M AD L AB EXPLOSION
BOOK 1 IDEAS
Pro duce d by Mis - A rchite cture (Chr istopher Pierce and Chr is M at thews) with Ch ar lot te Mo e and Ele anor D o dm an, D alia Mat suur a Frontini and Inter me diate Unit 9 (2 0 14 – 15 and 2 0 15 – 16) at the A rchite ctur al A s so ciation ( A A ) S cho ol of A rchite cture, London. Janu ar y 2 0 16 D esign Cl aire Lyon
SITE
Sea Mine Depot
IDE AS
8 edibles 8 processes 8 projects (with leek and onion ceramics)
1. FENNEL Dissection & Steaming
Henr y, Janos and Nikki
Fennel dissection and amplific ation plan
Method for unfolding a fennel
Kitchen dissection
Fennel Steami ng.mov
Fennel vein structure analysis
Steam dehydrated fennel
fennel amp l ific ation.mov
dou b l e memb rane stu dy.mov
Fennel dissection
E xpansion ef fect of condensation /precipit ation on double membrane sur face
A nalysis of condensation /precipit ation on double membrane sur face
Fennel c asts
E xpansion /contraction concept for double membrane sur face
2. ARTICHOKE Heating & Smelling
A ntonin, Jeanne and Zineb
Ef fect of controlled heating on ar tichoke leaves
Transforming the ar tichoke flower by controlling its heliotropic proper ties
iii.
ii. W=45 L=65 H=105 75° 80g
Wb=65 Lb=135 H=230 30° 250g
iv.
Wb=90 Lb=90 H=170 45° 250g
W=80 L=85 h=195 50° 260g
W=45 L=60 H=145 90° 140g
Wb=60 Lb=100 H=165 40° 150g 80 cm
Wb=40 Lb=195 H=210 20° 180g 22.5 cm
light (i
Ceramic volumes of dried ar tichoke leaves
37 cm
A pparatus for controlling grow th of the ar tichoke flower
iv. ii.
i.
iii.
20 cm
30 cm
i. Artichoke ower ii. Light beam iii. Light lter (made with the cast negatives of the folded artichoke leaves) iv. Light source (180° exposure)
Re - sc aling and slip - c asting heated ar tichoke leaves
Hollow light filter for single ar tichoke
Section of negative spaces
Smelling the sea mine depot site
Breathing structure
Smell as space generator
per fo rmative paper model.mov
3. BLACKBERRY Pigmentation & SCOBY
Fabienne and Gim
thr ou gh col or car ou sel
vis ibil ity
E1 - E19 [WA LLS] vis: 10
RU BB I
E9
E19
PA VE M EN T
E3
E11
D1
7
D1
F1
D1 0
F7
E18
F4 4
E10
F1
D7
F9
F1
6
D1
D9
F6
D1
D8
G5
C16
G7
C14
F] vis: 3 G1 - G18 [ROO
G8
G4
G1
rotation angle of
C15
G2
F16
D3
D4
F8
3
C17
D1
G3
D2
4
F3
3
F17
F1
E17 1 F1
C18
E12
E7 E1
F1
D6 perpe ndicu lar to viewp oint
1 D1
C11
C6
C10
C7
G14
C1
C4
G15
G16
C8
G13
G12
G11
C9
G9
G10
C12
G6
C13
2
E4
E15
5 F1
D1
D5
0
E13
E2
2
D1
B1
G18
B1
6
C2
3
C5
G17
H1
H3 H8
B8 A6
4 B1
B3
A1
1 H1
1 B1
3 A16
A11
B6 B1
A4 4
B9
A14
A9
H1
2 B1
6
5 B1
H1
H7
H5
H9
H1
B4
H1
2
A2
0
A17
A7
B7
A12
0
B1
H1
7
H1
B2
H1
5
H1 7[ V E GE TA TI
O N
A5
A15
A10
:5 vis
B5
A3
5 is:
B17
H1
C3
H4
H2
H6
K] AN
i
F2
-D
17 [
E] v
F5
E16
E5
5 D1
E8
A18
A8
A13
B1 A 1 - A 18 [WAT ER] vis: 5
B1 7[
V
EG ET AT I
O N
B
C1 - C 18 [GRA SS] vis 7
F1 7[ IN SI D
v L] IL
]
E14
H
H
:8 vis
10 s:
S
F1 -
2D autumn colour spectrum
