AIR
ABPL 30048 ARCHITECTURE DESIGN STUDIO: AIR SEMESTER 1 2015//TUTOR: BRADLEY ELIAS (#8) CELLYN JOSEPHIN DIONE LEGOH//613169
1
2
Table of Contents Introduction 03 PART A. Conceptualisation
05
PART B. Criteria Design
20
PART C. Detailed Design
50
3
INTRODUCTION
My name is Cellyn, third year architecture student, currently still finding my way through all the assignments and decisions in life. Other than architecture, my interests don’t drift too far from designing field. I’ve always been intrigued by designs, whether its interior or even fashion. Art is also something that i’ve always enjoyed. Before taking on the environments degree, architecture was just about designing buildings - i didn’t really think about other aspect that makes an architecture. But throughout my studies, i’m learning that architecture is more than just realising a design into something visible. Architecture involves a lot of different factors, mediums, people and principle to create a space. And i also learned how powerful architecture can be. It shapes the way people interact with their environments, it creates spaces that can accommodate varied purposes and architecture is also a translation of different ideas, influencing the way people think and live.
4
Nowadays, there has been quite a shift in architecture, that is the emergence of computer generated deisgns. Studio AIR focuses on this field of architecture, finding the best design through computation. With the growing existence of computational architecture, studio AIR is an ideal medium for students like me to explore the field and discover new alternative in designing process. I have been introduced to parametric design before in ‘Virtual Environments’ subject and it did give a new sight, especially for me, as it was the first time for me to use any kind of 3D modelling software, such as Rhino 3D and its plugin, Grasshopper, which is the key element in this studio project. Now, by revisiting all the software and computational design process, i hope that i can gain more knowledge and applying it on my ongoing academic and carreer journey. Also, hopefully, it will open my eyes to many different design possibilities that will keep evolving in the architectural scene.
about me
5
PART A.
CONCEPTUALISATION
6
PART A. CONCEPTUALISATION A1. Design Futuring 03 A2. Design Computation
05
A3. Computation/Generation
20
A4. Conclusion 50 A5. Learning Outcomes
55
7
A1. DESIGN FUTURING
For a long time, architecture was fixed to only the designing and constructing aspects. When you look up architect on the dictionary (or the mighty Google for that matter), it states that architect is someone that is responsible for the design of a building and that is supposed to be held accountable for inventing and bringing ideas to real life [1]. Architect is only responsible for creating the outcome of the design, and this idea had been around for quite a while, in which buildings in the thirteenth century were built only by the master masons. Even during the renaissance era, the “builders� pass on the detailing work to the craftsmen. Their approach was strictly attached to plans and elevations [2]. However, starting from the 19th century, different ideas started to emerge in architecture. With the development of new technology, other aspect besides designing starting to be incorporated in creating the final outcome of a process, in this case buildings. Architects in this era begged to differ by working alongside the engineers to create buildings that not just looked pretty in person, but also provide solutions to
8
different problems that the design faced at the time. Buildings like King’s Cross Railway Station in London designed by Lewis Cubitt was one example that exhibit the exploitation of new structural technologies, in which would not be possible without the help of the structural engineers [3]. This movement driven by the industrial revolution brought an impact in the field of architecture. The development in design encouraged more communications between architect and other experts in order to realise the design. Hence, the idea of architect being a solemn master builder was slowly replaced by this new idea of incorporating other aspects in the process of designing. With the ongoing development in various aspects of human lives, including technology and ideas, designers face different problems. Structural problems that were solved by the involvement of engineering solutions are now changed with the issues that concerning the environments. the rapid augmentation of technology, worse side effects of our existence as humans seem to be more apparent than the good ones [4].
“Architecture as a design practice that contributes ideas to the ongoing disciplinary discourse and culture at large.”
This is where the idea of architect involves more factors should come into play. The definition of a design should have lesser importance compared to the process [4]. As more problems and issues emerged, designs should address these issues and be a medium that can bring solutions. In a way, this is saying that designers should take more into account the process of achieving the final outcome rather than the product itself. Wood specified that “designers should become the facilitators of flow, rather than the originators of maintainable ‘things’…” [5]. In achieving this, as technological advancement took place, computational architecture started to become one approach in tackling these issues and facilitating architect to become more engrossed in the process rather than the final outcome. Computational design process provide today’s architects with the tools they need to deal with issues that they face today, such natural degradation and limited resources[6]. This kind of measure is needed in order for humans to exist. Human brain alone is not enough to handle and come up with best solution.
Computation municating
becomes ideas
one way of comin architecture.
This leads to the idea of design futuring, which should be using a framework that influence change on people and also the environment. Futuring should redirect designers to take on new ways in practicing their ideas and create new ideal future, toward the new nature of sustainability [4]. The idea of design futuring should be the pursuit of architects today to achieve a sustainable outcome. With this ideology of the desirable future, architecture should not only focus on the final outcome, but more on the process, looking at things that are accountable for the success in both achieving the design and not giving negative forces to the surroundings.
