Vladimir Nikolov - EVERYWHERE AND NOWHERE

Page 1

Full Score (chromatically transposed) Performance Time: 6'04"

Solos: Ten. Vce.

Everywhere and Nowhere Насекаде и никаде

Printed 21.11.2010

Voice

Tenor Sax in B 

Piano

Guitar

Double Bass

Drums

composed & arranged by Vladimir Nikolov

    

   

 & 



&  & 

 &   V 

p



    

  

  

    

   

   

 

  



  

  

    

   

   

 

  



  





  

  

     

 

 

?

 



F

   

÷

 

      


Full Score

2

Everywhere and Nowhere







7

Vce.

&

Ten. 1

&

Pno.

Gtr.

D. B.

Drs.

     

 

 

                                              &                       &  

 V 

  

    





  

     

 

  

?

÷

     


Full Score

3

Everywhere and Nowhere













13

Vce.

&

Ten. 1

&

Pno.

Gtr.

D. B.

Drs.

& &

   

 

 

 

      



  

  

 

 



 

 

   

 

  



  

  

 

 



 

 

   

 

  



  

  



  

 V  ?   ÷

 

P

  

 

     

        

  

 

  

  

 

    

     

  

 

 

  

 

   

    

  


Full Score

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

4





19

&

&

&

     

 

    F

  

   

 

 





 









  

Everywhere and Nowhere

  

 

 

   

    

 

 

 

P              &                                                                                                                                                                                                                 *   

V  ?  ÷

  

  

F

    

     

  

 

 

 

  



 



  

 

 

 

   

 

  

  

  

   

  



        

 



     

  

 

  

   



    

  




Full Score

5

25

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

& & &









    

 

 

 

÷

   

     

 

 

 





 V  ?  

  



&

Everywhere and Nowhere

  

 

  

      

 

 



      

 

 

   

 

 

 



  

F

  

    



  

 





  

 



 

 



    

 

 



 

  



  



       

  





 

  

   

       

 

 

                                     F

  

 

  


Full Score

6

 31

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

& & & &



 

  

 

 

   

 

  



   

  





  

  

 





 

 



    

 

 



 



   

 

 

 

F



 

    

 

 

     

   



 

 



?

                                                                                                                                                                                                                                                                                                                                   *    

 V  ?   ÷



Everywhere and Nowhere

  

 

    

     

  

                                  

 

  

 

 

     

      

 

 

  

 

    

   

    

 



                                                                         




Full Score

7

 37



Vce.

& 

Ten. 1

&

Pno.

Gtr.

D. B.

Drs.





& 

 

      f

?  V

 

?  ÷

 

     f



 



 

  

     

   



           



 

  

 

Everywhere and Nowhere

          

 

 

    

          

  

 

          

     

    



 



    

    

 

 

 

 

         

  

  

       

 

    

     

     

   


Full Score

8





43

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

& 

 

&  &  ? 

     



 

  V   ?      ÷

  

          



    

 

f

              f 

        



  



 

 

Everywhere and Nowhere

   

           

     





  

           f

 

 





 





   

   

 

        





    





  

 

  









   

      



      







  

 

  

                                  



 

     

    



  











   

   







 



        



  

                                 


Full Score

9





49

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

&  &

 

 ?

? ÷

 



   

  

                

 

     

    

 



  









      

 & 

V 

Everywhere and Nowhere

 



        



 

   

 

  



  







 



                

    

 









 

 

 

  

 

 

 

                                                                                                                                *   

   

    

   p



 








Full Score

10





&

&

55

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.







 

 





 

&       ?

Everywhere and Nowhere

                                             p                                                                                                                                  *                                                                                                                  *                                                                                                                   *      

     

 

V

?

÷

 

         

p





p

          





  

 



  



  

 

  


Full Score

11

61

Vce.

&

 





Everywhere and Nowhere



 



 



   

 







Ten. 1

Pno.

Gtr.

D. B.

Drs.

& &     ? V

 

 



  

 

 

 

                                                                                                                     *  

         

?  ÷





 p

         

   







P   

 

 

 

   

 

 

 

  

  



  

  

                                                                                                                    *  







 

 

    P



p

 

  

 

 

 

 

                                                                                                                         *  

          P 

 P 

    

     




Full Score

12

67

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

& &

 



&     ?

