Building Structures: Structural Analysis of a Bungalow Report

Page 1

Project 2 Structural Analysis of A Bungalow Building Structures (ARC 2522/2523)

Group Members: Ang Wei Yi (0317885) Chan Yi Qin (0315964) Tang Pei Kei (0318545)

Tutor: Mr Adib


Content Page 1. Introduction

1

2. Architectural Floor Plan

2-4

3. Structural Plan

5-7

4. Load Distribution Plan

8-9

5. Foundation Plan

10

6. Design Brief 7. Beams Analysis Report 8. Column Analysis Report

11-14 15-114 115-149


Introduction

This bungalow is designed to consist of one master bedroom with attached bathroom, minimum of three bedrooms, two bathrooms, kitchen, living hall, dining area, and one store room within some selection of building layout. Little design element in this bungalow, but plays with the spatial arrangement and location of wall structure. We have to come out with our own design of columns and beams. Using structural analysis to prove the whole design is buildable and structural stable. We have chosen two very odd building layouts to challenge a more complex structural analysis calculation. We have to know about the whole system of load transfer from the roof to the beam to the column and to foundation.

2


Quantity Dead Load and Live Load Assumed Density of Materials Reinforced Concrete = 24kN/m3 Brick Wall = 19kN/m3

Strength of Material Concrete Strength (Fcu) = 30N/mm2 Yield Strength of Concrete Column (Fy) = 460 N/mm2

Thickness, Size and Height of Components Thickness of Brick Wall = 150mm Height of Brick Wall = 3000mm Thickness of Floor Slab = 150mm Size of Main Beam = 200mm x 300mm Size of Secondary Beam = 150mm x 300mm Height of the floors = 3000mm Size of Column = 150mm x 150mm Floor Height = 3000mm

Dead Load Acting on Structure Main Beam Self-weight = beam size x density of concrete = (0.2m x 0.3m) x 24kN/m3 = 1.44kN/m Secondary Beam Self-weight = beam size x density of concrete = (0.15m x 0.3m) x 24kN/m3 = 1.08kN/m

11


Brick Wall Self-weight = wall height x wall thickness x density of brick wall = 3m x 0.15m x 19kN/m3 = 8.55kN/m Slab Self-weight = slab thickness x density of concrete = 0.15m x 24kN/m3 = 3.6kN/m2 Column Self-weight = column size x density if concrete = (0.3m x 0.3m) x 3 x 24kN/m3 = 6.48kN/m

Quantity Live Loads Acting on Structure (According to UBBL) Bungalows = 1.5kN/m2 Bedrooms = 1.5kN/m2 Living Room = 4.0kN/m2 Dining Room = 2.0kN/m2 Kitchen (Dry/ Wet) = 3.0kN/m2 Storage = 2.5kN/m2 Toilet = 2.0kN/m2 Laundry = 3.0kN/m2 Stairs = 1.5kN/m2 Lounges = 2.0kN/m2 Corridor = 4.0kN/m2

12


Identity One Way or Two Way Slab Indicating the distribution of load from slab to beam, Ly = longer side of slab Lx = shorter side of slab When Ly/Lx> 2, it is a one way slab; When Ly/Lx< 2 or = 2, it is a two way slab;

Ground Floor Slab A-B/1-2 = 2993/2499 = 1.19 < 2 (Two Way Slab) Slab A-B/2-3 = 2993/2500 = 1.20 <2 (Two Way Slab) Slab A-B/3-4 = 4013/2993 = 1.01 <2 (Two Way Slab) Slab A-B/4-5 = 4852/2993 = 1.22 <2 (Two Way Slab)

Slab B-C/1-2 = 3000/2499 = 1.20 < 2 (Two Way Slab) Slab B-C/2-3 = 3000/2500 = 1.20 <2 (Two Way Slab) Slab B-C/3-4 = 4013/3000 = 1.34 <2 (Two Way Slab) Slab B-C/4-5 = 4852/3000 = 1.62 <2 (Two Way Slab)

Slab C-D/1-3 = 4999/2847 = 1.76 < 2 (Two Way Slab) Slab C-D/3-4 = 4013/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4-4.2 = 4001/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4.2-6 = 4858/2847 = 1.71 < 2 (Two Way Slab)

Slab D-D’/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D’-E/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D-E/3-3.1 = 4999/4003 = 1.25 < 2 (Two Way Slab) Slab E-F/3-3.1 = 2852/1987 = 1.44 < 2 (Two Way Slab)

Slab D-F/4-4.2 = 5990/5149 = 1.16 < 2 (Two Way Slab) Slab D-F/4.2-6 = 5990/4858 = 1.23 < 2 (Two Way Slab)

13


Slab F-G/3-4 = 4020/2852 = 1.41 < 2 (Two Way Slab) Slab F-G/4-4.2 = 4020/4001 = 1.00 < 2 (Two Way Slab) Slab F-G/4.2-6 = 4858/4020 = 1.21 < 2 (Two Way Slab)

First Floor Slab A-B/1-2 = 2993/2499 = 1.19 < 2 (Two Way Slab) Slab A-B/2-3 = 2993/2500 = 1.20 <2 (Two Way Slab) Slab A-B/3-4 = 4013/2993 = 1.01 <2 (Two Way Slab) Slab A-B/4-5 = 4852/2993 = 1.22 <2 (Two Way Slab)

Slab B-C/1-2 = 3000/2499 = 1.20 < 2 (Two Way Slab) Slab B-C/2-3 = 3000/2500 = 1.20 <2 (Two Way Slab) Slab B-C/3-4 = 4013/3000 = 1.34 <2 (Two Way Slab) Slab B-C/4-5 = 4852/3000 = 1.62 <2 (Two Way Slab)

Slab A-C/5-6 = 5993/4008 = 1.50 <2 (Two Way Slab)

Slab C-D/1-3 = 4999/2847 = 1.76 < 2 (Two Way Slab) Slab C-D/3-4 = 4013/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4-4.2 = 4001/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4.2-6 = 4858/2847 = 1.71 < 2 (Two Way Slab)

Slab D-D’/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D’-E/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D-E/3-3.1 = 4999/4003 = 1.25 < 2 (Two Way Slab)

Slab D-F/4.2-6 = 5990/4858 = 1.23 < 2 (Two Way Slab)

14


Beam Analysis Report (Tang Pei Kei | 0318545)

Architectural Plan

15


Structural Plan

Load Distribution Plan 16


Beam 4/F-G FF

Dead Load Dead Load from Beam Self-weight = 1.08kN/m

G 4020 1.08kN/m Beam Self-weight

Dead Load on slab F-G/3-4 = slab self-weight x (Length/ 2)

7.2kN/m

2

= 3.6kN/m x (4/2)m

Slab F-G/3-4

= 7.2kN/m 7.2kN/m

Dead Load on slab F-G/ 4-4.2

Slab F-G/4-4.2

= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4/2)m = 7.2kN/m 15.48kN/m

Total Dead Load Total Dead Load

= 1.08kN/m + 7.2kN/m +7.2kN/m = 15.48kN/m

Live Load

FF

Live Load on slab F-G/3-4 = Live Load Factor on Bungalow (UBBL) X (Length/2)

4020

G

3kN/m

= 1.5kN/m2 x (4/2)m

Slab F-G/3-4

= 3kN/m 3kN/m

Live Load on slab F-G/ 4-4.2

Slab F-G/4-4.2

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4/2)m = 3kN/m 6kN/m Total Live Load

Total Live Load = 3kN/m + 3kN/m = 6kN/m

17


Ultimate Load Total Ultimate Dead Load

FF

= total dead load x dead load factor

4020

G

31.27kN/m

= 15.48kN/m x 1.4 = 21.67kN/m

Total Ultimate Load

Total Ultimate Live Load = total live load x live load factor = 6kN/m x 1.6 = 9.6kN/m

Total Ultimate Load = total ultimate dead load + total ultimate live load = 21.67kN/m + 9.6kN/m = 31.27kN/m

Reaction Force on Beam

FF

Total Load on beam 4/F-G

4020

G

31.27kN/m

= total ultimate load x length of the beam = 31.27kN/m x 4.02m

Free Body Diagram

= 125.71kN Rf

125.71kN

Rg

In this case, the load is equivalent to only one FF

Point load in the middle of the beam, Therefore, Rf = Rg and ∑Fy = 0

4020

G

125.71kN

∑Fy = Rf + Rg - 125.71kN Free Body Diagram

2 Rf = 125.71kN Rf = Rg = 62.86kN

Rf 62.86kN

18

Rg 62.86kN


FF

G

4020 31.27kN/m

Load Diagram 62.86kN

62.86kN 62.86kN

62.86kN - 62.86kN = 0kN

+

A

Shear Force Diagram 62.86kN - 62.86kN = -62.86kN

Bending Moment Diagram +ve = [(2.01 x 62.86) / 2] = 66.19(kNm)

66.19kNm A

Bending Moment Diagram

+ -ve = [(2.01 x -62.86) / 2] = -66.19(kNm) 66.19kNm - 66.19kNm = 0kNm

19


1

2

4

3

5

6

17700 4923 2424

2500

4000

4777

MAID ROOM

STORAGE

WET KITCHEN

W.C.

DRY KITCHEN

4000

2925

A

3000

B

2847

C

18700

D

3928

W.C. GUEST ROOM

DINING AREA

5928

D'

2000

E

4000

F

LIVING AREA

G C

ARCHITECTURAL GROUND FLOOR PLAN 1223

2777

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

3

2

4

5

6

17700 4923 2424

2500

4000

4777

4000

2925

A

BEDROOM 3

W.C.

BEDROOM 2

MASTER BEDROOM

B

3000

W.C.

2847

C

18700

D

3928

W.C. BEDROOM 4

5928

D'

LOUNGE

2000

E

4000

F

G C

ARCHITECTURAL FIRST FLOOR PLAN 2777

1223

2155

4000

1

2

3

1923

619

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

3

2

4

5

6

17700 4923 2500

2424

4000

4000

4777

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

2777

1223

2155

1923

698

ROOF PLAN SCALE 1:150

4000

1

2

3

4078

3.1

4

4.1

4.2

5

6


1

2

4

3

5

6

17700 4923 2424

2500

4000

4778

3998

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

FOUNDATION PLAN 2777

1223

2155

4000

1

2

3

1923

700

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

4

3

2

5

6

17700 4923 2424

2500

4000

4777

4000

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

STRUCTURAL GROUND FLOOR PLAN 2777

1223

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

3

2

4

5

6

17700 4923 2500

2424

4000

4000

4777

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

STRUCTURAL FIRST FLOOR PLAN 2777

1223

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

2

4

3

5

6

17700 4923 2424

2500

4000

4777

4000

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

ROOF STRUCTURAL PLAN 2777

1223

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

2

4

3

5

6

17700 4923 2424

2500

4000

4777

4000

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

LOAD DISTRIBUTION GROUND FLOOR PLAN 2777

1223

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


1

2

4

3

5

6

17700 4923 2424

2500

4000

4777

4000

2925

A

3000

B

2847

C

3928

18700

D

5928

D'

2000

E

4000

F

G C

LOAD DISTRIBUTION FIRST FLOOR PLAN 2777

1223

2155

4000

1

2

3

1923

698

SCALE 1:150

4078

3.1

4

4.1

4.2

5

6


Beam 3.1/ E-F EF

Dead Load Dead Load from Beam Self-weight = 1.08kN/m

F 1987 1.08kN/m Beam Self-weight

Dead Load on slab E-F/3-4 = slab self-weight x (Length/ 2)

5.13kN/m

2

= 3.6kN/m x (2.85/2)m

Slab E-F/3-4

= 5.13kN/m 3.09kN/m

Dead Load on slab D-F/3.1-4.2

Slab D-F/3.1-4.2

= slab self-weight x (Length/ 2) x 1/3 = 3.6kN/m2 x (5.15/2)m x 1/3 = 3.09kN/m 9.3kN/m

Total Dead Load Total Dead Load

= 1.08kN/m + 5.13kN/m + 3.09kN/m = 9.3kN/m

Live Load

EF

Live Load on slab E-F/3-4 = Live Load Factor on Bungalow (UBBL) X (Length/2)

1987

F

2.14kN/m

= 1.5kN/m2 x (2.85/2)m

Slab F-G/3-4

= 2.14kN/m 1.29kN/m

Live Load on slab D-F/3.1-4.2

Slab F-G/4-4.2

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (5.15/2)m x 1/3 = 1.29kN/m 3.43kN/m Total Live Load