9
A1.1 Design Futuring: Precedent 01
Works of Frank Lloyd Wright and other modernist architects were based on the stripped form of classical architecture, seen in the use of simplistic and geometrical shape in their works. Architecture was focused on the form based on existing-recognisable forms. In this project, Lynn wanted to challenge that idea. Embryological House is a result of Lynn’s contradicting idea of a form should also be based on limitless iterations of the basic forms.
Embryological House, Greg Lynn (1997-2001)
Lynn wanted to test the idea of ‘mass customisation’ in which enabling mass production of individually modified products with individual characteristics [7]. He then experimented with geometrical modelling and character animation software to create numerous iterations. First, he set the parameters for the basic geometry of the form through Microstation software, which later used to establish a set of rules for the design. The result was then transferred into Maya, 3D modelling software, to create the digital and physical models. Through these software and the accurate geometrical limits, he mass produced the outcomes, each with distinctive characteristics to mark the aim of his experiment – design innovation and investigation.
By including all these factors, this project sought to initiate the idea that formal perfection is achieved through each individual’s complex characteristics [8].
The Embryological House was also resulting in numerous variations that were derived from many aspects of human lives, such as lifestyle, site and climate.
10
Lynn was applying the idea of design futuring with all the possibilities that he achieved for his design through computation. With the initial idea that he had, he wanted to achieve the best possible outcome and project the new ideal condition of the future, and was done through an array of digitally generated forms that were based on numerous consideration.
http://www.sfmoma.org/images/artwork/large/2002.86.jpg
http://www.sfmoma.org/images/artwork/medium/2002.85.jpg
11
A1.2 Design Futuring: Precedent 02 Bloom Doris Kim Sung, Displayed in 2011-12
As an architectural research project displayed at the Materials and Application Gallery in Los Angeles, this project depicts the essence of design futuring as nature was one of the consideration of the design process. The initial question behind this project was whether the static form of the buildings is changeable or not. The architect, Doris Kim Sung, was intrigued by the possibility of buildings that can breathe and respond like the way human skin does [9]. Her approach was to test out several materials that can perform this characteristic of breathable skin. The proposal was to create a more dynamic and responsive building skin. One option that was developed was bimetal skin, which was created by joining two thin sheets of metals that can spread out whenever the temperature changes and the metal element of the skin will shrink when heated. The tessellated pattern of the skin of the building react to the sun, affecting the use of air conditioning inside the building. In addition, the window system of the building was distinctively developed to create efficient regulation of sunlight and heat, in hopes to reduce the energy used within the building [9]. The element of futuring here is epitomised through the use of computational design approach in getting all the configuration for the building elements. The pattern and materiality of the building was generated with the help of computers. By incorporating the human intelligence and technological system, an optimal design can be generated and thus moving towards the idea of a sustainable condition.
http://www.slate.com/tomorrowtoday/dist/lexus/images/dorissung/bloom-bg.jpg
12
http://ad009cdnb.archdaily.net/wp-content/uploads/2012/03/1331306080-bloom-img-03-brandon-shigeta-528x352.jpg
http://qe1pr67o4hj19lx494tvhiwf.wpengine.netdna-cdn.com/wp-content/uploads/2013/01/Bloom_BrandonShigeta_4.4.jpg
13
A2. COMPUTATIONAL DESIGN
“The problem of digital architecture is that an algorithm can produce endless variations, so an architect has many choices.”
14
We have entered the digital age of architecture. The use of computational design has infiltrated architectural practices and being realised into urban settings. But what is exactly computational design? It underlines the symbiotic connection of human ideas and the generative characteristic of the computer in creating an outcome, in this case built forms. Computational design approach has challenged the traditional practices and become a seminal medium in architectural revolution [6]. More possibilities have been constructed, new paradigm has been implied. The digital computation through computer-aided material enables designers (architects) to explore with (almost) limitless variables and come up with a way to handle a specific issue. With the use of sets of rules and parameters, algorithm is created to help generating the output [13].
Fig 4
Algorithm thinking itself is understanding the process of setting up codes and rules, so that designers are able to modify them and use it for further development [6]. By having an understanding in algorithm, it eases the designers in the process of design. It also opens up more potential in both the design outcome and the knowledge of the designer. Thus, in a way, computational design is one method of design that should not be discouraged. The limitless possibilities of the application can bring about so many positive forces, not just for today’s society but also in the future - with possibility of creating “second - nature�.
15 Fig 4: http://www.musicmonks.com/wp-content/uploads/2013/01/4.png
A.2.1 Computational Design: Precedent 01
Neri Oxman Subterrain, 2007
http://www.moma.org/collection_images/resized/073/w500h420/CRI_286073.jpg
Oxman created a project that looks into the physical features of a terrain, which expresses the dispersion and the significance of the force that formed the terrain itself. This project tests the way the materials form the shape through the information on the structural load that it can bear and the environmental conditions. In creating this project, Oxman referred back to different natural element, as she looked into leaf section, a butterfly wing and a scorpion paw. She examined the structure and pattern of these objects and realising them into the design through the application of hypothetical physical responses. The structural tissues from these natural objects are visualised, analysed and later be reconstructed into 3D macro-scale prototypes. This is related to the idea of design computation, which is what we are learning in this studio. Oxman exemplify the process of coming up with a focus for a project and use computer-generated physical rules to realise her idea. She also tested the material behaviour by applying limited element that focuses on the object and looking at various properties of the material [10].