Top: 3D seasonal colour spectrum Bot tom: 2D seasonal colour spectrum
Sea mine depot site seasonal section
Shell structure for optimising SCOBY yeast tendril grow th
Board and paddle structure for optimising SCOBY yeast tendril grow th
Ceramic paddle structure tests
18 h.d. – 6 triangles
6 h.d. – 6 triangles
12 h.d. – 6 triangles
11 h.d. – 6 triangles
64 h.d. – 24 triangles
22 h.d. – 14 triangles
30 h.d. – 10 triangles
24 h.d. – 8 triangles
18 h.d. – 6 triangles
6 h.d. – 6 triangles
12 h.d. – 6 triangles
11 h.d. – 6 triangles
64 h.d. – 24 triangles
22 h.d. – 14 triangles
30 h.d. – 10 triangles
24 h.d. – 8 triangles
SCOBY ceramic ‘blanket /radiator system’ iterations
SCOBY ceramic ‘blanket /radiator system’
SCOBY ceramic ‘blanket /radiator system’
4. COQUINA SQUASH Absorption
Ginah
water transfer experi ment.mov
Water transfer experiment: diagrammatic analysis
Perpetual movement apparatus: increasing material porosit y to increase water absorption
R ice noodles and porcelain
Capillar y action experiments
Porcelain and stoneware water transfer experiments
Water moving system
Eight methods of dissection
5. BEETROOT Dehydration
Dor and Ruby
Beetroot dehydration rack
beetroot dehydration.mov
Fresh beet 48hours dehydrated beet
Dehydrated beetroot analysis
Bernard Cahill - inspired projection of beetroot dehydration
Sk ele
ton
15~
Sk e +E leto nve n lop e 30
~
the mechanism created serves as a skeleton that appropriates the two phenomenas found in the process of beetroot dehydra tion: shrinkage of volume and attenuation of surface. the almost uniform structure collapses into itself creating depressions which effect the volume of the shape and the degree of curvature between it’s ‘vertebras’.
Me m
bra
60
~
ne
120
~
De g
ree
of c
urv atu
re
De a m rived sel ech from f-c ani olla sm Hob pse cre erm of ated an’s as tru to e pate ctu nab nt, re’ s s le urf ace
The gradual change in the degree of curviture is the mechanism’s variable, allowing a change in the attenuation level of the surface
An me intro exp chan duct i the and ism c on o sup ing/r rea f a w e po etra tes rtin ct a ave g s ing syst d m tru su em em ctu rfac of bra ne re es/ to spa the ce sb etw ee n
the wh tens cre enev ion o ate er t f th ing he e an deg mem att ree br a nu ate of cu ne is d n rva re ew tu duc for re is ed m rise n
The outcome of the activation of the mechanism is a surface within a surface, a new environment that creates spaces within them. this version of a mechanical beetroot can serve as a platform in various scales to create new adaptable spaces within an existing one enabling a flexible setting.
per fo rmative model of dehydrate d beetroot ski n.mov
Mechanic al translation of dehydrated beetroot skin
R: 49 L _3 IE M :K DK URE T
LAT_55.294 LONG_12.60299
R=75M
LAT_55.298 LONG_12.60291
A=1 020M2
AIR_BLAST_20PSI R=580M
AIR_BLAST_5PSI
A=967,113M2
BLAST CHRONICLES
THERMAL_RADIATION
