J. Comp. & Math. Sci. Vol. 1(2), 103-110 (2010).
A theorem on N , p n k summability of infinite series U.K. MISRA1, S.P. PANDA2 and S.P. PANDA3 1
Department of Mathematics Berhampur University, Berhampur-760007, Orissa (India) 2 Department of Mathematics Khemundi College Digapahandi, Ganjam, Orissa (India) 3 Department of Mathematics Rayagada (Auto) College Rayagada, Orissa (India) ABSTRACT In this paper a theorem on N , p n
k
summability of an
infinite series has been established.
N , p n k summability..
Key words :
sequence {sn}.
1. INTRODUCTION
Let {sn} denotes the nth partial
The series
a
n
and let
n 0
{pn} be a sequences of positive real constants such that
Pn p 0 p1 p n , n N , Pi p i 0, i 1.
1 Pn
summable N , p n k , k 1 ([2]), if
Pn n 1 p n
k 1
Tn Tn 1
k
.
pv s v , Pn 0 n
k
summa-
bility reduces to C ,1 k summability
(1.1)
v 0
N , p
(1.2)
method.
m
defines the
is said to be
Taking pn=1 for all n, N , p n
Then the sequence to sequence transformation
Tn
n
n 0
sum of an infinite series
a
mean of the
2. Known Result Concerning with the
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
C ,1 k
104
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 103-110 (2010).
summability of an infinite series
a
n
n 0
1
Flett has established the following result. He proved: Theorem A:
mean of the sequence na n and Tn be the sequence as defined in (1.1) where
p n
be a sequence of positive real constants satisfying the following conditions.
Let n and n denotes the (C,1) mean of the sequence s n and na n respectively. That is
1 n n 1
(i). npn OPn
(3.1)
(ii). Pn O np n
(3.2)
(iii). n p n O p n .
(3.3)
and
n
sv ,
(2.1)
v0
Then
a n 0
n
n
1 n 1
a
n
is summable N , p n k , k 1
if and only if v
.
(2.2)
v 0
1
n
tn
k
.
(3.4)
n 1
Then the series
a
n
is summable
n 0
C ,1 k , k 1 if and only if
1
n
n
k
.
3. Require Lemma We require the following Lemma for the proof of our theorem.
(2.3)
Lemma :
n 1
If p n be a sequence of positive
3. Main Result The aim of this paper is to establish a similar result for N , p n k summability method. Here we prove the following.
p n 1 O(1) . pn
(3.5)
Proof. From (3.1), we have
Theorem : Let
real constants satisfing (3.1) and (3.2). Then
n 1 pn 1 OPn 1 . t n
denotes the
N , p n
Then there exists a positive real
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 1-8 (2010). constant A and a positive integer n1 such that
n 1 p n1
A Pn 1 ,
for all n n1 .
n 1 p n 1 A p n 1 A Pn , for all n n1
A Pn , for all n n1 . n 1 A
p n1
tn
105
n
1 Pn
p a .
0
Then
Pn t n Pn1 t n 1 p n n a n Pn t n Pn 1 t n 1 n pn
an
(4.1)
Now, we have From (3.2), we have
1 Pn
Tn
Pn On p n .
1 Pn
Then there exists a positive real constant B and a positive integer n2 such that
1 Pn
Pn B n p n , forall n n2 Let n0 Max n1 , n2 . Then for n n0
p n1
1 Pn
ABn A Pn pn n 1 A n 1 A
AB A 1 . 1 n
n
v
a p v
v 0
0
n
v
a
a P
n
a
0
a
1 Pn
of the sequence n a n , we have e
mean
n
1 Pn
a
n
k
P 1
0
1 Pn
P
a
1
0
n
P
1
a
1
Then Tn Tn Tn 1
Sufficient Part:
v
v
n
0
lemma. 4. Proof of the Theorem
p
0
n
p Hence n 1 O(1) , which proves the pn
sv
v
v 0
0
Since t n is the N , p n
p
n
p AB n n 1 pn n 1 A
n
n 1
n
P
1
a
1
1 Pn 1
1 1 a n Pn 1 Pn
a 0
n 1
P
1
a
1
n 1
P
1
a
1
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
Pn1 an Pn
106
U.K. Misra et al., J.Comp.&Math.Sci. Vol.2(1), 103-110 (2010).
