http://www.cathalac.org/cursos/Curso_Teledeteccion/Presentaciones/Miercoles/Clasificacion_Cobertura_

Page 1

Clasificaciones y Anรกlisis de Mezclas Espectrales

Clasificaciones y Anรกlisis de Mezclas Espectrales


Ejercicios para hoy 1. Correcciones atmosféricas 2. Análisis de Componentes Principales (PCA) y la Transformación de la Fracción de Ruido Mínimo (MNF Transform) 3. Clasificación no supervisada 4. Conversión de raster a vector 5. Colección de muestras 6. Clasificación supervisada 7. Despliegue en N dimensiones 8. Análisis de mezclas espectrales (SMA) 9. Filtración de los resultados


Cobertura de la tierra - 2008*

多Porque necesitamos hacer clasificaciones?

*Para validar


El problema Después de casi 40 años de percepción remota ambiental desde el lanzamiento de LandsatLandsat-1 en el 23 de julio de 1972, todavía existe el problema de identificar cobertura de la tierra (delineación e cuantificación) fácilmente y con exactitud


Belize City

False color LandSat TM mosaic courtesy of NASA / USGS


Source: TBD


Simulated true color LandSat TM image courtesy of NASA / USGS; image captured 28 March 2000


Simulated false color LandSat TM image courtesy of NASA / USGS; image captured 28 March 2000


Aerial photo of interface between savanna and forest near Belize City, April 5, 2009


Date Date No. Ground Publication Condition c. 1990, c. 2005 1 2000 2

1992-93 1992-93

1998

3

1991-99

2002

4

5 6 7 8

2000

2002

2000, 2001, 2002, 2003, 2004, 2005 2000, 2003, 2004, 2005 2005

2008

2005

2004-06

2008

2006

9 10

2000, 2005, 2007, 2008

2008

Original Source

Published as Imagery Used Resolution Geographic Number of coverage, Classes original

Earth GeoCover LC Landsat TM, Satellite 1990 Landsat ETM+ Corporation USGS GLCC AVHRR "Central American Vegetation/L PROARCA and Cover AVHRR / CAPAS Classification and Conservation Status" "Central America World Bank Ecosystems Landsat TM Mapping Project" SPOT JRC GLC 2000 Vegetation UMD / NASA U. Ark. / SERVIR USGS ESA / MEDIAS France ESA / GeoVille

30m

global

11

1km

global

96

1km

regional

25

30m

regional

196

1km

global

23

MOD44B

MODIS

500m

global

N/A

SERVIR MesoClass

MODIS

500m

regional

6

MODIS

500m

regional

9

GlobCover project

MERIS

300m

global

24*

DIVERSITY project

MERIS*

300m

regional

12




Mosaico temporal de imรกgenes de 2009, con menos que 2% de nubosidad






Source: p. 22-25, GOFCGOFC-GOLD REDD Sourcebook, Nov. 2009 edition


Source: Goodenough et al (2002): “Report on the Evaluation and Validation of EOEO-1 for Sustainable Development (EVEOSD) Project”


Image Processing: Corrections Radiometric calibration Preferably in ENVI

Mosaic, as necessary In ERDAS

Atmospheric correction

Dark object subtraction

In ERDAS

In ERDAS

Intra--scene calibration Intra

Histogram matching


El sistema ideal de percepción remota (1) Fuente uniforme de energía

(4) Súper sensor

(2) Atmosfera sin interferencia (3) Interacciones únicas con el superficie de la tierra Fuente: M. Vasquez (2006)


Interacciones de Energ铆a con la Atmosfera

Scattering Refracci贸n Absorci贸n

Fuente: B. Howell (2006)


Energía en el Objeto Radiacion Incidente puede ser… • Reflejada • Transmitida • Absuelto (y reEmitida)

I=R+T+A

Fuente: B. Howell (2006)


Usos de Percepción Remota

• Actualizar o reemplazar mapas existentes • Determinar áreas de categorías conocidas • Hacer inventarios de tipos de cobertura • Documentar cambios entre periodos • Medir condiciones en una área • Medidas cuantitativa de propiedades

Fuente: B. Howell (2006)


Centroamérica: 50 imágenes cubren 50 millón de ha, =25 GB de datos para procesar

Entonces, desde L4 en 1984 hasta al presente, hay ~769 escenas disponible para cualquier área (23 imágenes por año por L5 y L7)


Senderos de LandSat para CentroamĂŠrica

Los senderos fijos en el sistemas de referencia de Landsat


Resultados de una búsqueda en Glovis para El Salvador – 262 imågenes con menos de 30% de nubosidad, entre enero de 2007 y febrero de 2009



Landsat TM False color mosaic 2828-0303-2000

Land cover map 2004 (Source: BTFS)


Identifying Forest Cover w/ Satellite Imagery Landsat TM False color mosaic 2828-0303-2000

