Cmjv03i03p0320

Page 1

J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

A Note on

α

N , pn ; δ

– Summability of A Series

k

S.K. PAIKRAY1, R. K. JATI2, U. K. MISRA3 and N. C. SAHOO4 1

Dept. of Mathematics, Ravenshaw University, Cuttack, Odisha, INDIA. 2 Dept. of Mathematics, DRIEMS, Cuttack. Odisha, INDIA 3 Dept. of Mathematics, Berhampur University, Odisha, INDIA. 4 S. B Women’s College (Auto), Cuttack, Odisha, INDIA (Received on: May 22, 2012) ABSTRACT In this paper a theorem on

α

N , pn ; δ – summability has been k

proved. Keywords: Summability, Bounded, partial sum. AMS Classification No.: 40 G05. α

Where An =

1. INTRODUCTION

{sn } {p n }

Let ∑ an be an infinite series and be the sequence of its partial sums.

be a sequence of non-negative numbers with

Let

α

(1.1)

γ =0

Let us define α

pn =

n

∑ γ =0

n +α

α ≥1

α

n

α

γ =0

α

α

p− i = p− i = 0 , i≥ 1 Let

Tn

α

1 = α Pn

α −1

of the sequence (1.2)

(1.4)

n

pγ ∑ γ =0

α

{ }is (N , p ), mean

Then the sequence Tn

An −γ

(1.3)

Pn = ∑ pγ , with

n

Pn = ∑ pγ , p0 ≠ 0

( ),

α

{sn }

α

n

generated by the

{ }. α

sequence of coefficients pn

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


321

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

The series α

N , pn

k

n

is said to be summable

α

 Pn    n =1  n 

α k n −1

α

Tn − T

Where Xn =

<∞

∑a

n

is said to be

summable N , pn ; δ , k ≥ 1, δ ≥ 0

n =1

k

   

If

Pn . npn

α k

Tn − Tn−1

n

n

n

an λn X n is summable N , pn k .

<∞

Let {sn} be a bounded

Theorem B:

α

α

If α = 0 , δ= 0, k = 1, then N , pn , δ

k

summability is same as

sequence and the sequence {λn } and { pn } satisfy the following conditions : α

n

2. KNOWN THEOREMS Dealing with N , pn

(ii) k

summability (iii)

Let k ≥ 1 and let the sequence {pn } and {λn } be such that

1 n

(i) ∆ X n = O 

n =1

k −1

pn −v p − nα−v−1 α Pn Pn−1

∑ nδ

| λn |k + | λn +1 |k <∞ n

(2.1)

(iv)

k + 2k

∑ nδ

k +2k

n =1

= O(1)

α

( pn ) k | λn |k < ∞ and α

( pn )

k

| ∆λ n | k < ∞

Then the series ,

∑ λ Pα a n n

(2.2)

k k −1

α

n =1

Theorem – A

n

α

Bor proved the following theorem :

∑ γ =0

1

∑X

α

(i) Pn = O(n, pn )

N , pn – summability.

(ii)

(2.3)

Subsequently, Misra, sahoo and Paikray2 prove the following theorem

δk + k −1 α

∑a λ X

α

 Pnα  α ∑  n =1  pn

)

+ 1 | ∆λn |< ∞

If {sn} is bounded, then the series

Again, the series

k n

n =1

k −1

∑  p α

∑ (X ∞

(iii)

,k ≥1

If

∑a

α

n

is | N , pn , δ | k summability

where k ≥ 1 and α > – 1

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


322

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

In this paper we have extended α

N , pn ; δ

theorem –B for of the series

∑a λ X n

n

– summability

(3.3)

| ∆λ n | <∞ n n =1

(3.4)

k

n

 n−1   ∑ ∆X γ     γ =1 

Theorem: Let k ≥ 1, α ≥1, δ k < 1 and

Xn =

| λn | k <∞ ∑ n n =1 ∞

3. MAIN RESULT :

α

Pn α npn

k −1

  

(3.5)

 1  = O   γ +1

(3.6)

1 | X n |k = O  n

(3.7)

| ∆X γ | | Xγ | γ k

If the sequence {sn} is bounded and α

α

the sequences { pn } and {λn } are such that α

α

Pn−1 = O (npn ) α

 Pnα  α p  n

   

k +1

δk −1

(3.1)

