CambridgeMATHS Year 9 C&S Annotated Sample Pages

Page 1

UNCORRECTEDSAMPLEPAGES Annotated

To learn more and view additional samples as they become available, visit: cambridge.edu.au/cambridgeMATHSNSW7-10 ABN 28 508 204 178 ARBN 007 507 584

1 Integers,decimals,fractions,ratiosandrates

Warm-upquiz

1A Adding and subtracting positive and negative integers CONSOLIDATING

1B Multiplying and dividing positive and negative integers CONSOLIDATING

1C Decimal places and significant figures (Core)

1D Rational numbers and irrational numbers CONSOLIDATING

1E Adding and subtracting fractions CONSOLIDATING Progress quiz

1F Multiplying and dividing fractions CONSOLIDATING

1G Ratios CONSOLIDATING

1H Rates CONSOLIDATING Maths@Work: Cooks and chefs

Working mathematically

Puzzles and challenges

Chapter summary

Chapter checklist

Chapter review

2 Financialmathematics

Warm-upquiz

2A Percentages, fractions and decimals CONSOLIDATING

2B Applying percentages CONSOLIDATING

2C Percentage increase and decrease CONSOLIDATING

2D Profits and discounts CONSOLIDATING

2E Income (Core)

Progress quiz

2F Taxation (Core)

2G Simple interest (Core)

2H Applications of simple interest (Core)

Maths@Work: Facebook cake-decorating business

Working mathematically

Contents are subject to change prior to publication.

Contents are subject to change prior to publication.

Contents iii Contents Abouttheauthors viii Acknowledgements x Introduction xi Guidetotheworkingprograms xii Guidetothisresource xiv
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

Puzzlesandchallenges

Chaptersummary

Chapterchecklist

Chapterreview

3 Expressionsandequations

Warm-upquiz

3A Algebraic expressions CONSOLIDATING

3B Adding and subtracting algebraic expressions

CONSOLIDATING

3C Multiplyinganddividingalgebraicexpressions

CONSOLIDATING

3D Expanding algebraic expressions (Core)

3E Linear equations with a pronumeral on one side

CONSOLIDATING

3F Linear equations involving fractions (Core)

Progress quiz

3G Linear equations involving brackets (Core)

3H Equations with pronumerals on both sides (Core)

3I Using linear equations to solve problems (Core)

3J Using formulas (Core)

Maths@Work: Plumber

Working mathematically

Puzzles and challenges

Chapter summary Chapter

checklist Chapter review

4 Right-angledtriangles

Warm-upquiz

4A Exploring Pythagoras’ theorem CONSOLIDATING

4B Finding the length of the hypotenuse CONSOLIDATING

4C Finding the lengths of the shorter sides CONSOLIDATING

4D Using Pythagoras’ theorem to solve two-dimensional problems CONSOLIDATING

4E Introducing the trigonometric ratio (Core)

4F Finding unknown sides (Core)

Progress quiz

4G Solving for the denominator (Core)

4H Finding unknown angles (Core)

4I Using trigonometry to solve problems (Core)

Maths@Work: Carpenter

Working mathematically

Puzzles and challenges

iv Contents
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Contents are subject to change prior to publication.UNCORRECTEDSAMPLEPAGES Contents are subject to change prior to publication.

Chaptersummary

Chapterchecklist

Chapterreview

5 Linearrelationships

Warm-upquiz

5A Points and lines on the Cartesian plane (Core)

5B The x -intercept and y -intercept (Core)

5C Graphing straight lines using intercepts (Path) EXTENDING

5D Lines with only one intercept (Core)

5E Gradient from rise and run (Core)

5F Gradient and direct variation (Core and Path)

5G Gradient–intercept form (Core)

Progress quiz

5H Finding the equation of a line using y = mx + c (Core)

5I Midpoint and length of a line segment from diagrams (Core)

5J Linear relationships in real-life contexts (Core)

Maths@Work: Trading in foreign currencies Working mathematically

Puzzles and challenges

Chapter summary

Chapter checklist

Chapter review

Semesterreview1

6 Length,area,surfaceareaandvolume

Warm-upquiz

6A Length and perimeter CONSOLIDATING

6B Circumferenceofcirclesandperimeterofsectors

CONSOLIDATING

6C Area of quadrilaterals and triangles CONSOLIDATING

6D Area of circles CONSOLIDATING

6E Perimeter and area of composite shapes (Core)

6F Surface area of prisms (Core)

Progress quiz

6G Surface area of cylinders (Core)

6H Volume of prisms (Core)

6I Volume of cylinders (Core)

Maths@Work: Vegetable and fruit growers Working mathematically

Puzzles and challenges

Contents are subject to change prior to publication.

Contents are subject to change prior to publication.

UNCORRECTEDSAMPLEPAGES

All non-core topics are marked as CONSOLIDATING or EXTENDING to assist with differentiation and course planning.

All non-core topics are marked as CONSOLIDATING or EXTENDING to assist with differentiation and course planning.

Contents v
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Chaptersummary

Chapterchecklist

Chapterreview

7 Indices

Warm-upquiz

7A Index notation (Core)

7B Index laws for multiplying and dividing (Core)

7C The zero index and power of a power (Core)

7D Index laws extended (Core)

7E Negative indices (Core)

Progress quiz

7F Scientific notation (Core)

7G Scientific notation using significant figures (Core)

Maths@Work: Lab technician

Working mathematically

Puzzles and challenges

Chapter summary

Chapter checklist

Chapter review

8 Propertiesofgeometricalfigures

Warm-upquiz

8A Angles and triangles CONSOLIDATING

8B Parallel lines CONSOLIDATING

8C Quadrilaterals CONSOLIDATING

8D Polygons (Path) EXTENDING

8E Enlargement and similar figures (Core)

Progress quiz

8F Applying scale factor to similar triangles (Core)

Maths@Work: Animator

Working mathematically

Puzzles and challenges

Chapter summary

Chapter checklist

Chapter review

9 Quadraticexpressionsandalgebraicfractions

Warm-up quiz

9A Reviewing algebra CONSOLIDATING

9B Expanding binomial products (Core)

9C Expanding perfect squares (Core)

Contents are subject to change prior to publication.

Contents are subject to change prior to publication.

UNCORRECTEDSAMPLEPAGES

vi Contents
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

9D Difference of two squares (Core)

9E Using HCF to factorise algebraic expressions CONSOLIDATING

Progress quiz

9F Simplifying algebraic fractions: multiplication and division (Core)

9G Simplifying algebraic fractions: addition and subtraction (Core)

Maths@Work: Automotive technology

Working mathematically

Puzzles and challenges

Chapter summary

Chapter checklist

Chapter review

10

Probabilityanddataanalysis

Warm-up quiz

10A Review of probability CONSOLIDATING

10B Venn diagrams and two-way tables (Path) EXTENDING

10C Using arrays for two-step experiments (Core)

10D Using tree diagrams (Core)

10E Using relative frequencies to estimate probabilities (Core)

10F Mean, median, mode and range CONSOLIDATING

Progress quiz

10G Interpreting data from tables and graphs (Core)

10H Stem-and-leaf plots (Core)

10I Grouping data into classes (Core)

Maths@Work:Personaltrainer

Workingmathematically

PuzzlesandChallenges

Chaptersummary

Chapterchecklist

Chapterreview

Semesterreview2

Glossary Answer

Contents vii
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 Contents are subject to change prior to publication.UNCORRECTEDSAMPLEPAGES Contents are subject to change prior to publication.

2

Financial mathematics

Chapter introductions set context for students about how the topic connects with the real world and the history of mathematics.

Whyskillsinfinancialmathematicsareimportant

Skillsinfinancialmathematicsareessentialfor successfulbusinessmanagementandforachieving personalfinancialindependence.Percentageskillsare neededforthefinancialcalculationsperformedby individuals,accountants,bookkeepers,smallbusiness managersandemployers.

Percentagesareusedtocalculatemark-upand discountamounts,costpricesandsellingprices, profits,losses,insurancepayments,GST,businesstax, wagetax,wageincreasesandtheinterestonloans.

Personalincomecanbeearnedinvariousways:

•afixedsalaryp.a(‘perannum’.i.e.peryear),e.g. accountants,businessowners,teachers,engineers, pharmacistsandsurveyors.

•awagecalculatedfromanhourlyrate,e.g.chefs, cleaners,florists,dentalassistants,nurses, receptionists,retailsalespeople,construction workers,panelbeatersandautomechanics.

UNCORRECTEDSAMPLEPAGES

•bythejob,e.g.personaltrainers,fruitpickers, bricklayers,fishers,tailors,hairdressers,piano tunersandcarpetlayers.

•commission,e.g.carsalespeople,realestate agents.

•royalties,e.g.songwritersandbookauthors.

Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Chaptercontents

2A Percentages,fractionsanddecimals (CONSOLIDATING)

2B Applyingpercentages (CONSOLIDATING)

2C Percentageincreaseanddecrease (CONSOLIDATING)

2D Profitsanddiscounts (CONSOLIDATING)

2E Income

All non-core topics are marked as CONSOLIDATING or EXTENDING to assist with differentiation and course planning.

2F Taxation

2G Simpleinterest

2H Applicationsofsimpleinterest

NSWSyllabus

Inthischapter,astudent: developsunderstandingandfluencyin mathematicsthroughexploringandconnecting mathematicalconcepts,choosingandapplying mathematicaltechniquestosolveproblems,and communicatingtheirthinkingandreasoning coherentlyandclearly(MAO-WM-01) solvesfinancialproblemsinvolvingsimpleinterest, earningmoneyandspendingmoney (MA5-FIN-C-01)

NSW Syllabus Outcomes are listed at the start of each chapter (see also the teaching program for more syllabus information).

Onlineresources

Ahostofadditionalonlineresourcesareincluded aspartofyourInteractiveTextbook,including HOTmathscontent,videodemonstrationsofall workedexamples,auto-markedquizzesand muchmore.

UNCORRECTEDSAMPLEPAGES

Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Warm-up quizzes (Core & Standard Paths only) refresh prior learning and prepare students for the chapter ahead.

Warm-upquiz 70 Chapter2Financialmathematics 1 Simplify: 12 100 a 20 100 b 35 100 c 75 100 d 60 100 e 50 100 f 2 Multiplythesedecimalsby100. 0.99 a 0.58 b 0.9 c 1.22 d 0.08 e 1.5 f 3 Whichislargerineachofthefollowingpairs? 1 2 or55% a 3 4 or70% b 0 89or98% c 4 Copyandcomplete. 61%= 100 a 9%= 100 b 37%= 100 c 121%= 100 d 1%= 100 e 75%= 100 = 3 f 5 Copyandcompletethefollowingtable. Fraction Decimal Percentage 1 100 0 1 0.25 50% 3 4 6 Writedown10% oftheseamounts. 100g a 70km b $450 c $8000 d $5 e 90c f 7 Find: 25% of$400 a 75% of80m b 50% of$3 c 10% of$678 d 1% of600days e 1 2 % of600days f 8 Completethefollowing. 1% of60 = 60dividedby a 10% of50 = 50dividedby b 5% of100 = 100dividedby c 33 1 3 % of963 = 963dividedby d 25% of88 = 88dividedby e Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES
Warm-upquiz Warm-upquiz 71
3 % of6300km. 10 Whichislarger:40% of50or25% of100? 11 Copyandcomplete: 1week = days a 1year = days b 1year = weeks c 1year = months d 12 Howmanyhoursaretherefrom: 5a.m.to7p.m.? a 9a.m.to3p.m.? b 8∶30a.m.to9p.m.? c Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES
9 Find33 1

2A Percentages, fractionsanddecimals CONSOLIDATING

Learningintentionsforthissection:

• Toreviewtheconversionsbetweenpercentages,fractionsanddecimals

• Tomemorisethemostusefulfraction/decimal/percentageconversions

• Tobeabletoexpressonequantityasapercentageofanother

Past,presentandfuturelearning:

• ThissectionconsolidatesStage4conceptswhichareusedinStages5and6

• SomeofthesequestionsaremorechallengingthanthoseinourStage4books

• PercentagesareusedextensivelyinthischapterandalsoChapter1ofourYear10book

• ExpertisewithpercentagesisassumedknowledgeforStage6Standardandmayalsoberequiredinnon-calculator examinationssuchasNAPLANandindustryaptitudetests

Weusepercentagesformanydifferentthingsinourdailylives.Someexamplesincludehomeloans,credit cards,salesandpro ts.

Weknowfromourpreviousworkonpercentagesthattheyrepresentafractionwithadenominatorof100. ‘Percent’comesfromtheLatinword percentum,andmeans‘outof100’.

LessonStarter:Orderingwithpercentages

Tendifferentvaluesaregivenbelow.

Inpairs,decide:

whichofthenumbersisthesmallest a whichofthenumbersisthelargest b

Writethe10numbersinascendingorder.

KEYIDEAS

Past, present and future learning places the lesson in the context of the syllabus, highlighting topics that build on previous learning, and topics that will be extended at a later stage.

■ Thetablebelowcontainssomecommonlyusedfractions,decimalsandpercentages.These shouldbememorised.

UNCORRECTEDSAMPLEPAGES

72 Chapter2Financialmathematics
1 2 , 0.8, 0.05, 15%, 7 20 , 0.9, 9%, 3 5 , 1 3 , 0.3
Fraction Decimal Percentage Therefore 1 1 100% 3 = 300% 1 2 0.5 50% 1 5 = 150% 1 3 0 333 or 0 3 33 1 3 % 2 3 = 0 6 = 66 2 3 % 1 4 0.25 25% 3 4 = 0 75 = 75% 1 5 0.2 20% 3 5 = 0.6 = 60% 1 10 0.1 10% 7 10 = 0.7 = 70% 1 100 0.01 1% 21 100 = 0 21 = 21% Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Learning intentions at the beginning of each lesson clearly state what the student can expect to achieve.

■ Therearesix conversions involvingfractions,decimalsandpercentages.

Usetenths,hundredths,etc. Simplifythefraction.