pn an Pn Pn 1
n 1
P 1
1
P a n 1 a n Pn
n
pn Pn Pn 1
P 1 a
(4.2)
1
Using (4.1) we get
Tn
pn Pn Pn 1
n
pn Pn Pn 1 n
P
v 1
v 1
v 1
n 1
t pn n n Pn Pn1
v 0
v 1
P
v
v 1
n 1
t pn n n Pn Pn 1
pn Pn Pn 1
n
v 1
Pn n 1 p n
Pv21 t v 1 pv
v 1
n 1 2 v
P
tn pn n Pn Pn 1
v 1 n 1
v 1
pn Pn Pn 1
v 1
k 1
Tni
k
for i 1,2,3,4 .
k 1
Pn n 1 p n
k
Tn1
P n n 1 n p n
O (1)
n 1
tn
k 1
tn
k 1
tn
k
nk
k
n k
n
, using (3.2)
O(1) .
P Pv t v v1 pv (v 1) pv 1
Now m 1
Pn n 2 p n
Pv t v v
k 1
Tn 2
1 1 t v v p v v 1 p v 1
Pv t v pn v Pn Pn 1
n 1
Pv 1 Pv t v pn v pv Pn Pn 1
n 1
tn pn n Pn Pn 1
Pv t v Pv 1 t v 1 v pv
Pv2 t v (1 v) p v 1
n 1
Pn n 1 p n
Now we have
Pv 1 Pv t v pn v pv Pn Pn 1
part, by using Minkonski's inequality it is sufficient to show that
n
p v 1
To complete the proof of the sufficient
P n n 2 p n k
m 1
Tn1 Tn 2 Tn3 Tn 4 .
m 1
pn Pn Pn 1
Pv2 t v v 1 v (v 1)
Pv t v 1 1 v pv p v 1
k
n2
pn Pn Pnk1 m 1
O (1) n 2
k 1
n 1 Pv t v v 1 v
n 1 Pv p v t v v 1 p v v
k
k
pn n1 pv tv k Pn Pn1 v 1
k
(using 3.2)
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 103-110 (2010). k 1
m 1
n 1 pn n 1 k p pv t v v k Pn Pn 1 v 1 v 1 (using Holder's inequality)
O (1) n2
m1
pv Pn Pnk1
n 2
m 1
O (1) n 2
pn Pn Pn1
m
p
O(1)
n 1
m 1
v 1
n v 1
m
p
O(1)
tv
v
m
pv t v
k
v 1 m
O(1)
v 1
tv
1 1 Pn 1 Pn
Now, m 1
Pn n 2 p n
O(1)
v 1
tv
m 1
, (using 3.1)
k m 1
v
n 2
pn Pn Pnk1
pn Pn Pnk1 m 1
n 2
n 2
k 1 k
Tn 3
m 1
n 2
2 v
Pn pn
k 1
P tv v 1 v(v 1) p v 1 n 1
m 1
n 2
pn Pn Pnk1
m 1
P n n 2 p n
k 1
pn Pn Pn 1
1 1 pv p v 1
k
2
k
Now,
Pn pn
Tn 4
k
n1 Pv2 t v v 1 v
O(1) , as m .
m 1
k 1
1 Pv
v pv tv Pv v
k
lines of Tn 2 ).
n 2
m
k
O (1) , as m ,(going through the
1 1 Pv Pm 1
k
v 1
O(1)
v
pn n pv t v k Pn Pn 1 v 1
n 2
k
v 1
k
tv
v
p
n1 Pv Pv 1 pv t v v1 v pv (v 1) pv 1
m 1
O(1)
107
p nk Pnk Pnk1
pv
n1 Pv Pv 1 t v v 1 v(v 1) p v 1
m 1
O(1)
n 2
n 1 Pv2 v 1 v p n 1 t v v 1 v v p v p v 1
p n n 1 Pn Pnk1 v 1
k
k
n1 Pv2 p v 1 pv t v v 1 v p v p v 1
Pv v p
v 1 p v 1 p v 1
k
k
2
tv p
k
p n n1 pv t v k Pn Pn 1 v 1
k
(using 3.2 and 3.3)
O(1) , as m (going through the
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
108
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 103-110 (2010). lines of Tn 2 ). This proves the sufficient part.
v 1
v 1
To complete the necessary part, by using Minkonski's inequality it is sufficient to show that
From (4.2), we have
Pn 1 Pn Tn pn
n
P
v 1
av
v 1
Then P P 1 Pn Pn 1 Tn n 1 n 2 Tn 1 Pn 1 p n p n 1
k
t ni
for i 1,2,3,4, .