Land cover map 2004 (Source: BTFS)

1. Green is forest 2. To be able to extract the green is to be able to extract the forest cover


Landsat TM False color mosaic 2828-0303-2000

Forest cover map 2004 (Source: BTFS)


El Sistema de Visualización y Monitoreo (SERVIR)

Mesoamerica’s Earth Observation & Forecasting Platform

Terra Aqua

•El Sistema de Sistemas de la Observación de la Tierra (GEOSS)

Fires Red Tides Data ingest from EDOS EOS and Central

Land Cover / Use Change

LandSat MODIS SRTM AMSR-E IKONOS ASTER

Test-bed at NASA MSFC

Users

Web Interface www.servir.net

Environmental Monitoring & Decision Support Products

Operational Node at CATHALAC Panama

Central American Government agencies Impacts NGOs, researchers Educators, etc. Emergency Response Policy Changes Corridor Preservation Thematic Species Preservation Sustained Development Areas Improved livelihoods Agriculture Biodiversity Climate Ecosystems Energy Disasters Health Water Weather

•La Carta Internacional sobre el Espacio y Grandes Catástrofes •El Sistema de Información Ambiental Mesoamericano (SIAM)

SERVIR tiene herramientas muy relevantes al tema de monitoreo de REDD


SERVIR Disaster Response (2004(2004-)

1.

Red tide event - El Salvador (June 2004)

2.

Flooding – Panama City, Panama (Sept. 2004)

3.

Flooding - Rio Sixaola, Costa Rica / Panama (Jan 2005)

4.

Hurricane Stan – Guatemala, Mexico, El Salvador (Oct .2005)

5.

Flooding – Colon Province, Panama (Nov. 2006)

6.

Fire - Mountain Pine Ridge Forest Reserve, Belize (May 2007)

7.

Hurricane Dean – Mexico / Belize (Aug. 2007)

8.

Hurricane Felix – Nicaragua / Honduras (Sept. 2007)

9.

Tropical Storm Noel – Dominican Republic (Oct. 2007)

10. Tropical Storm Olga – Dominican Republic (Dec. 2007) 11. Turrialba Volcano – Costa Rica (April 2008) 12. Tropical Storm Arthur – Belize (June 2008) 13. Hurricane Gustav – Haiti / Dominican Rep. (August 2008) 14. Hurricane Hanna – Haiti (Sept. 2008) 15. Hurricane Ike – Haiti (Sept. 2008) 16. Landslide – Huahua Michoacán, Mexico (Oct. 2008) 17. Tropical Depression 16 – Belize / Guatemala / Honduras (Oct. 2008) 18. Flooding – Costa Rica / Panama (Nov. 2008) 19. Landslide – Alta Verapaz, Guatemala (Jan. 2009) 20. Earthquake – San Jose metropolitan area, Costa Rica (Jan. 2009) 21. Fire – Volcan Santo Tomas, Quetzaltenango, Guatemala (Feb. 2009) 22. Flooding – Lago Enriquillo, Dominican Republic (Feb. 2009)




Extracción de Objetos • Clasificación • Índices / ratios

• • • •

Supervisada No supervisada NDVI NBR / NDBR

• Umbrales de bandas (“band thresholding”) • Análisis de mezclas espectrales

• Varios – Sombra, Suelo, Vegetación; Sombra, Suelo, Vegetación verde, vegetación no fotosintética


Pasos básicos en clasificación de imágenes: 1) Estudio y organización de los datos 2) Aplicación de un algoritmo de clasificación 3) Validación


Estudio y organización de los datos Estudio ¿Que esta en la escena / imagen? ¿ Cuales bandas están disponible? ¿ Cuales preguntas necesitan respuestas? ¿ Se puede responder a las preguntas con la imagen? ¿ Hay suficiente información para distinguir que esta en la escena? Organización de los datos ¿ Cuantas clusters se puede re-organizar en espacio n? ¿ Como son los limites de los clusters? ¿ Los clusters corresponde a los clases deseados?


Clasificación Clasificación es el proceso de asignar los pixeles a clases homogéneos basado en análisis de las estadísticas de valores de reflectancia en uno o mas bandas. Clasificación es el proceso de derivar information clases informativos / utiles de clases espectrales. Se nombran los procesos de clasificación como supervisada o no supervisada basado en la metodología para “entrenar” el classifier (clasificador?). Con datos de ‘entrenamiento,’ los dos sistemas utilicen la misma forma de operación (división basada en las estadísticas).