Convertfractiontotenthsor hundredthsor Dividenumeratorbydenominator.

Multiplyby100. Add%symbol. (Thedecimalpointappearstomove twoplacestotheright.)

Remove%symbol. Divideby100. (Thedecimalpointappearstomove twoplacestotheleft.)

Convertthefractiontohundredths. Add%symbol

orDividenumeratorbydenominator. Multiplyby100. Add%symbol.

Typethedecimal. Press=. Pressthebuttonthatconverts fractionstodecimals.

Typethefraction. Press=. Pressthebuttonthatconverts fractionstodecimals.

Multiplyby100. Add%symbol.

Remove%symbol. Divideby100.

Multiplyby100. Add%symbol.

percentagetofraction

Remove%symbol. Writeas‘hundredths’. Simplifyfraction.

Remove%symbol. Divideby100. Pressthebuttonthatconverts fractionstodecimals.

■ Expressingonequantityasapercentageofanother(percentagecomposition):

• Formafraction,thenconverttoapercentage.

Forexample:4goalsfrom10attempts = 4 10 = 40 100 = 40%

Keyterminology: percentage,fraction,decimal

Exercise2A

UNDERSTANDING

1 Completethefollowingusingthewordsmultiplyordivide.

a Toconvertadecimalintoapercentage by100.

b Toconvertapercentageintoafraction by100.

c Toconvertafractionintoapercentage by100.

d Toconvertapercentageintoadecimal by100.

UNCORRECTEDSAMPLEPAGES

2 Copyandcompletethistableofcommonpercentages.

Percentage 10% 50%

2APercentages,fractionsanddecimals 73
decimaltofraction
6
6 10
3 5
Conversion Withoutacalculator Withacalculator
0
=
=
13 50 = 26 100 = 0 26
8
5 ÷ 8 = 0
fractiontodecimal
5
=
625
decimaltopercentage 0 24 × 100 = 24
%
∴ 0 24 = 24
24 ÷ 100 = 0 24
24%= 0 24
percentagetodecimal
13 50 = 26 100 = 26%
8 = 5 ÷ 8 = 0 625 0 625 × 100 = 62 5
5 8 = 62 5%
fractiontopercentage
5
60%= 60 100 = 3 5
1–4 1,4
Fraction 1 4 1 3 2 3 Decimal 0 2 0 75 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

3 Whatpercentageofeachofthefollowingdiagramshasbeenshaded?

Hint:Considercommon fractionsandpercentages fortheshadedareas.

4 Scottscored38outof50onamathsquizandSarahscored79% onthesametest.Whoscoredthehigher mark?

Videos for all worked examples support both in-class and independent learning.

Writethepercentageasafraction,usinga denominatorof100, 7 5 100

Multiplythisfractionby 2 2 sothatwedon’t haveadecimalinthefractionanditwillbe easiertosimplify. 7 5 100 × 2 2 = 15 200

Simplify: 15 200 = 3 40 bycancellingacommon factorof5.

74 Chapter2Financialmathematics
a b c d
FLUENCY 5–9(½) 5–9(½) VIDEO DEMO
Percentagesandfractions Write 12 25 asapercentage. a Write7.5% asafraction. b SOLUTION EXPLANATION a 12 25 = 12 25 × 100 = 48% Multiplythefractionby100. 12 25 × 100 = 12 ✚✚ 25 1 × ✟✟ 100 4 1 b 7 5%= 7 5 100 = 15 200 = 3 40
Example1
asapercentage. a
5% asafraction.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Nowyoutry Write 11 20
Write12.
b
UNCORRECTEDSAMPLEPAGES

Worked examples, placed within each exercise (Core & Standard Paths only), provide vital support to less advanced students. In other resources, the worked examples are placed before the exercises, with clear links from the questions to the relevant example.

2APercentages,fractionsanddecimals 75 5 Expressthefollowingfractionsaspercentages. Hint:Multiplyby 100. 1 5 a 4 5 b 8 10 c 3 10 d 1 4 e 1 8 f 3 4 g 12 20 h 14 25 i 7 20 j 9 100 k 3 40 l 6 Expressthefollowingpercentagesassimpli edfractions. Hint:Divideby 100. 19% a 23% b 99% c 5% d 22% e 45% f 74% g 75% h 2 5% i 17.25% j 1% k 125% l VIDEO DEMO Example2 Convertingbetweenpercentagesanddecimals Write0 45asapercentage. a Write25% asadecimal. b SOLUTION EXPLANATION a 0.45 = 0.45 × 100 = 45% Multiplyby100. b 25%= 25 ÷ 100
0
25 Divideby100. Nowyoutry Write0
23asapercentage. a Write48% asadecimal. b 7 Expressthefollowingdecimalsaspercentages. Hint:Movethedecimal pointtwoplacesto theright. 0.78 a 0.95 b 0 65 c 0 48 d 0 75 e 1 42 f 0 07 g 0 3 h 0 03 i 1 04 j 0 12 k 0 1225 l 8 Expressthefollowingpercentagesasdecimals. 12% a 83% b 57% c 88% d 99% e 100% f 120% g 5% h Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
=
.
.
UNCORRECTEDSAMPLEPAGES

Example3 Writingaquantityasapercentage

Write50coutof$2.50asapercentage.

SOLUTION EXPLANATION

50coutof$2 50 = 1 ✚✚ 50 5 ✟✟ 250 × 100 = 20%

Nowyoutry

Write90coutof$3.60asapercentage.

Converttothesameunits ($2 50 = 250c) andwriteasa fraction.

Reducethefractiontosimplestform. Multiplyby100.

9 Ineachof thefollowingcases,expressthe rstquantityasapercentageofthesecond.

Hint:Writeasafraction andthenmultiplyby 100.

Now you try questions follow every worked example. Students get immediate practice at the type of question they have just seen in the worked example before they start the exercises.

10 Copyandcompletethetableofthefavouritesummersportsof Year9students.

They are also ideal for teachers to use as class demonstration questions.

11 Tonipays31 5centsinthedollarintax.Expressthisas apercentage.

UNCORRECTEDSAMPLEPAGES

12 Badweatherstoppedacricketgamefor35minutesofascheduled 3 1 2 hourmatch.Whatpercentageofthescheduledtimewaslost?

13 Joelost4kgandnowweighs60kg.Whatpercentageofhis originalweightdidhelose?

Hint:WhatwasJoe’s originalweight?

76 Chapter2Financialmathematics VIDEO
DEMO
5goutof200g a 40coutof$4 b 10kmoutof200km c 3soutof1minute d 200moutof1km e 100mLoutof
f 200coutof$1 g 45marksoutofapossible60marks h PROBLEM-SOLVINGANDREASONING 10–12 11–14
1 2 L
Numberofstudents Fractionof Percentage Sport whochosesport thetotal ofthetotal Swimming 44 Golf 12 Volleyball 58 Cricket 36 Total
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

14 Acompanyclaimsthattheapplepiesitmakesare97% fatfree.Ifthenutritionalinformationonthe sideofthepackstatesthattotalfatis7gramsofthe250grampie,istheclaimcorrect?

15

15 Completethistableby llinginestimatedtimes.Inthe rsttwocolumns,insertthetimesthatyou dideachactivity.Usethatinformationtohelpyou llintheothercolumns.Roundpercentagestoone decimalplace.

a Timeyouwenttobedlast night: Timeyouwokeup thismorning:

b Timeyoustarted breakfasttoday: Timeyoufinished breakfasttoday:

Hoursandminutes spentinbed:

Minutesspenteating breakfast:

c Timeschoolstartedtoday: Timeschoolisdueto finishtoday: Hoursandminutes spentatschool:

d Timethismathslesson started: Timethismaths lessonwillfinish: Minutesspentinthe mathslesson:

e Timeschoolwillfinish today: Timeyouwillarrive home: Minutesspent travellinghome:

f Timeyoustartedyour homeworkyesterday:

g Timeyoustarted watchingTVorplaying gamesyesterday:

Timeyoufinished yourhomework yesterday:

Timeyoufinished watchingTVor playinggames:

h Timeyouwokeuptoday: Timeyouwillgoto bedtonight:

Minutesspenton homework:

Minutesspentatthis activity:

Hoursandminutes spentawaketoday:

Percentageofadayspent inbed:

Percentageofthedayyou spentatbreakfast:

Percentageoftheday spentatschool:

Percentageoftheday spentinthemathslesson:

Percentageoftheday spenttravellinghome:

Percentageofyourday spentonhomework:

Percentageoftheday spentatthisactivity:

Percentageoftheday spentawake:

2APercentages,fractionsanddecimals 77
ENRICHMENT:Today’stimeline
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
SAMPLEPAGES

2B Applying percentages CONSOLIDATING

Learningintentionsforthissection:

• Toknowhowtocalculateacertainpercentageofagivenquantity

• Tobeabletofindtheoriginalamountfromagivenpercentage

Past,presentandfuturelearning:

• ThissectionconsolidatesStage4conceptswhichareusedinStages5and6

• SomeofthesequestionsaremorechallengingthanthoseinourStage4books

• PercentagesareusedextensivelyinthischapterandalsoChapter1ofourYear10book

• ExpertisewithpercentagesisassumedknowledgeforStage6Standardandmayalsoberequiredinnon-calculator examinationssuchasNAPLANandindustryaptitudetests

Themediaoftenquotespercentagesin newsstoriesandadvertisements.For example:

• 90% ofdentistspreferthis toothbrush.

• Ashirtisreducedby45%.

• Interestratesincreasedby2%.

Theseexamplesinvolve ndinga percentageofaquantityoramountand thisisanimportantpartoftheworkwe dowithpercentages.

LessonStarter:Today’snewschallenge

Inpairs,gothroughtoday’snewspaperoronlinenewssiteand ndarticlesandadvertisementsthatuse percentages.Choosetwoandexplaintotheclasshowpercentagesareusedinthearticlesyouchoose.

KEYIDEAS

■ To ndapercentageofaquantity(withoutacalculator):

• Writethepercentageasafractionordecimal.

• Multiplybythequantity.

■ Calculatormethod:

3%of200 = 3 ÷ 100 × 200 = 6

■ Mentalstrategies:

Key ideas summarise the knowledge and skills for the lesson.

UNCORRECTEDSAMPLEPAGES

78 Chapter2Financialmathematics
50% 25% 10% 5% 1% 75% ÷2 ÷2 ÷ 2 ÷10 ÷10 ÷ 2 ÷100 ÷2 ÷ 2 × 3 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

■ To ndtheoriginalamountwhengivenapercentage,youcanusetheunitarymethodorsolve anequation.

Forexample:3% ofanamountis 15. Whatistheoriginalamount?

Exercise2B

Three working programs (two for Core & Standard Paths) provide pathways through each book to support differentiation for students of different abilities.

Note:‘of’meansto‘multiply’.

Nowyoutry

2BApplyingpercentages 79
% is 15 1 % is Unitary method 5 100 % is 500 ÷ 3 ÷ 3 × 100 × 100 0 03 × A = 15 A = 300 ÷ 0.0 3 ÷ 0.03 Equation method 3% of amount is 15.
3
Keyterminology:
Theoriginalamountis500. ∴ Theoriginalamountis500.
percentage,unitarymethod
UNDERSTANDING 1–3 3 1 Findthesepercentageamountsmentally. Hint:Usethemental strategiesgivenin theKeyideas. 10% of$40 a 5% of$40 b 25% of8kg c 75% of8kg d 1% of$800 e 2% of140seconds f
If1% ofanamountis$4,whatis100% oftheamount? 3 Trueorfalse:34% of568 = 0 34 × 568? FLUENCY 4–6(½) 4–7(½) VIDEO DEMO Example4 Findingapercentageofaquantity Find15% of$35. SOLUTION EXPLANATION 15% of$35 = 3 ✚✚ 15 20 ✟✟ 100 × $35 = $5.25
andmultiplyby$35.
2
Writethepercentageasafractionoutof100
Orwrite0.15 × 35.
Hint: 10% of 20 = 10 100 × 20 10% of20 a 5% of200 b 20% of40 c 15% of50 d 8% of720 e 5% of680 f 15% of8200 g 70% of60 h 90% of500 i 75% of44 j 99% of200 k 3% of50 l Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES
Find18% of$60. 4 Findthefollowingamounts.Useacalculatorifnecessary.

Nowyoutry

80 Chapter2Financialmathematics 5 Useacalculator,ifnecessary,to nd: 10% of$360 a 50% of$420 b 75% of64kg c 12 5% of240km d 37 5% of40apples e 87 5% of400m f 33 1 3 % of750people g 66 2 3 % of300cars h 8 3 4 % of$560 i VIDEO DEMO Example5 Findingtheoriginalamount Determinetheoriginalamountif5% oftheamountis$45. SOLUTION EXPLANATION 5% oftheamount = $45 1% oftheamount = $9 100% oftheamount = $900 Sotheoriginalamountis$900
ndthevalueof1
thenmultiplyby100to nd100
Alternatemethod:5% of A = $45 0.05 × A = $45 A = $45 ÷ 0 05 = $900
Tousetheunitarymethod,
partor1%
%
A bydividingbothsidesby0
Writeanequationusingthepronumeral A to representtheamount. Solvefor
.05.
% oftheamountis$40. 6 Determinetheoriginalamountif: Hint:Firstfindthe valueof 1%. 10% oftheamountis$12 a 6% oftheamountis$42 b 3% oftheamountis$9 c 40% oftheamountis$2 80 d 90% oftheamountis$0 18 e 6% oftheamountis$27 f 12% oftheamountis$96 g 15% oftheamountis$54 h 7 Determinethevalueof x inthefollowingif: Hint: x istheoriginal amount. 10% of x is$54 a 15% of x is$90 b 25% of x is$127 c 18% of x is$225 d 105% of x is$126 e 110% of x is$44 f PROBLEM-SOLVINGANDREASONING 8–11 8(½),11–14 8 Withoutacalculator,evaluatethefollowing. Hint: 33 1 3 %= 1 3 10% of$58 a 5% of$84 b 1% of$46 c 2 1 2 % of$20 d 33 1 3 % of$132 e 66 2 3 % of$60 f 9 If 1 3 of96 = 32,whatis66 2 3 % of96? Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
Determinetheoriginalamountif8
SAMPLEPAGES

11 About80% ofthemassofthehumanbodyiswater.IfCarlaweighs60kg,howmanykilogramsof watermakeupherbodyweight?

d Write325% asafraction.

e $2000inabankaccountincreasesto$5000overaperiodoftime.Byhowmuchhastheamount increasedasapercentage?

