10 Core Mathematics
2.4.1
92
GO MATH WORKBOOKS
the interquartile range.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.4.2
the semi-interquartile range.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.4.3
the range for the class.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
2.4 Write down the maximum and minimum scores.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
2.6
GO MATH WORKBOOKS
93
Do a box and whisker diagram using the five-number summary (L;Q1;M;
Q3;H) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 3.
34 28 34 3.1
The following marks were recorded for a maths class: 12 15 37 80
15 12 42 65
34 45 23 28
22 65 50 19
56 33 54 39
23 24 25 32
22 9 8 40
20 18 20 31
Do a stem and leaf diagram for the data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
3.2
Find the median, mode and mean for the data.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
3.3
94
GO MATH WORKBOOKS
Find the lower and upper quartile.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Calculate: 3.4.1
the interquartile range.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.4.2
the semi-interquartile range.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.4.3
the range for the class.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
3.4 Write down the maximum and minimum scores.
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
3.6
GO MATH WORKBOOKS
95
Do a box and whisker diagram using the five-number summary
(L;Q1;M; Q3;H) ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4. Girls 34 Boys 75 4.1
The following marks for a class of Girls and Boys were recorded : 72 85 77 72
65 92 42 65
44 90 85 68
72 65 50 79
66 63 74 89
80 54 65 62
58 55 85 70
70 72 80 71
Do a back to back stem and leaf diagram for the data
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.2
96
GO MATH WORKBOOKS
Find the median, mode and mean for both sets of data
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
4.3
Find the lower and upper quartile of each set of data
4.4 Calculate: 4.4.1
The inter-quartile ranges for:
4.4.1.1
girls
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.4.1.2
boys
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ 4.4.1.3
class
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
4.4.2
97
GO MATH WORKBOOKS
The semi-interquartile ranges for:
4.4.2.1 girls ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.4.2.2 boys ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.4.2.3
class
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________
4.4.3
The ranges for:
4.4.3.1 girls ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.4.3.2
boys
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 4.4.3.3
class
Grade 10 Core Mathematics
4.5
98
GO MATH WORKBOOKS
Write down the maximum and minimum scores of each set of data
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4.6
Do separate box and whisker diagrams for the girls and the boys
____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
99
5. The following table represents the maths scores for the entire grade 11 maths group at Northwood School. The data is grouped due to the size of group.
Class 0 to 9 10 to 19 20 to 29 30 to 39 40 to 49 50 to 59 60 to 69 70 to 79 80 to 89 90 to 99 100 to 109 Totals
Frequency(f) 15 10 17 40 35 22 20 20 15 5 1 200
Mid-points(X) 4.5 14.5 24.5 34.5 44.5 54.5 64.5 74.5 84.5 94.5 104.5
fX 67.5
5.1 Complete the last column of the table i.e (fX) 5.2 Find the modal class ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.3 Find the median class ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.4 Find the interval where Q1 and Q3 lie. ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.5 Calculate the estimated mean. ď&#x192;Ľ fX NB estimated mean = n ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
100
GO MATH WORKBOOKS
5.6 Use the grouped data to display the data on a histogram ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ 5.7 Draw the relevant frequency polygon on the histogram.
Grade 10 Core Mathematics
6.
GO MATH WORKBOOKS
101
Volume and Surface Area of 3-D Shapes Formulae: Volumes of Rectangular Prisms:
V (area of base) height 1. Square Base: V (side of base)2 height (length) V length breadth height (length 2. Rectangular Base : 1 3. Trapezium Base : V sum of parallel sides height (length) 2 1 4. Triangular Base : V (base height) length 2 Volume of cylinders: V (area of base) height V r 2h Volume of a Cone: 1 V r 2h 3 Volume of Pyramid: 1 V (area of base) height 3 Volume of Sphere: 4 V r3 3 Surface Areas of Shapes:
Hint Draw a net diagram of the shape: Net Diagrams of 3 D shapes: Rectangular Prisms:
Volume side1 side2 side3 Volume = area of base X height l Net: Rectangular Prisms: b
hxl
b
b h
hxl
h
hxb
b hxl
l
b
hxl Surface area = 2(h x l) + 2( h x b) + 2(l x b)
hxb
l
h
Grade 10 Core Mathematics
102
Net : Square base prism:
s
s sxh
GO MATH WORKBOOKS
s sx s
s sxh
sxh
sxh
h
s sx s Surface area = 4(h x s) + 2( s x s) Net of a Cylinder
r
h 2r
Surface Area = area of circles plus area of rectangle Surface Area = r 2 r 2 2rh Surface Area = 2r 2 2rh
Sh h 2 r 2
Cone:
Surface Area = r h 2 r 2 Circumference = 2 r OR Surface area =
1 circumference x slant height 2
NB Slant height =
h2 r 2
Slant height Net Diagram of a cone:
Arc length
Grade 10 Core Mathematics
103
GO MATH WORKBOOKS
Formulae for Surface Area of Shapes. PRISMS: Rectangular bases:
S 2lb 4hb Triangular Bases: S bh bl 2 b 2 h 2
S bh 3bl
If triangle is isosceles. If equilateral.