Fuente: B. Howell (2006)


Clasificación Pros: • Puede apoyar en la descripción de usos y cobertura de la tierra • Puede simplificar el proceso de detección de cambios • Con procesamiento posterior, puede generar polígonos con atributos para uso en un SIG

Contra: • Clasificación con ella misma, no va extraer información útil de la data • No hay clasificadores universales • NO es perfecto The Attainment of the Sanc Grael Dante Gabriel Rosetti

Fuente: B. Howell (2006)

• Necesita procesamiento posterior para llegar a una foto bonita


Histogramas de cada banda Fuente: B. Howell (2006)


Respuestas espectrales

Histogramas de cada banda Fuente: B. Howell (2006)


ASTER: Advanced Spaceborne Thermal Emission & Reflection Radiometer

Terra

Uno de los 5 sensores en el satélite Terra (lanzando en Dic. de 1999); debe estar encendido Similar que el sensor ‘Thematic Mapper’ de LandSat Tamaño de una escena es 1/9 de una escena de LandSat 14 bandas (3 de 15m / 6 de 30m / 5 de 90m) midiendo luz en longitudes de onda visible a infrarrojo termal

One of 5 sensors on the satellite Terra (launched in Dec. 1999); ‘on‘on-call’ Similar to the Thematic Mapper sensor on the LandSat satellites Swath about 1/9 the size of LandSat swath 14 bands (3 15m / 6 30m / 5 90m) measuring light from the visible to infrared thermal wavelengths


Respuestas espectrales

Histogramas de cada banda Fuente: B. Howell (2006)


Firmas espectrales de materiales comunes

Absorci贸n de clorofila

Dispersi贸n en las celdas

Absorci贸n de agua


Firmas espectrales

Fuente: B. Howell (2006)


Clasificaci贸n No Supervisada


Belize City

False color LandSat TM mosaic courtesy of NASA / USGS


14-Nov-1980

¯

Ladyville area

Belize’s International Airport

Belize City pop’n ~39,771

0

Population data from Belize CSO

1.5

3

6 km

False color LandSat MSS image courtesy of NASA / USGS


27-Dec-1989 Savanna clearing for shrimp farm development

ÂŻ

Diminishing mangrove forests

Coastal development (Buttonwood Bay & Bella Vista)

0

Population data from Belize CSO

1.5

3

6 km

False color LandSat TM image courtesy of NASA / USGS


28-Mar-2000 Expansive shrimp ponds

ÂŻ

Settlement on former mangrove forest (Vista del Mar) Cleared mangrove New beachfront properties

Expansion of north-side Belize City (Belama)

Expansion of south-side Belize City Coastal development 0

Population data from Belize CSO

1.5

3

6 km

False color LandSat TM image courtesy of NASA / USGS


12-Feb-2004

Nova Shrimp Farm at size of Belize City

Clearing of 100s of acres of mangrove for Port development

0

Population data from Belize CSO

ÂŻ

Land reclamation at the Marine Parade

1.5

3

6 km

False color LandSat ETM image courtesy of NASA / USGS


31-March-2007

Nova Shrimp Farm ceases operations

ÂŻ

Further wetland clearing at Belama Phase IV

0

Population data produced by extrapolating Belize CSO data

1.5

3

6 km

False color ASTER image courtesy of NASA / JAXA


1980

1989

1998

La Ciudad de Belice: 1980 hasta 2006

2000

2002

2006




27-Dec-1989

Belize City pop’n ~42,518

Population data interpolated from Belize CSO data

False color LandSat TM image courtesy of NASA / USGS


27-Dec-1989

Approx. area: 2,089 acres (845 ha.)

Population data interpolated from Belize CSO data

Belize City pop’n ~42,518

False color LandSat TM image courtesy of NASA / USGS


2-Feb-2006

Belize City pop’n ~64,700

Population data extrapolated from Belize CSO data

False color ASTER image courtesy of NASA / JAXA


2-Feb-2006

Approx. area: 3,382 acres (1,369 ha.)

Population data extrapolated from Belize CSO data

Belize City pop’n ~64,700

False color ASTER image courtesy of NASA / JAXA


Antes: Belize City en 1980 • ~39,771 habitantes • 1,706 acres (6.9 km2) • Densidad de 5,756 personas / km2 • Densidad nacional de 6 personas / km2 Reciente: Belize City en 2007 • ~66,422 habitantes • 3,449 acres (14 km2) • Densidad de 4,758 personas / km2 • Densidad nacional de 13 personas / km2

• • •

El área ha doblado entre 1980 y 2007 El crecimiento anual era ~106 acres / 43 ha. La mayoría de la expansión de 705 ha fue deforestación de manglares y destrucción de humedales False color ASTER image courtesy of NASA / JAXA


Tendencias del crecimiento de la poblaci贸n y expansi贸n urbana en la Ciudad de Belice 70,000

4,000

3,500

60,000

3,000 50,000

P o p u la tio n

40,000 2,000

30,000 1,500 20,000 1,000 10,000

500 Area

0 14-Nov-80

27-Dec-89

15-Sep-98

28-Mar-00 Date

19-Sep-02

Population

2-Feb-06

0 31-Mar-07

A r e a (a c r e s )

