Project 2 Structural Analysis of A Bungalow Building Structures (ARC 2522/2523)
Group Members: Ang Wei Yi (0317885) Chan Yi Qin (0315964) Tang Pei Kei (0318545)
Tutor: Mr Adib
Content Page 1. Introduction
1
2. Architectural Floor Plan
2-4
3. Structural Plan
5-7
4. Load Distribution Plan
8-9
5. Foundation Plan
10
6. Design Brief 7. Beams Analysis Report 8. Column Analysis Report
11-14 15-114 115-149
Introduction
This bungalow is designed to consist of one master bedroom with attached bathroom, minimum of three bedrooms, two bathrooms, kitchen, living hall, dining area, and one store room within some selection of building layout. Little design element in this bungalow, but plays with the spatial arrangement and location of wall structure. We have to come out with our own design of columns and beams. Using structural analysis to prove the whole design is buildable and structural stable. We have chosen two very odd building layouts to challenge a more complex structural analysis calculation. We have to know about the whole system of load transfer from the roof to the beam to the column and to foundation.
2
Quantity Dead Load and Live Load Assumed Density of Materials Reinforced Concrete = 24kN/m3 Brick Wall = 19kN/m3
Strength of Material Concrete Strength (Fcu) = 30N/mm2 Yield Strength of Concrete Column (Fy) = 460 N/mm2
Thickness, Size and Height of Components Thickness of Brick Wall = 150mm Height of Brick Wall = 3000mm Thickness of Floor Slab = 150mm Size of Main Beam = 200mm x 300mm Size of Secondary Beam = 150mm x 300mm Height of the floors = 3000mm Size of Column = 150mm x 150mm Floor Height = 3000mm
Dead Load Acting on Structure Main Beam Self-weight = beam size x density of concrete = (0.2m x 0.3m) x 24kN/m3 = 1.44kN/m Secondary Beam Self-weight = beam size x density of concrete = (0.15m x 0.3m) x 24kN/m3 = 1.08kN/m
11
Brick Wall Self-weight = wall height x wall thickness x density of brick wall = 3m x 0.15m x 19kN/m3 = 8.55kN/m Slab Self-weight = slab thickness x density of concrete = 0.15m x 24kN/m3 = 3.6kN/m2 Column Self-weight = column size x density if concrete = (0.3m x 0.3m) x 3 x 24kN/m3 = 6.48kN/m
Quantity Live Loads Acting on Structure (According to UBBL) Bungalows = 1.5kN/m2 Bedrooms = 1.5kN/m2 Living Room = 4.0kN/m2 Dining Room = 2.0kN/m2 Kitchen (Dry/ Wet) = 3.0kN/m2 Storage = 2.5kN/m2 Toilet = 2.0kN/m2 Laundry = 3.0kN/m2 Stairs = 1.5kN/m2 Lounges = 2.0kN/m2 Corridor = 4.0kN/m2
12
Identity One Way or Two Way Slab Indicating the distribution of load from slab to beam, Ly = longer side of slab Lx = shorter side of slab When Ly/Lx> 2, it is a one way slab; When Ly/Lx< 2 or = 2, it is a two way slab;
Ground Floor Slab A-B/1-2 = 2993/2499 = 1.19 < 2 (Two Way Slab) Slab A-B/2-3 = 2993/2500 = 1.20 <2 (Two Way Slab) Slab A-B/3-4 = 4013/2993 = 1.01 <2 (Two Way Slab) Slab A-B/4-5 = 4852/2993 = 1.22 <2 (Two Way Slab)
Slab B-C/1-2 = 3000/2499 = 1.20 < 2 (Two Way Slab) Slab B-C/2-3 = 3000/2500 = 1.20 <2 (Two Way Slab) Slab B-C/3-4 = 4013/3000 = 1.34 <2 (Two Way Slab) Slab B-C/4-5 = 4852/3000 = 1.62 <2 (Two Way Slab)
Slab C-D/1-3 = 4999/2847 = 1.76 < 2 (Two Way Slab) Slab C-D/3-4 = 4013/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4-4.2 = 4001/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4.2-6 = 4858/2847 = 1.71 < 2 (Two Way Slab)