UNCORRECTEDSAMPLEPAGES

Enrichment questions at the end of each exercise encourage students to generalise and to think creatively. These questions provide a taste of the mathematics they will see in future studies and deepen their understanding of mathematics within a lesson rather than accelerating them to different lessons.

2BApplyingpercentages 81
1%
a 5% of$800 b 2 1 2 % of$800 c
10 If10% of$800is$80,explainhowyoucanusethisresultto nd:
of$800
of10. 14 10% of1dayisthesameas x hoursand y minutes.Whatisthevalueof x and y? ENRICHMENT:Morethan 100% 15
a Find120% of60.
12 Inaclassof25students,40% havebeentoEngland.HowmanystudentshavenotbeentoEngland? 13 Explainwhy10% of24 = 24%
15
if165% of x =
b Determinethevalueof x
1 5.
c Write2.80asapercentage.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

2C Percentage increaseanddecrease CONSOLIDATING

Learningintentionsforthissection:

• Tobeabletoincreaseordecreaseanamountbyagivenpercentage

• Tobeabletocalculatethepercentagebywhichanamounthasincreasedordecreased Past,presentandfuturelearning:

• ThissectionconsolidatesStage4conceptswhichareusedinStages5and6

• SomeofthesequestionsaremorechallengingthanthoseinourStage4books

• PercentagesareusedextensivelyinthischapterandalsoChapter1ofourYear10book

• ExpertisewithpercentagesisassumedknowledgeforStage6Standardandmayalsoberequiredinnon-calculator examinationssuchasNAPLANandindustryaptitudetests

Percentagesareoftenusedtodescribebyhow muchaquantityhasincreasedordecreased. Thepriceofacarinthenewyearmightbe increasedby5%.Ona$70000car,thisisa $3500increase.The priceofashirtmightbe markeddownby30%.Iftheshirtoriginally cost$60,this providesan$18discount.Itis importanttonotethattheincreaseordecrease iscalculatedontheoriginalamount.

LessonStarter:Thequickermethod

Twostudents,NickyandMila,considerthequestion:$250isincreasedby15%.Whatisthe nalamount?

Nickyputs hissolutionontheboardwithtwosteps.

Step1:15% of$250 = 0 15 × $250 = $37.50

Step2:Finalamount = $250 + $37.50 = $287 50

Milasaysthatthesameproblemcanbesolvedwithonlyonestepusingthenumber1 15.

• CanyoudescribeMila’smethod?Writeitdown.

UNCORRECTEDSAMPLEPAGES

• Whatifthequestionwasalteredsothat$250isdecreasedby15%.HowwouldNicky’sandMila’s methodswork inthiscase?

• Whichofthetwomethodsdoyoupreferandwhy?

82 Chapter2Financialmathematics
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Lesson starter: an activity to start the lesson that can often be completed in groups.

KEYIDEAS

■ Toincreaseanamountbyagivenpercentage:

• Addthepercentageincreaseto100%.

• Multiplytheamount bythisnewpercentage. Forexample,toincreaseby25%,multiplyby 100%+ 25%= 125%= 1.25

■ Todecreaseanamountbyagivenpercentage:

• Subtractthepercentagefrom100%

• Multiplytheamount bythisnewpercentage.

%,multiplyby 100%− 25%= 75%= 0.75.

■ To ndapercentagechange,use:

Percentagechange = changeinprice originalprice × 100%

Forexample,ifapricechangesfrom$40to$50:

Percentagechange = 10 40 × 100%= 25%

Keyterminology: percentage

Exercise2C

2 Writethemissingnumberforthesedecreases.

a Todecreaseanumberby20%,multiplyby .

b Todecreaseanumberby73%,multiplyby

c Todecreaseanumberby ,multiplyby0.94.

d Todecreaseanumberby ,multiplyby0 31.

3 Findthepercentagechangeif

a Originalamount = $120,change = $30

b Originalamount = $35,change = $70

40%, need 140% ofamount

Hint:Todecreaseby 20%, need 80% ofamount

UNCORRECTEDSAMPLEPAGES

Hints within the exercises (Core & Standard Paths only) provide support to less advanced students.

2CPercentageincreaseanddecrease 83
1.25 Original price (100%) Increased price (125%) to increase by 25%
0.75 Original price (100%) Decreased price (75%) to
Forexample,todecreaseby25
decrease by 25%
UNDERSTANDING 1–3 3 1 Writethemissingnumberfortheseincreases. a Toincreaseanumberby40%,multiplyby b Toincreaseanumberby26%,multiplyby . c Toincreaseanumberby ,multiplyby1 6. d Toincreaseanumberby ,multiplyby1.21. Hint:Toincreaseby
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

VIDEO DEMO

Example6 Increasingbyapercentage

Increase$70by15%

SOLUTION

100%+ 15%= 115% = 1.15

$70 × 1 15 = $80 50

Nowyoutry

Increase$120by30%

EXPLANATION

Firstadd15% to100%

Notethat15%= 0 15and100%= 1

Multiplyby1 15togive$70plustheincrease inonestep.

VIDEO DEMO

4 Completethefollowing,usingacalculatorifnecessary.

Increase56by10% a

Increase100by12% c

Increase180by15% e

Increase8by50% g

Example7 Decreasingbyapercentage

Decrease$5.20by40%

Increase980by20% b

Increase890by5% d

Increase450by20% f

Increase98by100% h

Firstsubtractthe40% from100% to ndthe percentageremaining.

Multiplyby60%= 0 6togettheresult.

.

Nowyoutry

Decrease$64by15%

5 Completethefollowing.

Decrease80by5% a

Decrease45by50% c

Decrease8000by8% e

Decrease68by75% g

Decrease7000by100% i

Decrease600by10% b

Decrease700by12% d

Decrease450by25% f

UNCORRECTEDSAMPLEPAGES

Decrease9000by1% h

Decrease10000by1 5% j

84 Chapter2Financialmathematics FLUENCY
4–5(½),6,7 4–5(½),6,7(½),8
SOLUTION EXPLANATION 100
40%= 60% = 0
6 $5
20 × 0
6
$3
12
%−
.
.
=
.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Example8 Findingapercentagechange

Thepriceofamobilephoneincreasedfrom$250to$280.Findthepercentageincrease. a Thepopulationofatowndecreasesfrom3220to2985.Findthepercentagedecreaseandround toonedecimalplace.

b

SOLUTION EXPLANATION

a Increase = $280 $250 = $30 First ndtheactualincrease.

Percentageincrease = 30 250 × 100 1 = 12%

Dividetheincreasebytheoriginalamountand multiplyby100.

b Decrease = 3220 2985 = 235 First ndtheactualdecrease.

Percentagedecrease = 235 3220 × 100 1 = 7 3%(to1d.p.)

Nowyoutry

Dividethedecreasebytheoriginalpopulation andmultiplyby100.Roundasindicated.

Theheightofaplantincreasedfrom20cmto28cm.Findthepercentageincrease. a Thepriceofawashingmachinedecreasedfrom$649to$545.Findthepercentagedecreaseand roundtoonedecimalplace. b

6 Thepriceofa ightincreasedfrom$125to$150overnight.Findthepercentageincrease.

7 Copyandcompletethetablesshowingpercentagechange.Roundtoonedecimalplacewherenecessary.

SAMPLEPAGES

2CPercentageincreaseanddecrease 85 VIDEO DEMO
Original New Percentage amount amount Increase change 40 60 12 16 100 125 24 30 88 100 a Original New Percentage amount amount Decrease change 90 81 100 78 20 15 24 18 150 50 b Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTED

8 WhentheGoodsandServicesTax(GST)wasintroduced,allpricesincreasedby10%.

Copyandcompletethetable. OldPrice NewPrice GST (excludingGST) (includingGST) amount

Example9 Findingtheoriginalamountfromanincreaseordecrease

Afterrain,thevolumeofwaterinatankincreasedby24% to2200L.Howmuchwaterwasinthe tankbeforeitrained?Roundtothenearestlitre.

Writethetotalpercentage.

Theoriginalvolumeisincreasedby24% to give2200litres

Divideby124to nd1%

Multiplyby100to ndtheoriginalamount. Alternatemethod:100

Writethetotalpercentage.

Writeanequationusingthepronumeral V torepresentthevolume.

Dividebothsidesby1 24tosolvefor V

Roundtothenearestlitre.

Nowyoutry

Atthestartofanewyear,dailypublictransportticketsincreaseby4% to$9.20.Whatwasthecost ofadailyticketbeforetheincrease?Roundtothenearestcent.

UNCORRECTEDSAMPLEPAGES

86 Chapter2Financialmathematics
×
÷ 1.1 Original price 100% (no GST) A B New price 110% (including GST) Hint:GST = 10% of
or GST = B A
1.1
A
a $40 b $120 c
d
e $7 VIDEO DEMO
$55
$154
SOLUTION EXPLANATION
100%+ 24%= 124%
1
124% oforiginalvalue = 2200L
% oforiginalvalue = 17.74L 100% oforiginalvalue = 1774L
%+ 24%= 124% 124% of V = 2200L 1 24 × V = 2200 V = 2200 ÷ 1 24 = 1774
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

9 Findtheoriginalcostforeachofthefollowingif:

a anincreaseof10% onthecostofacanof coladrinkincreaseditto$3 30

b anincreaseof10% onthecostofameal increasedthecostto$88

c afteranincreaseof5%,thecostofapairof runningshoescameto$210

d adecreaseof30% madethecostofcar insurance$350

e adecreaseof60% broughtthepriceofa usedcardownto$5000

10 Thepriceofacomputerwasdecreasedby15% inasale.Whatisthesaleprice,iftheoriginalpricewas $2100?

11 Plumbersonasalaryof$82570weregivena2 1 2 % payincrease.Findtheirnewannualsalary.

12 Acarmanufacturerintendstoincreasesalesby14.7% nextyear.Ifthecompanysold21390newcars this year,howmanydoesitexpecttosellnextyear?

13 Thelengthofabikesprintraceisincreasedfrom800mto 1200m.Findthepercentageincrease. Hint: % increase = increase originalamount × 100

14 Thenumberofpeopleonabusdecreasedfrom25to18after onestop.Findthepercentagedecreaseinthenumberofpeopleonthebus.

15 Afterapriceincreaseof20%,thecostofentrytoamuseumroseto$25 80.Findtheoriginalprice.

16 ThetotalpriceofanitemincludingGST(at10%) is$120.HowmuchGST ispaid,tothenearestcent?

17 Aninvestorstartswith$1000.

Hint: $120 represents 110% ofthepricebefore GSTisadded.

a Afterabaddaytheinitialinvestmentisreducedby10%.Findthebalanceattheendoftheday.

b Thenextdayisbetterandthebalanceisincreasedby10%.Findthebalanceattheendofthe secondday.

c Theinitialamountdecreasedby10% onthe rstdayandincreasedby10% onthesecondday. Explainwhythebalanceontheseconddaydidn’treturnto$1000.

UNCORRECTEDSAMPLEPAGES

2CPercentageincreaseanddecrease 87
PROBLEM-SOLVINGANDREASONING 9–12 13–16
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Gradients within exercises: the working programs make use of the gradients that have been seamlessly integrated into the exercises in both the overall structure of each exercise and within each Working Mathematically component.

ENRICHMENT:Repeatedincreaseanddecrease

18

19

17,18

Ifthecostofapairofshoeswasincreasedtwice,by10% fromanoriginalpriceof$80andthenanother 15% fromthisnewprice,the nalpricewouldbe

$80 × 1 10 × 1 15 = $101 20

Useasimilartechniqueto ndthe nalpriceoftheseitems.Roundtothenearestcent.

a Skisstartingat$450andincreasingby20% and10%

b Acomputerstartingat$2750andincreasingby6% and11%

c ADVDplayerstartingat$280anddecreasingby10% and25%

d Acircularsawstartingat$119anddecreasingby18% and37%

Ifanamountisincreasedbythesamepercentageeachtime,powerscanbeused. Forexample,50kgincreasedby12% threetimeswouldincreaseto

50kg × 1.12 × 1.12 × 1.12

= 50kg ×(1 12)3

= 70 25kg (to2d.p.)

Hint:Youhavea power/indexkeyon yourcalculator.

Useasimilartechniqueto ndthe nalvalueinthesesituations.Roundtotwodecimalplaces.

a Themassofaratinitiallyat60gramsgrowsatarateof10% everymonthfor3months.

b Thecostofanewcarinitiallyat$80000increasesby5% everyyearfor4years.

c Thevalueofanapartmentinitiallyat$380000decreasesby4% peryearfor3years.

d Thelengthofapencilinitiallyat16cmdecreasesthroughbeingsharpenedby15% everyweekfor 5weeks.

88 Chapter2Financialmathematics
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
SAMPLEPAGES
Using technology: Questions intended to be answered using a calculator are identified by a calculator icon.

2D Profits anddiscounts CONSOLIDATING

Learningintentionsforthissection:

• Toknowandunderstandtheterminologyassociatedwithprofits,lossesanddiscounts

• Tobeabletosolveproblemsinvolvingpercentageprofits,lossesanddiscounts

Past,presentandfuturelearning:

• ThissectionconsolidatesStage4conceptswhichareusedinStages5and6

• SomeofthesequestionsaremorechallengingthanthoseinourStage4books

• PercentagesareusedextensivelyinthischapterandalsoChapter1ofourYear10book

• ExpertisewithpercentagesisassumedknowledgeforStage6Standardandmayalsoberequiredinnon-calculator examinationssuchasNAPLANandindustryaptitudetests

Percentagesarewidelyusedintheworldof nance.Pro ts,losses,commissions,discountsandtaxation areoftenexpressedandcalculatedusingpercentages.

