Cmjv02i01p0123

Page 1

J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

N , pn , α n ; δ

k

Summability of An Infinite Series

U. K. MISRA1, M. MISRA2 and P. SAMANTA3 1

Department of Mathematics, Berhampur University, Berhampur-760 007, Orissa, India. 2 Principal, Government Science College, Malkangiri, Orissa, India 3 Department of Mathematics, Gopalpur College, Gopalpur on sea, Orissa, India. ABSTRACT

N , pn , α n ; δ

In this paper we establish a theorem on

k

summability factors of an infinite series. Key words:

N , pn , α n ; δ k summability.

AMS Classification: 40G05

∑a

1. INTRODUCTION

∑ an be an infinite series with

Let

sequence of partial sums {s n } . Let {p n } be a sequence of non-negative numbers such that

Pn =

( P−i

n

∑ pv → ∞, as n → ∞,

v =0

n

is

 Pn  ∑ n =1  p n ∞

(1.2)

tn =

1 Pn

Tn =

(1.3)

n

∑ p s , (P v =0

v v

n

(

)

mean of the sequence {s n } generated by the

{p n }.

summable

  

k −1

t n − t n −1 < ∞ . k

1 Pn

n

∑p v =0

n −v

s v , (Pn ≠ 0)

defines the sequence {Tn }of the ( N, p n )

≠ 0)

defines the sequence {t n } of the N , p n

sequence of coefficients

be

Similarly, the sequence-to-sequence transformation

The sequence-to-sequence transformation (1.1)

to

N , p n k , k ≥ 1 if (Bor7)

.

= p−i = 0; i ≥1)

said

The series

mean of the sequence {s n } generated by the sequence of coefficents

∑a

n

is

said

to

{p n }. The series be

N , p n k , k ≥1 if

Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)

summable


U. K. Misra, et al., J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

124

 Pn  ∑ n =1  p n ∞

(1.4)

Let

{α n }

  

k −1

Tn − Tn−1

be any sequence of positive

numbers. The series

is said to be

n

N , p n , α n k , k ≥ 1 , if

summable ∞

∑α

(1.5)

∑a

n =1

k −1 n

Tn − Tn −1 < ∞ .

k + k −1

n =1

n

then the series

Qnk Qn −1

 αn    ∑  βn 

k −1

n =1

∈n

k

Tn

  

 α k −1 q k −1  0  ν k v ,  Qv 

= k

k

 Pn   qn       pn   Qn  , k

< ∞

k −1

∈n

k

Tn

k

<

∞,

and

= N , pn

k

αn  ∑ n =1  β n

k

k

is said to be

n

k

N , qn , α n k , k ≥1 .

Tn − Tn −1 < ∞ ,

∑a

  

k −1

 Pn−1  k k   ∆ ∈n Tn < ∞ ,  pn  then the series ∑ a n ∈n is summable ∞

and

Further, if

∑α δ

n = v +1

αn  ∑ n =1  β n

N , pn , 1 1 = N , pn . ∞

α nk −1 q nk

k

P Clearly N , p n , n pn

(1.6)

< ∞.

k

N , p n , α n ; δ k , k ≥1, δ > 0 summable. Clearly for

δ = 0, N , p n , α n ; δ k = N , p n , α n k . We consider {α n }, {β n } and {q n } as sequences of positive numbers such that n

Q n = ∑ qv =→ ∞ on n → ∞ .