Slab D-D’/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D’-E/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D-E/3-3.1 = 4999/4003 = 1.25 < 2 (Two Way Slab) Slab E-F/3-3.1 = 2852/1987 = 1.44 < 2 (Two Way Slab)
Slab D-F/4-4.2 = 5990/5149 = 1.16 < 2 (Two Way Slab) Slab D-F/4.2-6 = 5990/4858 = 1.23 < 2 (Two Way Slab)
13
Slab F-G/3-4 = 4020/2852 = 1.41 < 2 (Two Way Slab) Slab F-G/4-4.2 = 4020/4001 = 1.00 < 2 (Two Way Slab) Slab F-G/4.2-6 = 4858/4020 = 1.21 < 2 (Two Way Slab)
First Floor Slab A-B/1-2 = 2993/2499 = 1.19 < 2 (Two Way Slab) Slab A-B/2-3 = 2993/2500 = 1.20 <2 (Two Way Slab) Slab A-B/3-4 = 4013/2993 = 1.01 <2 (Two Way Slab) Slab A-B/4-5 = 4852/2993 = 1.22 <2 (Two Way Slab)
Slab B-C/1-2 = 3000/2499 = 1.20 < 2 (Two Way Slab) Slab B-C/2-3 = 3000/2500 = 1.20 <2 (Two Way Slab) Slab B-C/3-4 = 4013/3000 = 1.34 <2 (Two Way Slab) Slab B-C/4-5 = 4852/3000 = 1.62 <2 (Two Way Slab)
Slab A-C/5-6 = 5993/4008 = 1.50 <2 (Two Way Slab)
Slab C-D/1-3 = 4999/2847 = 1.76 < 2 (Two Way Slab) Slab C-D/3-4 = 4013/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4-4.2 = 4001/2847 = 1.41 < 2 (Two Way Slab) Slab C-D/4.2-6 = 4858/2847 = 1.71 < 2 (Two Way Slab)
Slab D-D’/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D’-E/3-3.1 = 2852/2001 = 1.43 < 2 (Two Way Slab) Slab D-E/3-3.1 = 4999/4003 = 1.25 < 2 (Two Way Slab)
Slab D-F/4.2-6 = 5990/4858 = 1.23 < 2 (Two Way Slab)
14
Beam Analysis Report (Tang Pei Kei | 0318545)
Architectural Plan
15
Structural Plan
Load Distribution Plan 16
Beam 4/F-G FF
Dead Load Dead Load from Beam Self-weight = 1.08kN/m
G 4020 1.08kN/m Beam Self-weight
Dead Load on slab F-G/3-4 = slab self-weight x (Length/ 2)
7.2kN/m
2
= 3.6kN/m x (4/2)m
Slab F-G/3-4
= 7.2kN/m 7.2kN/m
Dead Load on slab F-G/ 4-4.2
Slab F-G/4-4.2
= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4/2)m = 7.2kN/m 15.48kN/m
Total Dead Load Total Dead Load
= 1.08kN/m + 7.2kN/m +7.2kN/m = 15.48kN/m
Live Load
FF
Live Load on slab F-G/3-4 = Live Load Factor on Bungalow (UBBL) X (Length/2)
4020
G
3kN/m
= 1.5kN/m2 x (4/2)m
Slab F-G/3-4
= 3kN/m 3kN/m
Live Load on slab F-G/ 4-4.2
Slab F-G/4-4.2
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4/2)m = 3kN/m 6kN/m Total Live Load
Total Live Load = 3kN/m + 3kN/m = 6kN/m
17
Ultimate Load Total Ultimate Dead Load
FF
= total dead load x dead load factor
4020
G
31.27kN/m
= 15.48kN/m x 1.4 = 21.67kN/m
Total Ultimate Load
Total Ultimate Live Load = total live load x live load factor = 6kN/m x 1.6 = 9.6kN/m
Total Ultimate Load = total ultimate dead load + total ultimate live load = 21.67kN/m + 9.6kN/m = 31.27kN/m
Reaction Force on Beam
FF
Total Load on beam 4/F-G
4020
G
31.27kN/m
= total ultimate load x length of the beam = 31.27kN/m x 4.02m
Free Body Diagram
= 125.71kN Rf
125.71kN
Rg
In this case, the load is equivalent to only one FF
Point load in the middle of the beam, Therefore, Rf = Rg and ∑Fy = 0
4020
G
125.71kN
∑Fy = Rf + Rg - 125.71kN Free Body Diagram
2 Rf = 125.71kN Rf = Rg = 62.86kN
Rf 62.86kN
18
Rg 62.86kN
FF
G
4020 31.27kN/m
Load Diagram 62.86kN
62.86kN 62.86kN
62.86kN - 62.86kN = 0kN
+
A
Shear Force Diagram 62.86kN - 62.86kN = -62.86kN
Bending Moment Diagram +ve = [(2.01 x 62.86) / 2] = 66.19(kNm)
66.19kNm A
Bending Moment Diagram
+ -ve = [(2.01 x -62.86) / 2] = -66.19(kNm) 66.19kNm - 66.19kNm = 0kNm
19
1
2
4
3
5
6
17700 4923 2424
2500
4000
4777
MAID ROOM
STORAGE
WET KITCHEN
W.C.