2,500


Tendencias de expansi贸n urbana (cambios anuales) 180

160

448 acres cortadas

Annual expansion rate (acres / yr)

140

120

143 acres cortadas 100

80

60

654 acres cortadas

40

383 acres cortadas

20

0

1981

1990

1999 2000

2003

Expansi贸n de 705 ha entre nov 48 acres cortadas / reclamadas de 1980 y marzo de 2007 67 acres cortadas / reclamadas

2006


Rates of Urban Expansion & Population Density Date

Area Acres

Mar-07 Feb-06 Sep-02 Mar-00 Sep-98

3,449 3,382 3,334 2,886 2,743

Ha.

1,396 1,369 1,349 1,168 1,110

Pop’n 2

Km

13.96 13.69 13.49 11.68 11.10

66,422 64,128 56,700 49,050 47,947

Pop’n Density (people 2 / km )

4,758 4,684 4,203 4,199 4,320

Change From previous period (acres)

67 48 448 143 654

Avg. change per year from Previous period (acres)

Period of Change

Major Drivers of Land Cover Conversion in Period

57.3

20062007

Belama Phase IV

13.7

20022006

Land reclamation

179.2

20002002

Development of Port

95.3

19982000

General expansion

72.7

19891998

Belama Phases I-III Buttonwood Bay, general expansion N/A

Dec-89

2,089

845

8.45

42,518

5,032

383

42.6

19801989

Nov-80

1,706

691

6.91

39,771

5,756

N/A

N/A

N/A

Aerial photo by Emil A. Cherrington


Unsupervised Classification Basic Iterative Clustering Algorithm (K-Means)

Fuente: B. Howell (2006)

Place K points into the feature space containing the samples to be clustered. These points represent initial group centroids.

Assign each sample to the group that has the closest centroid.

When all samples have been assigned, recalculate the positions of the K centroids.

Repeat Steps 2 and 3 until the centroids no longer move.


Unsupervised Classification Basic Iterative Clustering Algorithm (K-Means)

Fuente: B. Howell (2006)

Place K points into the feature space containing the samples to be clustered. These points represent initial group centroids.

Assign each sample to the group that has the closest centroid.

When all samples have been assigned, recalculate the positions of the K centroids.

Repeat Steps 2 and 3 until the centroids no longer move.


Unsupervised Classification Basic Iterative Clustering Algorithm (K-Means)

Fuente: B. Howell (2006)

Place K points into the feature space containing the samples to be clustered. These points represent initial group centroids.

Assign each sample to the group that has the closest centroid.

When all samples have been assigned, recalculate the positions of the K centroids.

Repeat Steps 2 and 3 until the centroids no longer move.


Unsupervised Classification Basic Iterative Clustering Algorithm (K-Means)

Fuente: B. Howell (2006)

Place K points into the feature space containing the samples to be clustered. These points represent initial group centroids.

Assign each sample to the group that has the closest centroid.

When all samples have been assigned, recalculate the positions of the K centroids.

Repeat Steps 2 and 3 until the centroids no longer move.


Unsupervised Classification Improving clustering

Fuente: B. Howell (2006)

“Real world” sample distributions are much more likely to be irregularly shaped with cluster axes rotated to each other.

These distributions are better characterized by parametric statistics.

Simple n-dimensional space segregation is more likely to assign pixels to incorrect clusters.


Unsupervised Classification Improving clustering

Fuente: B. Howell (2006)

“Real world” sample distributions are much more likely to be irregularly shaped with cluster axes rotated to each other.

These distributions are better characterized by parametric statistics.

Simple n-dimensional space segregation is more likely to assign pixels to incorrect clusters.


Unsupervised Classification Improving clustering

Fuente: B. Howell (2006)

“Real world” sample distributions are much more likely to be irregularly shaped with cluster axes rotated to each other.

These distributions are better characterized by parametric statistics.

Simple n-dimensional space segregation is more likely to assign pixels to incorrect clusters.


Unsupervised Classification ISODATA (Iterative Self-Organizing Data Analysis Technique)

Fuente: B. Howell (2006)

Operates in the same iterative fashion as K-Means with three significant differences…

Uses parametric statistics to describe clusters and determine nearest centroids

New clusters can formed by splitting “elongated” clusters into multiples

Clusters with centroids that are “too close” can be lumped together

Because of these differences, K becomes a “desired” number of final classes, not an absolute


Unsupervised Classification ISODATA (Iterative Self-Organizing Data Analysis Technique)

Fuente: B. Howell (2006)

Operates in the same iterative fashion as K-Means with three significant differences…