16
http://www.materialecology.com/projects/details/subterrain#prettyPhoto[subterrain]/2/
http://www.materialecology.com/projects/details/subterrain#prettyPhoto[subterrain]/1/
http://www.materialecology.com/projects/details/subterrain
17
A.2.2 Computational Design: Precedent 02
ICDI/TKE Research Pavilion A. Menges & J. Knippers, Stuttgart University, 2010
http://www.achimmenges.net/?p=4443
18
http://www.achimmenges.net/?p=4443
This project of building a temporary research pavilion focused on the materiality and how it can be maximised through computational design. The project started by understanding that material has its own internal and external forces and constraints that help make the materiality properties and that they are mutually related. Computational design process in this project is used as an approach to generate form based on the information that is derived from the material physical behaviour and characteristics. The relevant and evident material features were translated into parametric rules and were defined through numerous physical experiments. They were focusing on the range of deflection of the material used, in which is thin plywood strips. Finite element method (FEM) was used to simulate the structural performance, which generate the ‘intricate equilibrium’ of the bending ability of each element. The calculation also helped in understanding the internal stresses due to the bending of the material in regards to the external forces. Based on the 6400 lines of code, the computational process generated all the geometrical data needed and providing the information for structural analysis of the project. The rules and computing mechanism benefited in terms of outputting the information and enabling the realisation of this project. The process of achieving the best structure with optimum performance was made possible through the computation process. [11]
http://www.achimmenges.net/?p=4443
19
A3. COMPOSITION/GENERATION
“Processing of information and interactions between elements which constitute a specific environment, it provides framework for negotiating and influencing the interrelation of datasets of information, with the capacity to Sean Alquist & Achim Menges in Peters, Brady. (2013) ‘Computation Works: The Building of Algorithmic Thought’, Architectural Design, 83, 2.
20
Composition is one design approach that focuses on details, looking at the intricate composition of something and then creating a different interpretation of the object by modifying the composition to get the desired outcome. For a long time, this was the way to go for architects in designing a building. But a shift has happened that impacted on the architectural practices around the world. The change to genereation has created a whole new outcomes in terms of built forms. Generative architecture outcome is “calculated by the chosen generative computational method” [17]. Kolarevic also continued on how this approach emphasising in internal generative logic, which then reproduce varied outcomes that the designer can choose from to determine the best optimal result. This influenced different aspect of architecture, including fabrication and construction. Computational generative design bring about the ability to explore “parametric families of component” [6], allowing efficient fabrication and construction of buildings, especially highly detailed projects. Parametric modelling helps realising complex structural form and design, giving room for the architect to explore and experiment with numerous things. Designers can achive a more diversed and unexpected outcome. They are also given the capacity digitally simulate the performance of the elements of the buildings through the imposed rules by the algorithm. This proves the power of parametric and computational modelling in this digitalised era.
Fig 5
21 Fig 5: http://icd.uni-stuttgart.de/icd-imagedb/ICD_WS10_
A.3.1 COMPOSITION/GENERATION: PRECEDENT 01
http://blog.bellostes.com/media/gantenbein-winery-03.png
ICDI/TKE Research Pavilion A. Menges & J. Knippers, Stuttgart University, 2010 The brief of the project was to create a new service building for one of the most successful vineyard in Switzerland. It was looking for a solution for the faรงade structure of the building, as to accommodate the function of the building (http://phaidonatlas.com/building/gantenbein-winery/1070). Gramazio Kohler Architects came up with t6he solution through generation approach. The initial step of the process was to imagine the structural frame that was already done there as a basket that was to be filled with grapes with different diameters. They created a simulation on the gravitational force of the grapes when the grapes fall into the basket and fill it full [12] . Based on that simulation, they administered the logic and rules behind and using them to form the faรงade. The generative process of this project demonstrated the amount of understanding that is needed to achieve a specific outcome. By examining one particular process, they came up with certain pattern and rules which later be applied on forming the final outcome. Generation approach represented the extended possibility of computational and parametric design in addressing specific issues in design and construction[13]
22
Also, this project shows the possibility of architecture acting as a platform to combine technical system and nature. In the assembly process of the faรงade, they used programmed parameters to determine the angle of the bricks to strategically place each of the brick, resulting in optimization of natural light and air [12]. Parametric design method allows the optimum utilization thus bringing benefits for the building.