Then the series,

(3.2)

∑a λ X

α

| X γ |k γ δk ( pγ + Pγ ) = O (1)

 1 = O k γ

n =1

n

n

α

is summable N , pn , δ .

n

k

4. PROF OF THE THEOREM α

α

Tn be the {N , pn } mean of the series n

∑a λ X n =1

n

Tn =

1 α Pn

pγ ∑ γ

=

1 α Pn

υ  α p a z λz X z ( x0 = 0)  ∑ ∑ γ γ =0  z =0 

α

1 α Pn 1 = α Pn

=

=0

α

n

n

n

1 n  α   α α p ( a λ X ) + p a λ X + ... + p a z λz X z     ∑ ∑ 1 z z z n  0 0 0 0  z =0   z =0  

[p

α 0

α

(a0λ0 X 0 ) + p1 (a0λ0 X 0 + a1λ1 X 1 )

+ ... + Pn (a0 λ0 X 0 + a1λ1 X 1 + ... + an λn X n )] α

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


323

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

[

1 α α α ( p0 + p1 ..... + pn )a0λ0 X 0 α Pn

=

α

α

+ ( p1 + ..... + pn )a1λ1 X 1 + α

+ pn .an λn X n ]

[

1 α α α Pn (a0λ0 X 0 ) + ( Pn − P0 ) a1λ1 X 1 α Pn

=

α

α

+… + ( Pn − Pn−1) an λn X n ]

 1  n α α α ( Pn − Pγ −1 ) (aγ λγ X γ ) , where P−1 = 0 α ∑ Pn  γ =0 

= For n ≥ 1, α

 1 n α α ( Pn − Pγ −1 ) aγ λγ X γ  α ∑ Pn  γ =0   α − pγ −1 ) aγ λγ X γ   n 1 1 α α = α ∑ ( Pn − Pγ −1 ) aγ λγ X γ − α Pn γ =1 Pn−1 α

Tn − Tn−1 = −

1 α

pn−1

 n−1 α ∑ ( pn−1  γ =0

=

1 α Pn

n

α

aγ λγ X γ −

P ∑ γ =1

n

1

n

α

∑ pn−1 aγ λγ X γ +

α

pn−1

γ =1

α

p = α nα Pn Pn−1

α

p = α nα Pn Pn−1

n

α Pγ ∑ γ =1

α

Pγ ∑ γ =1

1 α

Pn−1

−1

n

=1

n −1

α

− Pγ −1 ) aγ λγ X γ

aγ λγ X γ α

Pγ ∑ γ =1

α

(P ∑ γ

−1

aγ λγ X γ

n α ∑ Pr −1 aγ λγ X γ  γ =1 

1 1 + α α Pn−1  Pn

=  −

=

1 α pn

n

n

−1

aγ λγ X γ

α  n−1  pn α α ∑ sγ ∆ ( Pγ −1 λγ X γ ) + sn ( Pn−1 λn X n ) by Abel’s lemma α α Pn Pn−1  γ =1   n−1 α α ∑ − sγ {λγ X γ pγ + pγ X γ (∆λγ )  γ =1

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012) α

]

α

+ Pγ λγ +1 ( ∆X γ )} + sn ( Pn−1 λn X n )] α

n −1

pn α α Pn Pn−1

= −

α

α

∑ sγ pγ λγ X γ + γ =1

α

pn α α Pn Pn−1

n −1

Pα X γ (∆λγ ) sγ ∑ γ =1

α

n −1

pn p α α Pγ λγ +1 (∆X γ ) sγ + α n α sn λn X n Pn−1 ∑ α Pn Pn−1 γ =1 Pn Pn−1 = Tn ,1 + Tn , 2 + Tn ,3 + Tn , 4 +

α

The theorem will be proved if we can prove that

   

 Pnα  α ∑  n =1  pn

   

(A)