DRY KITCHEN
4000
2925
A
3000
B
2847
C
18700
D
3928
W.C. GUEST ROOM
DINING AREA
5928
D'
2000
E
4000
F
LIVING AREA
G C
ARCHITECTURAL GROUND FLOOR PLAN 1223
2777
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
3
2
4
5
6
17700 4923 2424
2500
4000
4777
4000
2925
A
BEDROOM 3
W.C.
BEDROOM 2
MASTER BEDROOM
B
3000
W.C.
2847
C
18700
D
3928
W.C. BEDROOM 4
5928
D'
LOUNGE
2000
E
4000
F
G C
ARCHITECTURAL FIRST FLOOR PLAN 2777
1223
2155
4000
1
2
3
1923
619
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
3
2
4
5
6
17700 4923 2500
2424
4000
4000
4777
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
2777
1223
2155
1923
698
ROOF PLAN SCALE 1:150
4000
1
2
3
4078
3.1
4
4.1
4.2
5
6
1
2
4
3
5
6
17700 4923 2424
2500
4000
4778
3998
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
FOUNDATION PLAN 2777
1223
2155
4000
1
2
3
1923
700
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
4
3
2
5
6
17700 4923 2424
2500
4000
4777
4000
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
STRUCTURAL GROUND FLOOR PLAN 2777
1223
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
3
2
4
5
6
17700 4923 2500
2424
4000
4000
4777
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
STRUCTURAL FIRST FLOOR PLAN 2777
1223
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
2
4
3
5
6
17700 4923 2424
2500
4000
4777
4000
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
ROOF STRUCTURAL PLAN 2777
1223
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
2
4
3
5
6
17700 4923 2424
2500
4000
4777
4000
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
LOAD DISTRIBUTION GROUND FLOOR PLAN 2777
1223
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
1
2
4
3
5
6
17700 4923 2424
2500
4000
4777
4000
2925
A
3000
B
2847
C
3928
18700
D
5928
D'
2000
E
4000
F
G C
LOAD DISTRIBUTION FIRST FLOOR PLAN 2777
1223
2155
4000
1
2
3
1923
698
SCALE 1:150
4078
3.1
4
4.1
4.2
5
6
Beam 3.1/ E-F EF
Dead Load Dead Load from Beam Self-weight = 1.08kN/m
F 1987 1.08kN/m Beam Self-weight
Dead Load on slab E-F/3-4 = slab self-weight x (Length/ 2)
5.13kN/m
2
= 3.6kN/m x (2.85/2)m
Slab E-F/3-4
= 5.13kN/m 3.09kN/m
Dead Load on slab D-F/3.1-4.2
Slab D-F/3.1-4.2
= slab self-weight x (Length/ 2) x 1/3 = 3.6kN/m2 x (5.15/2)m x 1/3 = 3.09kN/m 9.3kN/m
Total Dead Load Total Dead Load
= 1.08kN/m + 5.13kN/m + 3.09kN/m = 9.3kN/m
Live Load
EF
Live Load on slab E-F/3-4 = Live Load Factor on Bungalow (UBBL) X (Length/2)
1987
F
2.14kN/m
= 1.5kN/m2 x (2.85/2)m
Slab F-G/3-4
= 2.14kN/m 1.29kN/m
Live Load on slab D-F/3.1-4.2
Slab F-G/4-4.2
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (5.15/2)m x 1/3 = 1.29kN/m 3.43kN/m Total Live Load
Total Live Load = 2.14kN/m + 1.29kN/m = 3.43kN/m
20
Ultimate Load Total Ultimate Dead Load