Total Live Load = 2.14kN/m + 1.29kN/m = 3.43kN/m

20


Ultimate Load Total Ultimate Dead Load

EF

= total dead load x dead load factor

1987

F

18.51kN/m

= 9.3kN/m x 1.4 = 13.02kN/m

Total Ultimate Load

Total Ultimate Live Load = total live load x live load factor = 3.43kN/m x 1.6 = 5.49kN/m

Total Ultimate Load = total ultimate dead load + total ultimate live load = 13.02kN/m + 5.49kN/m = 18.51kN/m

Reaction Force on Beam

EF

Total Load on beam 3.1/E-F

1987

F

18.51kN/m

= total ultimate load x length of the beam = 18.51kN/m x 2m

Free Body Diagram

= 37.02kN Re

37.02kN

Rf

In this case, the load is equivalent to only one EF

Point load in the middle of the beam, Therefore, Re = Rf and ∑Fy = 0

1987

F

37.02kN

∑Fy = Re + Rf – 37.02kN Free Body Diagram

2 Rf = 37.02kN Re 18.51kN

Rf = Rg = 18.51kN

21

Rf 18.51kN


F

G

1987 18.51kN/m

Load Diagram 18.51kN

18.51kN 37.02kN

37.02kN - 37.02kN = 0kN

+

A

Shear Force Diagram 0kN - 37.02kN = -37.02kN

Bending Moment Diagram +ve = [(1.99 x 37.02) / 2] = 36.83(kNm) -ve = [(1.99 x -37.02) / 2] = -36.83(kNm)

36.83kNm A

Bending Moment Diagram

+

36.83kNm - 36.83kNm = 0kNm

22


Beam D’/3-3.1 3F

Dead Load Dead Load from Beam Self-weight = 1.08kN/m

3.1 2852 1.08kN/m Beam Self-weight

Dead Load from Brick Wall Self-weight = 8.55kN/m 8.55kN/m

Dead Load on slab D-D’/3-3.1

Brick Wall Self-weight

= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4/2)m

7.2kN/m

= 7.2kN/m

Slab D-D’/3-3.1

Dead Load on slab D’-F/3-3.1 7.2kN/m

= slab self-weight x (Length/ 2)

Slab D’-F/3-3.1

= 3.6kN/m2 x (4/2)m = 7.2kN/m 24.03kN/m

Total Dead Load = 1.08kN/m + 8.55kN/m + 7.2kN/m + 7.2kN/m

Total Dead Load

= 24.03kN/m

Live Load

3F

Live Load on slab D-D’/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2)

2852

3.1

3kN/m

= 1.5kN/m2 x (4/2)m

Slab D-D’/3-3.1

= 3kN/m 3kN/m

Live Load on slab D’-F/3-3.1

Slab D’-F/3-3.1

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4/2)m = 3kN/m

23


3F

Total Live Load = 3kN/m + 3kN/m

2852

3.1

6kN/m

= 6kN/m Total Live Load

Ultimate Load Total Ultimate Dead Load

3F

= total dead load x dead load factor

2852

3.1

43.24kN/m

= 24.03kN/m x 1.4 = 33.64kN/m

Total Ultimate Load

Total Ultimate Live Load = total live load x live load factor = 6kN/m x 1.6 = 9.6kN/m

Total Ultimate Load = total ultimate dead load + total ultimate live load = 33.64kN/m+ 9.6kN/m = 43.24kN/m

Reaction Force on Beam

3F

Total Load on beam D’/3-3.1

2852

3.1

43.24kN/m

= total ultimate load x length of the beam = 43.24kN/m x 2.85m

Free Body Diagram

= 123.23kN R3

24

123.23kN

R3.1


In this case, the load is equivalent to only one 3F

Point load in the middle of the beam,

2852

Therefore, R3 = R3.1 and ∑Fy = 0

3.1

123.23kN

∑Fy = R3 + R3.1 - 125.71kN Free Body Diagram

2 R3 = 123.23kN R3 61.62kN

R3 = R3.1 = 61.62kN

3 3

R3.1 61.62kN

3.1

2852 43.24kN/m

Load Diagram 61.62kN

61.62kN 123.23kN

123.23kN - 123.23kN = 0kN

+

A

Shear Force Diagram 0kN - 123.23kN = -123.23kN

Bending Moment Diagram +ve = [(2.85 / 2 x 123.23) / 2] = 87.8(kNm) -ve = [(2.85 / 2 x -123.23) / 2] = -87.8(kNm)

