Mad Lab Explosion Book 1 - Ideas

Page 1

M AD L AB EXPLOSION

BOOK 1 IDEAS


Pro duce d by Mis - A rchite cture (Chr istopher Pierce and Chr is M at thews) with Ch ar lot te Mo e and Ele anor D o dm an, D alia Mat suur a Frontini and Inter me diate Unit 9 (2 0 14 – 15 and 2 0 15 – 16) at the A rchite ctur al A s so ciation ( A A ) S cho ol of A rchite cture, London. Janu ar y 2 0 16 D esign Cl aire Lyon


SITE

Sea Mine Depot


IDE AS

8 edibles 8 processes 8 projects (with leek and onion ceramics)


1. FENNEL Dissection & Steaming

Henr y, Janos and Nikki


Fennel dissection and amplific ation plan

Method for unfolding a fennel


Kitchen dissection


Fennel Steami ng.mov

Fennel vein structure analysis


Steam dehydrated fennel

fennel amp l ific ation.mov


dou b l e memb rane stu dy.mov

Fennel dissection


E xpansion ef fect of condensation /precipit ation on double membrane sur face

A nalysis of condensation /precipit ation on double membrane sur face


Fennel c asts

E xpansion /contraction concept for double membrane sur face


2. ARTICHOKE Heating & Smelling

A ntonin, Jeanne and Zineb


Ef fect of controlled heating on ar tichoke leaves

Transforming the ar tichoke flower by controlling its heliotropic proper ties


iii.

ii. W=45 L=65 H=105 75° 80g

Wb=65 Lb=135 H=230 30° 250g

iv.

Wb=90 Lb=90 H=170 45° 250g

W=80 L=85 h=195 50° 260g

W=45 L=60 H=145 90° 140g

Wb=60 Lb=100 H=165 40° 150g 80 cm

Wb=40 Lb=195 H=210 20° 180g 22.5 cm

light (i

Ceramic volumes of dried ar tichoke leaves

37 cm

A pparatus for controlling grow th of the ar tichoke flower


iv. ii.

i.

iii.

20 cm

30 cm

i. Artichoke ower ii. Light beam iii. Light lter (made with the cast negatives of the folded artichoke leaves) iv. Light source (180° exposure)

Re - sc aling and slip - c asting heated ar tichoke leaves

Hollow light filter for single ar tichoke


Section of negative spaces


Smelling the sea mine depot site

Breathing structure


Smell as space generator

per fo rmative paper model.mov


3. BLACKBERRY Pigmentation & SCOBY

Fabienne and Gim


thr ou gh col or car ou sel

vis ibil ity

E1 - E19 [WA LLS] vis: 10

RU BB I

E9

E19

PA VE M EN T

E3

E11

D1

7

D1

F1

D1 0

F7

E18

F4 4

E10

F1

D7

F9

F1

6

D1

D9

F6

D1

D8

G5

C16

G7

C14

F] vis: 3 G1 - G18 [ROO

G8

G4

G1

rotation angle of

C15

G2

F16

D3

D4

F8

3

C17

D1

G3

D2

4

F3

3

F17

F1

E17 1 F1

C18

E12

E7 E1

F1

D6 perpe ndicu lar to viewp oint

1 D1

C11

C6

C10

C7

G14

C1

C4

G15

G16

C8

G13

G12

G11

C9

G9

G10

C12

G6

C13

2

E4

E15

5 F1

D1

D5

0

E13

E2

2

D1

B1

G18

B1

6

C2

3

C5

G17

H1

H3 H8

B8 A6

4 B1

B3

A1

1 H1

1 B1

3 A16

A11

B6 B1

A4 4

B9

A14

A9

H1

2 B1

6

5 B1

H1

H7

H5

H9

H1

B4

H1

2

A2

0

A17

A7

B7

A12

0

B1

H1

7

H1

B2

H1

5

H1 7[ V E GE TA TI

O N

A5

A15

A10

:5 vis

B5

A3

5 is:

B17

H1

C3

H4

H2

H6

K] AN

i

F2

-D

17 [

E] v

F5

E16

E5

5 D1

E8

A18

A8

A13

B1 A 1 - A 18 [WAT ER] vis: 5

B1 7[

V

EG ET AT I

O N

B

C1 - C 18 [GRA SS] vis 7

F1 7[ IN SI D

v L] IL

]

E14

H

H

:8 vis

10 s:

S

F1 -

2D autumn colour spectrum

Top: 3D seasonal colour spectrum Bot tom: 2D seasonal colour spectrum


Sea mine depot site seasonal section


Shell structure for optimising SCOBY yeast tendril grow th

Board and paddle structure for optimising SCOBY yeast tendril grow th


Ceramic paddle structure tests

18 h.d. – 6 triangles

6 h.d. – 6 triangles

12 h.d. – 6 triangles

11 h.d. – 6 triangles

64 h.d. – 24 triangles

22 h.d. – 14 triangles

30 h.d. – 10 triangles

24 h.d. – 8 triangles

18 h.d. – 6 triangles

6 h.d. – 6 triangles

12 h.d. – 6 triangles

11 h.d. – 6 triangles

64 h.d. – 24 triangles

22 h.d. – 14 triangles

30 h.d. – 10 triangles

24 h.d. – 8 triangles

SCOBY ceramic ‘blanket /radiator system’ iterations


SCOBY ceramic ‘blanket /radiator system’

SCOBY ceramic ‘blanket /radiator system’


4. COQUINA SQUASH Absorption

Ginah


water transfer experi ment.mov

Water transfer experiment: diagrammatic analysis


Perpetual movement apparatus: increasing material porosit y to increase water absorption

R ice noodles and porcelain


Capillar y action experiments

Porcelain and stoneware water transfer experiments


Water moving system


Eight methods of dissection


5. BEETROOT Dehydration

Dor and Ruby


Beetroot dehydration rack

beetroot dehydration.mov


Fresh beet 48hours dehydrated beet

Dehydrated beetroot analysis

Bernard Cahill - inspired projection of beetroot dehydration


Sk ele

ton

15~

Sk e +E leto nve n lop e 30

~

the mechanism created serves as a skeleton that appropriates the two phenomenas found in the process of beetroot dehydra tion: shrinkage of volume and attenuation of surface. the almost uniform structure collapses into itself creating depressions which effect the volume of the shape and the degree of curvature between it’s ‘vertebras’.

Me m

bra

60

~

ne

120

~

De g

ree

of c

urv atu

re

De a m rived sel ech from f-c ani olla sm Hob pse cre erm of ated an’s as tru to e pate ctu nab nt, re’ s s le urf ace

The gradual change in the degree of curviture is the mechanism’s variable, allowing a change in the attenuation level of the surface

An me intro exp chan duct i the and ism c on o sup ing/r rea f a w e po etra tes rtin ct a ave g s ing syst d m tru su em em ctu rfac of bra ne re es/ to spa the ce sb etw ee n

the wh tens cre enev ion o ate er t f th ing he e an deg mem att ree br a nu ate of cu ne is d n rva re ew tu duc for re is ed m rise n

The outcome of the activation of the mechanism is a surface within a surface, a new environment that creates spaces within them. this version of a mechanical beetroot can serve as a platform in various scales to create new adaptable spaces within an existing one enabling a flexible setting.

per fo rmative model of dehydrate d beetroot ski n.mov

Mechanic al translation of dehydrated beetroot skin


R: 49 L _3 IE M :K DK URE T

LAT_55.294 LONG_12.60299

R=75M

LAT_55.298 LONG_12.60291

A=1 020M2

AIR_BLAST_20PSI R=580M

AIR_BLAST_5PSI

A=967,113M2

BLAST CHRONICLES

THERMAL_RADIATION

MINE EXPLOSION POTENTIAL BUILDINGS WITHIN EXPLOSION RANGE WATER DEPLOYMENT ROUTES LAT_55.306 LONG_12.60320

R=35M

R=75M

LAT_55.320 LONG_12.60321

R=130M

A=24,309M2

A=860M2

A=1 020M2

A=9,438M2

R=60M

R=50M

A=1 0,471 M2

R=25M

A=500M2

A=47,216M2

R=370M

LAT_55.521 LONG_12.60387

R=100M

A=32,21 2

LAT_55.447 LONG_12.60350

R=250M

A=94,365M2

R=110M

A=46,047M2

A=1 020M2 A=51 ,1 88M2

Søminen explosion potential - 1:25 0 0

LENGTH: 97M NAVAL MINE CAPACITY: 100 TNT POTENTIAL: 5TON EXPLOSION POTENTIAL: 0.05MT MODEL: TYPE_23_TORPEDO_BOAT LENGTH: 86M NAVAL MINE CAPACITY: 40 TNT POTENTIAL: 2TON EXPLOSION POTENTIAL: 0.02MT LENGTH: 41M NAVAL MINE CAPACITY: 20 TNT POTENTIAL: 1TON EXPLOSION POTENTIAL: 0.01MT FIRE_BALL LENGTH: 33M NAVAL MINE CAPACITY: 10 TNT POTENTIAL: 0.5TON EXPLOSION POTENTIAL: 0.005MT LENGTH: 24M NAVAL MINE CAPACITY: 5 TNT POTENTIAL: 0.25TON EXPLOSION POTENTIAL: 0.0025MT

100M R=75M

R=120M

N

A=1 25,889M2 R=300M

A=57,642M2

R=140M

R=250M

A=94,365M2

R=130M

A=24,309M2

A=24,309M2

R=130M

LAT_55.569 LONG_12.60426

A=30,01 2M2

R=250M

A=500M2

R=25M

LAT_55.523 LONG_12.603415

LAT_55.537 LONG_12.60419

R=25M

LAT_55.568 LONG_12.60421

A=500M2

A=860M2

R=35M

LAT_55.6963 LONG_12.60405

R=50M

A=1 0,471 M2

LAT_55.691132 LONG_12.60374

A=1 0,471 M2

R=250M

R=1 00M

A=32,21 2

LAT_55.6979 LONG_12.604068

A=1 25,889M2 R=300M

A=94,365M2

R=1 1 0M

A=46,047M2

R=50M

R=1 00M

A=32,21 2

A=9,438M2

R=60M

LAT_55.536 LONG_12.603419

LAT_55.540 LONG_12.603424

R=15M

A=280M2

A=280M2

R=15M

A=51 ,1 88M2

A=57,642M2

LAT_55.552 LONG_12.609321

A=4350M2

R=40M

R=40M

A=4350M2

R=15M

A=280M2

LAT_55.493 LONG_12.60361

LAT_55.480 LONG_12.60361

LAT_55.484 LONG_12.60357

A=23,1 81 M2

A=280M2

A=4350M2

A=20,347M2

A=23,1 81 M2

R=80M

R=90M

R=75M

R=1 20M

A=1 020M2

R=1 40M

R=15M

R=40M

R=80M

A=500M2

R=25M

A=24,309M2

A=1 0,471 M2

R=75M

R=1 40M

A=57,642M2

R=1 20M

A=51 ,1 88M2

R=60M

A=9,438M2

LAT_55.499 LONG_12.60366

LAT_55.507 LONG_12.60370

LAT_55.618 LONG_12.605437

R=250M

A=94,365M2

R=1 30M

A=24,309M2

R=1 30M

R=50M

R=90M

A=32,21 2

LAT_55.539 LONG_12.609334

LAT_55.491 LONG_12.60364

LAT_55.547 LONG_12.609329

LAT_55.541 LONG_12.609326

R=15M

A=280M2

R=80M

A=20,347M2

LAT_55.558 LONG_12.609333

R=15M

LAT_55.563 LONG_12.609331

A=280M2

LAT_55.597 LONG_12.605316

R=1 20M

R=90M

A=23,1 81 M2

R=1 40M

A=46,047M2

R=25M

R=1 00M

R=1 1 0M

LAT_55.6963 LONG_12.60491

10_TON_TNT 0.1_MT

SÓMINEN

LAT_55.511 LONG_12.610392

A=280M2

A=4350M2

R=15M

A=1 0,471 M2

R=50M

R=40M

A=32,21 2

R=80M

R=250M

LAT_55.6967 LONG_12.60502

R=15M

A=280M2

A=20,347M2

R=35M

A=1 020M2

R=35M

R=80M

R=90M

LAT_55.562 LONG_12.609324

R=25M

A=500M2

A=860M2

A=20,347M2

A=23,1 81 M2

A=20,347M2

R=90M

LAT_55.591 LONG_12.605311

R=50M

A=1 0,471 M2

R=40M

A=4350M2

R=80M

R=60M

R=40M

A=4350M2

R=1 1 0M A=51 ,1 88M2

A=57,642M2

R=40M

LAT_55.612 LONG_12.60484

R=35M

A=4350M2

R=80M

A=20,347M2

LAT_55.6970 LONG_12.60498

R=25M

A=500M2

A=860M2

LAT_55.6911 LONG_12.60475

R=1 00M

A=32,21 2

A=23,1 81 M2

A=9,438M2

A=31 30M2

R=50M

A=1 0,471 M2

R=75M

R=40M

A=4350M2

A=23,1 81 M2

LAT_55.69081 LONG_12.604099

R=60M

A=9,438M2

A=1 020M2

R=1 00M

A=32,21 2

R=90M

A=23,1 81 M2

A=500M2

R=80M

A=20,347M2

LAT_55.69101 LONG_12.604081

R=35M

R=1 20M

A=51 ,1 88M2

R=1 1 0M

A=46,047M2

R=60M

A=9,438M2

R=90M

A=23,1 81 M2

LAT_55.694897 LONG_12.604079

R=1 1 0M

A=46,047M2

A=860M2 A=1 25,889M2 R=300M

R=1 1 0M