Recently, Misra, Misra and Jena42 have proved an analogue theorem. They proved: Theorem-B. Let t n be the n-th N , p n mean

1−

Tn = β n ∞

n = v +1

v =0

On dealing with N , q n , α n , k ≥1

1 k

the

 q n −v  Qn

  

∑a

series

n

)

and

let

∆t n −1 . If

α nk −1 

αn  ∑ n =1  β n ∞

2. KNOWN THEOREM

of

(

k −1

  = 

 qn   Qn

 α k −1 q v 0 v  Qv

 ,  

k

  ∈n 

k

Tn

<

k

∞,

and

k

summability, Sulaiman52 proved the following theorem. Theorem-A. Let {t n } denote the N , q n -

(

mean of the series

Tn = β

1 1− k n

∆Tn −1 . If

∑a

n

)

. Let us write

αn    ∑ n =1  β n  ∞

k −1

k

k

 Pn −1    ∆ ∈n Tn  pn 

then the series

∑a

n

∈n

k

<

∞,

is summable

N , q n , α n k , k ≥1 .

Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)


U. K. Misra, et al., J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

In this Theorem-B

paper,

we

generalize for N , q n , α n ; δ k , k ≥1, δ ≥ 0 , summability

methods.

Theorem:

of the series

n

Tn = β

1 1− −δ k n

(3.1)

∑α

n = v +1

n

δ k +k −1

α  (3.2) ∑ n  n=1  βn  ∞

(3.3)

∑a

n

and let

∆t n −1 . If

δk + k −1

t n be the n-th

Let

α  ∑  βn  n =1  n 

  α vδk + k −1 q v  = 0 Qv  

k

 ,  

k

P  q  k k ⋅  n  ⋅ n  ∈n Tn < ∞ , p Q  n  n  qn    ∈n  Qn 

δ k + k −1

(3.4)

α  ∑  βn  n =1  n 

then the series

Tn

<

k

k

 Pn −1    ∆ ∈n Tn  pn 

∑a

n

∈n

k

<∞,

is summable

4. PROOF OF THE THEOREM Let τ n be the n-th ( N , q n ) -mean of

∑ an ∈n .

Then τ n − τ n −1 = n

∑ ( Qn qn − v v =1

qn − v − Qn − v qn ) Pv−−11 ∈v

n

qn − v − Qn − v qn ) Pv−−11 ∈v

}

}

  n  +  ∑ Pr −1 a r  Pn−−11 (Qn q 0 − Q0 q n ) ∈n  ,  r =1  

1 Qn Qn −1 − Qn − v qn ) av ∈v

=

1  n −1  P P  −1−δ 1  ∑  v v −1 β vk Tv   Qn Qn −1  v =1  pv   

{( Qn −1 qn −ν

− Qn qn −ν −1 ) Pv−−11 ∈v

+ ( Qn qn − v −1 − Qn −v −1 qn ) pv

k

N , q n , α n ; δ k , k ≥1, δ > 0 .

the series

v =1

 1  n −1  v  ∑  ∑ Pr −1ar  ⋅ ∆ QnQn −1  v =1  r =1 

{( Q

k

and ∞

n

∑ ( Pv =1 av )

by Abel’s partial summation formula

 q n−v   Qn

δ k + k −1

n

1 Qn Qn −1

{(Q =

3. MAIN RESULT

(N , p ) -mean

=

125

Pv Pv −1

∈v + ( Qn qn − v −1 − Qn − v −1 qn ) Pv−1 ∆ ∈ν

}

1  Pn Pn −1 k −1−δ + βn Tn Pn−−11 q0 Qn −1 ∈n  . pn 

=

 n −1  Pv  1 −1−δ 1  ∑   β vk Qn Qn −1  v =1  pv 

( Qn −1 qn −v − Qn qn−ν −1 ) ∈v Tv + ( Qn qn − v −1 − Qn − v −1 qn )

1 −1−δ ∈v β vk

Tv

P  +  v −1  ( Qn qn − v −1 − Qn −v −1 qn ) ×  pv  1

× β vk

−1−δ

 ∆ ∈v Tv  + 

= Tn ,1 + Tn , 2

1 −1−δ  Pn  q 0   ∈n β nk Tn     p n  Qn  +T n ,3+Tn , 4 + Tn ,5 + Tn ,6 + Tn , 7 ,

say. To prove the theorem, by Minkowski’s inequality it is sufficient to show that

Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)


U. K. Misra, et al., J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

126 ∞

∑α n =1

δk + k −1 n

Tn ,r

k

P = 0(1) ∑  v v =1  p v using (3.1) m

< ∞, r = 1,2,3,4,5,6,7 .