EF
= total dead load x dead load factor
1987
F
18.51kN/m
= 9.3kN/m x 1.4 = 13.02kN/m
Total Ultimate Load
Total Ultimate Live Load = total live load x live load factor = 3.43kN/m x 1.6 = 5.49kN/m
Total Ultimate Load = total ultimate dead load + total ultimate live load = 13.02kN/m + 5.49kN/m = 18.51kN/m
Reaction Force on Beam
EF
Total Load on beam 3.1/E-F
1987
F
18.51kN/m
= total ultimate load x length of the beam = 18.51kN/m x 2m
Free Body Diagram
= 37.02kN Re
37.02kN
Rf
In this case, the load is equivalent to only one EF
Point load in the middle of the beam, Therefore, Re = Rf and ∑Fy = 0
1987
F
37.02kN
∑Fy = Re + Rf – 37.02kN Free Body Diagram
2 Rf = 37.02kN Re 18.51kN
Rf = Rg = 18.51kN
21
Rf 18.51kN
F
G
1987 18.51kN/m
Load Diagram 18.51kN
18.51kN 37.02kN
37.02kN - 37.02kN = 0kN
+
A
Shear Force Diagram 0kN - 37.02kN = -37.02kN
Bending Moment Diagram +ve = [(1.99 x 37.02) / 2] = 36.83(kNm) -ve = [(1.99 x -37.02) / 2] = -36.83(kNm)
36.83kNm A
Bending Moment Diagram
+
36.83kNm - 36.83kNm = 0kNm
22
Beam D’/3-3.1 3F
Dead Load Dead Load from Beam Self-weight = 1.08kN/m
3.1 2852 1.08kN/m Beam Self-weight
Dead Load from Brick Wall Self-weight = 8.55kN/m 8.55kN/m
Dead Load on slab D-D’/3-3.1
Brick Wall Self-weight
= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4/2)m
7.2kN/m
= 7.2kN/m
Slab D-D’/3-3.1
Dead Load on slab D’-F/3-3.1 7.2kN/m
= slab self-weight x (Length/ 2)
Slab D’-F/3-3.1
= 3.6kN/m2 x (4/2)m = 7.2kN/m 24.03kN/m
Total Dead Load = 1.08kN/m + 8.55kN/m + 7.2kN/m + 7.2kN/m
Total Dead Load
= 24.03kN/m
Live Load
3F
Live Load on slab D-D’/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2)
2852
3.1
3kN/m
= 1.5kN/m2 x (4/2)m
Slab D-D’/3-3.1
= 3kN/m 3kN/m
Live Load on slab D’-F/3-3.1
Slab D’-F/3-3.1
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4/2)m = 3kN/m
23
3F
Total Live Load = 3kN/m + 3kN/m
2852
3.1
6kN/m
= 6kN/m Total Live Load
Ultimate Load Total Ultimate Dead Load
3F
= total dead load x dead load factor
2852
3.1
43.24kN/m
= 24.03kN/m x 1.4 = 33.64kN/m
Total Ultimate Load
Total Ultimate Live Load = total live load x live load factor = 6kN/m x 1.6 = 9.6kN/m
Total Ultimate Load = total ultimate dead load + total ultimate live load = 33.64kN/m+ 9.6kN/m = 43.24kN/m
Reaction Force on Beam
3F
Total Load on beam Dâ&#x20AC;&#x2122;/3-3.1
2852
3.1
43.24kN/m
= total ultimate load x length of the beam = 43.24kN/m x 2.85m
Free Body Diagram
= 123.23kN R3
24
123.23kN
R3.1
In this case, the load is equivalent to only one 3F
Point load in the middle of the beam,
2852
Therefore, R3 = R3.1 and ∑Fy = 0
3.1
123.23kN
∑Fy = R3 + R3.1 - 125.71kN Free Body Diagram
2 R3 = 123.23kN R3 61.62kN
R3 = R3.1 = 61.62kN
3 3
R3.1 61.62kN
3.1
2852 43.24kN/m
Load Diagram 61.62kN
