Cmjv01i04p0501

Page 1

J. Comp. & Math. Sci. Vol. 1(4), 501-513 (2010).

A note on index summability of an infinite series MAHENDRA MISRA1, U.K.MISRA2 and S.BUXI3 1

Principal Government Science CollegeMlkangiri, Orissa, India e-mail:mahendramisra@2007.gmail.com 2 Department of Mathematics Berhampur University Berhampur – 760007, Orissa, India e-mail:umakanta_misra@yahoo.com 3 Department of Mathematics Gunupur Science College Gunupur, Odisha ABSTRACT In this paper we have established a theorem on

N , pn ,  n ; f

k

 summability of an infinite series..

Key words:

N , pn , n

k

 summability, N , p n ,  n ; f

k

 summability . AMS Classification No: 40D25

1. INTRODUCTION Let

a

n

(1.2)

be an infinite series

with sequence of partial sums

s n  .

Let p n  be a sequence of non-negative e numbers such that n

(1.1) Pn

  p  , as n  , ( Pi  0

 p i  0 ; i  1). The sequence-to-sequence transformation

tn 

1 Pn

n

p s , ( P  

n

 0)

0

defines the sequence

t n  of

mean of the sequence

(N , pn )

sn  generated

by the sequence of co-efficients The series

a

n

p n .

is said to be summable

N , p n , k  1 if (Bor[1]) k

 Pn (1.3)   n 1  p n

  

k 1 k

t n  t n 1   .

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


502

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4),501-513 (2010)

Similarly, the sequence-to-sequence transformation (1.4) Tn 

1 Pn

n

 pn s , ( Pn  0)

 0

defines the sequence Tn  of

N, p n 

s n  egenerated by the sequence of co-efficients p n . mean of the sequenc

The series

a

n

is said to be N , p n k ,

, k  1 if

Let

Let f be a function of  n , if 

{ f (

k

n

)}k ( n ) k 1 Tn  Tn1  ,

n 1

then the series

a

 Pn     n 1  p n 

k 1 k

Tn  Tn 1

 .

n

is said to be

N , p n ,  n ; f k , k  1 summable . Clearly for

f ( n )   n ,   0 ,

N , pn ,  n ; f

(1.5)

N , pn ,  n ;  k , k  1,   0 summable..

k

 N , pn ,  n ; k .

and for   0

N , pn , n ; f

k

 N , pn , n k .

We consider  n ,  n and q n  as seq-

 n 

be any sequence of positive e

numbers. The series

a

n

is said to o

uences of positive numbers such that n

Qn   q  , as n  .  0

be summable N , p n ,  n k , k  1, if 



k 1 n

Tn  Tn 1

k

2. Known Theorems:- On dealing with

 .

n 1

Clearly N , p n ,

Pn pn

 N , pn

k

and

Sulaiman[4] proved the following theorem:

k

Theorem-A:-Let t n  denote the

N , p n ,1 1  N , p n .

N, p  -mean of the series  a .

Further, if

n

n

k

  n k k 1 Tn  Tn1   , n 1

then the series

N , qn ,  n k , k  1 summability,,

Letbe  n ,  n and q n  sequence off positive numbers such that n

a

n

is said to be

Qn   q  , as n  .  0

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 503 Let us write

Tn  

1 1 k n

n   n 1   n

t n 1 .

If k 1 k n n k n n 1

k 1 k 1   k 

 q  q  O   n  1 Q Q  Q 

n   n 1   n

  

n   n 1   n

k 1

  

n   n 1   n

 , 

k

n Tn

  

k 1

k 1

 qn   Qn

k

,

k

 k  n Tn 

k

,

k

 Pn1  k    n Tn  pn 

then the series

k

 Pn   q n  k     n Tn  p n   Qn 

a

n

k

n is summable

N , q n ,  n k , k  1.

k

,

Theoram-B for N , q n ,  n ;  k , k  1,   0 , Summability methods.

n   n 1  n 

k 1

  

k

 Pn 1  k    n Tn  pn 

k

 .