Now m +1

∑α n=2

δk + k −1

k

Tn ,1

n

=

m +1

∑ αn

n=2

 1   Qn

m +1

∑α n=2

n −1

 ∑ qn−v  v =1 

kδ + k −1 n

Tn , 2

k

=

k

m +1

β v1− k −δ k Tv

kδ + k −1 n

n=2

m +1

δk + k −1

 n −1 

1

⋅ Q nk−1

P 

∑ α nkδ + k −1 ⋅ Qn −1  ∑  pvv  1

 qv   Qv

  t v 

k

k Tv ,

 q n−v −1  ∑ v =1  n −1

1 −1−δ  Pv   q n − v −1 ∈v β vk Tv v =1  v 

n −1

q n − v −1 ∈v

k

β v1− k − kδ Tv

k

×  

k −1

, as above

k −1 k

m P  = 0(1) ∑  v  ∈v v =1  p v 

m P = 0(1) ∑  v v =1  p v

using Holder’s inequality. k

m  P  = 0 (1) ∑  v  ∈v v =1  pv 

k

β v1− k − kδ Tv

k

m +1

 qn − v    Qn 

∑ α nδ k + k −1 

n = v +1

  

k

k

β v1− k − kδ Tv

αv   βv

  

m +1

∑ αδ

k

δk + k

n = v +1

 qv   Qv

k + k −1

n

  ∈v 

 q n −v −1     Qn −1  k

Tv

k

= 0(1), as m → ∞ , using (3.2).

Next, m +1

∑α n=2

k −1 n

Tn,3

k

=

m +1

∑α n=2

δk + k −1 n

m +1

∑α n=2

1 Qnk−1

m

k

v =1

α  = 0 (1) ∑  v  v =1  β v  m

∑q v =1

n − v −1

∈v β

1 −1− k k v

k

Tv

1  n −1 k k   1  ∑ q n −v −1 ∈v β v1− k − kδ Tv   Qn −1  v =1   Qn −1

kδ + k −1 n

= 0(1) ∑ ∈v

n −1

β v1−k −kδ Tv k −1

 qv    ∈v  Qv 

k

m +1

∑α δ

n = v +1

k

Tv

k + k −1 n

k

∑  p

k

 v =1

 1 ×   Qn

   

k

  

, using (3.2).

∑α

n=2

 n −1  P k  ∑  v  qn − v ∈v  v =1  pv  

 αv   βv

Next,

1 Qn

δ k + k −1

k

= 0 (1) , as m → ∞

k

1 −1−δ  Pv    q n −v ∈v β vk Tv ∑ v =1  p v 

k + k −1

n

n=2

n −1

m +1

1 Qnk

∑α δ

  

 q n −v −1  ∑ v =1  n −1

 q n−v −1     Qn −1 

k

= 0(1), as m → ∞ , using (3.3). Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)

k −1


U. K. Misra, et al., J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

127

Further, m +1

∑α n=2

kδ + k −1 n

k

Tn , 4

m +1

δk + k −1

∑α

=

n

n=2

m +1

∑ α nkδ +k −1 Q k

n=2

n

qnk Qn−1

q nk Qnk Qnk−1

 Qn −v −1  1k −1−δ  β v q n −v  ∈v Tv ∑ v =1  q n−v  n −1

k  n−1  Qn−v −1   ∑ qn−v   ∈v  v =1 qn−v   

m

= 0(1) ∑ ∈v

k

v =1 m

= 0(1) ∑ ∈v

k

v =1

β v1− k −kδ

 k  1  Tv    Qn−1 

n −1

 ∑ qn−v  v =1 

k

 q n   q n −v   Qn −v −1        β Tv ∑ α n = v +1  Qn   Qn −1   q n−v  m +1 q  k β v1− k − kδ Tv ∑ α nkδ + k −1  n − v  n = v +1  Q n −1  1− k v