61.62kN 123.23kN
123.23kN - 123.23kN = 0kN
+
A
Shear Force Diagram 0kN - 123.23kN = -123.23kN
Bending Moment Diagram +ve = [(2.85 / 2 x 123.23) / 2] = 87.8(kNm) -ve = [(2.85 / 2 x -123.23) / 2] = -87.8(kNm)
87.8kNm A
Bending Moment Diagram
+
87.8kNm - 87.8kNm = 0kNm
25
Beam F/3-4.2 3.1 F 4F
3F
Dead Load
2852
Dead Load from Beam Self-weight = 1.44kN/m
4.2
1148
4001
1.44kN/m Beam Self-weight
Dead Load on slab E-F/3-3.1 = slab self-weight x (Length/ 2) 3.6kN/m
= 3.6kN/m2 x (2/2)m
Slab E-F/3-3.1
= 3.6kN/m
Dead Load on slab D-F/ 3.1-4.2 10.8kN/m
= slab self-weight x (Length/ 2)
Slab D-F/3.1-4.2
= 3.6kN/m2 x (6/2)m = 10.8kN/m 7.24kN/m
Dead Load on slab F-G/ 3-4
Slab F-G/3-4
= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4.02/2)m = 7.24kN/m 7.24kN/m
Dead Load on slab F-G/ 4-4.2
Slab F-G/4-4.2
= slab self-weight x (Length/ 2) = 3.6kN/m2 x (4.02/2)m = 7.24kN/m
Total Dead Load 19.48kN/m 19.48kN/m
For 3-3.1 = 1.44kN/m + 3.6kN/m + 7.24kN/m
12.28kN/m
= 12.28kN/m For 3.1-4 = 1.44kN/m + 10.8kN/m + 7.24kN/m
Total Dead Load
= 19.48kN/m For 4-4.2 = 1.44kN/m + 10.8kN/m + 7.24kN/m = 19.48kN/m
26
Live Load 3.1 F 4F
3F
Live Load on slab E-F/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2/2)m
2852
1148
4.2 4001
1.5kN/m
= 1.5kN/m
Slab E-F/3-3.1
Live Load on slab D-F/ 3.1-4.2 4.5kN/m
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (6/2)m
Slab D-F/3.1-4.2
= 4.5kN/m
Live Load on slab F-G/ 3-4
3.02kN/m
= Live Load Factor on Bungalow (UBBL) X (Length/2)
Slab F-G/3-4
2
= 1.5kN/m x (4.02/2)m = 3.02kN/m 3.02kN/m
Live Load on slab F-G/ 4-4.2
Slab F-G/4-4.2
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (4.02/2)m = 3.02kN/m
Total Live Load For 3-3.1 = 1.5kN/m + 3.02kN/m
7.52kN/m 7.52kN/m
= 4.52kN/m
4.52kN/m
For 3.1-4 = 4.5kN/m + 3.02kN/m Total Live Load
= 7.52kN/m For 4-4.2 = 4.5kN/m + 3.02kN/m = 7.52kN/m
27
3.1 F 4F
3F
Ultimate Load
2852
Total Ultimate Dead Load at Slab 3-3.1 = total dead load x dead load factor
4.2
1148
4001
17.19kN/m
= 12.28kN/m x 1.4
Slab 3-3.1
= 17.19kN/m
27.27kN/m
Total Ultimate Dead Load at Slab 3.1-4 = total dead load x dead load factor
Slab 3.1-4
= 19.48kN/m x 1.4 = 27.27kN/m 27.27kN/m
Total Ultimate Dead Load at Slab 4-4.2
Slab 4-4.2
= total dead load x dead load factor = 19.48kN/m x 1.4 = 27.27kN/m
Total Ultimate Live Load at Slab 3-3.1 7.23kN/m
= total live load x live load factor
Slab 3-3.1
= 4.52kN/m x 1.6 = 7.23kN/m 12.03kN/m
Total Ultimate Live Load at Slab 3.1-4
Slab 3.1-4
= total live load x live load factor = 7.52kN/m x 1.6 = 12.03kN/m 12.03kN/m
Slab 4-4.2
Total Ultimate Live Load at Slab 4-4.2 = total live load x live load factor = 7.52kN/m x 1.6 = 12.03kN/m
28
3.1 F 4F
3F
Total Ultimate Load at 3-3.1 = total ultimate dead load + total ultimate live load