Uses parametric statistics to describe clusters and determine nearest centroids

New clusters can formed by splitting “elongated” clusters into multiples

Clusters with centroids that are “too close” can be lumped together

Because of these differences, K becomes a “desired” number of final classes, not an absolute


Unsupervised Classification ISODATA (Iterative Self-Organizing Data Analysis Technique)

Fuente: B. Howell (2006)

Operates in the same iterative fashion as K-Means with three significant differences…

Uses parametric statistics to describe clusters and determine nearest centroids

New clusters can be formed by splitting “elongated” clusters into multiples

Clusters with centroids that are “too close” can be lumped together

Because of these differences, K becomes a “desired” number of final classes, not an absolute


Unsupervised Classification ISODATA (Iterative Self-Organizing Data Analysis Technique)

Fuente: B. Howell (2006)

Operates in the same iterative fashion as K-Means with three significant differences…

Uses parametric statistics to describe clusters and determine nearest centroids

New clusters can formed by splitting “elongated” clusters into multiples

Clusters with centroids that are “too close” can be lumped together

Because of these differences, K becomes a “desired” number of final classes, not an absolute


Unsupervised Classification ISODATA (Iterative Self-Organizing Data Analysis Technique)

Fuente: B. Howell (2006)

Operates in the same iterative fashion as K-Means with three significant differences…

Uses parametric statistics to describe clusters and determine nearest centroids

New clusters can formed by splitting “elongated” clusters into multiples

Clusters with centroids that are “too close” can be lumped together

Because of these differences, K becomes a “desired” number of final classes, not an absolute


a) ISODATA initial distribution of five hypothetical mean vectors using ±1σ standard deviations in both bands as beginning and ending points. b) In the first iteration, each candidate pixel is compared to each cluster mean and assigned to the cluster whose mean is closest in Euclidean distance. c) During the second iteration, a new mean is calculated for each cluster based on the actual spectral locations of the pixels assigned to each cluster, instead of the initial arbitrary calculation. This involves analysis of several parameters to merge or split clusters. After the new cluster mean vectors are selected, every pixel in the scene is assigned to one of the new clusters. d) This split– split–merge– merge–assign process continues until there is little change in class assignment between iterations (the T threshold is reached) or the maximum number of iterations is reached (M (M).

Jensen, 2005


a) Distribution of 20 ISODATA mean vectors after just one iteration using Landsat TM band 3 and 4 data of Charleston, SC. Notice that the initial mean vectors are distributed along a diagonal in two--dimensional feature space two according to the Âą2Ďƒ standard deviation logic discussed. b) Distribution of 20 ISODATA mean vectors after 20 iterations. The bulk of the important feature space (the gray background) is partitioned rather well after just 20 iterations. Jensen, 2005


Jensen, 2005


Plot of the Charleston, SC, Landsat TM training statistics for five classes measured in bands 4 and 5 displayed as cospectral parallelepipeds. The upper and lower limit of each parallelepiped is Âą1Ďƒ. The parallelepipeds are superimposed on a feature space plot of bands 4 and 5.

Jensen, 2005


ISODATA Clustering Logic

Jensen, 2005


Classification Based on ISODATA Clustering

Jensen, 2005


Clasificaci贸n Supervisada


Clasificación supervisada 1) estimación de similitud espectral 2) asociación de tipos espectrales con clases útiles SUPOSICION BASICO Objetos de interés tienen “firmas espectrales” claros *Esto no siempre es el caso A veces hay que modificar la data para que sea real - combinaciones de bandas - imágenes multi-temporales


Clases, áreas de muestras, y mímicos Clase: Unido deseado, en la forma de un cluster espectral 2 atributos: identidad y firma espectral Área de muestra: una región de una imagen que es un buen ejemplo de un clase; se utilice para definir clústeres espectrales de una clase especifica; se define la identidad con foto-interpretación o información del campo Mímicos: otros unidos de mapeo con clústeres similares


Clasificación supervisada Supervised classification involves imposing a priori information classes on a landscape. Implicit in the supervised classification process is the notion that the spectral data of members of a class will have similar statistical characteristics and that those characteristics can be visually discerned and manually segregated by a human. The process of creating a class structure and determining the statistical characteristics of each class is called training. Training is the method by which a classifier “learns” the appearance of individual classes. For the classifier to be successful in properly assigning pixels to a class, the training samples must be “pure” (consisting of class members only).