LessonStarter:Thebestdiscount

Twobookshopsaresellingthesamebookatadiscountedprice.Therecommendedretailpriceforthebook isthesameforbothshops.Eachshophasasignnearthebookwiththegivendetails:

• ShopA.Discountedby25%

• ShopB.Reducedby20% thentakeafurther10% offthat.

Whichshopoffersthebiggerdiscount?

Isthedifferenceequalto5% oftheretailprice?

Examplesofpercentagesusedinthemedia.

UNCORRECTEDSAMPLEPAGES

2DProfitsanddiscounts 89
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

KEYIDEAS

■ Pro t istheamountofmoneymadeonasale. Pro t = sellingprice costprice

■ A loss ismadewhenthesellingpriceislessthanthecostprice.

Loss = costprice sellingprice

■ Mark-up istheamountaddedtothecostpricetoproducethesellingprice.

Sellingprice = costprice + mark-up

■ Thepercentagepro torlosscanbefoundbydividingthepro t orlossbythecostpriceandmultiplyingby100.

% pro t/loss = (pro torloss costprice × 100) %

■ Discount istheamountbywhichanitemismarkeddown.

Discount =% discount × originalprice

Newprice = originalprice discountamount

Keyterminology: pro t,sellingprice,costprice,loss,mark-up,percentage,discount

Exercise2D

90 Chapter2Financialmathematics
UNDERSTANDING 1–4 1
Matchthede
a Theamountofmoneymadeonasale A Loss b Theamountbywhichanitemismarkeddown B Mark-up c Theresultwhenthesellingpriceislessthanthecostprice C Pro t d Theamountaddedtothecostprice D Discount 2 Copyandcompletethetableofpro tsandlosses. Hint:Profit/lossisthe differencebetweencost priceandsellingprice. Markupincreasesprice. Discountreducesprice. Costprice($) 7 18 24 80 7 30 460 95 3250 Sellingprice($) 10 15 50 26 20 11 80 395 4430 Profit/loss($) 3 Copyandcompletethetableofmark-ups. Costprice($) 30 95 99 95 199 95 18000 Mark-up($) 10 80 395 95 700 16700 Sellingprice($) 1499.95 35499 26995 4 Copyandcompletethetableofdiscounts. Originalprice($) 100 49 95 29 95 2215 Newprice($) 72 40.90 22.70 176 299.95 Discount($) 23 45 55 178 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES
1
nitionintheleftcolumnwiththecorrectwordintheright-handcolumn.

VIDEO DEMO

Example10 Calculatingsellingpricefrommark-up

Anelectricalstoremarksupallentertainmentsystemsby30% Ifthecostpriceofoneentertainmentsystemis$8000,whatwillbeitssellingprice?

SOLUTION EXPLANATION

Mark-up = 30% of$8000 = 0.3 × 8000 = $2400

Sellingprice = $8000 + $2400 = $10400

Alternatively,multiplycostpriceby 130% or1 3.

Nowyoutry

Changepercentagetoadecimalorfraction andmultiplybythecostprice.

Sellingprice = costprice + mark-up

130% isa30% increaseonthecostprice

Acomputerstoremarksupallnotebookcomputersby24% Ifthecostpriceofonenotebookis$1200,whatwillbeitssellingprice?

5 Copyandcompletethistablebycalculatingthesellingpriceofeachitem.

VIDEO DEMO

Example11 Findingthediscountamount

Anelectricalstoreadvertisesa15% discountonallequipmentasaholidayspecial.Findthesale priceonaprojectionsystemthathasamarkedpriceof$18000.

SOLUTION EXPLANATION

Discount = 15% of$18000 = 0 15 × 18000 = $2700

Thenewprice = $18000 $2700 = $15300

Alternatively,multiplytheoriginalpriceby 85% or0.85.

Changethepercentagetoadecimaland evaluate.

Newpriceisoriginalpriceminusdiscount.

A15% discountleaves85%

2DProfitsanddiscounts 91
FLUENCY 5–8 5–8
Item Costprice % mark-up Sellingprice Jeans $60 28% Toaster $40 80% Car $22000 45% Canofdrink $1.20 140% Loafofbread $1 80 85% Handbag $80 70% Electronictablet $320 35%
Continuedonnextpage Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
SAMPLEPAGES

Nowyoutry

Adepartmentstoreoffersapost-Christmasdiscountof35% onalldecorations.Findthesaleprice onawreaththathasamarkedpriceof $80.

6 Copyandcompletethetablebywritinginthemissingvalues.

Example12

Determiningprofit

Amanufacturerproducesanitemfor$400andsellsitfor$540.

tmade.

Nowyoutry

Ajewellerproducesanecklacefor$36andsellsitfor$49 50.

t made. a

7 Findthemissingvaluesinthesetablesby ndingthepro torlossandexpressingthisasapercentage ofthecostprice.Roundtotwodecimalplaceswherenecessary.

92 Chapter2Financialmathematics
Item Costprice % discount Sellingprice Camera $900 15% Car $24000 20% Bike $600 25% Shoes $195 30% Blu-rayplayer $245 50% Electricrazor $129 20% Lawnmower $880 5% VIDEO DEMO
Determinethepro
a Expressthispro
SOLUTION EXPLANATION
Pro t = $540 $400 = $140 Pro t = sellingprice costprice
% pro t = 140 400 × 100 = 35% % pro t = pro t costprice × 100
tasapercentageofthecostprice. b
a
b
Determinethepro
Expressthispro
tasapercentageofthecostprice. b
a Costprice($) Sellingprice($) Profit($) Profit(%) 10 15 24 30 100 150 250 255 17.50 20 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES

Example13 Calculatingtheoriginalprice

Atoystorediscountsatoyby10% inasale.Ifthesalepricewas$10.80,whatwastheoriginal price?

%

= 10.80 ÷ 90

Thediscountfactor = 100%− 10%= 90%. Thus,$10.80is90% oftheoriginalprice.

Usetheunitarymethodto nd1% Multiplyby100to ndtheoriginalamount. Theoriginalpricewas$12. Writetheanswerinwords.

Writeanequationusingthepronumeral P to representtheoriginalprice.

Solvetheequationfor P bydividingboth sidesby0.9

Nowyoutry

Anoutdoorequipmentstorediscountsatentby20% inasale. Ifthesalepricewas$176,whatwastheoriginalprice?

8 Answerthefollowingquestionsrelatingto nding theoriginalprice(costprice).

a Findtheoriginalpriceifacoffeemugwas discountedby20% andsoldfor$4 40.

b Findthecostpriceofapairofshoesthatsold for$250afteramark-upof25%

c Findthecostpriceafteradiscountof10% was givenonasurfboardthatsoldfor$1350.

d Findtheoriginalpriceonaconcertticketfor amajorrecordingartistifitwasmarkedupby 100% andsoldfor$250.

2DProfitsanddiscounts 93 b Costprice($) Sellingprice($) Loss($) Loss(%) 10 8 16 12 100 80 34 19 95 80.75 VIDEO
DEMO
EXPLANATION
1
1
SOLUTION
90% oftheoriginal = $10.80
oftheoriginal
% oftheoriginal = 0.12 100% oftheoriginal = $12
Alternatemethod:90% of P =
0.9 × P = $10.
P = $10 80 ÷ 0 9 = $12
$10.80
80
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

9 Amanufacturerproducesandsellsitemsforthepricesshown. Determinethepro tmade. i Expressthispro tasapercentageofthecostprice. ii Costprice$10,sellingprice$12 a Costprice$20,sellingprice$25 b Costprice$120,sellingprice$136.80 c Costprice$1400,sellingprice$3850 d

10 Lennymarksupallcomputersinhisstoreby12.5%.Ifacomputercosthim$890,whatwillbethe selling priceofthecomputer?

11 Aused-cardealerpurchasesavehiclefor$13000andsellsitfor $18500.Determinethepercentagemark-uponthevehicletoone decimalplace.

12 Arefrigeratorisdiscountedby25%.IfPaulapays$460forit,whatwasthe originalprice?Roundtothenearestcent.

13 Anelectricalstorebuysacomputerfromthewholesalerfor$500.Thestore marksupthecomputerby80%.

a Whatistheamountofthemark-upindollars?

b Whatistheretailpriceofthecomputerafterthestore’smark-up?

c Thestoreoffersthecomputeronsaleforadiscountof15%.Whatisthe pricenow?

d If the15% discountwascalculatedontheoriginal$500costprice,and thenthecomputerwasmarkedup80% afterthat,woulditmakea differencetothesaleprice?

Hint:Whatistheincrease asapercentageofthe originalprice?

14 Thegraphshowsthechangesinthevalueofaparticularhouse.

a Howmuchwasthehouseworthin1998?

UNCORRECTEDSAMPLEPAGES

b Findthepercentageincrease,toonedecimalplace,inthevalueofthehousefrom1998to: 2002 i 2004 ii 2006 iii

c In2018theownerswishedtosellfor1.25milliondollars.Whatpercentageincreasewasneededin thetwoyearsfrom2016to2018sotheycouldsellforthatprice?

94 Chapter2Financialmathematics PROBLEM-SOLVINGANDREASONING 9–11 11–13
ENRICHMENT:Housevalue
14
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

2E Income

Learningintentionsforthissection:

• Toknowandunderstandthedifferentwaysthatworkerscanbepaidfortheirlabour

• Touseratesandpercentagestocalculatesalaries,wages,commissions,royaltiesetc

• Tobeabletomakeconversionsbetweenpayperhour,day,week,fortnight,monthandyear Past,presentandfuturelearning:

• ThissectionintroducestheStage5CoreTopiccalled FinancialMathematicsA

• Section1DofourYear10bookrevisesandfurtherextendstheseconcepts

• FinancialMathematics isamajortopicinStage6Standard

Therearemanydifferentwaysofearningaliving.Youcanbeself-employedorworkforsomeoneelse. Yourincomeisusuallyrelatedtotheskillsyouhave.Itcanbecalculatedandpaidindifferentways.You canearn,forexample,asalary,awage,acommissionorpossiblyaroyalty.

LessonStarter:Typesofincome

Asaclass,writedownoneexampleofajobthatearnseachofthefollowingtypesofincome.

• Salary

• Wage(i.e.hourlyrateofpay)

• Overtime

• Commission

Inthenewspaperclassi edsoronline, ndajobadvertisementforeachoftheincometypesabove.

KEYIDEAS

■ Workerswhoearna wage (forexample,acasualwaiter)arepaida xedrateperhour.Hours outsidethenormalworkinghours(publicholidaysetc.)arepaidatahigherratecalled overtime. Thiscanoccurinacoupleofcommonways:

• Timeandahalf: payis1 5timestheusualhourlyrate

• Doubletime: payistwicetheusualhourlyrate

■ Workerswhoearna salary (forexample,anengineer)arepaida xedamountperyear,say, $125000.Thisispaidmonthly,fortnightlyorweekly.

• 12monthsinayearandapproximately52weeksinayear = 26fortnights

UNCORRECTEDSAMPLEPAGES

2EIncome 95
Annual salary Monthly pay ÷ 12 × 12 Annual salary Fortnightly pay ÷ 26 × 26 Annual salary Weekly pay ÷ 52 × 52 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

■ Somewageandsalaryearnsarepaid leaveloading.Whentheyareonholidays,theyearntheir normalpayplusabounscalledleaveloading.Thisisusually17.5%oftheirnormalpay.

■ Commission isapercentageoftheoverallsalesamount.Salespeoplemayreceiveacommission ontheirsalesaswellasasetweeklyormonthlyfeecalleda retainer.

• Commission =% commission × totalsales

■ Somepeoplewhowritebooksormusicarepaid royalties,whichcouldbe10%ofthesalesprice ofeverybookorsongwhichissold.

■ Somepeoplewhomakeordothingsarepaid piecework.Forexample,$4foreverysheepshorn.

Keyterminology: wage,overtime,timeandahalf,doubletime,salary,commission,retainer

Exercise2E

1 Matchthepaydescription(a–d)withtheincometype(A–D).

a Sallyearns$22 70perhourworkinginashop A Overtime

b MathsteacherStephanieearns$72000peryear B Commission

c Rossearns5% ofallsaleshemakes

d MattearnstimeandahalfpayonSaturdays

Wage

Salary

2 Tomearns$12 70anhour.Howmuchdoesheearnfor: 2hoursofwork? a 8hoursofwork? b 38hoursofwork? c

3 Sela’shourlyrateofpayis$24.Calculateherovertimerateat: timeandahalf a doubletime b

4 Williamearnsasalaryof$136875eachyear.

Approximatelyhowmuchisthis:

a eachmonth?

b eachweek(tothenearestcent)?

c eachday?

Hint:Tofindapproximatemonthly salary,divideannualsalaryby 12

Tofindapproximateweeklysalary, divideannualsalaryby 52.

Tofindapproximatedailysalary, divideannualsalaryby 365

96 Chapter2Financialmathematics
Leave loading = 17.5% of A = $262.50 ÷ 1.175 × 1.175 100% + 17.5% = 117.5% A B = 1.175 Holiday pay $1762.50 Normal pay $1500
1–4 1,4
UNDERSTANDING
C
D
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

VIDEO DEMO

Example14 Comparingwagesandsalaries

Kenearnsanannualsalaryof$90000andworksa38-hourweek.HiswifeBrookeworksparttime inretailandearns$61.80perhour.

CalculatehowmuchKenearnsperweek. a

Determinewhohasthehigherhourlyrateofpay. b

IfBrookeworksonaverage18hoursperweek,whatisheryearlyincome? c

SOLUTION EXPLANATION

a Weeklyrate = $90000 ÷ 52 = $1730.77

∴ Kenearns$1730.77perweek

b Brooke:$61 80/h

Ken:$1730 77 ÷ 38 = $45 55/h

∴ Brookeispaidmoreperhour.

c Inoneweek:$61 80 × 18 = $1112.40

Yearlyincome = $1112.40 × 52 = $57844.80

Nowyoutry

$90000payinayear. Thereareapproximately52weeksinayear. Divideby52to ndtheweeklywage.