2852
1148
4.2 4001
= 17.19kN/m + 12.03kN/m 39.3kN/m 39.3kN/m
= 29.22kN/m
29.22kN/m Total Ultimate Load
Total Ultimate Load at 3.1-4 = total ultimate dead load + total ultimate live load = 27.27kN/m + 12.03kN/m = 39.3kN/m
Total Ultimate Load at 4-4.2 = total ultimate dead load + total ultimate live load = 27.27kN/m + 12.03kN/m = 39.3kN/m
Point Load at 4 = reaction force for beam 4/F-G at 4/F
18.51kN 62.86kN 39.3kN/m 39.3kN/m
= 62.86kN
29.22kN/m
Point Load at 3.1
Free Body Diagram
= reaction force for beam 3.1/E-F at 3.1/F = 18.51kN
29
3.1 F 4F
3F
Reaction Force on Beam
4.2
8001
Total Load on 3-3.1 = total ultimate load x length of the beam
2852
= 29.22kN/m x 2.85m
1148
4001
39.3kN/m 39.3kN/m
= 83.28kN
29.22kN/m Free Body Diagram
Total Load on 3.1-4 R3
= total ultimate load x length of the beam
83.28kN 45.2kN
157.2kN
R4.2
= 39.3kN/m x 1.15m = 45.2kN
Total Load on 4-4.2 = total ultimate load x length of the beam = 39.3kN/m x 4m = 157.2kN
Point Load at 3.1 = 18.51kN
Point Load at 4 = 62.86kN 18.51kN 62.86kN
∑M = 0
83.28kN
45.2kN
157.2kN
0 = (R3 x 8m) - (83.28kN x 6.58m) - (45.2kN x 4.58m) Free Body Diagram
- (157.2kN x 2m) - (18.51kN x 5.15m) - (62.86kN x 4m)
R3
177.02kN/m
8R3 = 1416.16kNm R3 = 177.02kN ∑F = 0 0 = R3 + R4.2 – 83.28kN - 45.2kN - 157.2kN - 18.51kN - 62.86kN R4.2 = 190.03kN
30
R4.2
190.03kN/m
3.1 F 4F
3F
4.2
8001 2852
1148
4001
18.51kN 62.86kN 39.3kN/m 39.3kN/m 29.22kN/m At Point 3.1A, = [177.02kN – (29.22kN/m x 2.85m)] = 93.74kN
Load Diagram
R3
R4.2
190.03kN/m
177.02kN/m
At Point 3.1B, = [93.74kN – 18.51kN] = 75.23kN At Point 4C, = [75.23kN – (39.3kN/m x 1.15m)] = 30.04kN At Point 4D, = [30.04kN – 62.86kN] = -32.83kN
177.02kN A
+
93.74kN B C 75.23kN
Shear Force Diagram
+D 30.04kN E -32.83kN
G 0kN
-
At Point 4.2E, = [-32.83kN – (39.3kN/m x 4m)] = -190.03kN F
-190.03kN
At Point 4.2F, = [-190.03kN + 190.03kN] = 0kN
446kNm
Bending Moment Diagram +ve = (2.85 x177.02) – [2.85 x (177.02 - 93.74) / 2] + (1.15 x 75.23) – [1.15 x (75.23 - 30.04) / 2] = 385.83 + 60.53 = 446.36 446(kNm) -ve = (4 x -190.03) – [4 x (-190.03+32.83) / 2] = -445.72 -446(kNm)
385.83kNm
Bending Moment Diagram
446kNm – 446kNm = 0kNm
31
DF
Beam 3/D-E
D’F
E
4003
Dead Load
2001
Dead Load from Beam Self-weight = 1.08kN/m
2001
1.08kN/m Beam Self-weight
Dead Load from Brick Wall Self-weight = 8.55kN/m / 2
4.28kN/m
= 4.28kN/m Brick Wall Self-weight
Dead Load on slab D-D’/3-3.1 = slab self-weight x (Length/ 2)
5.13kN/m
= 3.6kN/m2 x (2.85/2)m
Slab D-D’/3-3.1
= 5.13kN/m Dead Load on slab D’-E/3-3.1
5.13kN/m
= slab self-weight x (Length/ 2)
Slab D’-E/3-3.1
= 3.6kN/m2 x (2.85/2)m = 5.13kN/m 9kN/m
Dead Load on slab D-E/1-3
Slab D-D’/1-3
= slab self-weight x (Length/ 2) = 3.6kN/m2 x (5/2)m = 9kN/m