Fuente: B. Howell (2006)


Clasificación supervisada • Filosofía y estrategia de entrenamiento manual • Seleccionar las bandas insumos con mayor información • Mostrar combinaciones de bandas con mayor contraste entre clases • No seleccionar muestras que no son miembros del clase de interés • Examinar histogramas para determinar si las muestras son buenas (separables) • Seleccionar un rango de muestras de un clase, y combinarlos antes de la clasificación

Fuente: B. Howell (2006)


Parallelepiped

Maximum Likelihood

Minimum Distance

Hybrid


Classifiers Parallelepiped • Determines class membership using parallelepipeds (n-dimensional “boxes” in feature space) • Advantages: • Very fast • Can classify 100% of candidates • Makes good-looking output • Disadvantages: • Candidates that fall outside any parallelepiped remain unclassified • Candidates that fall in overlaps are assigned to the “first” parallelepiped • Poorly matched to normal data distributions

Fuente: B. Howell (2006)


Classifiers Minimum Distance • Determines class membership by measuring distance from class centroid • Advantages: • Fast • More accurate* classification than Parallelepiped • Better than Parallelepiped for handling “real world” data distributions • Disadvantages: • Candidates that fall outside distance limits remain unclassified • Candidates that fall in overlaps are assigned by an operator defined rule • Imperfectly matched to normal data distributions *assuming you know how to make it so

Fuente: B. Howell (2006)


Classifiers Maximum Likelihood • Determines class membership using parametric statistics • Advantages: • Very well matched to normal data distributions • More accurate classification* than Parallelepiped or Minimum Distance • Candidates that fall into overlaps are assigned based on likelihood of membership • Disadvantages: • Candidates that fall outside any parallelepiped remain unclassified • Accuracy heavily dependent on normal data distributions *assuming you know how to make it so

Fuente: B. Howell (2006)


Classifiers Hybrid • Determines class membership using parametric and nonparametric techniques • Advantages: • Fast and very accurate* • Perform first-order classifications using Parallelepipeds • Perform second-order classification on outliers and overlaps using distance or likelihood rule • Disadvantages: • Virtually every mistake that can be made using Parallelepiped, Minimum Distance, and Maximum Likelihood classifiers can be achieved in a single operation *assuming you know how to make it so

Fuente: B. Howell (2006)






Análisis de Mezclas Espectrales •Imágenes multiespectrales miden spectra integrada en cada píxel •Cada píxel contiene materiales diferentes, cada con su firma espectral diferente •Varios tipos de spectra usualmente están mezclados. Esos son mezclas. •Otros tipos no mezcla mucho. Fuente: A. Gillespie, la Universidad de Washington


Usualmente, el numero de clases (‘endmembers’) útiles para datos de Landsat es 4-5 Puede ser 8-10 para datos híper-espectrales Hay muchos componentes espectrales en varias escenas, pero usualmente no mezclan, entonces no son útiles.


Análisis de mezclas espectrales es útil porque – 1) Genera imágenes de fracciones que se puede entender fácilmente 2) Reducción en la dimensionalidad de los datos sin botar mucha información útil 3) Identificación de efectos topográficos para mas estable información para análisis en SIG


Sombra

100

10 90 20

80

30

70

40

60

50 50

Soil Soil

60

40

70

30

80

20

90

10

100

10

20

Vegetaci贸n verde Fuente: UW ESS 421 (2004)

30

40

50

% suelo

60

70

80

90

100

Suelo


Fuente: Lu et al (2002)


Imagen de Landsat5 de un parte de la Reserva Forestal Nacional Gifford Pinchot de los EE.UU.

Fuente: UW ESS 421 (2004)


Mature regrowth

Old growth

Burned Immature regrowth

Broadleaf Deciduous

Grasses Clearcut

Fuente: UW ESS 421 (2004)


Claro = abundancia del objeto

Vegetacion no fotosintetica (NPV)

Vegetacion verde

Rojo = NPV Verde = veg. verde Azul = sombra Sombra

Fuente: UW ESS 421 (2004)



SMA can easily extract areas of bare soil


Interpreting spectral unmixing results Color in RG comp

% Soil

% Photosynthetic Vegetation

Description

1

Yellow

Very high (90-100%)

Very high (90-100%)

Cropland

2

Light green

Low-Very Low (0-30%)

High (80-100%)

Open forest

3

Light green

Medium (60-70%)

Medium (40-50%)

Shrubland

4

Dark green

Very low (0-10%)

Medium (40-80%)

Closed forest

5

Red

Very high (90-100%)

Low (10-20%)

Bare land / urban

6

Coffee brown

Low (10-30%)

Low-Medium (30-50%)

Mangrove scrub

7

Black

Very low (0-10%)

Low-Very Low (0-20%)

Water

Black

Very low (0-10%)

Low-Medium (20-40%)

Wetland

Color Code

CATHALAC (unpublished, Nov 2009)


Interpreting spectral unmixing results

Color in RG comp

% Soil

% Photosynthetic Vegetation

Description

1

Yellow

Very high (90-100%)

Very high (90-100%)

Cropland

2

Light green

Low-Very Low (0-30%)

High (80-100%)

Open forest

3

Light green

Medium (60-70%)

Medium (40-50%)

Shrubland

4

Dark green

Very low (0-10%)

Medium (40-80%)

Closed forest

5

Red

Very high (90-100%)

Low (10-20%)

Bare land / urban

6

Coffee brown

Low (10-30%)

Low-Medium (30-50%)

Mangrove scrub

7

Black

Very low (0-10%)

Low-Very Low (0-20%)

Water

Black

Very low (0-10%)

Low-Medium (20-40%)

Wetland

Color Code

CATHALAC (unpublished, Nov 2009)



1.

