Cmjv05i02p0155

Page 1

JOURNAL OF COMPUTER AND MATHEMATICAL SCIENCES An International Open Free Access, Peer Reviewed Research Journal www.compmath-journal.org

ISSN 0976-5727 (Print) ISSN 2319-8133 (Online) Abbr:J.Comp.&Math.Sci. 2014, Vol.5(2): Pg.155-161

A Note on Matrix Summability of an Infinite Series Chitaranjan Khadanga1, Kiran Mishra2 and Lituranjan Khadanga3 1

Professor, Department of Mathematics RCET, Bhilai, C.G., INDIA. 2 Assistant Professor, Department of Mathematics, G.D. Rungta College of Sc. & Tech. Dept. of Mathematics, Bhilai, C.G., INDIA. 3 Assistant Professor, Department of Mathematics, CEC Bhilai, C.G., INDIA. (Received on: March 1, 2014) ABSTRACT In the present Paper we establish an analogue theorem for

A, δ k , k ≥ 1 summability. Keywords: Matrix Transformation , Infinite Series, Summability Theory.

Let T = (a nk ) and σ = {s n } . Then

INTRODUCTION Let

∑u

n

be an infinite series with

sequence of partial sums

( )

Let T = a n , k

{sn }.

be an infinite matrix with

real and complex elements, then the transform {t n } of {s n } is given by n

tn =

∑a

n,k

sk .

Tσ exists for all bounded sequence, if Tσ exists for all sequences convergent to 0. A necessary and sufficient condition for Tσ to exists for all sequence of either class is that ∞

∑a

n ,k

converges for all m .

n =1

The Matrix T transforms all bounded sequences into sequences if and

k =0

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


156

Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014)

only if it transforms all sequences which converge to 0 into bounded sequences. If T = a n ,k , a necessary and sufficient

( )

condition for T to transform all sequences of either class into bounded sequences is that there exists a constant C such that ∞

∑a

≤ C , for all n.

n ,k

k =1

If for k > n , then the method is called triangular matrix method. If lim t n = s , then the sequence {s n } or the n →∞

( ) simply T-summable to s. A series ∑ u

series or

∑u

n

, is said to be summable a n ,k

n

is said to be absolutely summable by Tmethod or simply T -summable, if

t n − t n −1 < ∞

∑a

n

be an infinite series with

sequence of partial sums {s n } such that n

An =

a nv s v .

∑a

Then the series

k

n

is said to be

< ∞.

n =1

triangular matrices A and Aˆ as follows: n

r =v

and

nr

Theorem-1: Let A be a lower triangular matrix with non-negative entries satisfying a n0 = 1, n = 0,1,... (i) (ii)

a n −1,v ≥ a nv for n ≥ v + 1

(iii)

n ann = O(1) If the sequence {s n }is bounded and the sequence {λn } is such that (iv)

∑ ∆λ

n

n =1 m

(v)

∑a

nn

λn

= O(1) , k

= O (1) .

n =1

Then the series

∑a

n

λn

is summable

KNOWN RESULT Theorem-2

k

Associate with A we define two lower

∑a

summability.

k ≥ 1, , if

∑ n k −1 An − An−1

a nv =

Euler-Totient function φ (k ) as the number of positive integers not exceeding k and relatively prime to k . In 2007, E.Savas and B.E.Rhodes proved the following theorem on A k -

A k , k ≥ 1.

v =0

summable A

For any positive integer k ≥1 we define

m

Let A = (a mn ) be a lower-triangular matrix and

aˆ nv = a n ,v − a n −1 , n = 1,2,3,... and v = 0,1,2,...

, n = 0,1,2,... and v = 0,1,2,...