Cylinders: S 2 r 2 2 rh S 2( r 2 rh)
Square base pyramid:
1 SurfaceAre a ( side) 2 4( base sh) 1 slant height ( base) 2 (height ) 2 2 2 SurfaceAre a ( side) 2 2(base sh) (Pythagoras theorem) OTHER 3- D SHAPES Cone:
CurvedSurface r h 2 r 2 or 1 CurvedSurface circumference slant height 2 Sphere: S 4 r 2 Tetrahedron: 1 Vol = (Area of base x height) 3 4 3 1 (base) 2 Surface Area = 2 2
Grade 10 Core Mathematics
104
GO MATH WORKBOOKS
Pictures of Different 3-Dimensional Shapes:
A:
Surface area and volume of cylinder with section removed: Calculate the surface area of the shape: Calculate the ratio of arc to circle
Arc Leave as a symbol Circumference
Area of Arc(sector) = Use the ratio above and multiply r2 ( area of full circle) Area of flat sections = l b (length x breadth) they are rectangles. Area of curved surface = Arc height Total Surface area = 2( area of arc) + 2( area of rectangular flat sections + area of curved surface Find the volume of the shape. Volume of shape = Area of arc x height of cylinder.
Grade 10 Core Mathematics
B:
105
GO MATH WORKBOOKS
Surface area and volume of cone with section removed:
Calculate the ratio of arc to circle
Arc Leave as a symbol Circumference
Area of Arc(sector) = Use the ratio above and multiply r2 ( area of full circle) Calculate the Slant Height as follows ( Pythagoras) Slant height = h 2 r 2 1 Area of curved surface = ( area of curved sector) x slant height 2 1 Area of straight side = base height 2 Total area = area of sector( arc) + area ofn curved side + 2( area of straight side) Volume of Cone =
1 (Area of Arc) x height 3
Volumes of prisms & the effect of the factor--k Exercise 6.1: 1. Calculate the volume and surface area of the following closed prisms:
Prism P Q R S Length (mm) 52 47 43 39 Breadth (mm) 20 18 17 15 Height (mm) 85 77 70 64 Determine the following ratios correct to 2 decimals. VolumeQ VolumeP 2.1 2.2 VolumeR VolumeQ ________________________________________________________________
T 36 14 58
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
VolumeR VolumeS 2.4 VolumeS VolumeT ________________________________________________________________ 2.3
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________
Grade 10 Core Mathematics
106
GO MATH WORKBOOKS
SurfaceAre aP SurfaceAre aQ 3.2 SurfaceAre aQ SurfaceAre aR ________________________________________________________________
3.1
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ SurfaceAre aR SurfaceAre aS 3.4 SurfaceAre aS SurfaceAre aT ________________________________________________________________
3.3
___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________
4.
Are the volumes of the prisms approximately in proportion? Give reasons for your answers. ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.1 How much smaller in volume is prism T than prism P? Give the scale factor (not the change in volume). ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 5.2 Are the surface areas of the prisms in proportion? Give reasons for pour answers. ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
107
GO MATH WORKBOOKS
5.3 How much smaller in surface area is prism T than prism P? Give the scale factor (not the change in area).
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
6.
Determine the scale factor used : 6.1 to reduce the dimensions of the prisms.
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
6.2
To enlarge the dimensions of the prisms.
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ 7. What is â&#x20AC;&#x153;The Golden Ratioâ&#x20AC;? ? ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 8.Determine which ratio of the faces comes closest to this ratio. NB: You must choose a ratio greater than 1.
Grade 10 Core Mathematics
108
8.1 Reduce each of the dimensions of prism P by a factor of
GO MATH WORKBOOKS
1 , then calculate 2
the volume and surface area of the new prism X. ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 8.2 How much smaller in volume and in surface area is this new prism X? Give the scale factor in each case. ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 9.1
Using the answers to question 8 , estimate the volume and surface area of prism Y, where each dimension of prism P has been enlarged by a factor of 2.