87.8kNm A

Bending Moment Diagram

+

87.8kNm - 87.8kNm = 0kNm

25


Beam F/3-4.2 3.1 F 4F

3F

Dead Load

2852

Dead Load from Beam Self-weight = 1.44kN/m

4.2

1148

4001

1.44kN/m Beam Self-weight

Dead Load on slab E-F/3-3.1 = slab self-weight x (Length/ 2) 3.6kN/m

= 3.6kN/m2 x (2/2)m

Slab E-F/3-3.1

= 3.6kN/m

Dead Load on slab D-F/ 3.1-4.2 10.8kN/m

= slab self-weight x (Length/ 2)

Slab D-F/3.1-4.2

= 3.6kN/m2 x (6/2)m = 10.8kN/m 7.24kN/m

Dead Load on slab F-G/ 3-4

Slab F-G/3-4

= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4.02/2)m = 7.24kN/m 7.24kN/m

Dead Load on slab F-G/ 4-4.2

Slab F-G/4-4.2

= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4.02/2)m = 7.24kN/m

Total Dead Load 19.48kN/m 19.48kN/m

For 3-3.1 = 1.44kN/m + 3.6kN/m + 7.24kN/m

12.28kN/m

= 12.28kN/m For 3.1-4 = 1.44kN/m + 10.8kN/m + 7.24kN/m

Total Dead Load

= 19.48kN/m For 4-4.2 = 1.44kN/m + 10.8kN/m + 7.24kN/m = 19.48kN/m

26


Live Load 3.1 F 4F

3F

Live Load on slab E-F/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2/2)m

2852

1148

4.2 4001

1.5kN/m

= 1.5kN/m

Slab E-F/3-3.1

Live Load on slab D-F/ 3.1-4.2 4.5kN/m

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (6/2)m

Slab D-F/3.1-4.2

= 4.5kN/m

Live Load on slab F-G/ 3-4

3.02kN/m

= Live Load Factor on Bungalow (UBBL) X (Length/2)

Slab F-G/3-4

2

= 1.5kN/m x (4.02/2)m = 3.02kN/m 3.02kN/m

Live Load on slab F-G/ 4-4.2

Slab F-G/4-4.2

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4.02/2)m = 3.02kN/m

Total Live Load For 3-3.1 = 1.5kN/m + 3.02kN/m

7.52kN/m 7.52kN/m

= 4.52kN/m

4.52kN/m

For 3.1-4 = 4.5kN/m + 3.02kN/m Total Live Load

= 7.52kN/m For 4-4.2 = 4.5kN/m + 3.02kN/m = 7.52kN/m

27


3.1 F 4F

3F

Ultimate Load

2852

Total Ultimate Dead Load at Slab 3-3.1 = total dead load x dead load factor

4.2

1148

4001

17.19kN/m

= 12.28kN/m x 1.4

Slab 3-3.1

= 17.19kN/m

27.27kN/m

Total Ultimate Dead Load at Slab 3.1-4 = total dead load x dead load factor

Slab 3.1-4

= 19.48kN/m x 1.4 = 27.27kN/m 27.27kN/m

Total Ultimate Dead Load at Slab 4-4.2

Slab 4-4.2

= total dead load x dead load factor = 19.48kN/m x 1.4 = 27.27kN/m

Total Ultimate Live Load at Slab 3-3.1 7.23kN/m

= total live load x live load factor

Slab 3-3.1

= 4.52kN/m x 1.6 = 7.23kN/m 12.03kN/m

Total Ultimate Live Load at Slab 3.1-4

Slab 3.1-4

= total live load x live load factor = 7.52kN/m x 1.6 = 12.03kN/m 12.03kN/m

Slab 4-4.2

Total Ultimate Live Load at Slab 4-4.2 = total live load x live load factor = 7.52kN/m x 1.6 = 12.03kN/m

28


3.1 F 4F

3F

Total Ultimate Load at 3-3.1 = total ultimate dead load + total ultimate live load