http://ad009cdnb.archdaily.net.s3.amazonaws.com/wp-content/uploads/2012/08/ 501f4a9328ba0d024200005b_winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten_060719_036_baustelle_ml_040_pr-1000x750.jpg
Fig 1
Fig 2
Fig 3
23 Fig 1: http://ad009cdnb.archdaily.net/wp-content/uploads/2012/08/501f49e028ba0d024200004e_winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten_060823_036_dokumentation_ralphfeiner_006_pr.jpg
Fig 2: http://ad009cdnb.archdaily.net/wp-content/uploads/2012/08/501f4a3728ba0d0242000054_winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten_080701_036_aussenaufnahmen_ralphfeiner_03_pr-
Fig 3: http://ad009cdnb.archdaily.net/wp-content/uploads/2012/08/ 501f4a8c28ba0d024200005a_winery-gantenbein-gramazio-kohler-bearth-deplazes-architekten_060719_036_ baustelle_ml_038_pr.jpg
A.3.2 COMPOSITION/GENERATION: PRECEDENT 02
http://www.formakers.eu/timthumb.php?src=./media/1.936.1381759468.parametric-architecture-pavilion-christoph-hermann_formakers_08.jpg&h=402&w=600
Sigmund Freud Pavilion Christoph Hermann, Austria, 2009 In attempt to solve the integrating-with-nature dilemma of a project, Hermann took on a different approach in designing this project. The site of the project is the Sigmund Freud Park in Vienna, one main recreational area in the region and he wanted to create an assembly of spatial configurations that fluently collaborate with one another to cater the existing qualities on the site being a recreational area and the expected one, which is an exhibition space [14]. Compared to the generative process, Hermann’s approach was more compositional, as he looked into how he could modify the conventional measure of the site and transform it into what he had in mind. He looked into the ground composition of the site and its segregation.
http://s3images.coroflot.com/user_files/individual_files/original_420367_ DGgR6XNx_m5uBGeG5oYEQE6Qg.jpg
24
As a start, he examined the site and treated it as one interconnected system that work underground, looking at the details of the existing site condition. From the retrieved information, parametric design approach was used based on the dynamic system of the ground, creating the form of the pavilion. In order to achieve a permeable structure, Hermann altered the parameters to create some geometrical outcome [16].
http://www.christoph-hermann.com/wp-content/uploads/2011/10/parametric-architecture-pavilion-christoph-hermann-01.jpg
In attempt to solve the integrating-with-nature dilemma of a project, Hermann took on a different approach in designing this project. The site of the project is the Sigmund Freud Park in Vienna, one main recreational area in the region and he wanted to create an assembly of spatial configurations that fluently collaborate with one another to cater the existing qualities on the site being a recreational area and the expected one, which is an exhibition space [15]. Compared to the generative process, Hermann’s approach was more compositional, as he looked into how he could modify the conventional measure of the site and transform it into what he had in mind. He looked into the ground composition of the site and its segregation. As a start, he examined the site and treated it as one interconnected system that work underground, looking at the details of the existing site condition. From the retrieved information, parametric design approach was used based on the dynamic system of the ground, creating the form of the pavilion. In order to achieve a permeable structure, Hermann altered the parameters to create some geometrical outcome [16].
http://www.coroflot.com/christoph_hermann/freud-pavillion
http://www.coroflot.com/christoph_hermann/freud-pavillion
25
Architecture has always been a discouse to communicate ideas, cultures and values through structure or built forms. Even so, it has had numerous shift throughout the years. With the ongoing technological advancement, the shift is now towards the digitilisation of architecture, which is signaled by the use of Computer Aided Design tools in computational design. These tools help designers to deal with numerous issues that occur in today’s society, especially environment.
A. 3. Conclusion
With the utilisation of parametric design and algorithmic thinking, new logic and thinking in crafting the built forms and environments are erected. Other than that, more possibilities - that were unthinkable during the previous era - have been implied and used in application of architectural practices. Designers in the digital era is now focusing in the behind-the-scene area, and less on the final outcome, as was mentioned on the discussed projects. Even though this change is still rejected by some group of people, I personally think that this design approach should be embraced more and not discouraged, as it creates more opportunities - good ones. In order for change to happen, sometimes we need to get out of the box. Not overlooking the computational design is one way to make changes happen.
Looking at architectural literature and numerous projects on computational architecture has been one eye-opener to another design method that I have not really explored before. I did aware of all the change but never really notice let alone study the reasoning and principles behind it. When I first studied the Grasshopper plug in, it felt a bit daunting because it is still very foreign to me. However, the readings and process of finding out precedents give me more understanding. The definition of computational designing itself is interesting for me, because i have never come accross something like that. I began to gain more knowledge and build more interest towards this subject. Also, exploring grasshopper is something that help me understand algorithmic approach and how it influence my thinking towards generating forms - because we have to first figure out the input before processing it into the output. It is undeniable that it is still very difficult to familiarise myself with all the elements of this design approach - especially the software bit - but it has exposed me to new knowledge and raise my awareness about how architecture has changed.
26
A. 4. Learning Outcomes
A.5. Alogorithmic Sketch
“Initial idea of the first Grasshopper trial was to transform a smooth-curved surface into sets of boxes. The aim of this exercise is to see how Grasshopper system act to give partition and grid on the surface.”
The first version use the slider to determine the number of points that’s contained in one square.
The second one - connects the slider into the square input. The result is bulkier compared to the first one. This shows that different inputs can create different outcomes, thus the all process must be thoroughly considered (input-process-output) to generate the outcome.