Kenworks38hoursintheweek.

Hourlyrate = weeklyrate ÷ number ofhours Roundtothenearestcent.

Comparehourlyrates.

Weeklyincome = hourlyrate × numberofhours

Multiplyby52 weekstogetyearlyincome.

Maliearnsanannualsalaryof$77200andworksa38-hourweek.HerpartnerBenworksparttime asaphotographerandearns$75perhour. CalculatehowmuchMaliearnsperweek. a Determinewhohasthehigherhourlyrateofpay. b

IfBenworksonaverage15hoursperweek,whatishisyearlyincomefromphotography? c

5 Talibearns$58000peryearatafastfoodrestaurant.Hissisterworksparttimeasawaitressandearns $33.20perhour.

a HowmuchdoesTalibearneachweek?

b EachweekTalibworks38hours.Calculateifhishourlyrateofpayishigherthanhissister’s.

c Ifhissisteraverages10hoursofworkperweek,whatisheryearlyincome?

UNCORRECTEDSAMPLEPAGES

6 Paulearns$790eachweek.Howmuchdoesheearneach: Hint:Thereare 12 months inayear. year? a month? b hour,ifheworked40hourseachweek?

c

2EIncome 97
FLUENCY 5–7,8(½),9 5,6,8(½),9
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Example15 Calculatingovertime

Georgioworkssomeweekendsandlatenights,andearnsovertimeforthatwork.Hishourlyrateof payis$32perhour.

CalculateGeorgio’stimeandahalfrateofpayperhour. a

CalculateGeorgio’sdoubletimerateofpayperhour. b

c

CalculateGeorgio’sweeklywageforaweekwhereheworks18hoursathisnormalrate, 2hoursattimeandahalf,and1houratdoubletime.

SOLUTION EXPLANATION

a Timeandahalf = $32 × 1 5 = $48

b Doubletime = $32 × 2 = $64

c $32 × 18 = $576 $48 × 2 = $96 $64 × 1 = $64

Totalwage = $736

Timeandahalfis1 5timesthehourlyrate.

Doubletimeis2timesthehourlyrate.

Findthesumof:

• thenormalhourlyrate ($32) multipliedbythe numberofhoursworkedatthenormalrate (18)

• thetimeandahalfhourlyrate ($48) multiplied bythenumberofhoursworkedatthatrate (2)

• thedoubletimehourlyrate ($64) multipliedbythe numberofhoursworkedatthatrate (1)

Alternatively, 18hours +(2hours × 1 5) +(1hour × 2) = 18 + 3 + 2 = 23

Wage = 23 × 32 = $736

Nowyoutry

Calculatethenumberof‘normal’hours.

Multiplybythehourlyrate.

Kaneworkssomeweekendsandsomepublicholidaysandearnsovertimeforthatwork.Hishourly rateofpayis$24perhour.

UNCORRECTEDSAMPLEPAGES

a

CalculateKane’stimeandahalfrateofpayperhour.

b

CalculateKane’sdoubletimerateofpayperhour.

c

CalculateKane’sweeklywageforaweekwhereheworks15hoursathisnormalrate,6hours attimeandahalfand3hoursatdoubletime.

98 Chapter2Financialmathematics
Employee Hourlyrate Hoursworked Income Adam $20 40 8 Betty $15 50 8 1 2 Ceanna $19 70 15 David $24 30 38 Edward $57 85 42 Francis $30 27 George $35 20 7 25
7 Copyandcompletethetable.
VIDEO DEMO
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

VIDEO

DEMO

8 Ajobhasanormalworkinghourspayrateof$29 20perhour.Calculate thepay,includingovertime,fromthefollowinghoursworked.

a 3hoursatthenormalrateand4hoursattimeandahalf

b 4hoursatthenormalrateand6hoursattimeandahalf

c 14hoursatthenormalrateand3hoursatdoubletime

d 20hoursatthenormalrateand5hoursatdoubletime

Hint:Fortimeandahalf: × 1.5

Fordoubletime: × 2

e 10hoursatthenormalrateand8hoursattimeandahalfand3hoursatdoubletime

f 34hoursatthenormalrateand4hoursattimeandahalfand2hoursatdoubletime

Example16 Calculatingcommission

Apart-timesaleswomanispaidaretainerof$1500permonth.Shealsoreceivesacommissionof 5% onthevalueofgoodsshesells.Ifshesellsgoodsworth$5600duringthemonth,calculateher earningsforthatmonth.

SOLUTION EXPLANATION

Commission = 5% of$5600 = 0.05 × $5600 = $280

Earnings = $1500 + $280 = $1780

Nowyoutry

Calculatethecommissiononsales.Change thepercentagetoadecimalandevaluate.

Earnings = retainer + commission

Arealestateagentispaidaretainerof$2200permonth.Shealsoreceivesacommissionof0.4% onthe valueofhousesshesells.Ifshesellshousesworth $1575000duringthemonth,calculate herearningsforthatmonth.

9 Copyandcompletethetable.

2EIncome 99
Person Weeklyretainer Rateofcommission Commissionearned ($) Weeklywage ($) Adina $0 12% on $7000 Byron $160 8% on $600 Cindy $300 5% on $680 Deanne $260 5% on $40000 Elizabeth $500 8% on $5600 Faruq $900 2% on $110000 Gary $1000 1.5% on $45000 PROBLEM-SOLVINGANDREASONING 10–12 11,13–15
a 3hoursand2hoursatdoubletime b 6hoursand8hoursattimeandahalf
15hoursand12hoursattimeandahalf Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES
10 Calculatehowmanyhoursatthestandardhourlyratethefollowingworkinghoursarethesameas:
c

11 Jim,apart-timegardener,earned$522inaweek.Ifheworked12hours duringnormalworkinghoursand4hoursovertimeattimeandahalf, whatwashishourlyrateofpay?

12 Sallyearned$658 80inaweek.Sheworked10hoursduringtheweek, 6hoursonSaturdayattimeandahalfand4hoursonSundayatdoubletime. Whatwasherhourlyrateofpay?

Hint:Calculatethenumber ofhoursatthestandard hourlyrate.

13 AmyworksatBestBookshop.Duringoneweekshesellsbooksvaluedat$800.Ifsheearns $450perweekplus5% commission,howmuchdoessheearninthisweek?

14 Jasonworksforacampervancompany.Ifhesells$84000worthofcampervansinamonth,andhe earns$1650permonthplus4% commissiononsales,howmuchdoesheearnthatmonth?

15 Stephenearnsanhourlyrateof$34 60forthe rst38hours,timeandahalfforthenext3hoursand doubletimefor eachextrahourabovethat.Calculatehisearningsifheworks44hoursinaweek.

16

16 Workersatafastfoodrestaurantarepaid$21.63perhourforworkingMondaytoFridayupuntil 7p.m.andtimeandahalfafter7p.m.TheyearntimeandahalfonSaturdaysanddoubletimeon Sundays.Theyaregivenanunpaid30minutemealbreakforanyshiftover5hours.

Donna’sshiftsfortheweekaregivenbelow.

a HowmuchcanDonnaexpecttoearn,tothenearestcent,ifsheworksthehourssheisrosteredfor?

b Therestaurantdecidesonanewworkplacedeal,getsridofallovertimeandcreatesa athourly rateof$24perhour.HowmuchworseoffwillDonnabefortheweekabove?

c HowmanyextrahoursaweekdoesDonnaneedtoworkduringtheweektomakeuptheextra income?Answerinawholenumberofhours.

100 Chapter2Financialmathematics
ENRICHMENT:Payslips
Monday Tuesday Wednesday Thursday Friday Saturday Sunday ––4.30 p.m.–7 p.m. 4.30 p.m.–7.30 p.m. 5 p.m.–10 p.m. 5 p.m.–8 p.m. 10 a.m.–6.30 p.m. 10 a.m.–1.30 p.m.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

% to961ticket

20toproduce andshesells themfor$10, ndherpercentagepro tcorrecttoonedecimalplace.

adresswasdiscountedby15% andsoldfor$187

80

A Progress quiz appears two thirds of the way through a chapter to ensure students are on track for successful understanding of the topic. Each question is clearly linked to the relevant section.

a Sebearnsanannualsalaryof$74100.(Assume52weeksintheyear.)

b Jodieworks22hoursinaweekat$18.20perhour.

UNCORRECTEDSAMPLEPAGES

c Nedworksinafastfoodrestaurantandhasanormalhourlyrateof$15.10perhour. Inaweek heworks4hoursatthenormalrate,3hoursattimeandahalfand2hoursat doubletime.

d Harperispaidaweeklyretainerof$200andshealsoearnsa5% commissiononhersales. Inaparticularweekshemakes$8400worthofsales.

Progressquiz Progressquiz 101 1 2A Expressthefollowingintherequiredform. 32% asasimpli edfraction a 7% asadecimal b 0 23asapercentage c 0 125asapercentage d 7 20 asapercentage e 4.5% asasimpli edfraction f 2 2A Expressthefollowingaspercentages. 20coutof$2 a 32marksoutof40 b 5kgoutof40kg c 3 2B Findthefollowingamounts. 20% of80km a 35% of$120 b 33 1 3 % of180g c 4.2% of$500 d 4 2B Determinetheoriginalamountif: 25% oftheamountis$100 a 12% oftheamountis$36 b 8% oftheamountis$60 c 5 2C Completethefollowing. Increase82by10% a Increase220by8% b Decrease110by15% c Decrease250by6% d 6 2C a Thenumberofstudentsinaschoolincreasedfrom450to540.Findthe percentageincrease.
Thecostofpetroldroppedfrom121cperlitreto103cperlitreovernight.Findthepercentage
7 2C Afterofferingaspecialticketdealforstudents,aconcert’sticketsalesroseby24
8 2D Findthesellingpriceofthefollowingitems. a A$1200tabletcomputermarkedupby16% b Apairof$126sneakersdiscountedby20% 9 2D Janehasastallatthemarketsellingbraceletsthatshemakes.Ifeachonecosts$6
10 2D Findtheoriginalpriceif: a
b
b
decreasecorrecttoonedecimalplace.
sales.Howmanyticketshadbeensoldbeforetheticketdeal?
acomputergamewasmarkedupby12% andsoldfor$72
11 2E Findtheweeklyearningsinthefollowingworksituations.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

2F Taxation

Learningintentionsforthissection:

• Toknowandunderstandtheterminologygrossincome,netincomeandtaxableincome

• Tobeabletocalculatenetincomefromgrossincomeanddeductions

• TobeabletousetheATOtabletocalculatetaxpayable

Past,presentandfuturelearning:

• ThissectioncontinuestheStage5CoreTopiccalled FinancialMathematicsA

• Section1CofourYear10bookrevisesandfurtherextendstheseconcepts

• FinancialMathematics isamajortopicinStage6Standard

Allwageandsalaryearnershavesomedeductionstakenoutoftheirpay.Deductionsusuallyincludeincome tax.Taxispaidtothegovernment.Thegovernmentusesittopayforcommunitywelfare,educationanda numberofotherservices.

PAY SLIP

Payment date: 14 November 2016

Pay period: 1 November – 14 November 2016 Employee’s name:

name:

Smith

LessonStarter:Deductionsfrompay

Whattypesofdeductionscanyouandyourclassthinkofthatmightbetakenoutofsomeone’spay?

Discuss,asaclass,whatsuperannuationandtheMedicarelevyis,andwhopaysit.

KEYIDEAS

■ Grossincome = thetotalofallincomefromallsources

■ Netincome = grossincomeminus deductions suchastax,unionfeesandsuperannuation

■ Taxableincome = grossincomeminuswork-relatedexpensesanddonationstocharity

UNCORRECTEDSAMPLEPAGES

■ Incometax ispaidtothegovernment.Itisbasedonaperson’staxableincome.

■ Incometaxpayable canbecalculatedusingthetaxtablepublishedeveryyearbytheAustralian TaxationOf ce(ATO).Everyrowinthetableiscalleda taxbracket.Thetablebelowshows thetaxratesforthe2022/2023 nancialyear.

102 Chapter2Financialmathematics
Employer’s
Job
Hourly rate:
$22.00 Wages: Hours worked: 18 @ $22.00 $396.00 $396.00 $320.76 Deductions Tax $75.24 Gross payment Net payment
Title:
Jason
BSJ Clothing Sales assistant
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

The MedicareLevy isanadditionaltaxwhichthegovernmentusestosupportfundingfor medicines,doctors,hospitalsandotheraspectsofthehealthcaresystem.Answerstothe questionsinthefollowingexercisearebaseduponthistable,buttheactualratesmayvaryfrom yeartoyear.

Taxableincome Taxonthisincome

$0 $18200 Nil

$18201 $45000 19 centsforeach $1 over $18200

$45001 $120000 $5092 plus 32 5 centsforeach $1 over $45000

$120001 $180000 $29467 plus 37 centsforeach $1 over $120000

$180001 andover $51667 plus 45 centsforeach $1 over $180000

Theaboverates donot includetheMedicarelevyof 2%

Keyterminology: grossincome,netincome,taxableincome,incometax,deductions

Exercise2F

1 Copyandcompletethetablebyinsertingthenetincomeamounts.

Hint:Recallthatnet income = grossincome minusdeductions.

2 FindHoang’sgrossweeklyincomeifheearns:

• $1200aweekasateacher

• $60anhourfortutoring,whenhetutorsfor3hoursaweek

• $25interestonhisbankaccountperweek

3 Johnhasagrossincomeof$45000andanetincomeof$20000.Howmuchdidhisdeductions cometo?

4 Pamelapays31.5%ofhergrossincomeintax.Howmuchtaxdoesshepayonagrossincomeof $85790?

FLUENCY 5–6(½),7,8 5–6(½),8(½)

Example17

Liamstartsanewjobwithanannualsalaryof$52800.Hispayslipeachmonthshowsdeductions fortaxationof$968.

a CalculateLiam’snetincomeeachmonth.

b WhatpercentageofLiam’smonthlypayisbeingpaidtothegovernmentbyhisemployer fortaxation?

c Liam’ssalaryisincreasedto$65000andthetaxationrateforLiam’ssalarychangesto24% withthe rst$18200taxfree.CalculateLiam’snetincomefortheyear.