MINE EXPLOSION POTENTIAL BUILDINGS WITHIN EXPLOSION RANGE WATER DEPLOYMENT ROUTES LAT_55.306 LONG_12.60320
R=35M
R=75M
LAT_55.320 LONG_12.60321
R=130M
A=24,309M2
A=860M2
A=1 020M2
A=9,438M2
R=60M
R=50M
A=1 0,471 M2
R=25M
A=500M2
A=47,216M2
R=370M
LAT_55.521 LONG_12.60387
R=100M
A=32,21 2
LAT_55.447 LONG_12.60350
R=250M
A=94,365M2
R=110M
A=46,047M2
A=1 020M2 A=51 ,1 88M2
Søminen explosion potential - 1:25 0 0
LENGTH: 97M NAVAL MINE CAPACITY: 100 TNT POTENTIAL: 5TON EXPLOSION POTENTIAL: 0.05MT MODEL: TYPE_23_TORPEDO_BOAT LENGTH: 86M NAVAL MINE CAPACITY: 40 TNT POTENTIAL: 2TON EXPLOSION POTENTIAL: 0.02MT LENGTH: 41M NAVAL MINE CAPACITY: 20 TNT POTENTIAL: 1TON EXPLOSION POTENTIAL: 0.01MT FIRE_BALL LENGTH: 33M NAVAL MINE CAPACITY: 10 TNT POTENTIAL: 0.5TON EXPLOSION POTENTIAL: 0.005MT LENGTH: 24M NAVAL MINE CAPACITY: 5 TNT POTENTIAL: 0.25TON EXPLOSION POTENTIAL: 0.0025MT
100M R=75M
R=120M
N
A=1 25,889M2 R=300M
A=57,642M2
R=140M
R=250M
A=94,365M2
R=130M
A=24,309M2
A=24,309M2
R=130M
LAT_55.569 LONG_12.60426
A=30,01 2M2
R=250M
A=500M2
R=25M
LAT_55.523 LONG_12.603415
LAT_55.537 LONG_12.60419
R=25M
LAT_55.568 LONG_12.60421
A=500M2
A=860M2
R=35M
LAT_55.6963 LONG_12.60405
R=50M
A=1 0,471 M2
LAT_55.691132 LONG_12.60374
A=1 0,471 M2
R=250M
R=1 00M
A=32,21 2
LAT_55.6979 LONG_12.604068
A=1 25,889M2 R=300M
A=94,365M2
R=1 1 0M
A=46,047M2
R=50M
R=1 00M
A=32,21 2
A=9,438M2
R=60M
LAT_55.536 LONG_12.603419
LAT_55.540 LONG_12.603424
R=15M
A=280M2
A=280M2
R=15M
A=51 ,1 88M2
A=57,642M2
LAT_55.552 LONG_12.609321
A=4350M2
R=40M
R=40M
A=4350M2
R=15M
A=280M2
LAT_55.493 LONG_12.60361
LAT_55.480 LONG_12.60361
LAT_55.484 LONG_12.60357
A=23,1 81 M2
A=280M2
A=4350M2
A=20,347M2
A=23,1 81 M2
R=80M
R=90M
R=75M
R=1 20M
A=1 020M2
R=1 40M
R=15M
R=40M
R=80M
A=500M2
R=25M
A=24,309M2
A=1 0,471 M2
R=75M
R=1 40M
A=57,642M2
R=1 20M
A=51 ,1 88M2
R=60M
A=9,438M2
LAT_55.499 LONG_12.60366
LAT_55.507 LONG_12.60370
LAT_55.618 LONG_12.605437
R=250M
A=94,365M2
R=1 30M
A=24,309M2
R=1 30M
R=50M
R=90M
A=32,21 2
LAT_55.539 LONG_12.609334
LAT_55.491 LONG_12.60364
LAT_55.547 LONG_12.609329
LAT_55.541 LONG_12.609326
R=15M
A=280M2
R=80M
A=20,347M2
LAT_55.558 LONG_12.609333
R=15M
LAT_55.563 LONG_12.609331
A=280M2
LAT_55.597 LONG_12.605316
R=1 20M
R=90M
A=23,1 81 M2
R=1 40M
A=46,047M2
R=25M
R=1 00M
R=1 1 0M
LAT_55.6963 LONG_12.60491
10_TON_TNT 0.1_MT
SÓMINEN
LAT_55.511 LONG_12.610392
A=280M2
A=4350M2
R=15M
A=1 0,471 M2
R=50M
R=40M
A=32,21 2
R=80M
R=250M
LAT_55.6967 LONG_12.60502
R=15M
A=280M2
A=20,347M2
R=35M
A=1 020M2
R=35M
R=80M
R=90M
LAT_55.562 LONG_12.609324
R=25M
A=500M2
A=860M2
A=20,347M2
A=23,1 81 M2
A=20,347M2
R=90M
LAT_55.591 LONG_12.605311
R=50M
A=1 0,471 M2
R=40M
A=4350M2
R=80M
R=60M
R=40M
A=4350M2
R=1 1 0M A=51 ,1 88M2
A=57,642M2
R=40M
LAT_55.612 LONG_12.60484
R=35M
A=4350M2
R=80M
A=20,347M2
LAT_55.6970 LONG_12.60498
R=25M
A=500M2
A=860M2
LAT_55.6911 LONG_12.60475