Theorem-C:-Let

t n  denote the

N, p  -mean of the series  a n

Then the series

a

n

n is summable

1

Subsequently, Jena has proved an analogue theorem. He proved: Theorem-B:- Let

t n  denote the

N, p -mean of the series  a n

n

and

Let 1 k

 

 q n    Qn

k 1 q    O    Q



k  k 1 n

n  1 

n   n 1   n

  

n   n 1   n

If k 1 n

1 k

If

Tn   n t n 1 . 

and

Tn   n t n 1 . 2

1

n

let

N , q n ,  n , k  1. k

n  1

 ,

Later on Samanta 3 have generalized

k 1

and

k

  

 , 

n   n 1   n

 q n   Qn

k  k 1

     

 Pn   pn

k  k 1

k  k 1

  

k  k 1 q     O  ,   Q  k

 qn   Qn

 qn   Qn

 k  n Tn 

k

,

k

 k  n Tn 

k

,

k

 Pn1  k    n Tn  pn 

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)

k




504

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010)

then the series

a

k

n is summable

n

 n Tn

N , qn ,  n ;  k , k  1,   0 . In this paper, we generalize TheoremC for N , q n ,  n ; f k , k  1, summability methods. 3. Main Theorem:- Let

t n  denote the

N, p -mean of the series  a n

n

and

let 1

Tn   n t n 1 .

  f  

k

n

n  1

q  nk 1  n   Qn

  

k

 f  k 1 q  O Q   n  f   n 1    n 

(3.2)

  

 qn   Qn

 n  f   n 1    n 

(3.3)

k

n   n

  

k

k

(3.4)

  

k 1

 k  n Tn 

n   n

n Tn    n   f     n 1    n   

f  n     n   , =f f  n     n 

then the series

a

n

n is summable

N , qn ,  n ; f k , k  1,   0.

Let  n be the n-th  N, q n   mean

If (3.1)

 ,

Proof of the Theorem:

1 k

(3.5)

k

k

k

  

of the series

  

 n   n 1

 , 

k 1

k

k 1

n 1   Qn qn Qn Qn1  1

 Qn  q n P11 

 Pn1    p  n 

1  n1     P a    r 1 r  Qn qn QnQn1  1  r 1 

  

 Qn qn P11 

,

n     n 

n . Then

n 1 =  P `1a  Qn qn  Q n Q n 1  1

,

 qn   Qn

n

 Qn  q n a 

 Pn     pn  k

a

k

  n     Pr 1 a r  Pn11 Qn q 0  Q0 q n  n   r 1   (By Abel’s partial summation formula)

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 505 1 1  n 1  P P 1 k 1    T  Qn 1 q n   Qn q n  1 P11    Qn Qn 1   1  p 

 Qn q n  1  Q n  1 q n 

 p   Q n q n  1  Qn  1 q n P1    P P 1   Pn Pn 1 1k 1   Tn Pn11 q 0 Qn 1 n . pn 

1 1  n 1  P  k 1    Qn 1q n  Qn q n 1   T   Qn Qn 1   1  p 

 Qn q n  1  Qn  1 q n   

1 1 k 

1 1   P 1  Qn q n  1  Qn  1 q n  k   T  T    p  

1 1  Pn  q 0    n  k Tn    p n  Q n 

 Tn ,1  Tn , 2  Tn ,3  Tn , 4  Tn,5  Tn ,6  Tn ,7

, say..

To prove t he t heorem, by Minkowski’s inequality it is sufficient to show that 

  f  n k  n k 1 Tn ,r

k

  , r  1, 2,3, 4,5,6,7 .

n 1

Now, m 1

k 1

k

  f     n

n

T n ,1

k

n2 m 1

   f  n   n  n 2

k

k 1

1 Qnk

n 1

 P    1  p

1

1  k q n    T 

k

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


506

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010)

m 1

k 1

k

  f  n   n  n2

1 Qn

 n 1  P  k   q n      p   1   

k

1 k  



T

1   Qn

n 1

  

k

 q  n    1 

k 1

,

(using Holder’s inequality) k

m

 P   O (1)       1  p 

k

P   O (1)       1  p 

 f      

k 1

k

k k 1  f          O (1)  k k 1   f         1    m

k

 f           O (1)      1  f            O (1)   f    1     m

k

n

1

k

m

k 1

  f     n

n  1

k

m

m 1

k

 1 k   T

   

k

    

k 1

  