2FTaxation 103
UNDERSTANDING 1–4 4
Grossincome Deductions = Netincome $5600 $450 $5150 $87000 $28000 $50000 $6700 $890 $76 $84650
$24790
VIDEO DEMO
Calculatingtaxtofindnetincome
Continuedonnextpage Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
SAMPLEPAGES

SOLUTION EXPLANATION

a Monthlypay = $52800 ÷ 12 = $4400

∴ netmonthlyincome = $4400 $968 = $3432

b % tax = 968 4400 × 100 = 22%

c Salaryfortaxpurposes = $65000 $18200 = $46800

Taxamount = 24% of$46800 = 0.24 × $46800 = $11232

∴ netincome = $65000 $11232 = $53768

Nowyoutry

Calculategrossincomepermonth.

Netincome = grossincome taxation

Calculatewhatfraction$968isofthemonthly income$4400.Multiplyby100toconverttoa percentage.

First$18200isnottaxed.

Calculatetaxamounton$46800.Convert percentagetoadecimalandevaluate.

Netincome = grossincome taxamount.

Poppyhasajobwithanannualsalaryof$74400.Herpayslipeachmonthshowsdeductionsfor taxationof$1488.

a CalculatePoppy’snetincomeeachmonth.

b WhatpercentageofPoppy’smonthlypayisbeingpaidtothegovernmentbyheremployer fortaxation?

c Poppy’ssalaryisincreasedto$82800andthetaxationrateforPoppy’ssalarychangesto28% withthe rst$18200taxfree.CalculatePoppy’snetincomefortheyear.

5 Foreachofthefollowing nd: theannualnetincome i thepercentageofgrossincomepaidastax.Roundtoonedecimalplacewherenecessary. ii

a Grossannualincome = $48241,taxwithdrawn = $8206

b Grossannualincome = $67487,taxwithdrawn = $13581 20

c Grossmonthlyincome = $4041, taxwithdrawn = $606.15

d Grossmonthlyincome = $3219,taxwithdrawn = $714 62

6 Calculatetheamountoftaxtobepaidusingthefollowing annualsalariesandtaxratesifthe rst$18200istaxfree.

Hint:Netincome = grossincome deductions

Hint:Remembertosubtractthe $18200 tofindthesalaryto calculatetaxon.

salary = $30400,taxrate = 15%

b

a salary = $56500,taxrate = 21%

salary = $69700,taxrate = 24.5%

d

c salary = $96400,taxrate = 30.4%

UNCORRECTEDSAMPLEPAGES

7 Edearns$1400perweekandpays27% ofhisannualincomeintax.

a CalculatetheamountofincometaxthatEdpaysinoneyear.

b FindEd’sannualnetincome.

104 Chapter2Financialmathematics
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Example18

Usingthetaxtabletocalculatetaxpayable

Usethetaxtablebelowto ndtheincometaxpayableforataxableincomeof$124000.

Taxableincome Taxonthisincome

$0 $18200 Nil

$18201 $45000 19centsforeach$1over$18200

$45001 $120000 $5092plus32.5centsforeach$1over$45000

$120001 $180000 $29467plus37centsforeach$1over$120000

$180001andover $51667plus45centsforeach$1over$180000

Theaboverates donot includetheMedicarelevy2%.

SOLUTION

Tax = $29467 + 0.37 ×(124000 120000) = $30947

EXPLANATION

Findthetaxbracketinwhichtheamount $124000lies.Thisis ($120000 $180000).

Writedown thevaluesinthisbracket, rememberingthat37cinthedollaris37%,or0 37. Subtract120000from124000to nd theamountofincomethatthe37% appliesto.

Useyourcalculatorto ndtheanswer, workingfromlefttoright.

Nowyoutry

Usethetaxtableaboveto ndtheincometaxforanincomeof$75000.

8 UsethetaxtableinExample18to ndtheincometaxpayable oneachoftheseincomes.

Hint:Lookcarefullyforthe correcttaxbracket

9 Melhasanetannualincomeof$53246after21% ofherincomeis withdrawnfortaxpurposes.Whatwashergrossincome?

10 Fredearns$50000eachyearasashopclerkandan extra$1200eachyearfordoinggardeningonsome weekends.

a Calculatehisannualgrosssalary.

b Usehisgrosssalaryto ndhisincometax,using thetaxtableinExample18.

c Whatishisannualnetincome,aftertax?

d Whatishisapproximatefortnightlynetincome, tothenearestcent,aftertax?

Hint:What % ofgrossincome does $53246 represent?

UNCORRECTEDSAMPLEPAGES

2FTaxation 105 VIDEO DEMO
$10000 a $30000 b $50000 c $80000 d $129000 e $156000 f $200000 g $500000 h $1000000 i PROBLEM-SOLVINGANDREASONING 9,10 9–12
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

11 Williamearns$1600perweek.UsingthetaxtableinExample18,howmuchtaxisdeductedfromhis payeachweek?Assume52weeksinayear.

12 Johnpays$10000intaxayear.

a WhichtaxbracketdoesJohnfallinto?

b WorkbackwardsfromthisamounttoworkouthowmuchJohnearnsperyear.Answertothenearest dollar.

ENRICHMENT:Othertypesofdeductionsandtaxableincome

13–15

Theloweraperson’sincome,thelesstaxtheymustpay.Peoplethereforetrytolowertheirtaxableincome byclaimingallowabletaxdeductions.

Work-relatedexpensessuchasuniforms,stationeryandjob-relatedtravelexpensesareallexamplesof allowabletaxdeductions.Theincometaxisthereforecalculatedonwhatwecallaperson’staxableincome.

Taxableincome = grossincome allowabletaxdeductions

UsethetaxtablefromExample18tocomparethefollowingjobs.

13 Anyoungaccountantearns$3120afortnight,withnoallowabletaxdeductions.

a Whatistheaccountant’staxableincome?

b Howmuchtaxdoestheaccountantoweinayear?

c Whatistheaccountant’sannualnetpay?

d Whatistheaccountant’sfortnightlynetpay?

14 Ayounglawyerearns$3120afortnightwithallowable taxdeductionstotalling$2560ayear.

a Whatisthelawyer’staxableincome?

b Howmuchtaxdoesthelawyeroweinayear?

c Whatisthelawyer’sannualnetpay?

d Whatisthelawyer’sfortnightlynetpay?

15 Howmuchlessmoneydoesthelawyerinquestion 14 haveeachweekcomparedtotheaccountantin question 13?

UNCORRECTEDSAMPLEPAGES

106 Chapter2Financialmathematics
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

2G Simple interest

Learningintentionsforthissection:

• Tounderstandtheconceptofsimpleinterestandhowitiscalculated

• Tobeabletousethesimpleinterestformulatoperformcalculations

Past,presentandfuturelearning:

• ThissectioncontinuestheStage5CoreTopiccalled FinancialMathematicsA

• Thefollowingsection,2H,furtherextendstheseconcepts

• FinancialMathematics isamajortopicinStage6Standard

• YoumaybeexpectedtorecalltheformulafrommemoryintheHSCExamination

Interestischargedwhenapersonorinstitutionborrowsmoney. Theinterestisanextraamountthatmustbepaidback,ontop oftheborrowedamount.

Interestisalsoearned,whenapersonorinstitutioninvests money.

Simpleor atrateinterestisusuallychargedorearnedeachyear. Itiscalculatedonthefullamountborrowedorinvested atthebeginningoftheloan.

LessonStarter:Developingtherule

$5000isinvestedinabankand5% simpleinterestispaidtotheinvestoreveryyear.Inthetablebelow,the amountofinterestpaidisshownforYear1,andtheamountoftotalinterestisshownforYears1and2.

• Completethetable.

• Howmuchinterestwouldtheinvestorearnin10years?

KEYIDEAS

■ Simpleinterest isinterestcalculatedeachtimeperiodontheinitialamount.

UNCORRECTEDSAMPLEPAGES

■ Tocalculatesimpleinterest,weapplytheformula:

2GSimpleinterest 107
Year Interestpaidthatyear Totalinterest 0 $0 $0 1 5 100 × $5000 = $250 1 × $250 = $250 2 2 × $250 = $500 3 4 5
I = Prn Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

I istheamountofsimpleinterest(in$)

P isthe principal amount;themoneyborrowedorinvested(in$),alsoknownaspresentvalue r istheinterestrateperperiod,expressedasadecimal,notapercentage t isthenumberoftimeperiods,whichcouldbedays,months,yearsetc.

■ Thefuturevalue ($A) equalstheprincipalplusinterest

A = P + I

■ p.a.means‘perannum’or‘peryear’.

Keyterminology: simpleinterest,principal,perannum

Exercise2G

UNDERSTANDING

1 $12000isinvestedat6% p.a.for42months.

a

Whatistheprincipalamount?

b

Whatistheinterestrate?

VIDEO DEMO

c

Whatisthetimeperiodinyears?

2 Jannearns$560p.a.insimpleinterestonaninvestment.Howmuchwouldheearnonthe investmentin: 2years? a 5years? b 10years? c

3 Usetherule I = Prn to ndthesimpleinterest (I ) earnedinthese nancialsituations.

a $10000,10% p.a.,3years

b $6000,12% p.a.,5years

c $5200,4% p.a.,2years

Example19

Usingthesimpleinterestformula

Calculatethesimpleinterestearnediftheprincipalis$1000,therateis5% p.a.andthetime is3years.

SOLUTION EXPLANATION

P = 1000, r = 0.05, n = 3

I = Prn = 1000 × 0.05 × 3 = 150

Interest = $150

Listtheinformationgiven,notingthat 5%= 0.05.

Writetheformulaandsubstitutethegiven values.

UNCORRECTEDSAMPLEPAGES

Answerthequestion.

108 Chapter2Financialmathematics
1–3 1,2
FLUENCY 4–6,8 4,6–8
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Nowyoutry

Calculatethesimpleinterestearnediftheprincipalis$2000,therateis4% p.aandthetimeis 5years.

4 Findthesimpleinterestearnedon:

a

$5000at6% p.a.for1year

b

$5000at6% p.a.for3years

c

$8000at4% p.a.for5years

d

$15000at3% p.a.for7years

e

$7250at5 5% p.a.for3years

5 Wallyinvests$15000atarateof6% p.a.for3years.Calculate thesimpleinterestandtheamountavailableattheendof3years.

Example20 Usingothertimeperiods

Hint: Amount = principal + interest

Calculatethesimpleintereston$7000investedat6 1 4 % p.a.for18months.

P = 7000, r = 6 1 4 ÷ 100 = 0.0625Listtheinformation.

n = 18months = 18 12 or1 5yearsConvert18monthsintoyearsbydividingby12.

I = Prn

I = 7000 × 0.0625 × 1.5 = 656 25 Interest = $656 25

Nowyoutry

Writetheformula. Substituteinthevaluesandevaluate.

Calculatethesimpleintereston$4500investedat5 1 2 % for30months.

6 Calculatethesimpleinterestearnedon: Hint: 365 days = 1 year

a $500at7% p.a.for18months

b $1000at5% p.a.for24months

c $2000at4% p.a.for6months

d $4700at4 1 2 % p.a.for15months(Roundtothenearestcent.)

UNCORRECTEDSAMPLEPAGES

e $50000at3.75% p.a.for200days(Roundtothenearestcent.)

2GSimpleinterest 109
VIDEO DEMO
SOLUTION EXPLANATION
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Example21 Calculatingthefuturevalue

AllanandRachelplantoinvestsomemoneyfortheirchildKaylan.Theyinvest$4000for 30monthsinabankthatpays4.5% p.a.Calculatethesimpleinterestandthefuturevalueat the endofthe30months.

Writetheformula,substituteandevaluate.

Interest = $450

Totalamount = $4000 + $450 = $4450Totalamount = principal + interest

Nowyoutry

Joywinssomemoneywhichshedecidestoinvest.Sheinveststhe$5000for36monthsinabank accountthatpays3 8% p.a.Calculatethesimpleinterestandtheamountavailableattheendofthe 36 months.

7 Annieinvests$22000atarateof4% p.a.for27months.Calculatethesimpleinterestandtheamount availableattheendof27months.

8 Copyandcompletethetable.

9 A nancecompanycharges14% p.a.simpleinterest.IfLynborrows$2000toberepaidover2years, calculatehertotalrepayment.

10 Markusborrows$20000tobuyacar.Heischargedsimpleinterestat18% p.a.foraperiodof5years.

a HowmuchinterestisMarkuschargedeachyear?

UNCORRECTEDSAMPLEPAGES

b CalculatethetotalinterestMarkuswillpayonthisloan.

c WhatisthetotalamountthatMarkuswillhavepaidattheendoftheloanperiod?

110 Chapter2Financialmathematics VIDEO DEMO
SOLUTION EXPLANATION P = 4000, r = 4 5 100 = 0 045, n = 30 12 = 2 5 n iswritteninyearssinceinterestrateisper annum.
= Prn = 4000 × 0 045 × 2 5 =
I
450
Annualinterest, Principal rate Timeperiod Interest Futurevalue a $7000 3% 4 years b $1500 7% 8 years c $40000 2.5% 18 months d $70000 3 1 4 % 2 years e $2000 4% 30 months PROBLEM-SOLVINGANDREASONING 9,10 10,11
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

11 Wendywins$5000duringachesstournament.Shewishestoinvestherwinnings,andhasthetwo choicesgivenbelow.Whichonegivesherthegreatertotalattheendofthetime?

Choice1:8 5% p.a.simpleinterestfor4years

Choice2:8% p.a.simpleinterestfor54months

12 Thetableshowstheamountofsimpleinterestpayable(in$,tothenearest$)onloansatacertain interestrate.

Usethetableto ndtheinterestpayableonthefollowingloans.