δk + k −1

 Pnα  α ∑  n =1  p n ∞

k

Tn ,r < ∞, r = 1, 2, 3, 4

 Pnα  = ∑  α  n =1  pn  ∞

δk + k −1

Tn,1 δk + k −1

k

α

− pn α α Pn Pn−1

k

n −1

α γ

p ∑ γ =1

λγ X γ sγ

Let us consider δk + k −1

 pnα  α ∑  n = 2  pn

   

m +1

 pα = ∑  nα  n = 2  pn

   

 pα = ∑  nα n = 2  pn

   

m+1

m +1

δk −1

δk −1

 pα = 0 (1) ∑  nα n=2  pn m

= 0(1)

sγ ∑ γ =1

k

k

k

n −1

α γ

p ∑ γ =1

λγ X γ sγ

k −1

k

k −1 1 n −1 1  1  α k α k   s λ X ( p ) ( p ) ∑γ γ γ γ γ α α pn−1  pn +1  γ =1 k −1 1  n−1 k k k α  1 n−1 α    ∑ sγ λγ X γ pγ  α ∑ pγ   α  p   pn−1  γ =1  n−1 γ =1   

   

m +1

α

− pn α α pn pn−1

δk −1

λγ X γ

1 α

pn−1 k

α γ

p

h −1

k

sγ ∑ γ =1

λγ k X γ k pγα

 pnα  α ∑  h =γ +1  p n m +1

   

δk −1

1 α

pn−1

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)

324


325

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012) m

k

sγ ∑ γ

=

k

λγ X γ

=1

m

k

sγ ∑ γ

k

λγ X γ

=1

m

k

sγ ∑ γ

k

λγ X γ

=1

m

sγ ∑ γ

k

k

λγ X γ

=1

m

sγ ∑ γ =1

∑ γ m

∑ γ

λγ X γ

k

k

k

p

α γ

p

pγ pγ

α

(p ∑ (p (p ∑ (p (p ∑ (p n =γ +1

) ) ) ) ) )

α 1−δk

m +1

n

α 1−δk

n

m +1

2−δk

α

n −1 n

n =γ +1

2 −δk

α

n −1

m +1

1   ∑ n =γ +1  n 

α

(

α

O γ δk −1

(1 – δk>0)

2−δk

α

m +1

pn −1

α 1−δk

n

n =γ +1

1 α

2 −δk

(Using 3.1)

)

k

α

X γ Pγ γ δk

λγ k

=1

k

k

γ

=1

k

α γ

k

λγ

m

k

γ

O(1)

using 3.2

< ∞ as m → ∞ using 3.3

 Pnα  α ∑  n =1  pn ∞

(B)

   

δk + k −1

Tn, 2

pα = ∑  nα n=1  pn

   

1

Now,

α

Pn−1 ≤

1 α

Pn−1

n −1

δk + k −1

α

Pγ ∑ γ =1

α

Pn−1

k

α

pn α α Pn Pn−1

n −1

k

α γ

P ∑ γ =1

X γ (∆X γ ) sγ

∆λγ

n −1

∆λγ ∑ γ =1`

= O(1) Let us consider Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


326

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

 Pnα  α ∑  n = 2  pn

   

m+1

 Pα ≤ ∑  nα n = 2  pn

   

m +1

α

δk −1

 pα ≤ ∑  nα n =2  p n

   

 Pnα ≤ ∑  α n = 2  pn

   

m +1

δk −1

k

n −1

α γ

P ∑ γ =1

X P (P ) ∑ k

   

γ

k −1

α

(∆λγ )( sγ )

(

 n−1 α ∑ X γ sγ Pγ (∆λγ  γ =1

α

k

α

Pn−1

α γ

k

k

(

k

 pα ≤ O(1)∑ | X γ | | Pγ | | (∆λγ ) | ∑  nα γ =1 n=γ +1  pn

)

α γ

m+1

α

k

γ

 n−1  | X | | s | P ( ∆ λ ) ∑ γ γ γ  ∑ | ∆λγ γ =1  γ =1 n−1

1

m

) (P 1 k

 1 | X γ | | sγ | ( P (∆λγ )) α ∑ γ =1  Pn−1 n−1

1 pn−1

δk −1

γ

γ =1

1  1  α α Pn−1  Pn−1

δk −1

X γ (∆X γ ) sγ k

n −1

1

n−1

   

m +1

α

pn α α Pn Pn−1

α

P = ∑  nα n=2  pn m +1

δk + k −1

m

α | X γ | | Pγ | | ∆λγ | O(γ δ ∑ γ k

k −1

   

δk −1

α

(∆λγ )

)

k −1 k

  

k

 P (∆λγ )  ∑ γ =1  n−1

 |  

k −1

α γ

k −1

1 α n−1

P

)

=1

m

=

∑ γ

| ∆λγ |

α

| X γ | k | Pγ | γ δk

γ | ∆λγ | =∑ O(1) γ γ =1 =1

m

using 3.2

< ∞ as m → ∞

 Pn α  α ∑  n=1  pn ∞

(C)

   

 Pn α = ∑  α n=1  pn ∞

using 3.4 δk + k −1

Tn ,3    

δk + k −1

k

α

pn α α Pn Pn−1

n −1

k

α γ

P ∑ γ =1

λγ +1 (∆X γ ) sγ

Let us consider,

 Pnα  α ∑  n = 2  pn m +1

   

δk + k −1

α

pn α α Pn Pn−1

n−1

k

α γ

P ∑ γ =1

λγ +1 (∆X γ ) sγ

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


327

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012) δk −1

 Pnα = ∑  α n = 2  pn

   

 Pα = ∑ nα  n = 2  pn

   

 Pnα = ∑  α n = 2  pn

   

 Pα  = ∑  n α  n=2  pn 

δk −1

m +1

m +1

m +1

m+1

δk −1

δk −1

 1  α P  n−1

   

k

n−1

λγ ∑ γ =1

s ( Pγ (∆X γ ) ( Pγ (∆X γ ))

+1 γ

n−1

1

| λγ ∑ γ =1

 1 α |k Pγ (∆X γ )O k γ

+1

α  m+1  Pn    ∑  α  n=γ +1  pn  m  1  α ≤ ∑ | λγ +1 |k Pγ | ∆X γ | O k O γ δk −1 γ =1 γ  m 1 α = ∑ | λγ +1 |k k +1 Pγ | ∆X γ | γ δk

 1 = ∑ | λγ +1 | P | ∆X γ | O k γ =1 γ α γ

(

m

| λγ ∑ γ =1

|k

+1

| λγ ∑ γ =1

1 | ∆X γ | γ k +1 | X γ |k

 1  |k O   γ +1

m

=

k −1

α

k −1

  using 3.5  1 α

Pn−1

)

γ

γ =1

=

δk −1

k −1 k k

 Pγ ∆X γ  ∑ γ =1  n−1

 n−1  1  n−1 α k   ∑ ∆X γ  | λ | ( P ∆ X ) ∑ γ γ γ + 1 α   Pn−1  γ =1  γ =1 

P

k

α

 1 1  n−1  ∑ | λγ +1 |k ( Pγ α ∆X γ )  α α   P Pn−1  γ =1  n−1

α n −1

m

1 k

α

+1

< ∞ as m → ∞

   

 Pα = ∑  nα  n=1  pn

   

using 3.6

using 3.4

δk + k −1

 Pα (D) ∑  n α n =1  pn ∞

using 3.2

Tn, 4 δk + k −1

k

k

α

pn s n λn X n α Pn

Let us consider

 Pnα  α ∑  n =1  pn m

   

δk + k −1

α

k

pn s n λn X n α Pn

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


328

S. K. Paikray, et al., J. Comp. & Math. Sci. Vol.3 (3), 320-328 (2012)

 Pnα = ∑  α n=1  pn m | λ |k = ∑ n n n =1 m

   

δk −1

| λn | k | X n |k using 3.7

< ∞ as m → ∞. This completed the proof of the theorem. REFERENCES 1. H. Bor : On the local property of summability of Factored N , pn k

Fourier Series, Journal of Mathematical Analysis and Applications. 163, 220-226

(1992). 2. U. K. Mishra, N.C. Sahoo, S. K. Paikray:

A

note

on

α

N , pn ; δ

k

summability, Journal of the Indian Academy of Mathematics Vol. 30 No.2 p.p. 481-487 (2008).

Journal of Computer and Mathematical Sciences Vol. 3, Issue 3, 30 June, 2012 Pages (248-421)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.