2852

1148

4.2 4001

= 17.19kN/m + 12.03kN/m 39.3kN/m 39.3kN/m

= 29.22kN/m

29.22kN/m Total Ultimate Load

Total Ultimate Load at 3.1-4 = total ultimate dead load + total ultimate live load = 27.27kN/m + 12.03kN/m = 39.3kN/m

Total Ultimate Load at 4-4.2 = total ultimate dead load + total ultimate live load = 27.27kN/m + 12.03kN/m = 39.3kN/m

Point Load at 4 = reaction force for beam 4/F-G at 4/F

18.51kN 62.86kN 39.3kN/m 39.3kN/m

= 62.86kN

29.22kN/m

Point Load at 3.1

Free Body Diagram

= reaction force for beam 3.1/E-F at 3.1/F = 18.51kN

29


3.1 F 4F

3F

Reaction Force on Beam

4.2

8001

Total Load on 3-3.1 = total ultimate load x length of the beam

2852

= 29.22kN/m x 2.85m

1148

4001

39.3kN/m 39.3kN/m

= 83.28kN

29.22kN/m Free Body Diagram

Total Load on 3.1-4 R3

= total ultimate load x length of the beam

83.28kN 45.2kN

157.2kN

R4.2

= 39.3kN/m x 1.15m = 45.2kN

Total Load on 4-4.2 = total ultimate load x length of the beam = 39.3kN/m x 4m = 157.2kN

Point Load at 3.1 = 18.51kN

Point Load at 4 = 62.86kN 18.51kN 62.86kN

∑M = 0

83.28kN

45.2kN

157.2kN

0 = (R3 x 8m) - (83.28kN x 6.58m) - (45.2kN x 4.58m) Free Body Diagram

- (157.2kN x 2m) - (18.51kN x 5.15m) - (62.86kN x 4m)

R3

177.02kN/m

8R3 = 1416.16kNm R3 = 177.02kN ∑F = 0 0 = R3 + R4.2 – 83.28kN - 45.2kN - 157.2kN - 18.51kN - 62.86kN R4.2 = 190.03kN

30

R4.2

190.03kN/m


3.1 F 4F

3F

4.2

8001 2852

1148

4001

18.51kN 62.86kN 39.3kN/m 39.3kN/m 29.22kN/m At Point 3.1A, = [177.02kN – (29.22kN/m x 2.85m)] = 93.74kN

Load Diagram

R3

R4.2

190.03kN/m

177.02kN/m

At Point 3.1B, = [93.74kN – 18.51kN] = 75.23kN At Point 4C, = [75.23kN – (39.3kN/m x 1.15m)] = 30.04kN At Point 4D, = [30.04kN – 62.86kN] = -32.83kN

177.02kN A

+

93.74kN B C 75.23kN

Shear Force Diagram

+D 30.04kN E -32.83kN

G 0kN

-

At Point 4.2E, = [-32.83kN – (39.3kN/m x 4m)] = -190.03kN F

-190.03kN

At Point 4.2F, = [-190.03kN + 190.03kN] = 0kN

446kNm

Bending Moment Diagram +ve = (2.85 x177.02) – [2.85 x (177.02 - 93.74) / 2] + (1.15 x 75.23) – [1.15 x (75.23 - 30.04) / 2] = 385.83 + 60.53 = 446.36  446(kNm) -ve = (4 x -190.03) – [4 x (-190.03+32.83) / 2] = -445.72  -446(kNm)

385.83kNm

Bending Moment Diagram

446kNm – 446kNm = 0kNm

31


DF

Beam 3/D-E

D’F

E

4003

Dead Load

2001

Dead Load from Beam Self-weight = 1.08kN/m

2001

1.08kN/m Beam Self-weight

Dead Load from Brick Wall Self-weight = 8.55kN/m / 2

4.28kN/m

= 4.28kN/m Brick Wall Self-weight

Dead Load on slab D-D’/3-3.1 = slab self-weight x (Length/ 2)

5.13kN/m

= 3.6kN/m2 x (2.85/2)m

Slab D-D’/3-3.1

= 5.13kN/m Dead Load on slab D’-E/3-3.1

5.13kN/m

= slab self-weight x (Length/ 2)

Slab D’-E/3-3.1

= 3.6kN/m2 x (2.85/2)m = 5.13kN/m 9kN/m

Dead Load on slab D-E/1-3

Slab D-D’/1-3

= slab self-weight x (Length/ 2) = 3.6kN/m2 x (5/2)m = 9kN/m

Total Dead Load 19.49kN/m

For D-D’