$5000for1year a

$500for3years b

$100for10years c

$150for1year d

$85500for5years e $9550for10years f

$5000for4years g

$50000for9years h

$100000for10years i

2GSimpleinterest 111
ENRICHMENT:Simpleinteresttablesandgraphs
12,13
Amountof loan 1year 2years 3years 5years 10years 50 6 13 19 32 65 100 13 26 39 65 129 500 65 129 194 323 645 1000 129 258 387 645 1290 5000 645 1290 1935 3225 6450 10000 1290 2580 3870 6450 12900 50000 6450 12900 19350 32250 64500 100000 12900 25800 38700 64500 129000
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

13 Thegraphontherightshowstheannual interestearnedoninvestmentsforinterest ratesof4% p.a.and6% p.a.Usethegraph toanswerthefollowing.

a Findtheannualinterestearnedonan investmentof:

$300at4% p.a. i $520at6% p.a. ii

$250at4% p.a. iii

b Whatinvestmentswouldearnannual interestof(tothenearest$5): $20at6% p.a.? i $20at4% p.a.? ii $14at6% p.a.? iii

SAMPLEPAGES

112 Chapter2Financialmathematics
100200300400500 0 0 6% 4% 600 Principal ($) Interest ( $ ) Annual interest earned at 4% and 6% 5 10 15 20 25 30 35 40 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED

2H Applications ofsimpleinterest

Learningintentionsforthissection:

• Tobeabletousethesimpleinterestformulatosolveproblemsaboutinvestmentsandloans

• Tobeabletocalculaterepaymentamountsgiventhetermsofaloan

Past,presentandfuturelearning:

• ThissectioncontinuestheStage5CoreTopiccalled FinancialMathematicsA

• Section1FofourYear10bookrevisesandfurtherextendstheseconcepts

• FinancialMathematics isamajortopicinStage6Standard

• YoumaybeexpectedtorecalltheformulafrommemoryintheHSCExamination

Financialcalculationsareacriticalcomponentof thethinkingbehindthedecisionspeoplemakeas towheretoborroworinvestmoney.

LessonStarter:WheredoIinvest?

BankA:$4000at5% p.a.for8years

BankB:$5000at8% p.a.for4years

BankC:$8000at4% p.a.for5years

Calculatethesimpleinterestearnedoneachinvestmentoption.Whatdoyounotice?

Whichbankwouldyouchooseandwhy?

KEYIDEAS

■ Thesimpleinterestformula, I = Prn,containsfourvariables:

I isamountofinterest

P isprincipal(i.e.amountinvested)

r isinterestrate,expressedasadecimal

n isnumberoftimeperiods.

Ifvaluesaregivenforthreeofthese,thentheycanbeusedto ndthefourth.

■ Torepayaloan,youmustrepaytheamountborrowed(theprincipal)andtheinterest.

■ Repayments aretheamountofmoney,usuallythesameamounteachtimeperiod,requiredto repayaloan.

Keyterminology: simpleinterest,principal,repayment

UNCORRECTEDSAMPLEPAGES

2HApplicationsofsimpleinterest 113
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Exercise2H

UNDERSTANDING

1 IfPhilearns$100insimpleinterestinoneyear,howlongwouldittakehimtoearn: $200 a $400 b $5000 c $250 d

2 Howmanyyearsdoesittakefor$100toearn$50 ininterestifthesimpleinterestrateis10% p.a.?

Hint:Howmuchinterestisearned on $100 at 10% p.a.for 1 year?

3 Jodierepays$200amonthfor12monthstopaybackherloanandinterest.Howmuchdoessherepay?

4 Aloanof$4000hasinterestof$500addedtoit.Calculatethesizeofeachofthe10repaymentsneeded torepaytheloan.

Example22

Determiningtheinvestmentperiod

Remyinvests$2500at8% p.a.simpleinterest,foraperiodoftime,toproduce$50interest. Forhowlongdidsheinvestthemoney?

Time = 0 25years = 0 25 × 12months = 3months

Nowyoutry

Solvetheremainingequationfor t bydividing bothsidesby200.

Convertdecimaltimetomonthswhere appropriate.

Jasinvests$3000at6% p.a.simpleinterest,foraperiodoftime,toproduce$450interest.Forhow longdidheinvestthemoney?

5 Alviinvests$5000at8% p.a.simpleinterestandwantstoearn$1200ininterest.Forhowmanyyears shouldAlviinvesthismoney?

UNCORRECTEDSAMPLEPAGES

6 Samearns$288interestonhis$1600investment.Iftheinterestwascalculatedat4% p.a.,howmany yearsdidSaminvestthemoneyfor?

7 $8000earns$600interestat5% p.a.overhowmanymonths?

114 Chapter2Financialmathematics
1–4 4
FLUENCY 5,6,8,9 5,7,8,9 VIDEO DEMO
SOLUTION EXPLANATION I = 50, P = 2500, r = 8 100 = 0 08 Listtheinformation. I = Prn Writetheformula. 50 = 2500 × 0.08 × n 50 = 200 × n 200n = 50 n = 0 25
Substitutetheknowninformationand simplify.
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

VIDEO DEMO

Example23 Determiningtheinterestrate

BankEastadvertises$450interestayearonaninvestmentof$7500.Calculatethesimpleinterest rateforthisinvestment.

SOLUTION

I = 450, P = 7500, n = 1, r =?

I = Prn

450 = 7500 × r × 1

450 = 7500r 7500r = 450

r = 450 7500

r = 0 06

EXPLANATION

Listtheinformation.

Writetheformulaandsubstitute I = 450, P = 7500and t = 1.

Simplifyandsolvefor r .

VIDEO DEMO

Interestrateis6% p.a. Write r asapercentage.

Nowyoutry

OzLoansoffers$610interestayearonaninvestmentof$12200.Calculatethesimpleinterestrate forthisinvestment.

8 Findtheannualsimpleinterestrateneededforeachofthe

Hint:Setuptheformula I = Prn where r istheunknown. followingsituations.

$4000earns$500in2years

a $500earns$120in12years b

c $950earns$470 25in9years d

e

$18000earns$3510in3years

$3000earns$945in18months

Example24 Calculatingrepayments

$2500earns$393 75in4 5years f

‘Deals4You’offersaloanof$24000at16% p.a.simpleinterestiftheloanisrepaidinequal monthlyrepaymentsover5years.

Howmuchinterestischargedontheloan? a

Whatisthetotalamountoftheloanandtheinterest? b Calculatethesizeofeachrepayment. c

SOLUTION EXPLANATION

a I = Prn

P = 24000, r = 0.16, n = 5

I = 24000 × 0 16 × 5

= $19200

b Total = $24000 + $19200

= $43200

Writedownthesimpleinterestformulaand listtheinformation.

Substituteinthevaluesandevaluate.

UNCORRECTEDSAMPLEPAGES

Total = principal + interest

2HApplicationsofsimpleinterest 115
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Continuedonnextpage

c Repayments = 43200 60 = 720 Repaymentscometo$720 permonth.

Nowyoutry

Dividethetotalamountbythenumberofmonthsin 5years (5 × 12 = 60).

Aloanof$35000isrepaidinequalmonthlyinstalmentsover6yearsat8% p.a.simpleinterest.

Howmuchinterestischargedontheloan?

a Whatisthetotalamountoftheloanandtheinterest? b Calculatethesizeofeachrepayment.

9 Copyandcompletethistableand ndthemonthlyrepaymentforeachloan.

10 Calculatetheprincipalamountwhichearns$500simpleinterest over3yearsatarateof8% p.a.Roundtothenearestcent. Hint:Substituteinto I = Prn

11 Charlotteborrows$9000tobuyasecond-handcar.Theloanmustberepaidover5yearsat12% p.a. simpleinterest.Calculate:

a thetotalamounttoberepaid

b themonthlyrepaymentamountiftherepaymentsarespreadequallyoverthe5years

116 Chapter2Financialmathematics
c
Amount Annualsimple Numberof Totalamount Monthly borrowed interestrate years Interest toberepaid repayment $5000 21% 5 $14000 15% 5 $10000 6% 4 $55000 8% 10 $250000 7% 30 PROBLEM-SOLVINGANDREASONING 10,11 10,12,13
andsolvefor P
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
UNCORRECTEDSAMPLEPAGES

12 If$5000growsto$11000in12years, ndthesimpleinterestrate.

13 Aninvestorinvests$P andwantstodoublethis amountofmoney.

a Howmuchinterestmustbeearnedtodouble thisinitialamount?

b Whatsimpleinterestrateisrequiredtodouble theinitialamountin8years?

c Ifthesimpleinterestrateis5% p.a.: howmanyyearswillittaketodoublethe investment? i

howmanyyearswillittaketotriplethe investmentamount? ii

howdotheinvestmentperiodsinparts i and ii compare? iii

ENRICHMENT:Introducingcompoundinterest

14,15

Withsimpleinterest,theprincipalandtheinterestearnedeachyearremainthesamefortheperiodof theinvestment.

However,withcompoundinterest,eachtimetheinterestiscalculateditisaddedtotheprincipaltogivea newvalue.Thismeansthatthenexttimetheinterestiscalculated,itisdonesousingalargeramount.

Inthefollowingquestionsyouwillbeaskedtodorepeatedapplicationsofsimpleinterestto ndthe nal compoundedamount.

14 $500isinvestedfor4yearsat10% p.a.interestcompoundedannually.

a Completethetableto ndthe nalvalueoftheinvestmentattheendofthistimeandthetotal.

b Howmuchinterestdidtheinvestmentearnoverthe4years?

15 a Completethefollowingtableto ndthe nalvalueofaninvestmentof$4500compoundedat5% p.a.annuallyfor5years.

UNCORRECTEDSAMPLEPAGES

b Type4500 × 1.055 intoyourcalculator.Whatdoyounoticeaboutthisanswer?

c Canyouexplainhowtheanswerstopart a andpart b relate?

2HApplicationsofsimpleinterest 117
Time(years) Amount(A) Interest(I ) Newamount(A + I ) 1 500 500 × 0 1 = 50 500 + 50 = 550 2 550 550 × 0.1 = 3 4
Time(years) Amount(A) Interest(I ) Newamount(A + I ) 1 4500 225 4725 2 4725 3 4 5
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Maths@Work activities encourage students to identify and apply maths in a range of real-world scenarios they may encounter.

Facebookcake-decoratingbusiness

Moreandmoreindividualsaresettingup abusinessusingFacebook.Forexample,a successfulcake-decoratingbusinesscanberun fromhomewhilelookingafterthekidsorwhile workingnormalbusinesshoursatotherjobs.

Aswithanybusiness,anunderstandingof nancialmathematicsisimportanttothesuccess ofthebusiness.Skillssuchascalculating costsandpro ts,percentagesandtaxationare importantforanymanager.

1 Calculatethetotalcostofbuyingeachofthefollowingcaketinsets: Roundset:6,8,9and12inchesby3inchesdeepat$64. Roundset:6,8,10and12inchesby4inchesdeepat$99.

Squareset:6,8and10inchesby3inchesdeepat$45.

Squareset:6,8,10and12inchesby4inchesdeepat$86.

2 Convertthefollowingmeasurementsfrominches(USstandard)towholenumberofcentimetresby usingthefollowingconversionrate:1inch = 2.54cm. 3inches a 4inches b 9inches c 10inches d

3 Imaginethatyouspend2hoursoutof9 1 2 workhoursontheinternetpromotingyourbusiness.Write thisasapercentage,roundedtothenearestwholepercentage.

4 Fondanticingcomesindifferentcoloursandindifferent-sizedtubes.Managingyourbudgetmeans lookingforthebestbuy.

a Whichofthefollowingrepresentsthebestbuyforeachcolouroffondantlistedbelow?

b Whatistheaveragecostper100gramsforwhitefondanticing?

c Underwhatcircumstanceswouldsomeonebuyasizethatwasnotthebestbuy?

5 Acustomerhasthefollowingquotesforalarge21stbirthdaycakefromfourdifferentFacebookcake suppliers:$195,$290,$225and$215.

Foreachofthefollowing,stateanswerstothenearestwholenumber.

UNCORRECTEDSAMPLEPAGES

a Whatisthemeanoraveragecostforthistypeofcake?

b Whatisthepercentagechangefromthelowestquotetothehighestquote?

118 Chapter2Financialmathematics Maths@Work
Whitefondant Redfondant Bluefondant 100 gat $3 25 500 gat $5 50 5 kgat $40 1 kgat $10 50 2 5 kgat $36 95 1 kgat $19 90 100 gat $3 25 500 gat $7 95 100 gat $2 95 500 gat $7 95 750 gat $11 95 1 kgat $19 90
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

c Ifitcostseachsupplier$50inproducttomakethecake,calculatethepercentagepro tforeach ofthefourquotesgivenabove.

d Ifittakeseachsupplieronaverage5 1 2 hourstomakeanddecoratethecake,whatiseachperson chargingperhour,excludingthe$50productcosts?

Usingtechnology

6 ImaginethatyouhavestartedaFacebookcake-making business.Toanalysepossiblepro ts,setupanExcel spreadsheetasshownbelowandenterformulasin theshadedcells.Notethatthisisasimpli edanalysis andexcludespower,gasandequipmentcosts.

Hint:Formatall $ cellsas‘currency’ withzerodecimalplaces. Formatprofit % cellsas‘percentage’ withzerodecimalplaces.

a Howmuchpro twouldbemadefromselling2Valentines’Daycakesand3chocJaffa birthdaycakes?

b List,inascendingorder,the3cakesthatbringthelowestpercentagepro t.

c List,indescendingorder,the3cakesthatpaythehighesthourlyrates.

d Suggestareasonwhythecakesin c costthecustomermoreinhourlyrates.

UNCORRECTEDSAMPLEPAGES

Maths@Work 119
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Using technology: Questions asking students to use spreadsheets or online graphing or geometry software are found throughout exercises and review material.

Working Mathematically investigative tasks in every chapter provide opportunities for students to apply learning through open-ended and exploratory tasks.