n
n 1
Now
t n1
Pn P Tn n 2 Tn 1 pn p n 1
n
1 Pn
pv v av
v
Tv
n
v Pv Tv
v 1
1 Pn
n Tn
n 1
1 Pn
1 Pn
v pv Pv 2 Tv 1 pv 1 n 1
v 1 p v1
1 Pn
n
k 1
Tn
k
v 0
pv
1 Pn
k 1 k
Tn (using 3.1)
O(1) . Now
Pv 1 Tv
n 1
v Pv Tv
m 1
t n2
k
n
n 2
m 1
n 2
1 1 n1 v Tv p v k n Pn v 1
v 1
v 1 p v 1 pv
v 1
n Tn
n
P O(1) n n 1 p n
m 1
n 1
v 1
k
n 1
n
v P v 1
n k Tn
1 Pn
k
n
n 1
Now
1 tn Pn
p v 1 Tv pv
P
t n1 t n 2 t n3 t n 4 .
Necessary Part:
an
n 1
1 Pn
n 1
Pv 1 Tv
v Tv Pv Pv 1
n2
m 1
v 1
n 2
m 1
n 1
p T P 1 1 1 p 1
n 2
k
k
k 1
1 n 1 n 1 pv p v v k Tv k n Pn v 1 v 1 (using Holders inequality)
1 n Pn
n 1
p
v
k Tv
k
v 1
Pn p n n Pn p n Pn1
n 1
p
k
v
v 1
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
Tv
k
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 103-110 (2010). m 1
n 1
pn Pn Pn 1
O(1) n 2
pv k Tv
m 1
k
O(1)
v 1
n 2
1 n 1 p 1 k n Pn v 1
109
k 1
(using 3.1) m
p v k Tv
O(1)
m 1
k
v 1
n v 1
n 1
Pv v 1 p v
1 1 Pn 1 Pn
k
Tv
k
p v 1
Using Holders inequality m
O (1)
k
1 1 Pv Pm 1
k
p v Tv
v 1
m 1
O(1)
n 2
k pv Tv Pv
m 1
O(1)
v 1
m 1
O(1)
v 1
pv Pv
k
O(1)
Pv pv
v 1
m 1
O(1)
n 2
k 1
Pv pv
Tv
m
O(1)
k 1
Tv
m 1
n
n 2
(using 3.1)
m
O(1)
n 2
1 n Pnk
m 1
n 2
p
v 1
v 1
1 n Pnk m 1
O (1)
V Pv 1 Tv v 1
n2
m 1
v 1
Tv
Pv pv
k
pv 1
v 1
Tv
n v 1
p v 1 Pv 1 Tv pv v 1 k
k
O(1)
v 1
m
k
O(1)
v 1
m 1
n v 1
pn Pn Pn1
1 1 Pv Pm1
k
Tv
Pv pv
pn Pn2
k
k
Pv pv
Pv pv
p v 1
k
k
Tv
pv 1
k
pv 1
Pv pv
pv 1 pv
Tv
m 1
k
Tv
v 1
m
k
k
Pv pv
m
O(1)
n 1
1 n 1 P O1 T p 1 k n 2 n Pn 1 p
p v 1
k
n 1 p Pv 1 Tv V 1 v 1 v 1 pv
1 n Pnk
O(1)
n 1
pv 1 pv pv
Pv pv
m
t n3
n 1
pn Pn Pn
k
Now m 1
v 1
k
O(1) , as m . k
k
Pv pv
k
v 1
m 1
n 1
1 n Pn
1 Pv
k
k 1
Tv
k
k 1
Tv
k
by Lemma
O(1) , as m . Now
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)
110
m 1
n 2
U.K. Misra et al., J.Comp.&Math.Sci. Vol.1(2), 103-110 (2010).
tn4
k
m 1
n
n 2
1 n Pnk
p v 1 Tv pv m 1
n 2
1 n Pnk
This completes the proof of necessary part as such the theorem is established.
n 1 Pv 1 v 1
REFERENCES
k
n 1 pv Tv p v 1 v 1 p v 1
k
O(1) , as m , (going through the lines of t n 3 ).
1. Flett, T. M., On an Extension of Absolute Summability and Some Theorem of Littlewood and Paley. Proc. Lond. Math. Soc. 7, p.113-141 (1957). 2. Tripyuthi Sanjaya, A Relation Between Two Summability Methods, Bulletin of Pure and Applied Sciences, Vol. 20E (No.1) p.143-152 (2001).
Journal of Computer and Mathematical Sciences Vol. 1 Issue 2, 31 March, 2010 Pages (103-273)