15.21kN/m

= 1.08kN/m + 4.28kN/m + 5.13kN/m + 9kN/m Total Dead Load

= 19.49kN/m For D’-E = 1.08kN/m + 5.13kN/m + 9kN/m = 15.21kN/m

32


DF

Live Load

D’F

E

4003

Live Load on slab D-D’/3-3.1

2001

2001

= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2.85/2)m 2.14kN/m

= 2.14kN/m

Slab D-D’/3-3.1

Live Load on slab D’-E/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2.85/2)m

2.14kN/m Slab D’-E/3-3.1

= 2.14kN/m

Live Load on slab D-E/1-3 = Live Load Factor on Bungalow (UBBL) X (Length/2)

3.75kN/m

= 1.5kN/m2 x (5/2)m

Slab D-D’/1-3

= 3.75kN/m

Total Live Load For D-D’ = 2.14kN/m + 3.75kN/m

5.89kN/m 5.89kN/m

= 5.89kN/m Total Live Load

For D’-E = 2.14kN/m + 3.75kN/m = 5.89kN/m

33


Ultimate Load DF

Total Ultimate Dead Load at Slab D-D’

D’F

E

4003

= total dead load x dead load factor

2001

2001

= 19.49kN/m x 1.4 27.29kN/m

= 27.29kN/m

Slab D-D’

Total Ultimate Dead Load at Slab D’-E = total dead load x dead load factor 21.29kN/m

= 15.21kN/m x 1.4

Slab D’-E

= 21.29kN/m

Total Ultimate Live Load at Slab D-D’

9.42kN/m

= total live load x live load factor Slab D-D’

= 5.89kN/m x 1.6 = 9.42kN/m 9.42kN/m

Total Ultimate Live Load at Slab D’-E

Slab D’-E

= total live load x live load factor = 5.89kN/m x 1.6 = 9.42kN/m

Total Ultimate Load at 3.1-4

36.71kN/m

= total ultimate dead load + total ultimate live load

30.71kN/m Total Ultimate Load

= 27.29kN/m + 9.42kN/m = 36.71kN/m

Total Ultimate Load at 3.1-4 = total ultimate dead load + total ultimate live load = 21.29kN/m + 9.42kN/m = 30.71kN/m

34


DF

D’F

E

4003

Point Load at D’

2001

2001

= reaction force for beam 3/D-E at 3/D’ = 61.62kN 61.62kN 36.71kN/m 30.71kN/m

Reaction Force on Beam Total Load on D-D’

Free Body Load

= total ultimate load x length of the beam Rd

= 36.71kN/m x 2m

73.42kN

61.42kN

Re

= 73.42kN Total Load on D’-E = total ultimate load x length of the beam = 30.71kN/m x 2m = 61.42kN ∑M = 0 0 = (Rd x 4m) - (73.42kN x 3m) - (61.62kN x 2m)

61.62kN

- (61.42kN x 1m) 73.42kN

61.42kN

4Rd = 404.92kNm Free Body Load

Rd = 101.23kN Rd

∑F = 0

101.23kN/m

0 = Rd + Re – 73.42kN - 61.62kN - 61.42kN Re = 95.23kN

35

Re

95.23kN/m


DF

D’F

E

4003 2001

2001

61.62kN 36.71kN/m 30.71kN/m

Load Diagram Rd At Point D’b, = [101.23kN – (36.71kN/m x 2m)] = 27.81kN At Point D’c, = [27.81kN – 61.62kN] = -33.81kN At Point Ed, = [-33.81kN – (30.71kN/m x 2m)] = -95.23kN At Point Ee, = [-95.23kN + 95.23kN] = 0kN

Re

95.23kN/m

101.23kN/m

101.23kN a

+

27.81kN b -33.81kN

c

e 0kN

Shear Force Diagram

-

d -95.23kN

Bending Moment Diagram

129kNm +ve = (2 x101.23) – [2 x (101.23 - 27.81 )/ 2] = 129.04  129(kNm)

Bending Moment Diagram 129kNm - 129kNm = 0kNm

-ve = (2 x -95.23) – [2 x (-95.23 + 33.81) / 2] = -129.04  -129(kNm)

36


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.