 



   

 

 

 

  

  



  

  



 





  

 

p  

 

 

 

  

 

 

          

 

 



p

  

   

p  

   

  







       



P

                                                                                                                                *  



 

 

?  

  

                                                                                                                   *  

V 

÷



Everywhere and Nowhere

 

 

 

   

 

 

 

  

  



  

  

                                                                                                                  *  






Full Score

13

 

 







Everywhere and Nowhere

 



 



73

Vce.

&

Ten. 1

&

Pno.

Gtr.

D. B.











 

 



 

 

&     ?

 

 



  

                                                  *  

V  ?  ÷







  





Drs.

p

  

 

 

 

   

                                                         *  

         

 



 

 

 

 

 

 

  

 

 

  F

  

 p      



  

  

 

 



     

  

F   



 

  

 

        

 





 

 

                                                         *                                                        *  

                                                         *                                                          *     



  

        



        

  


Full Score

14

79

Vce.

Ten. 1

&

Gtr.

?

Drs.

 

                                                            *  



D. B.

 

 

f  

          V ?  ÷

 

f  

  

 

 

 

      

        f

 



   

 



 &  



f 

& 



Pno.





Everywhere and Nowhere

  f



  f             

 

  

 

              

 

  



 

 



 

 



 

 

 



 

 

 



 

 

  

 



 

 

 

 

 

F                                                         F 

  




Full Score

15

 84

Vce.

Ten. 1

Pno.

Gtr.

D. B.

& &  & 



?

 

 

 

 

? 

 



 

 

  

             ÷     

 

  

 

 1.

  



 

  



  



  





  

 

  

 



 

 

 

   



   





 

2.





  





  





V









Drs.



Everywhere and Nowhere

  

   

 

                                                                        

  



 

 

  



 





   

 

 

  

     

                 


Full Score

16

90

Vce.

& 

Ten. 1

&  

Pno.

Gtr.

D. B.

Drs.

&   ?  

?    ÷













V 

  

 

 

 



  



  





  

 

Everywhere and Nowhere

 



   

 



 

  



  



  



 

 





  

         

 



 



 





   

  



   



 

   

                                                                                                              


Full Score

17

Everywhere and Nowhere





Ten. 1

Pno.

Gtr.

D. B.

Drs.

& 

& 

?

 

V 



 

    

 

F

2.

&

?

 

 1.

95

Vce.



 



 



 

 



 

 

  

 

 



 



 

   

   

     

   

 





 

  

 

  

        

                            ÷           

   

   



                  

 

 

   

 

   

 

 

  

 

 

   

    F



f f    

     

 



 



 

f   



 

    F

 

 





  

                  F


Full Score

18











& 

    

101

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

Everywhere and Nowhere

&

&   ?  V

?  ÷

 

 





    

 

 

   

  





 

 

    

  

 

  

 

 



   

 



 

 

         

        

 

 

 

 

                                                      

 

 





 



    

   

 



   

 

     

    

  

 



  

 

 

 

                                    


Full Score

19

 106

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

& &

&  

 

 

V 

÷



? 

?







    

      

   







    







  

  



    

   

  

   

   

 

 

 

   



    

 

   

    





 



 



 

 

  

  

 

   

 

     



   



   

    

          

                    





 

  

Everywhere and Nowhere

 

  

 



     







  

  



  



  

     

    

     

   

    

 

   

 

  

 

   

 

  

 

    



   

 


Full Score

20

 111

Vce.

Ten. 1

Pno.

Gtr.

D. B.

Drs.

&  &

 



 



 

  

 

    



Everywhere and Nowhere

 



 

 

 



 

  





 

 

 

 

  



    

  

 

  



   

  

?

 

  



    

  

 

  



   

  

 

     

    

   

   

      

  

    

      

   

& 

V

 

?

   

 

  

÷



   

 

 



  

 

        

 

    

 

 

 

  

  

 

   

  

      



 

 

   

   

 

    

    

 

  

f



                f             f               &   f          f

   

         f      f

   


Full Score

21

Everywhere and Nowhere









116

Vce.

&

Ten. 1

&

Pno.

Gtr.

D. B.

Drs.

&  &

  p

  

 

  

 

  

  

  

 

  

 

  

 

  

 





F

                                                                                                                                                                                                                                                                                                                                                   *  

V

?

÷


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.