A=46,047M2

A=20,347M2

A=860M2

R=1 40M

A=57,642M2

R=1 20M

A=51 ,1 88M2

A=94,365M2

A=24,309M2

R=1 00M

A=1 25,889M2 R=300M

R=90M A=46,047M2

R=1 30M

R=1 1 0M

A=1 25,889M2 R=300M

A=57,642M2

R=1 40M


(LEEKS & ONIONS)

Caroline, Ines, N abil, Selin & Ye Jin






6.  POTATO Fermentation to Reclamation

Dalia


5 10 Key words: - Vacuum - Incubator - Package - Anaerobic Condition - Culturing - 30 degrees temperature - pressure

15

4 3

9

14

8

2

13

7 1

D. Quaternary Structure:

12

package

6 50 mm

11 40 mm

30 mm 20 mm

Diameter of ring:

C.

10 mm

Tertiary Structure: “The Ring”

5

80

10

4

cm

40 cm

15

9

3

Analyzing solution number 9, Carbon Hyrdrogen Oxide

14

8

2

13 7

1

12

B.

6 11

Secondary Structure: The platform

Elevation point

Ingredients: Hydrogen Oxide: Rings 1-5 Carbon Hydrogen Oxide: Rings 6-10

125g Yeast

Citric Acid: Rings 11-15 - 2 packages of Yeast per vessel - plastic cup to store yeast with mixed solution - 30 degrees hot water - Syringe to control amount of solution - Dr Pepper as Carbon solution - Orange juice as Citric Acid solution - Water as Hydrogen Oxide solution - The “ring” to control air pressure - Magic plastic or poly-

100g Yeast 75g Yeast

A. Primary Structure:

H20

50g Yeast

H2O CO3

The vessel/fermentation containers

25g Yeast

C6H8O7

balloon.

yeast fermentation experi ment.mov

Height: 12.5 cm Mili litres: 250 ml x Cup Temperature: 30 degrees C Amount of Yeast: varied

Ferment ation laborator y: set- up and process


25 cm

L = 40 cm

10.

5.

60 000 Mili Seconds (Yeast producing gases) 10.

15.

Elevation

5.

Ring Diameter: 75 mm

15.

Carbon Solution: Maximum Volume of gases produced in 10 minutes. The size of the sphere is as big as a Rugby Ball.

4. 9.

14.

4. Ring Diameter: 50 mm

14. 9.

3.

8.

13.

3.

8. 13.

Ring Diameter:

Citric Acide Solution: Very little amount of gas has been produced. Half the size of a ping pong ball.

H = 80 cm 4 cm

2.

7.

12.

7.

2.

12.

Ring Diameter: 25 mm

1.

6.

11.

1.

6. 11.

Ring Diameter: 10 mm

H 20

H2O CO3

C6H8O7

H20

Yeast ferment ation experiment – before and af ter

H2O CO3

C6H8O7

Hydrogen Oxide Solution: Interesting Overlap between the wall. Causing change of geometry of the package.


Maximum Pressure (pa) Chimney number Variables/ Constants:

78 pa

80 pa

65 pa

9.

17.

8.

Maximum Pressure (pa)

65 pa

80 pa

78 pa

Chimney number

8.

16.

9.

Diameter of vessels: 7.5 metres

- (Constant): in One cup, there is 200 ml yeast + 2 spoons of sugar

Structure of Bubbles: 1:2 scale

100 metres

- Variable: Time, of foundtation.