Total Dead Load 19.49kN/m
For D-D’
15.21kN/m
= 1.08kN/m + 4.28kN/m + 5.13kN/m + 9kN/m Total Dead Load
= 19.49kN/m For D’-E = 1.08kN/m + 5.13kN/m + 9kN/m = 15.21kN/m
32
DF
Live Load
D’F
E
4003
Live Load on slab D-D’/3-3.1
2001
2001
= Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2.85/2)m 2.14kN/m
= 2.14kN/m
Slab D-D’/3-3.1
Live Load on slab D’-E/3-3.1 = Live Load Factor on Bungalow (UBBL) X (Length/2) = 1.5kN/m2 x (2.85/2)m
2.14kN/m Slab D’-E/3-3.1
= 2.14kN/m
Live Load on slab D-E/1-3 = Live Load Factor on Bungalow (UBBL) X (Length/2)
3.75kN/m
= 1.5kN/m2 x (5/2)m
Slab D-D’/1-3
= 3.75kN/m
Total Live Load For D-D’ = 2.14kN/m + 3.75kN/m
5.89kN/m 5.89kN/m
= 5.89kN/m Total Live Load
For D’-E = 2.14kN/m + 3.75kN/m = 5.89kN/m
33
Ultimate Load DF
Total Ultimate Dead Load at Slab D-D’
D’F
E
4003
= total dead load x dead load factor
2001
2001
= 19.49kN/m x 1.4 27.29kN/m
= 27.29kN/m
Slab D-D’
Total Ultimate Dead Load at Slab D’-E = total dead load x dead load factor 21.29kN/m
= 15.21kN/m x 1.4
Slab D’-E
= 21.29kN/m
Total Ultimate Live Load at Slab D-D’
9.42kN/m
= total live load x live load factor Slab D-D’
= 5.89kN/m x 1.6 = 9.42kN/m 9.42kN/m
Total Ultimate Live Load at Slab D’-E
Slab D’-E
= total live load x live load factor = 5.89kN/m x 1.6 = 9.42kN/m
Total Ultimate Load at 3.1-4
36.71kN/m
= total ultimate dead load + total ultimate live load
30.71kN/m Total Ultimate Load
= 27.29kN/m + 9.42kN/m = 36.71kN/m
Total Ultimate Load at 3.1-4 = total ultimate dead load + total ultimate live load = 21.29kN/m + 9.42kN/m = 30.71kN/m
34
DF
D’F
E
4003
Point Load at D’
2001
2001
= reaction force for beam 3/D-E at 3/D’ = 61.62kN 61.62kN 36.71kN/m 30.71kN/m
Reaction Force on Beam Total Load on D-D’
Free Body Load
= total ultimate load x length of the beam Rd
= 36.71kN/m x 2m
73.42kN
61.42kN
Re
= 73.42kN Total Load on D’-E = total ultimate load x length of the beam = 30.71kN/m x 2m = 61.42kN ∑M = 0 0 = (Rd x 4m) - (73.42kN x 3m) - (61.62kN x 2m)
61.62kN
- (61.42kN x 1m) 73.42kN
61.42kN
4Rd = 404.92kNm Free Body Load
Rd = 101.23kN Rd
∑F = 0
101.23kN/m
0 = Rd + Re – 73.42kN - 61.62kN - 61.42kN Re = 95.23kN
35
Re
95.23kN/m
DF
D’F
E
4003 2001
2001
61.62kN 36.71kN/m 30.71kN/m
Load Diagram Rd At Point D’b, = [101.23kN – (36.71kN/m x 2m)] = 27.81kN At Point D’c, = [27.81kN – 61.62kN] = -33.81kN At Point Ed, = [-33.81kN – (30.71kN/m x 2m)] = -95.23kN At Point Ee, = [-95.23kN + 95.23kN] = 0kN
Re
95.23kN/m
101.23kN/m
101.23kN a
+
27.81kN b -33.81kN
c
e 0kN
Shear Force Diagram
-
d -95.23kN
Bending Moment Diagram
129kNm +ve = (2 x101.23) – [2 x (101.23 - 27.81 )/ 2] = 129.04 129(kNm)
Bending Moment Diagram 129kNm - 129kNm = 0kNm
-ve = (2 x -95.23) – [2 x (-95.23 + 33.81) / 2] = -129.04 -129(kNm)
36