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 9.2
Calculate the volume and surface area of prism Y, and compare your answers to your answers to question 9.1
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
GO MATH WORKBOOKS
109
Examples: h b l Dimensions of the prism is length; breadth and height. i.e. l ; b ; h Volume of prism = l b h k is a factor of 2] Prism l (cm) b (cm) H (cm)
A B C D E F G H
4 8 4 4 8 8 4 8
3 3 6 3 6 3 6 6
2 2 2 4 2 4 4 4
Volume (cm3) 24 48 48 48 96 96 96 192
Vxk
V Vx2 Vx2 Vx2 Vx4 Vx4 Vx4 Vx8
Factor No of Sides Doubled 0 k 1 k 1 k 1 K2 2 2 K 2 k2 2 3 k 3
It is noticed : When 1 dimension is doubled then the volume is doubled as well When 2 dimensions were doubled then the volume is 4 times the original. When all 3 dimensions are doubled the volume is 8 times the original. This holds for any factor value. i.e. k = 3 the volumes increase accordingly : 1 trebled thus volume trebled 2 trebled thus volume is 9 times original 3 trebled thus volume is 27 times the original. Factors affecting the volumes are: k k2 k3 Volume of prism = l b h Prism L (cm) b (cm) h (cm) Volume Vxk 3 (cm ) A 4 3 2 24 V B 4 3 6 72 Vx3 C 4 9 2 72 Vx3 D 12 3 2 72 Vx3 E 12 9 2 216 Vx9 F 8 3 4 216 Vx9 G 4 9 6 216 Vx9 H 12 9 6 648 V x 27
Factor k k k k2 k2 k2 k3
Grade 10 Core Mathematics
10.
GO MATH WORKBOOKS
110
Copy and complete the following tables:
h b l Dimensions of the prism is length; breadth and height. i.e. l ; b ; h Volume of prism = l b h Factor k =______ Prism A B C D E F G H
L (cm) 6 12 6 6 12 12 4 12
b (cm) 4 4 8 4 8 4 8 8
h (cm) 3 3 3 6 3 6 6 6
Volume (cm3) 72
Vxk V Vx2
Factor k k k2
Volume of prism = l b h Factor k =______ Prism A B C D E F G H
L (cm) 4 4 4 12 12 4 12 12
b (cm) 3 3 9 3 9 9 9 9
h (cm) 2 6 2 2 2 6 6 6
Volume (cm3) 24 72 216 216
Vxk Factor V Vx3 Vx Vx Vx 9 Vx Vx V x 27
K k2 K3
Grade 10 Core Mathematics
111
GO MATH WORKBOOKS
Key Ideas: The circumference of a circle is proportional to its area: arc length sector area sector circumfere nce of circle area circle
To find the area of a sector of a circle one must first find the ratio:
arc . circumfere nce
Multiply this ratio by r2 to get the area of the sector.
Area of a base that is a hexagon shape: It takes 6 equilateral triangle shapes to form 3 3.a a OR Area the hexagon base : Area ( where „a‟ is the base of the 2 2 equilateral triangle) height 3.a height Volume of Prism with Hexagon Base = 6 2
a ( base of ) NB: The perpendicular height of any equilateral triangle with side „a‟ is
3 a by 2
Pythagoras.
Exercise continued: 11.
A cold - drink can measures approximately 65 mm in diameter and 75mm in height.
11.1 Calculate the volume of the can ( in mm2 and cm2). The writing on the can says that it contains 200 ml of liquid. How much air space is there in the can? ( 1ml 1cm 3 ) ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________
Grade 10 Core Mathematics
112
GO MATH WORKBOOKS
11.2 What is the height of the liquid in the can? ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 12.1
Calculate the total surface area of the can (in cm3 ) , assuming that the can is a closed cylinder.
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
12.2
113
GO MATH WORKBOOKS
If the metal to make the can costs 0,25 cents per square centimeter, calculate the cost of making each can.
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 13
he manufacturer of Lemon Twist wants to double the volume of the can , but keep the radius as it is. By which factor must the height be increased?
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
114
GO MATH WORKBOOKS
14.1 If the radius is increased by a scale factor of 2, but the height is kept the same by which factor will the volume increase?
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ 14.2 By which scale factor will the area of the top of the can increase?
________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________
Grade 10 Core Mathematics
115
GO MATH WORKBOOKS
14.3 By which factor will the area of the lateral surface ( the area of the curved side) increase? ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ____________________________________________________________________ ___________________________________________________________________ __________________________________________________________________