Let A be a lower-triangular matrix with non-negative entries satisfying

a n , 0 = 1, n = 0,1,2,... a n −1,v ≥ a n ,v for n ≥ v + 1

nann = O(1) Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014)

We need the following lemmas for the proof of our theorem. Lemma-1

and for 1 n +1

tn =

( O( w

k

(v + 1)2k + 2

)

1 n +1

n

∑a

k

log k

n −1

k =1

∑∆

,

Lemma-2 For

(v + 1)2 k + 2

n > 1, λn = ∑ φ (k ) =

m +1

∑∆

v

aˆ n ,v = O a vv

k ≤n

 1 n ∑ t v aˆ n,v = O k −1 v =1  (v + 1) a vv ∞ ∞ tv wv = O ( 1 ) ; = O(1) ∑ ∑ v =1 a vv v =1 a vv k

1 tn n

k

Then

   

k −1

 1 = O 2k + 2  (n + 1)

∑a

n

3 2 n + O(n log n) π2

Lemma-3

n = v +1

n −1

aˆ nv = a n,n

v

v =0

1

a vv =

v

wn =

1

a vv = k

,

k =1

)

k

O tv

n

∑k a

 1 ;  n wn 

k

m

∑ aˆ

n ,v

=1

n = v +1

Proof of Main Theorem: We have

 1 = O 2k + 2  (n + 1)

   

λ n is summable A k , k ≥ 1 .

n n  i  Tn = ∑ a ni si = ∑ a ni  ∑ λv a v  i =0 i =0  v =0  n

n

v =0 n

i =v

In the present paper, we establish an analogue theorem for A, δ k , k ≥ 1

= ∑ λv a v ∑ a ni

summability. We prove:

= ∑ λv a v a nv = ∑ λv a v a nv

MAIN THEOREM

Then

Let A be a triangular matrix with non-negative entries satisfying for

Tn − Tn −1 = ∑ λr a v a nv − ∑ λv a v a n −1,v

n

v =0

v =1 n −1

n

tn =

1 n +1

n

∑k a , k

wn =

k =1

1 n +1

n

∑a

k

log k

∑n

δk

v =1

∆ v aˆ n ,v = O a vv

δk ∑ (ν + 1) v =1

Then

∑a

v =1 n

v =1 n

v =1 n

∞ tv δk wv = O(1) ; ∑ (ν + 1) = O(1) a vv avv v =1

λ n is summable A , δ k , k ≥ 1 .

=

n

n

= ∑ (a nv − a n −1,v )λv a v = ∑ aˆ nv λv a v

n = v +1 ∞

v =1

n

= ∑ λv a v a nv − ∑ λv a v a n−1,v

k =1

and m +1

157

∑ aˆ

v =1

n ,v

(

)

a v v 2 + v log v (using Lemma -2)

v =1 n

n

v =1

v =1

∑ aˆ nv av v 2 + ∑ aˆ nv av v log v

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


158

Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014) n

n

∑ (v aˆ nv )(v av ) + ∑ (v aˆ nv )(av

=

v =1

n −1

log v )

=

n −1 v  n  = ∑ ∆ v (v aˆ nv )⋅ ∑ (r a r ) + (n aˆ nn ) ∑ vav  v =1 r =1  v =1  n −1

v

∑ ∆v (v aˆ )⋅ ∑ a

+

nv

v =1

n ,v

v

v

nn

n −1 v =1

log r + (n aˆ nn ) ∑ (a v log v )

v =1

v =1

(By using Abel’s Lemma.) n −1

=

∑ {(v + 1) ⋅ ∆ (aˆ ) + (aˆ ) (−1) } (v + 1) t + (naˆ ) (n + 1) t v

n ,v

n ,v

v

nn

n

v =1 n −1

+ ∑ {(v + 1) ⋅ ∆ v (aˆ n ,v ) + (aˆ n ,v ) ( −1) } (v + 1) ⋅ wv + (naˆ n 0 ) ( n + 1) wn = +

v =1 n −1

n −1

v =1 n −1

v =1 n −1

2 ∑ (v + 1) ⋅ t v ⋅ ∆ v (aˆ n,v ) − ∑ (aˆ n,v ) (v + 1) t v + (n aˆ nn ) (n + 1) t n

∑ (v + 1)