27
Reference List
28
1: Oxford Dictionary. (2015). viewed 17th March 2015, <http://www.oxforddictionaries.com/definition/english/architect>. 2: Kalay, Yehuda E. (2004). Architecture’s New Media: Principles, Theories, and Methods of Computer-Aided Design (Cambridge, MA: MIT Press), pp. 5-25. 3: Mordaunt-Crook. (1971). Victorian Architecture: A Visual Anthology. Plates 44&45. 4: Fry, Tony (2008). Design Futuring: Sustainability, Ethics and New Practice (Oxford: Berg), p.1 – 16. 5: Wood, John (2007). Design for Micro-Utopias: Making the Unthinkable Possible (Aldershot: Gower). 6: Peters, Brady. (2013) ‘Computation Works: The Building of Algorithmic Thought’, Architectural Design, 83, 2, pp. 08-15. 7: Canadian Centre for Architecture. N.d. Greg Lynn: Embryological House. Viewed 16th March 2015. <http://www.cca.qc.ca/ en/collection/6-greg-lynn-embryological-house>. 8: Burns, Karen. N.d. Greg Lynn’s Embryological House Project: The “Technology” and Metaphors of Metorsmof Architecture. Viewed 16th March 2015. <https://opus.lib.uts.edu.au/research/bitstream/handle/2100/467/Burns_Greg%20Lynn.pdf?sequence=1>. 9: Lander, Jessica. (2014). Doris Kim Sung ’86: Breathable Buildings. Viewed 17th March 2015. http://paw.princeton.edu/issues/2014/03/05/pages/5853/index.xml>. 10: Oxman, Neri. (2007). Subterrain. Viewed 16th March 2015. <http://materialecology.com/projects/details/subterrain>. 11: Menges, Achim. (2010). ICD/ITKE Research Pavilion. Viewed 17th March 2015. <http://www.achimmenges.net/?p=4443>. 12: Kohler, Gramazio. N.d. Gantenbein Vineyard Façade, Flasch, Switzerland, 2006. Viewed 16th March 2015. <http://www. gramaziokohler.com/web/e/bauten/52.html>. 13: Gu, Ning. 2014. ‘Computational Design Thinking’. Architecture Bullertin – Spring 2014. pp. 10-11. 14: Coroflot. N.d. Freud Pavilion by Christoph Hermann. Viewed 18th March 2015. <http://www.coroflot.com/christoph_hermann/freud-pavillion>. 15: Uncomn. N.d. Sigmund Freud Pavilion: Parametric Architeture Explorations. Viewed 17th March 2015. <http://www.uncommn.com/parametric-architectures/parametric-architecture-pavilion/>. 16: Arch2O. 2013. Sigmund Freud Pavilion – Christoph Hermann. Viewed 16th March. <http://www.uncommn.com/parametric-architectures/parametric-architecture-pavilion/>. 17: Kolarevic, Branko. 2003. Architecture in the Digital Age: Design and Manufacturing (New York; London: Spon Press).
29
PAR
CRITERIA
2
CRITERIA DESIGN
RT B
A DESIGN
CRITERIA DESIGN
3
GEOMETRY / dʒɪˈɒmɪtri/
ruled sur faces. paraboloids. minimal sur face. geodesics. relaxation and general form binding. booleans.
4
CRITERIA DESIGN
CRITERIA DESIGN
5
CASE STUDY 1.0 LAVA GREEN VOID
The idea behind this project was to def y the traditional idea of the application of a structure. Green Void was created to test the possibility of creating more from a minimal structure. The form of the structure was a result of a study on the most efficient connection of different boundaries within a 3-Dimensional space. Inspiration came from cells, cr ystals to the formation of soap bubbles. What they were tr ying to achieve is creating a minimal sur face structure that follows the forces of gravity, tension and growth ( ht t p : // w w w. arc h d ail y. c o m / 10 2 3 3 /g re e n - vo i d - l ava / ). Using the latest digital modelling and fabrication techniques, the form was created. The computer-model, based on the simulation of complexity in naturally evolving systems, feeds directly into a production-line of sail-making-sof tware and digital manufacturing. Regarding the brief for our design, this project has the potential in generating a relaxed form for the structure and help us understand the principle of tensioned sur face that is needed in creating the design for our project. In regards to our project brief of making a hanging coccoon - net like structure, this project directs us and gives inspiration into exploring a more organic and tensile form. The relaxed sur face method has the possibility to generating more possible sur face for people to use.
FIG.1: RELACED SURFACE - GREEN VOID
6
CRITERIA DESIGN
CLOCKWISE: FIG2, 3, 4, 5
CRITERIA DESIGN
7
8
CRITERIA DESIGN
STUDY
OF MINIMAL SURFACES MATERIAL PERFORMANCE
&
Green Void project revolves around how the structure can generate minimal surface through the formation of anchor points. Based on given 3D model and Kangaroo plugin definition, a study on how the tension can be manipulated using anchor points. It creates various possibilities of the structure to have minimum surface, just like how they wanted the structure to be lightweight. The study of the model also gives insight to how should the material perform the structure. It tests out the performative element of the material needed and how materials can generate the form of the project itself.
9
CASE STUDY 1.0
CRITERIA DESIGN
9
The first few iterations mainly manipulating the anchor points for the structure. Anchor points were derived from modifying the base curve for the form. Points were then added and subtracted to test the form that it can produce. Through Kangaroo plugin as well, the tension between different surfaces varies. This iteration shows the possibility of the form having a different sizes of surfaces.
10
CRITERIA DESIGN
Curve based on the basic form of Green Void was created and modified through the help of Exoskeleton. It creates different type of surfaces which are now forming tubes-like shape for the structure. It also shows how the structure can connect through this shape, creating an interconnected space and joint surfaces along the form. By altering the number of mesh and radius, it can generate various forms with different
CRITERIA DESIGN
11
GEODESIC CURVES SG2012 MATSYS GRIDSHELL
This project was designed to test out the relation between structures and material performance. The structure is erected from straight wood members and bent to follow the geodesic curves that makes the structure. The wooden members form gridshell on a relaxed surface. This project focused mainly on constructing geodesic curves to form a grid system that can further be analysed to minimize material. In addition, a loop in between the geodesic curves allow the structure to have smooth workflow. It helps integrating the geometry, structures and material performance. Computational designing method was used to develop the gridshell system and in analyzing the material performance. It allows for optimal maximisation of the space while stil minimizing the material use. This case study explores another aspect of minimal surface structure. Even though it has rigid structural system, the grid system erected from the geodesic curves allow for flexible and organic aesthetic for the project.
12
CRITERIA DESIGN
CRITERIA DESIGN
13
14
CRITERIA DESIGN
CRITERIA DESIGN
15
REVERSE ENGINEERING
curve
established points for geodesic curves
shifting points for curve meeting points
intersecting curves through points
16
CRITERIA DESIGN
REVERSE ENGINEERING
CRITERIA DESIGN
17
TECHNIQUE DEVELOPMENT part 01
18
CRITERIA DESIGN
CRITERIA DESIGN
19
OUTCOME FROM THIS PROCESS
20
CRITERIA DESIGN
After altering the gridshell definition, it is realised that the concept of gridshell is not really compatible with our classâ&#x20AC;&#x2122; brief.Gridshell should be something that touches the ground. In regards to our brief, gridshell is too structural and rigid to be a suspendedflexible structure. Thus, a different approach was taken to find the form of the project. While still taking the idea of grid system, form finding through Kangaroo physics was taken to generate different forms for the project. This other approach relies on cross section grid to create a surface. Then it is used to create different outcomes to choose to become the final form.
CRITERIA DESIGN
21
CONCEPTUAL INSPIRATION: MANNHEIM MULTIHALLE FREI OTTO, 1975
FIG.2
FIG.2
This project by Frei Otto shares the same method of form finding. Otto used gridshell as the basis shape and then created different possibilities of it in creating a form for the structure. Physics of how gridshell behaves when hanged was studied and analysized in this process. Taking on this approach, the form of a gridshell was utilised to generate a more flexible form for the brief. Using Kangaroo plug in, different forms were generated. The results are pretty satisfying as it can successfully create flexible structure with minimal surface, just like what had been discussed in the previous sections.
22
CRITERIA DESIGN
TECHNIQUE DEVELOPMENT part 02.
Based on the two case studies discussed above, the design approach consists of two specific areas: one is the relaxed and minimum surface inspired by Green Void to create a suspended structure and the other one is efficien design using grid system to minimise material use. Both approach includes the minimum surface aspect into the design as a form to test out the material performance. While the technique in case study 2.0 was explored, it was then apparent that the application of the technbique is incompatible with the design brief that we received. Thus, the change of approach was taken. As a starting point, the idea of curves forming a grid as an outer structure became the basis for the form finding process. Basic grid was created and then referenced to Grasshopper. Then Kangaroo plugin was utilised as a tool to apply force and to see how the tension can give various formation to the basic grid. From the simulation, different possibilities were generated and be analysed.
In relation to the site, the main control points that were referenced as the anchor points symbolise the supporting element of the structure, which is the exisiting trees on the site - as it is going to be hung and suspended off the ground. The distance of the anchor points were estimated accordingly to the condition on site.Then the height of the points represent the points where the structure is going to be hooked or hung. This process is more successful compared to developing the gridshell definition, as it is too structural to be applied to the brief. Using Kangaroo, the generation of the form was clearer and more buildable. Materialisation was more applicable as well compared to the gridshell technique. Thus, for this project, gridshell technique definition was shifted with the force simulation method in Kangaroo.
CRITERIA DESIGN
23
TECHNIQUE DEVELOPMENT part 02.
Draping over surface
24
CRITERIA DESIGN
Force: Unit Z (-150)
Force: Unit Z (150)
Force: Unit Z (10, 20, 75, 150)
The ones that have most potential other than the other iterations.because thereâ&#x20AC;&#x2122;s more surface that can be utilised by the park users like sittiing or lying down. Also, having anchor points that are situated at low level gives an easy access for the people to use the structure. This allows for the people to climb on to and thus creating access path possibility. Another reason is it has enough connections route to the supporting element, which are the 4 trees on the site. The connection needs to be taken into account and it has to confirmed that it is firm and strong.
CRITERIA DESIGN
25
TECHNIQUE PROTOTYPE
In this prototyping process, poly string is used to represent net-like and fibrous material. Different connection methods were also tested to see which one is the most suitable one for the structure. The connection must support hanging and tension from the surface.
26
CRITERIA DESIGN
Weaving and knotting technique were chosen because it gives the most stability out of the tested connection types. It also still gives the flexibility that we want of this structure.
CRITERIA DESIGN
27
The design direction for the brief is incorporating both the ideas from the two case studies. Through the minimum surface and the grid system from the gridshell, the aim is to create a structure that can showcase the continuous relationship between the development of technology, social culture and also the natural systems that happen around people. This design is aimed to generate new possible outcomes of the combination of all the system mentioned above.
28
CRITERIA DESIGN
Site chosen is the Quarries Park playground, next to the Quarries skatepark. The reason being is that it has an interactive qualities with all the features that can engage different generations in one space. It has the potential in creating a space that cam ne utilised by both children and adults. Also, the space offers exposure as it has a high traffic with all the people going to the playground, skatepark, and passing through to and from the Merri Creek trail. Other than that, the site is located higher thanthe Merri Creek ground level, so it offers a clear view to the city. Lastly, the close approximity to the surrounding neighborhood is also a design consideration as it allows for more interaction of the people around Quarries park.
CRITERIA DESIGN
29
30
CRITERIA DESIGN
CRITERIA DESIGN
31
FEEDBACK After Part B, the chosen technique of gridshell was not suitable for the design brief of creating hammock/canopy/ coccoon structure. This is because a gridshell structure is mostly applicable only in more rigid structure and it is usually should be on the ground. The point of the brief itself is to create a tensile structure and gridshell technique is not really suitable. Therefore, a different approach was taken and the grid structure idea was adapted in the form finding process. Surface was created from grid and the minimal surface was achieved through Kangaroo simulation. This gives more possibility in creating a structure that is buildable and fabricatable.
32
CRITERIA DESIGN
RE-VISITATION Design Focus
Case Study 1.0
Case Study 2.0
Technique Development
Technique Prototype Feedback
“Can gridshell be combined with minimal surface to create a discourse?” “How can the structure be integrated and related to the site characteristics?”
CRITERIA DESIGN
33
DESIGN PROPOSAL
CANOPY FUNCTION: SHADING DEVICE & RESTING AREA
34
CRITERIA DESIGN
The form star ted from 4 surfaces that later were put into Kangaroo mesh relaxation to find a tensile form for the canopy structure. Using diagonal beams that run through between the trees, the structure sits on top of the beams. The gridded surface provides shading for the people that go below it. Grid is constructed by the waffle grid system to allow connections at the intersections of the strip so it gives more rigid connection to the structure.
CRITERIA DESIGN
35
DESIGN PROPOSAL
Shading Device
36
CRITERIA DESIGN
CONNECTION DETAIL
CRITERIA DESIGN
37
LEARNING OBJECTIVES AND OUTCOMES
Throughout part B, we began to develop a â&#x20AC;&#x153;personal repertoireâ&#x20AC;? in computational design. The process of generating iterations as much as possible and recreating definitions help us in understanding more about the computational design process. Having an understanding in the definitions really proved to be very essential in this design process. This was sure a very challenging and different process compared to the conventional way of knowing what the potential outcome and work towards it. Through part B, we learn to develop our understanding in a different approach of designing. Computational design generate more possibilities of outcome as it can output multiple variations within one definition. Parameter manipulation gives us the ability to invesitigate or design more thoroughly and thus can help us generate an optimised outcome.
38
CRITERIA DESIGN
CRITERIA DESIGN
39
PAR
DETAILED
40
CRITERIA DESIGN
RT C
D DESIGN
CRITERIA DESIGN
41
C.1 DESIGN CONCEPT Reflecting from Interim Submission
FEEDBACK From the interim presentation, it was obvious that the project did not have a solid background to it. The intention is clear, which is to become a shading device for the specific area. However, in terms of the form, it is not explored enough. The form was too basic and simplistic and did not have enough justification for it. In terms of the construction, the form was just made of a waffle grid, which does not really characterise the chosen ressearch field, the gridshell system. Also, the structure did not really fulfill the shading function, as the shading was inadequate. The basic placement and composition of the shading was not really clear and did not have enough reasoning. The project needs a different solution to these design issues. A different construction method and more background are needed in commencing with Par t C. However, the site is not changed and it will still be used in Par t C Design Proposal.
42
PROJECT PROPOSAL
Moving forward to a new form Creating a shading device that gives adequate coverage for the people around the chosen site.
PROJECT PROPOSAL
43
SITE ANALYSIS The main area for the project is the Merri Creek area, a waterway in southern parts of Victoria, and runs along the northern Melbourne suburbs. It facilitates numerous different activities along the creek. As for the project, it will be located in the Quarries Park area, in Clifton Hill suburb. It is approximately located 6 km from the Melbourne CBD. Quarries park is accessible by car and the public commuter lines, which are train and buses. 1
44
PROJECT PROPOSAL
SITE JUSTIFICATION
Interactive Space Quarries Park has several interesting attributes which are playground, skatepark, walking trail and bbq pits that creates potential in creating a space that can be used by different age groups (not just kids from the playground).
High Traffic Walking and running trail was apparent, also proximity to Merri Creek trail is close. Traffic from and to skatepark and also the the cricket club also supports the high traffic factor.
Proximity to Surrounding Neighbourhood Higher chance of the structure be utilised by the people around this area. Also, creating a space that can be for gathering of the people.
Resting Area
Provides more shaded space for the people to sit in between their activities around the park area.
View Located in the higher part of the creek, which gives clear view to the Melbourne cityscape.
PROJECT PROPOSAL
45
SITE ANALYSIS
SITE CIR CULAT
The chosen site is located in the middle of main p ways the area --> giving exposure to the
POINTS OF INTER location of the project
The site is located with close approximaty to sev points of interest. --> generating pe
The exposed area of the site indicates the possibility of developing a structure that provides shading for the people. It will provide closure for the people that are just not in the playgorund area, but also the surroundings.
PEOPLEâ&#x20AC;&#x2122;S CONCENTR AT
The site is located in the middle of a neighbourhood with close proximity to the creek --> high tr
46
PROJECT PROPOSAL
VIEWS FROM SITE
TION
pathe site
View of Melbourne CBD
View of the Surrounding Neighbourhood (Clifton Hill area)
REST
veral eople
View towards the creek
View towards the skatepark
TION
d and affic
PROJECT PROPOSAL
47
STUDYING SUN PATH For the composition of the shading of the structure, the movement of the sun is studied through sun path. Based on this, we can derive the area that needs more shading and vice versa. This study also determines the material chosen for the structure to give different intensity of sun light that can go through within the space. 2
Sunlight direction during SUNSET
Sunlight direction during NOON
Sunlight direction during SUNRISE
The result of the sun path study
48
PROJECT PROPOSAL
Quarries Park - Chosen Site
Based on the sun path study, it can be seen which area needs shading compared to the other. Shading is based on the sun light during the afternoon. The sun path diagram indicates that the area to the left (Western) is more exposed to the sun
STARTING FINAL DESIGN
PROJECT PROPOSAL
49
FORM FINDING PROCESS
50
PROJECT PROPOSAL
Form finding starts with creating a surface that foolows the 4 points, which indicate the trees. They are the supproting points for this hanging canopy structure. The final form that was chosen covers the whole points, giving a full coverage of the space. Later, Kangaroo plug in is used to generate more possibilities for the form to be developed. This is to find a more varied forms to choose from. Most outcome forms this organic form that resembles the net structure from previous experimentation.
PROJECT PROPOSAL
51
FORM FINDING PROCESS
52
PROJECT PROPOSAL
Mesh relaxation method is used to find the framing part of the canopy. Instead of using the whole form, the outer curve of the form is used for the structure. This gives a more undulating shape for the whole structure. Also, it creates levelled surface, allowing different level to install the canopy structure and the fabric for it. In addition, it provides more surface to work with for the structure. This curve acts as the framing part for the structure inside it, that acts as the shading device. This approach takes the form in a less literal manner compared to the waffle grid approach that was taken earlier in the process.
PROJECT PROPOSAL
53
CANOPY STRUCTURE
Structural plywood connecting element of the structure that is connected to the supporting trees
Western end: most sun penetration. Thus, creating a less spaced structure to provide more shading
54
PROJECT PROPOSAL
The inner plywood framing of the canopy that holds the shading material
Eastern end: less sunlight Structure is more disparsed to allow sun getting in as it doesnt get as much as the other side
CONSTRUCTION DETAIL Structure is divided into the structural connecting elements and the inner framing. The inner framing itself is connected through little openings to allow the structure going in and creating rigid connetion. Before fabricating, they are separated into two different elements.
Strips of the inner framing
Structural connecting detail
Holes fpr the canopy fabric to go through
PROJECT PROPOSAL
55
CONNECTION DETAIL
Connection to trees involve hooks and tension cables to provide adequate support for the structure
Using steel plates and screws to install the inner framing to the outer element of the structure that connects to the trees.
56
PROJECT PROPOSAL
SITE MODEL
1:100
PROJECT PROPOSAL
57
FINAL MODEL
58
PROJECT PROPOSAL
PROJECT PROPOSAL
59
60
PROJECT PROPOSAL
PROJECT PROPOSAL
61
62
PROJECT PROPOSAL
PROJECT PROPOSAL
63
64
PROJECT PROPOSAL
REFERENCES 1 http://www.land.vic.gov.au/ 2 http:// http://suncalc.net/#/-37.7902,145.0044,16/2015.06.12/15:54
PROJECT PROPOSAL
65