k

m +1

kδ + k −1

α  k  q = 0(1) ∑  v  ∈v  v v =1  β v   Qv = 0(1), as m → ∞ , using (3.3). m

k

k

k −1

k

kδ + k −1 n

  Tv 

k

Next, m +1

∑α n=2

δk + k −1 n

Tn,5 m +1

∑α n=2

k

=

m +1

∑α n=2

δk + k −1 n

δk + k −1 n

n −1

1 −1−δ Pv −1 k q ∆ ∈ β Tv ∑ n − v −1 v v v =1 p v

k 1  n −1  Pv −1  ∑   qn−v−1 ∆ ∈v Qn −1  v =1  p v   k

P  = 0(1) ∑  v −1  ∆ ∈v v =1  p v  m

1 Qnk−1

k

β v1−k −kδ Tv

δk + k −1

k

β

k

m +1

∑α δ

n = v +1

1− k − kδ v

k + k −1

n

Tv

k

k

 1    Qn −1 

 q n −v −1  ∑ v =1  n −1

 q n −v −1     Qn − v 

k

m α   Pv −1    ∆ ∈v = 0(1) ∑  v  p v =1  β v   v  = 0(1), as m → ∞ , using (3.4).

k

k

Tv ,

Further,

Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)

k −1

,


U. K. Misra, et al., J. Comp. & Math. Sci. Vol.2 (1), 123-128 (2011)

128 m +1

∑α n=2

δk + k −1

Tn , 6

n

k

=

m +1

∑α n=2

m +1

δk + k −1 n

δk + k −1

∑α n n=2

q nk Q0k Qnk−1

1 −1−δ  Pv −1  Qn − v −1   ( ∆ ∈v ) β vk q n −v  Tv ∑ v =1  p v  q n− v  n −1

P  q n −v  v −1  ∑ v =1  pv  n −1

q nk Qnk Qn −1

k

k

 Qn− v −1    ∆ ∈v  q n −v 

 1 ×   Qn −1 k

P  = 0(1) ∑  v −1  ∆ ∈v v =1  p v  m

β

k

1− k − kδ v

k −1

Tv

k

m +1

∑α

n = v +1

δk + k −1 n

 qn   Qn

  

k

 Qn −v −1     q n−v 

k

k

k

k β v1−k −kδ Tv  ×

 

 q n−v  ∑ v =1  n −1

k −1

 q n −v     Qn −1 

k

m α   P  k = 0(1) ∑  v   v −1  ∆t v Tv v =1  β v   pv  = 0(1), as m → ∞ , using (3.4).

k

Finally, m

∑α n =1

k

δk + k −1 n

Tn , 7

=

m

∑α

n= f

δk + k −1 n

 Pn   pn

  

k

 q0   Qn

δk + k −1

k

  ∈n  k

k

β n1−k −kδ Tn k

α   Pn   q n    = 0(1) ∑  n  β n =1  n   p n   Qn = 0(1), as m → ∞ , using (3.2). m

This completes the proof of the theorem. 5. REFERENCES 1. Bor, H., On Two Summability Methods, Math. Proc. Cambridge. Philos., 97, pp.147-149 (1985). 2. Jena, K., On N , pn ,α n k summability

  ∈n 

k

Tn

k

method, Ph.D. thesis, Berhampur Thesis, (2009). 3. Sulaiman, W.T., On a New Absolute Summability Method, Internat. J. Math and Math. Sci., Vol. 21, No.3, pp. 603606 (1998).

Journal of Computer and Mathematical Sciences Vol. 2, Issue 1, 28 February, 2011 Pages (1-169)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.