T

P p

k

 f   k   k 1 k

   

k

T

q , by(3.1) Q

q Q

k

T

k

k

 P  q    p Q    

k

T

k

, by (3.5)

 O ( 1 ) , as m   ,by(3.2). Next, m 1

  

k

 P  q     p  Q

k 1

k

 q n    Qn

  f  n k  n k 1 Tn , 2

k

n2

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 507

m1

k

  f n  n 

k 1

n2

 P   qn 1     1  p 

1 Qnk1

m 1

1 Q n 1

k k 1   f  n   n  n2

1 1 k

n1

k

T

 n 1  P  k   q n  1     p   1    n 1

 1   Q n 1

 

q n 

1

 1  

k

1 k  k



T

k

  

k 1

,

(using Holder’s inequality) k

m

 O (1 ) 

 1

 P     p   

k

P   O (1)       1  p 



k

T

1

k

 f  k  k 1

k k 1  f       O (1 )  k k 1   1  f      

k

 f           O (1)      1  f         m

m

 O (1 ) 

 1

       f      

k 1

  f     k

n

m

m 1

n

n  1

k

m

1 k  k

k

    

  

k 1

k 1

T

k

 q n  1   Q n 1

  , Q   

  

 f  k  k 1  q k

 P   q     p     Q

    

k

by(3.1)

T

k

k

 P   q        p   Q 

k

k

T

k

 P   q       p Q      

k

T

k

, by(3.5)

 O (1 ) , as m   , by(3.2) Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


505

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010)

Next, m 1

k

  f  n k  n k 1 T n , 3 n2

m 1

  f    

k 1

k

n

n

n2

m 1

q  

  f  n   n 

Q n 1

n2

  

n  1

k

1 1  k

T

1

1

k 1

k

n 1

1 Q nk 1

 n 1   q n    1    1  1   Q n 1

k



n 1

1 k  k 

q n 

k

  

k 1

 1  

 1

T

,

(using Holder’s inequality) m

 O (1 )   

k



1 k  k

T

 1

m

 O (1 ) 

 1

m 1

k

  f    

n

1 k 1

 f       k



k

T

k

 O (1 ) 

 1 m

 O (1 ) 

 1

k

 f             f      

    f    

   

k

  

    

k 1

  

 q n   1   Q n 1

 q  Q

 q   Q

 q   Q

k 1

    

 q   Q

     k

    

T

k

k

  

 , by(3.1) 

 f   k   k  1 

k k 1  f       (1 )  k k 1   1  f       m

n

1

m

 O

k 1

k

n

T

k

k

T

k

, by(3.5)

 O ( 1 ) , as m   , by(3.3). Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 509 Further, m 1

k 1

  f     k

n

n

k

Tn,4

n2

m 1

  f    

k 1

k

n

n

n2

m 1

k 1

  f  n   n  k

n2

q nk Q nk Q nk1

q nk Q nk Q n 1

n 1

 

1

Q q n   n  1  q n 

 n 1   q n    1

 Q n  1   q n 

k

1

1    k     T 

k

   

k

 1   Q n 1

1 k  k



T

n 1

  

q  

n 

1

k

  

k 1

,

(using Holder’s inequality) m

 O (1 )   

k



1 k  k

T

k

 1

k k  m1        q q Q k k 1 n n  n  1       f  n   n     Q Q q n  1  n   n1  n   m

 O (1 )   

k



1 k  k 

T

k

 1

m

 O (1) 

 1

1

 f   k   k  1

k

n   1

q n  k k 1   f         n n Q

T

k

k k 1  f       O (1 )  k k 1   1  f       m



m 1

 q  Q

 f   k   k  1   q   Q

    

k

T

n 1

 , 

k

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)

  

by(3.1)


510

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) k

 f          O (1)      1  f         m

m

 O (1 ) 

 1

   f    

 O ( 1 ) , as m 

   

k

k 1

    

 q   Q   

k 1

     q   Q

k

k

T

    

k

k

T

, by( 3 . 5 )

 , by(3.3).

Next, m 1

  f  n k  n k  1 T n , 5

k

n2

m 1

k 1

k

  f     n

n

n2

1 Q n 1

 n 1  P  1      1  p

k

  q n  1   

 1   Q n 1

k

1 k  k



n 1

 q  n   1   1 

T

k

  

k 1

,

(using Holder’s inequality)

m

P  O (1)    1  1  p m

k

1 k  k   k     T 

k

m 1

k

k k 1  f       O (1 )  k k 1   1  f       m

 Q n 1 

n  1

 P 1  k    O (1)   T  k k 1   p  f         1      1

q   f  n k  n k 1  n  1  k

 q   Q

  , by(3.1) Q   

 f  k  k 1  q   P  1     p

  

k

 

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)

k

T

k


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 511 k

 f           O (1)      1  f         m

   O (1)   f    1     m

   

k

    

 O (1 ) , as m  

  

k 1

k 1

k

 q   Q

  P 1     p

    

 q   Q

  P 1  k      T   p 

k

k

T

k

k

, by(3.5)

,by(3.4).

Next, m 1

k

k k 1   f  n   n  T n , 6 n2

m 1

k 1

  f  n   n  k

n2

q nk Q nk Q nk1

n 1

 

  Q n  1     q n  m 1

k 1

   f  n   n  k

n 2

1

P q n    1  p

  

1

1    k      T 

k

k k  P 1   Qn 1  1 k k q nk  n1 k     q    T   n     p   qn  Qnk Qn1  1  

 1   Q n 1

n 1

q   1

n 

  

k 1

,

(using Holder’s inequality) m

 O (1 ) 

 1

 P  1   p

k

     

k

1 k  k



T

k

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)

k

  


512

Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010)

m 1

 qn   Qn

k 1

  f     k

n

n

n  1

m

 O (1 ) 

 1

 P  1   p

  

k

  

k

 q n    Q n 1

1 k 1

k

 f      

  Q n   1     q n 

 

k

  

k

k

T

  ,  Q 

 f  k  k 1 q k k 1  f       O (1 )  k k 1   1  f       m

m

 O (1) 

 1

  O (1)    1  m

k

 f               f        

 f    

   

k

 O (1 ) , as m  

    

  

k 1

k 1

 P  1   p

 P 1   p

 q   Q

  

k

  

k

 q   Q

 q   Q

  P 1     p

by(3.1)

     

    

k

k

k

    

k

T

k

, by(3.4).

k k 1   f  n   n  Tn , 7

k

n 1

m

k

k

T

Finally, m

T

1

1   k k k 1  Pn   q 0      n  n T n    f  n   n   p Q n 1  n  n 

k

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)

,by(3.5)


Mahendra Misra et al., J.Comp.&Math.Sci. Vol.1(4), 501-513 (2010) 513

k

m

k

 k k 1  P   q    f  n   n   n   0   n n 1  pn   Qn  k

m

 O (1)   f  n   n  k

k 1

n 1

m

 O (1 ) 

n 1

  f 

 n   n  

k

n n

  

1 k  k 

n

k

 Pn   q n       n p Q  n   n 

   

k

k 1

Tn

1

k

 f  n   n 

k 1

k

k

 Pn   q n    p  n   Qn

k

k

Tn

k

   n 

k

Tn

k

,

by(3.5)

 O (1 ) , as m   , by(3.2). This completes the proof of the Theorem. REFERENCES

summability

of an infinite series,, Ph.D thesis submitted to Berhampur 1. Bor, H., On two summability methods, University (2008). Math. Proc. Cambridge. Philos., Vol. 4. Sulaiman, W.T., On a New absolute 97, 147-149 (1985). summability method., International journal Math.& Math. Science, Vol. 2. Jena.K., On N , p n ,  n k  summabilit 21, No. 3, 603-606 (1998). summability method , Ph.D thesis submitted to Berhampur University (2009). 3. Samanta, P., On

N , pn ,  n ;  k 

Journal of Computer and Mathematical Sciences Vol. 1 Issue 4, 30 June, 2010 Pages (403-527)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.