Hydrogen Oxide Maximum height: 25 mm

Height of vessels: 30 metres

Hydrogen Oxide (H20)

- 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 4.4mm to 0.00000000000000000000000000000000000001 mm of bubbles - Percentage of effervescence: 49.9999999% - Level of pH (power of Hydrogen): 5.7 - Type of structure performed: hanging on the disk

East Section

North Section Water + Carbon

Whirlpool placed in the platform

Yeast in dry/powder state

Carbon Hydrogen Oxide Maximum height: 60 mm

Carbon Hydrogen Oxide (H2O CO3)

- 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 212mm to 0.0000000000000000000000000000000000000 1 mm of bubbles - Percentage of effervescence: 24.99999999999999999999999999% - Level of pH (power of Hydrogen): 2.25 - Type of structure performed: concentric.

Carbon + Citric

vours: Carbon + Citric + Water

Citric Acid Maximum height: 20 mm

Citric Acid (C6H8O7) - 297000 mili seconds under the fermentation operation - Hydrogen Oxide generating a radius of 1.33333333333333 mm to 0.00000000000000000 000000000000000000001 mm of bubbles - Percentage of effervescence: 49.9999999% - Level of pH (power of Hydrogen): 3.44 - Type of structure performed: planar.

N.B different density. Starting from water (lightest), soda (medium) and orange juice (heaviest). - The density of the the structure of the bubbles.

Ferment ation laborator y analysis

Carlsberg factor y brewhouse


M A D Symposium 20 17 – ground plan


M A D Foodc amp 20 19 – section /elevation


M A D5 – balloon view

G as har vesting – southwest axonometric


Noma – ferment ation ratio section


7.   P O M E G R A N AT E Dissection to Infrastructure

R ai


5mins

4 5mins

120 mins

Pomegranate seed membrane transformation

16 0 mins

transfo rmation p roc ess .mov


memb rane testi ng.mov

Floating forest – elevation


Floating forest – navigation plan

fl oati ng fo rest.mov


Floating forest – grow th elevation


Floating forest – island and bridge


8. BEECH NUT Composting to Inhabiting

Bodo


area triangle:

a= ba/2

volume triangular prism:

mould

V = ah

perforated for

h

B

a

c

C

tissue paper + garden compost

tissue paper + cement

tissue paper (c)

tissue paper (b)

tissue paper (a)

Gelatine

Cotton wool

lime

tissue paper + lime

cement

Agar

b

A

General testing set up

option1: as a commercial product, this compost is very uniformly mixed and thus well suited for comparing tests. compost - option 1 or 2

single or combination of potential additives

Composted Wood, Green Compost, Peat (partially decayed organic matter, unique to natural areas called peatlands or mires), Fertiliser & non ionic surfactant

gelatine

option2: ‘garden’ compost

agar

add water/ shred or dissolve additive

add compost

this compost can vary in its compolation, dpending on the processed waste. It is however comparable to the local Copenhagen green-waste composte material.

mix well (best with hands)

cotton wool

mold with top to strongly compress the material

tissue paper

metal grille lets water

lime

drying

cement

move on to property testing

push out of mold

compress into mold

tray to catch squeezed out water

London Waste compost from the EcoParc compost center. 100% local London garden and kitchen waste.


soil textural diagram

heavy soils

plastic clay : very fat, large drying shrinkage

optimal mix of minerals and particle sizes through processing: sure stable shrinkage, good mechanical strength, and ability to dry without cracking.

medium soils loight soils

leaner clays : more sandy, less suitable for kneading and shaping

Clay bricks stabelize by binding qualities of clay. Mud bricks contain less clay- they utilize loam soils and an additional ingredient of a mechanical binder such as straw. =

Materials with high plasticity and enough tensile strength to keep their shape

bottle jack elastic strings

scale to measure applied force

the composting process and its components water

heat

O2

raw material

<50% of initial volume

organic matter

(containing carbon, chemical enegy, protein, nitrogen)

minerals

(including nitrogen and other nutriens)

water microorganisms

organic matter

composting system breakdown of compostable materials into their constituent elements.

(containing carbon, chemical enegy, protein, nitrogen, humus)

brick compressed between the platforms

minerals water microorganisms

O2 Top: Soil tex ture diagram Bot tom: Components of the composting process

Compost strength test

bottle jack press in use with test brick


Copenhagen


Temple of compost – Papirøen Island plan

Temple of compost – section /elevation fragments


Temple of compost – aerial view


Lef t to right: 20 16 – 2116 section /elevation


M AD L AB EXPLOSION

BOOK 1 PROVOCATIONS






Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.