2.

4. Closed tree canopy (e.g. ‘mature’ forest): Should be defined principally by low soil exposure and moderate to high chlorophyll content

1. Bare land (e.g. urban areas): Should be defined by high soil exposure and no chlorophyll content Source: ITTO / JOFCA

3.

4.

3. Open tree canopy (e.g. ‘open’ forest): Should be defined principally by some soil exposure and high chlorophyll content

2. Low vegetation (e.g. cropland, shrubland): Should be defined by high chlorophyll content and some soil exposure b/c of usual low plant density (i.e. no canopy)


Spectral Mixture Analysis works with spectra that mix together to estimate mixing fractions for each pixel in a scene. Spectral Mixtures, green leaves and soil

Reflectivity, %

100 80

0% leaves 25% leaves

60

50% leaves 40

75% leaves 100% leaves

20 0 0

1

2

3

Wavelength, micrometers

Please note – wavelength scale is messed up Source: TBD

The extreme spectra that mix and that correspond to scene components are called spectral endmembers.


Forest Spectral Endmembers

Reflectivity, %

100 80 dry grass

60

leaves

40

soil

20 0 0

1

2

Wavelength, micrometers

3

Endmembers from one type of scene – forest, lake, desert – form a cohort.

In a forest, important endmembers may be leaves, wood, shade, and soil. In a desert, leaves may be less important, but there may several rock types. Source: TBD


Shade

We can use a ternary diagram used to show mixtures of forest endmembers.

100

10 90 20

80

30

70

40

60

50 50 60

Soil Soil

We will see a detailed example of this in a later lecture

40

70

30

80

20

90

10

100

GV

10

Source: TBD

20

30

40

50

percent soil

60

70

80

90

100

Soil


Mature regrowth

Old growth

Burned Immature regrowth

Broadleaf Deciduous

Grasses Clearcut

Source: TBD




Round 1: 1st set of samples, selected from PPI of all MNF components

1: Unconstrained All MNF components

2: Constrained – Weight 1 All MNF components

3: Constrained – Weight All MNF components


Round 1: 1st set of samples, selected from PPI of all MNF components

4: Constrained – Weight 50 All MNF components

5: Unconstrained ALI bands 3,4,5,6,8,9

6: Constrained – Weight ALI bands 3,4,5,6,8,9


Round 2: 2nd set of samples, selected from PPI of first 3 components

7: Constrained – Weight 1 ALI bands 4,5,6,8

8: Constrained – Weight 1,000 ALI bands 4,5,6,8

9: Constrained – Weight 1 MNF components 1,2,3


Round 2: 2nd set of samples, selected from PPI of first 3 components

10: Constrained – Weight 1 11: Constrained – Weight 100 MNF components 1,3 MNF components 1,3

12: Constrained – Weight MNF components 1,3


Round 2: 2nd set of samples, selected from PPI of first 3 components

13: Unconstrained MNF components 1,3

14: Constrained – Weight 1 All MNF components

15: Constrained – Weight


RGB NDVI composite: 20002000-2005 2005--2010

Color Black Red Green Blue Yellow Magenta Cyan White

2000 Low High Low Low High High Low High

2005 Low Low High Low High Low High High

2010 Low Low Low High Low High High High


Cambio de cobertura: 20002000-2010


Cambio de cobertura: 2000--2010 2000 Color Black Red Green Blue Yellow Magenta Cyan White

Key No change: forest Regenerated 2000-05; no change 2005-10 Cut 2000-05, regenerated 2005-10 No change 2000-05; cut 2005-10 No change 2000-05; regeneration 2005-10 Regenerated 2000-05, re-cut 2005-10 Cut 2000-05; no change 2005-10 No change: non-forest

Color Black Red Green Blue Yellow Magenta Cyan White

2000 High Low High High Low Low High Low

2005 High High Low High Low High Low Low

2010 High High High Low High Low Low Low

No change: forest Regenerated 2000-05; no change 2005-10 Cut 2000-05, regenerated 2005-10 No change 2000-05; deforested 2005-10 No change 2000-05; regeneration 2005-10 Regenerated 2000-05, re-cut 2005-10 Cut 2000-05; no change 2005-10 No change: non-forest