1 Theanswerstothecluesarehiddenintheword nd.Canyou ndall16words?

2 Findoutthefourclassicalelementsoftheworldbyansweringthefollowingsimpleinterestproblems. Matchtheletterbesideeachquestiontoitscorrespondinganswerineachgrid.

Puzzlesandchallenges 122 Chapter2Financialmathematics
S A G R O S S W H K L O M A P E R C E N T A G E C O L A R C O M M I S S I O N A S E R V I N T E R E S T R T Y H E T S L O S S T H Y E F O R T N I G H T I L W S M O T A X A T I O N Y E I O L I D I D N P Y I E K M N Q M O N T R N I S C E P Y U E D I S C O U N T M L R E P A Y M E N T A H D E D U C T I O N S I X L A xedannualincome a Apercentageofthevalueofgoodssold, whichyouearnasanincome b Workinglongerthannormalworking hours c Moneyfromyourincomegiventothe government d Twoweeks e Thetotalofallincome f Moneytakenfromtotalpay g Yearly h 12timesayear i Flat-rateinterest j Meaning‘outof100’ k Moneygiventorepayaloan l Moneyearnedonaninvestment m Anitemofferedforasalepricehashadthis happen n Theoriginalpriceofanitem o Youincurthiswhenyousellanitemforless thanyoupaidforit p
E = $600 at 6% p.a.for 1 year H = $796 at 5% p.a.for 4 months R = $12500 at 6 1 4 % p.a.for 2 years A = $7000 at 5% p.a.for 3 years I = $1000 at 1% p.a.for 100 years F = $576.50 at 19% p.a.for 18 months W = $36000 at 2% p.a.for 5 years T = $550 at 10% p.a.for 6 months $36 $1050 $1562.50 $27.50 $13.27 $1050 $1000 $1562 50 $164 30 $1000 $1562 50 $36 $3600 $1050 $27.50 $36 $1562.50 Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTEDSAMPLEPAGES

Chapter summary: a key point summary for revision and quick reference.

Percentages and decimals

Percentage Decimal

Percentage composition

÷ 100 PercentageFraction × 100 ÷ 100 49% = 0.49

a

percentage 17%

= 5.1 =× 30 100 17

Percentage Means

Percentage increase and decrease Increase 20 by 6% 20 × 1.06 = 21.2

Decrease 20 by 5% 20 × 0.95 = 19

= 0.17

Financial mathematics

Applications of percentages

Percentage pro t/loss pro t or loss

= cost price × 100 Mark-up and discount

Commission/tax

Simple interest

r = interest rate (as a fraction or decimal)

n = number of time periods

If $2000 is invested at 5% p.a. for 4 years:

I = Prn = $2000 × 0.06 × 4 = $400

Income and tax

gross income deductions tax: money taken from pay and given to the government

Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Chaptersummary Chaptersummary 123
Percentage change = original change × 100 3 g out of 50 g = × 100 50 3 = 6%
× 100 100 19 19% = ‘out of 100’ 7% = = 0.07 100 7
Employees can be paid: wage: hourly rate with overtime at time and a half = 1.5 × hourly rate double time = 2 × hourly rate salary: annual amount commission: % of sales
net income =
of 30
Percentages and fractions
× 30
Finding
I =Prn
Where I = amount of interest
p = amount borrowed or invested
UNCORRECTEDSAMPLEPAGES

Chapterchecklistwithsuccesscriteria

AprintableversionofthischecklistcanbedownloadedfromtheInteractive Textbook. ✔

1Icanconvertbetweenpercentagesandfractions.

2A

e.g.Write

a 7 40 asapercentage b 17 5% asafraction

2Icanconvertbetweenpercentagesanddecimals.

2A

e.g.Write

a 0 3 asapercentage b 72% asadecimal

3Icanwriteaquantityasapercentage.

2A

e.g.Write 27 cmoutof 1 8 masapercentage.

2B 4Icanfindapercentageofaquantity.

e.g.Find 35% of $75

2B 5Icanfindtheoriginalamountfromapercentage.

e.g.Determinetheoriginalamountif 12% oftheamountis $72

2C 6Icanincreaseanddecreasebyapercentage.

e.g. a Increase $80 by 12% b Decrease $40 by 8%

2C 7Icanfindapercentagechange.

e.g.Thepriceofagymmembershipincreasedfrom $320 to $370.Findthepercentageincrease correcttoonedecimalplace.

2C 8Icanfindtheoriginalamountafteranincreaseordecrease.

e.g.Adecreaseof 22% reducedthepopulationofatownto 1014.Whatwastheoriginalpopulation ofthetown?

2D 9Icancalculatethesellingpricefromamark-upordiscount.

e.g.Astoremarksupallwhitegoodsby 20%.Ifthecostpriceofafridgeis $1100,whatwillbeits sellingprice?

2D 10Icandeterminepercentageprofit.

e.g.Astallholdermakescandlesfor $8 andsellsthemfor $13.Findtheprofitandexpressthis profitasapercentageofthecostprice.

2D 11Icancalculatetheoriginalpricebeforediscount.

e.g.AdepartmentstorediscountsallChristmastreesby 15%.Ifthesalepriceofatreewas $106.25,whatwastheoriginalprice?

2E 12Icancomparewagesandsalaries.

e.g.Tonyhasanannualsalaryof $88000 andJodieearns $72 perhour.Calculate

a Tony’shourlyrateofpayifheworksa 38-hourweek

b Jodie’syearlyincomeifsheworksonaverage 22 hoursperweek.

UNCORRECTEDSAMPLEPAGES

Chapterchecklist 124 Chapter2Financialmathematics
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
Chapter checklist with Success Criteria – including example questions – at the end of each chapter allows students to tick off what they have learnt and provides a quick revision tool.

Chapterchecklistwithsuccesscriteria

AprintableversionofthischecklistcanbedownloadedfromtheInteractive Textbook.

2E 13Icancalculateovertime.

e.g.CalculateJulian’sweeklywageforaweekwhereheworks 12 hoursathisnormalhourlyrate of $28, 4 hoursattimeandahalfand 3 hoursatdoubletime.

2E 14Icancalculatecommission.

e.g.Asalespersonispaidaretainerof $2200 permonthandreceivesan 8% commissiononsales. Ifonemonthhemakessalesworth $10400,calculatehisearningsforthatmonth.

2F 15Icancalculatenetincome.

e.g.Daniellehasanannualsalaryof $64800.Shehasmonthlytaxdeductionsonherpayslipof $1296.Calculatehernetincomeeachmonth.

2F 16Icancalculatenetincomeusingincometaxrates.

e.g.Annahasanannualsalaryof $78000 andataxationrateof 26% withthefirst $18200 tax free.CalculateAnna’snetincomefortheyear.

2F 17Icanusethetaxtabletocalculateincometax.

e.g.UsethetaxtablefromExample 18 tofindtheincometaxforanincomeof $90000.

2G 18Icanusethesimpleinterestformulaandfindthefuturevalue.

e.g.Calculatethesimpleinterestearnediftheprincipalis $4000,therateis 3% p.a.andthetimeis 4 years.Hence,whatistheamountattheendofthe 4 years?

2G 19Icanworkwithsimpleinterestusingothertimeperiods.

e.g.Calculatethesimpleintereston $6000 investedat 4 1 2 % p.a.for42months.

2H 20Icandeterminetheinvestmentperiodorinterestrateforsimpleinterest. e.g.Joshuainvests $3500 at 6% p.a.simpleinterest,foraperiodoftime,toproduce $315 interest. Forhowlongdidheinvestthemoney?

2H 21Icancalculaterepayments.

e.g.Sydtakesoutaloantopurchaseayacht.Theloanisfor $32000 at 8% p.a.simpleinterestif theloanisrepaidinequalmonthlyinstalmentsover 4 years. Calculatetheinterestchargedontheloanandhencethetotalamountowingandthesizeofthe requiredmonthlyrepayments.

UNCORRECTEDSAMPLEPAGES

Chapterchecklist Chapterchecklist 125
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

Short-answerquestions

Chapter review: short-answer, multiplechoice and extended-response questions to revise and consolidate the topic.

UNCORRECTEDSAMPLEPAGES

a apersonwithanannualsalaryof$76076workinga38-hourweek

Chapterreview 126 Chapter2Financialmathematics
1 2A Copyandcompletethetableshown. Decimal Fraction Percentage 0 6 1 3 3 1 4 % 3 4 1 2 200% 2 2B Find: a 25% of$310 b 110% of1.5 3 2B Determinetheoriginalamountif: a 20% oftheamountis30. b 72% oftheamountis18. 4 2C a Increase45by60%. b Decrease1.8by35%. c Findthepercentagechangeif$150isreducedby$30. 5 2C Themassofacatincreasedby12% to14kgovera12monthperiod.Whatwasits previousmass? 6 2D Determinethediscountgivenona$15000carifitisdiscountedby12% 7 2D Acouchatacostpriceof$3500istobe markedupby25%.Findthesellingprice. 8 2D
a determinethepro tmade
expressthepro
9 2E
Thecostpriceofanarticleis$150.Ifitissoldfor$175:
b
tasapercentageofthecostprice.
Determinethehourlyrateofpayforeachofthefollowingcases:
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400
b apersonwhoearns$429working18hoursatthehourlyrateand8hoursattime andahalf.

10

2F

11 2G

Jo’smonthlyincomeis$5270however20% ofthisispaidstraighttothegovernmentintaxes. WhatisJo’snetyearlyincome?

Findthesimpleinterestearnedon$1500at7% p.a.for5years. 12

2H Billinvests$6000at4% simpleinterest,foraperiodoftime,toproduce$720.Forhowlong didheinvestthemoney? 13 2F

Usethetaxtablebelowto ndtheincometaxpayableonanincomeof$78000.

$0 $18200 Nil

$18201 $45000 19 centsforeach $1 over $18200

$45001 $120000 $5092 plus 32 5 centsforeach $1 over $45000

$120001 $180000 $29467 plus 37 centsforeach $1 over $120000

$180001 andover $51667 plus 45 centsforeach $1 over $180000

Theaboverates donot includetheMedicarelevyof2%.

Multiple-choicequestions

Chapterreview Chapterreview 127
Taxableincome
Taxonthisincome
1 2A 2 8% asadecimalis: 2 8 A 0 28 B 0 028 C 0 0028 D 280 E 2 2A Whatpercentageof$2is50cents? 4% A 40% B 25% C 2 1 2 % D 400% E 3 2A 12 1 2 % asasimplefractionis: 12 100 A 1 8 B 3 25 C 0 125 D 12 5 E 4 2B 33 1 3 % of$660isthesameas: $660 ÷ 2 A $660 × 0.3 B $660 × 0.03 C $660 ÷ 3 D $660 ÷ 1 3 E 5 2B 15% of$1600isequalto: 24 A 150 B $240 C $24 D 240 E 6 2B If110% ofanumberis528,thenthenumberis: 475 2 A 52 8 B 480 C 580 8 D 475 E 7 2C 9670increasedby12% becomes: 9682 A 9658 B 10830 4 C 1160 4 D 8509 6 E Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400 UNCORRECTED
SAMPLEPAGES

8 2E Janeispaidawageof$27 80perhour.Sheworks12hoursatthisrateduringaweek,plus 4hourson apublicholidaywhereshegetspaidattimeandhalf.Herearningsinthe weekare:

.80 B

9 2E Simonearnsaweeklyretainerof$370and12% commissionofanysaleshemakes.Ifhe makes$2700worthofsalesinaparticularweek,hewillearn:

10

$1200isinvestedwithasimpleinterestrateof10% fortwoyears.Thefuturevalueattheend ofthetwoyearsis:

Extended-responsequestions

1 Paulinebuysadebutantedressatcost pricefromherfriendTila.Paulinepaid $420forthedresswhichisnormally markedupby55%.

a Howmuch didshesave?

b Whatisthenormalsellingpriceof thedress?

c IfTilagetsacommissionof15%: howmuchcommissiondidshe get? i

howmuchcommissiondidTilalosebysellingthedressatcostpriceratherthanthe normalsellingprice?

2 Adamstartsanewjobandworksa38-hourweekforawageof$975 84.

a Calculatehishourly rateofpay.

b Ifovertimeiscalculatedattimeandahalf,whatisAdam’sovertimerate?

c HowmuchdoesAdamearnfor4hoursofovertimework?

d HowmanyhoursofovertimedidAdamworkinaweekifhiswageforthatweekwas $1226 22?

e IfAdamusuallyworkstheamountofovertimeinpart d inthe52weeksoftheyearhe works,andhepays27% ofhispayintax,whatishisnetannualincome?

f IfAdaminvests10% ofhisnetincomeinanaccountearning8% p.a.simpleinterestfor 18months,howmuchextraincomewillhehaveearned?

UNCORRECTEDSAMPLEPAGES

Chapterreview 128 Chapter2Financialmathematics
$500.40 A $444
$556 C $667.20 D $278 E
$595 A $652 B $694 C $738.40 D $649.60 E
2G/2H
$252 A $1452 B $1450 C $240 D $1440 E
ii
Uncorrected 1st sample pages • Cambridge University Press and Assessment © Palmer, et al 2023 • 978-1-009-40926-1 • Ph 03 8671 1400

CONTACT INFORMATION

Your Education Resource Consultants

Christine Devine – State Sales Manager; South christine.devine@cambridge.org

0417 155 270

Sabika Cummins – Inner West / West / South East sabika.cummins@cambridge.org

0400 504 295

Caroline Poole – East / South West caroline.poole@cambridge.org

0408 583 390

Debra Wilson – North / North West debra.wilson@cambridge.org

0414 495 388

Customer Service

P: 1800 005 210

F: 1800 110 521 enquiries@cambridge.edu.au

Private Bag 31

Port Melbourne VIC 3207

cambridge.edu.au/education

To learn more and view additional samples as they become available, visit: cambridge.edu.au/cambridgeMATHSNSW7-10 ABN 28 508 204 178 ARBN 007 507 584

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.