2

⋅ wv ⋅ ∆ v (aˆ n ,v ) − ∑ (aˆ n ,v ) (v + 1) wv + (n aˆ nn ) ( n + 1) wn

v =1

v =1

= T1 − T2 + T3 + T4 − T5 + T6 . In order to establish the theorem it is sufficient to prove that ∞

∑n

δk + k −1

Tn, r

k

< ∞, r = 1,2,3,4,5,6 .

n =1

Now m +1

∑n

δk + k −1

m +1

Tn ,1

n =1

=

k

=

∑n

δk + k −1

n =1

n −1

k

∑ (v + 1)

2

t v ⋅ ∆ v (aˆ n,v )

v =1 1 k

 n−1 1 k  k −1  n−1  2      δk + k −1  k k  ˆ ˆ n ( v + 1 ) ⋅ t ⋅ ( ∆ a ) ( ∆ a )    ∑ ∑ ∑ v v n , v v n , v       v =1   n =1  v =1   m +1

m +1

∑n

δk + k −1

n =1 m +1

 n −1 2k  ∑ (v + 1) t v  v =1

≤ O (1)∑ n δk + k −1 n =1

n −1

n

+ ∑ ∆ v (v aˆ n ,v ) (v + 1) wv + (n aˆ nn )(n + 1) wn

n

r

∑ ∆ (vaˆ )(v + 1) ⋅ t + (n aˆ )(n + 1) t v =1

v =1

∑ (v + 1)

2k

k

∆ v aˆ n,v k

  n −1    ∑ ∆ v aˆ nv    v =1 

t v ∆ v aˆ n ,v ⋅ a nn

k k −1

   

k −1 k k

k −1

k −1

v =1

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014) m +1

= O (1)∑ n

δk

n =1

n −1

∑ (v + 1)

2k

tv

k

∆ v aˆ n ,v

δk

∆ v aˆ n ,v

v =1

m

2k

= O(1)∑ (v + 1) v =1 m

m +1

k

tv

∑n n = v +1

≤ O (1)∑ (v + 1) v =1 m

2k

2k

= O(1)∑ (v + 1) v =1

k

t v ⋅ a vv

1 = (v + 1) 2 k + 2

m

∑ v =1

1 = O(1), as m → ∞ . (v + 1) 2

Next m +1

∑n

δk + k +1

m +1

Tn , 2 =

n =1

n =1

m +1

=

∑n

δk + k −1

n =1

m +1

= ∑n

=

δk + k −1

n =1

=

∑ aˆ

n ,v

(v + 1) t v

v =1

n −1

k −1

1

k

∑ (v + 1)⋅ (t v aˆ n,v )k (t v a n,v ) k 1 k  n −1   ∑  (v + 1) (t v ⋅ aˆ n ,v )k   v =1   

δk + k −1

∑n m +1

k

n −1

v =1

n =1

m +1

∑n

δk + k −1

n −1

∑ (v + 1) (t k

v

n −1

⋅ aˆ n ,v )

∑t

m +1

∑ n δk −1

k

v

v =1 n −1

   

k −1 k k

k −1

aˆ n ,v

v

⋅ aˆ n,v ) n

k

k −1

n −1

∑t

v

aˆ n,v

v =1

 1 aˆ n,v ) ⋅ O k −1 n =1 v =1  ( r + 1) a vv m +1 n −1 1 ≤ ∑ n δk −1 ∑ (v + 1) t v aˆ n,v ⋅ avv n =1 v =1 m m +1 t = ∑ (v + 1) v ⋅ ∑ n δk −1 aˆ n,v avv n= v +1 v =1 m m +1 t 1 ≤ ∑ (v + 1) v ⋅ ⋅ aˆ n,v ∑ avv (v + 1)1−δk n=v +1 v =1 =

k k −1

v =1

∑ n ∑ (v + 1) (t n =1

 n −1 k −1    ˆ ( t a )  ∑   v n ,v k  v =1 

n −1

v =1 δk −1

   

1 k

∑ (v + 1) (t k

v

  

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)

159


160

Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014) m

=

tv

∑a v =1

(v + 1) δk ⋅ 1 (using Lemma-3)

vv

= O(1) as m → ∞ ) Next m +1

∑n

k δk + k −1

k

m +1

∑n

Tn ,3 =

n =1

δk + k −1

n aˆ nn (n + 1) t n

n =1 k

m +1

k

≤ ∑ n k −1 (n + 1) t n n =1 m +1

=

∑n

δk

.n .(n + 1) k

k

n =1 m +1

1 tn n

k

k

1 ≤ ∑ n (n + 1) tn n n =1 m +1 1 = ∑ (n + 1)δk (n + 1)2 n =1 m +1 1 = O(1) as m → ∞ = ∑ 2 −δk n =1 (n + 1) = O(1) as m → ∞ , since 2 − δk >1 . 2k

δk

Further m +1

∑ n δk + k −1 Tn,4

m +1

k

=

n =1

m +1

≤ = ≤

∑n

δk + k −1

∑ (v + 1)

n =1

v =1

m +1

n −1

2

∑ n δk +k −1

∑ (v + 1)2 k

n =1

v =1

m +1

n

∑n

δk + k −1

n =1

m +1

=

n −1

∑ (v + 1)2 wv

n =1

v =1

wv (∆ v (aˆ n,v )) wv

k

1 k

(∆ (aˆ )) v

n ,v

k −1 k

k

k −1

n −1

∆ v aˆ n ,v

∆ v (aˆ n ,v )

∑ ∆ v aˆ n,v v =1

∑ (v + 1)

2k

wv

k

∆ v aˆ n ,v aˆ n ,n

k −1

v =1

m +1

∑ n ∑ (v + 1) n =1

k

n −1

∑ n δk + k −1

δk

v =1

2k

wv

k

∆ v aˆ n ,v

m

=

2k ∑ (v + 1) v =1

wv

k

m +1

∑n

δk

∆ v aˆ n ,v

n = v +1

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


Chitaranjan Khadanga, et al., J. Comp. & Math. Sci. Vol.5 (2), 155-161 (2014) m

=

2k ∑ (v + 1) v =1 m

=

k

wv

=

a vv

v =1

≤ 2k + 2

=

∑n

δk + k −1

∑ aˆ (v + 1) w

Reihe

v

v =1

(proceeding in the lines of m +1

∑n

δk + k −1

Tn , 2

k

)

2.

n =1

and m +1

∑n

3. δk + k −1

Tn ,6

k

n =1 m +1

=

∑n n =1 m +1

∑n n =1

k δ k + k −1

δk

n aˆ n , n w n

.n .(n + 1) k

.

1. Abel, N. H. Üntersuchungen über die

k

n −1

n ,v

n =1

= O(1) as m → ∞,

REFERENCES

n =1

m +1

   

This completes the proof of Theorem.

k

Tn ,5

1

(n + 1)2−δk

 1 O  2  (n + 1 )

sin ce 2 − δk >1.

Finally δk + k −1

∑ n =1

1 =∑ = O(1) as m → ∞ 2 v =1 (v + 1) m +1

δk

n =1

m

∑n

∑ (n + 1) m +1

1

2k

∑ (v + 1) (v + 1)

m +1

161

2k

4. 1 wn n

(proceeding in the line of

k

m +1

∑n n =1

5. δ k + k −1

T n ,3

k

)

1 + mx +

m(m − 1) 2 x +L , 2

Journal fur reine and angewants mathematik (crelle) I, 311-339 (1826). Hardy, G.H. Divergent Series, Clarendow Press, Oxford, (1949). Misra, M., Misra, M., Rauto, K. Absolute Banach Summabilty of Fourier Series, International Journal of Mathematical Sciences, Vol. 1, No.1,39 – 45 June (2006). Paikaray, S.K. Ph.D. thesis submitted to Berhampur University, (2010) Petersen, M. Regular matrix transformations, McGraw-Hill Publishing Company Limited (1996).

Journal of Computer and Mathematical Sciences Vol. 5, Issue 2, 30 April, 2014 Pages (123 - 257)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.