Ă?ndices


A 째x B

NDx

NDy

NDy

B con sol

Sombra

째x

A con sol NDx


Línea de ratio constante

x/y

B y

A x

y/z

A °x B

NDx

NDy

NDy

B con sol

Sombra

°x

A con sol NDx


DespuĂŠs: LandSat7 - 11 de mayo de 2007

°

Plumas de humo

Cicatrices

0 0.5 1

2

3

Miles 4


Antes: LandSat7 - 21 de marzo de 2006

0 0.5 1

2

3

Miles 4


°

2006

Procesamiento Digital Principio: Se puede aplicar metodologías para extraer info útil de imágenes satelitales

0 0.5 1

2

3

Miles 4

°

2007

Normalized Difference Vegetation Index (NDVI): ratio entre la luz infrarrojo cercano (NIR) y rojo (R), indicando vegetación en estrés Normalized Burn Ratio (NBR): ratio entre infrarrojo medio (SWIR) y infrarrojo cercano (NIR), para delinear cicatrices (muy similar a NDVI) 0 0.5 1

2

3

Miles 4


LandSat: 21 March 2006

NDVI: March 2006 High : 0.964912

Low : -0.957447

0 0.450.9

1.8

2.7

Miles 3.6


LandSat: 11 May 2007

Contamination por el humo

NDVI: May 2007 High : 0.964912

Low : -0.957447

0 0.450.9

1.8

2.7

Miles 3.6


Differencing 2007 NDVI against 2006 NDVI

NDVI difference High : 0.919945

Low : -1.04501

0 0.450.9

1.8

2.7

Miles 3.6


LandSat: 21 March 2006

Normalized Burn Ratio High : 0.978947

Low : -0.931034

0 0.450.9

1.8

2.7

Miles 3.6


LandSat: 11 May 2007

Normalized Burn Ratio High : 0.978947

Low : -0.931034

0 0.450.9

1.8

2.7

Miles 3.6


Differencing 2007 NBR against 2006 NBR

Normalized Difference Burn Ratio -1.22 - -0.42 -0.42 - -0.31 -0.31 - -0.18 -0.18 - 0 0-1

0 0.450.9

1.8

2.7

Miles 3.6


NDBR

NDVI Diff.

Normalized Difference Burn Ratio -1.22 - -0.42

NDVI difference

-0.42 - -0.31

High : 0.919945

-0.31 - -0.18 -0.18 - 0

Low : -1.04501 0-1

0 0.450.9

1.8

2.7

Miles 3.6

2006

0 0.5 1

2

3

Miles 4

0 0.450.9

1.8

2.7

Miles 3.6

2007

0 0.5 1

2

3

Miles 4


LandSat7: 11 de mayo de 2007

Estimaci贸n: ~24,000 acres quemadas

0 0.450.9

1.8

2.7

Miles 3.6


Validaci贸n


c. 2000


c. 2009


Datos de la cclasificaci贸n clasificaci贸n

Matrices de confusion / Matrices de error

Datos de validaci贸n A B C D E F A

480

0

B

0

52

C D

0

0

0

16

E F

0

0

0

0

480

68

5 0

Sumas de columnas

0 20

0 0

Sumas de filas

0

485

0

72


Class

no mangroves

mangroves

water

User accuracy

Total Number

Producer accuracy

Total class accuracy

%

mangroves

1

59

10

70

21%

1%

50%

26%

no mangroves

1

75

5

81

24%

93%

55%

74%

water

0

2

186

188

55%

99%

93%

96%

Total

2

136

201

339

100%

50%

55%

93%

mangroves

no mangroves

water

Producer Accuracy

Class

77.3%

User accuracy

Total Number

Producer accuracy

Total class accuracy

%

mangroves

2

77

6

85

26%

2%

100%

51%

no mangroves

0

54

5

59

18%

92%

39%

65%

water

0

7

182

189

57%

96%

94%

95%

Total

2

138

193

333

100 %

100%

39%

94%

Producer Accuracy

71.5%


Fuentes de Mayor Información Libros (vea www.amazon.com) • Teledetección Ambiental (2002) – Emilio Chuvieco • Remote Sensing and Image Interpretation (2007) – Thomas Lillesand, Ralph Kiefer, Jonathan Chipman • Remote Sensing of the Environment (2006) – John R. Jensen • Remote Sensing for GIS Managers (2005) – Stan Aronoff En línea • TELEDET: http://www.teledet.com.uy/tutorial-imagenessatelitales/imagenes-satelitales-tutorial.htm

• NASA: http://rst.gsfc.nasa.gov/ • CATHALAC: servir@cathalac.org • GOOGLE / Wikipedia


Referencias / Reconocimientos Mucha de la información en este presentación fue adoptada de los siguientes fuentes: • Burgess Howell, NASA GSFC (2006) • Jason Tullis, University of Arkansas (2005) • Lecturas / materiales del curso ESS 421 y ESS 422 de la U. de Washington (2004)


多Preguntas?


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.