R=1 00M
A=32,21 2
A=23,1 81 M2
A=9,438M2
A=31 30M2
R=50M
A=1 0,471 M2
R=75M
R=40M
A=4350M2
A=23,1 81 M2
LAT_55.69081 LONG_12.604099
R=60M
A=9,438M2
A=1 020M2
R=1 00M
A=32,21 2
R=90M
A=23,1 81 M2
A=500M2
R=80M
A=20,347M2
LAT_55.69101 LONG_12.604081
R=35M
R=1 20M
A=51 ,1 88M2
R=1 1 0M
A=46,047M2
R=60M
A=9,438M2
R=90M
A=23,1 81 M2
LAT_55.694897 LONG_12.604079
R=1 1 0M
A=46,047M2
A=860M2 A=1 25,889M2 R=300M
R=1 1 0M
A=46,047M2
A=20,347M2
A=860M2
R=1 40M
A=57,642M2
R=1 20M
A=51 ,1 88M2
A=94,365M2
A=24,309M2
R=1 00M
A=1 25,889M2 R=300M
R=90M A=46,047M2
R=1 30M
R=1 1 0M
A=1 25,889M2 R=300M
A=57,642M2
R=1 40M
(LEEKS & ONIONS)
Caroline, Ines, N abil, Selin & Ye Jin
6.  POTATO Fermentation to Reclamation
Dalia
5 10 Key words: - Vacuum - Incubator - Package - Anaerobic Condition - Culturing - 30 degrees temperature - pressure
15
4 3
9
14
8
2
13
7 1
D. Quaternary Structure:
12
package
6 50 mm
11 40 mm
30 mm 20 mm
Diameter of ring:
C.
10 mm
Tertiary Structure: “The Ring”
5
80
10
4
cm
40 cm
15
9
3
Analyzing solution number 9, Carbon Hyrdrogen Oxide
14
8
2
13 7
1
12
B.
6 11
Secondary Structure: The platform
Elevation point
Ingredients: Hydrogen Oxide: Rings 1-5 Carbon Hydrogen Oxide: Rings 6-10
125g Yeast
Citric Acid: Rings 11-15 - 2 packages of Yeast per vessel - plastic cup to store yeast with mixed solution - 30 degrees hot water - Syringe to control amount of solution - Dr Pepper as Carbon solution - Orange juice as Citric Acid solution - Water as Hydrogen Oxide solution - The “ring” to control air pressure - Magic plastic or poly-
100g Yeast 75g Yeast
A. Primary Structure:
H20
50g Yeast
H2O CO3
The vessel/fermentation containers
25g Yeast
C6H8O7
balloon.
yeast fermentation experi ment.mov
Height: 12.5 cm Mili litres: 250 ml x Cup Temperature: 30 degrees C Amount of Yeast: varied
Ferment ation laborator y: set- up and process
25 cm
L = 40 cm
10.
5.
60 000 Mili Seconds (Yeast producing gases) 10.
15.
Elevation
5.
Ring Diameter: 75 mm
15.
Carbon Solution: Maximum Volume of gases produced in 10 minutes. The size of the sphere is as big as a Rugby Ball.
4. 9.
14.
4. Ring Diameter: 50 mm
14. 9.
3.
8.
13.
3.
8. 13.
Ring Diameter:
Citric Acide Solution: Very little amount of gas has been produced. Half the size of a ping pong ball.
H = 80 cm 4 cm
2.
7.
12.
7.
2.
12.
Ring Diameter: 25 mm
1.
6.
11.
1.
6. 11.
Ring Diameter: 10 mm
H 20
H2O CO3
C6H8O7
H20
Yeast ferment ation experiment – before and af ter
H2O CO3
C6H8O7
Hydrogen Oxide Solution: Interesting Overlap between the wall. Causing change of geometry of the package.
Maximum Pressure (pa) Chimney number Variables/ Constants:
78 pa
80 pa
65 pa
9.
17.
8.
Maximum Pressure (pa)
65 pa
80 pa
78 pa
Chimney number
8.
16.
9.
Diameter of vessels: 7.5 metres
- (Constant): in One cup, there is 200 ml yeast + 2 spoons of sugar
Structure of Bubbles: 1:2 scale
100 metres
- Variable: Time, of foundtation.
Hydrogen Oxide Maximum height: 25 mm
Height of vessels: 30 metres
Hydrogen Oxide (H20)
- 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 4.4mm to 0.00000000000000000000000000000000000001 mm of bubbles - Percentage of effervescence: 49.9999999% - Level of pH (power of Hydrogen): 5.7 - Type of structure performed: hanging on the disk
East Section
North Section Water + Carbon
Whirlpool placed in the platform
Yeast in dry/powder state
Carbon Hydrogen Oxide Maximum height: 60 mm
Carbon Hydrogen Oxide (H2O CO3)
- 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 212mm to 0.0000000000000000000000000000000000000 1 mm of bubbles - Percentage of effervescence: 24.99999999999999999999999999% - Level of pH (power of Hydrogen): 2.25 - Type of structure performed: concentric.
Carbon + Citric
vours: Carbon + Citric + Water
Citric Acid Maximum height: 20 mm
Citric Acid (C6H8O7) - 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 1.33333333333333 mm to 0.00000000000000000 000000000000000000001 mm of bubbles - Percentage of effervescence: 49.9999999% - Level of pH (power of Hydrogen): 3.44 - Type of structure performed: planar.
N.B different density. Starting from water (lightest), soda (medium) and orange juice (heaviest). - The density of the the structure of the bubbles.
Ferment ation laborator y analysis
Carlsberg factor y brewhouse
M A D Symposium 20 17 – ground plan
M A D Foodc amp 20 19 – section /elevation
M A D5 – balloon view
G as har vesting – southwest axonometric
Noma – ferment ation ratio section
7.   P O M E G R A N AT E Dissection to Infrastructure
R ai
5mins
4 5mins
120 mins
Pomegranate seed membrane transformation
16 0 mins
transfo rmation p roc ess .mov
memb rane testi ng.mov
Floating forest – elevation
Floating forest – navigation plan
fl oati ng fo rest.mov
Floating forest – grow th elevation
Floating forest – island and bridge
8. BEECH NUT Composting to Inhabiting
Bodo
area triangle:
a= ba/2
volume triangular prism:
mould
V = ah
perforated for
h
B
a
c
C
tissue paper + garden compost
tissue paper + cement
tissue paper (c)
tissue paper (b)
tissue paper (a)
Gelatine
Cotton wool
lime
tissue paper + lime
cement
Agar
b
A
General testing set up
option1: as a commercial product, this compost is very uniformly mixed and thus well suited for comparing tests. compost - option 1 or 2
single or combination of potential additives
Composted Wood, Green Compost, Peat (partially decayed organic matter, unique to natural areas called peatlands or mires), Fertiliser & non ionic surfactant
gelatine
option2: ‘garden’ compost
agar
add water/ shred or dissolve additive
add compost
this compost can vary in its compolation, dpending on the processed waste. It is however comparable to the local Copenhagen green-waste composte material.
mix well (best with hands)
cotton wool
mold with top to strongly compress the material
tissue paper
metal grille lets water
lime
drying
cement
move on to property testing
push out of mold
compress into mold
tray to catch squeezed out water
London Waste compost from the EcoParc compost center. 100% local London garden and kitchen waste.
soil textural diagram
heavy soils
plastic clay : very fat, large drying shrinkage
optimal mix of minerals and particle sizes through processing: sure stable shrinkage, good mechanical strength, and ability to dry without cracking.
medium soils loight soils
leaner clays : more sandy, less suitable for kneading and shaping
Clay bricks stabelize by binding qualities of clay. Mud bricks contain less clay- they utilize loam soils and an additional ingredient of a mechanical binder such as straw. =
Materials with high plasticity and enough tensile strength to keep their shape
bottle jack elastic strings
scale to measure applied force
the composting process and its components water
heat
O2
raw material
<50% of initial volume
organic matter
(containing carbon, chemical enegy, protein, nitrogen)
minerals
(including nitrogen and other nutriens)
water microorganisms
organic matter
composting system breakdown of compostable materials into their constituent elements.
(containing carbon, chemical enegy, protein, nitrogen, humus)
brick compressed between the platforms
minerals water microorganisms
O2 Top: Soil tex ture diagram Bot tom: Components of the composting process
Compost strength test
bottle jack press in use with test brick
Copenhagen
Temple of compost – Papirøen Island plan
Temple of compost – section /elevation fragments
Temple of compost â&#x20AC;&#x201C; aerial view
Lef t to right: 20 16 â&#x20AC;&#x201C; 2116 section /elevation
M AD L AB EXPLOSION
BOOK 1 PROVOCATIONS