1 minute read

Objective 2: Aligning education and research with our crisis response

We aim for our education and research to both align with the crisis through course content, research outcomes and the way we deliver these.

Education

Target: all programmes to include the climate & ecological crisis in at least one unit per level (year) by 2022/23. In 2021, we completed our first comprehensive mapping to measure how many of our courses align to the climate & ecological crisis. We were pleased with the results which found that around two-third of courses did so. Of note, 88% and 83% of our programmes in the BU Business School and Faculty of Science & Technology, respectively, achieved this aim.

64% 40% courses aligned to climate and ecological crisis courses aligned to climate & ecological crisis at every level

40% of our programmes included content around the climate & ecological crisis at every year of study, as per the CECAP aim. Recognising our target of this figure being 100% by the end of the 2022/23 academic year, the Sustainability Academic Network have been prioritising work to support academics to achieve this aim. Work has included:

1 Rolling out ‘Climate & Ecological Crisis in education’ training workshops for academic departments

2 Creating a bespoke area on Brightspace, our academic portal, with resources, training and guidance for academics

3 Launching our inaugural Excellence in Education for Climate & Ecological Action Award to recognise and share best practice

Dr Ben Thomas, winner of the Excellence in Education for Climate & Ecological Action (EECEA) Award 2022

Ben has been teaching sustainable design at all levels of our design and engineering courses since 2007. Within his teaching, he raises awareness of the climate & ecological crisis and provides students with sector-specific skills and knowledge to understand their role and ability to contribute. Activities within his unit include a practical product dismantling exercise, where students dismantle common household products to understand their materials and design, then use a Life Cycle Analysis software to measure the carbon footprint of the product during all stages of its life. This model can be used to reduce the environmental impact of the product, closely informed by lecture materials and design philosophies.

A judge of the EECEA Award shared:

“This is an excellent example of developing and integrating highly relevant skills and knowledge. It challenges students to think creatively to develop solutions and to reflect on the wider societal perspectives and will also encourage students to see that they can help society in general to develop a more sustainable approach.”

This article is from: