COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 1. Free-Body Diagram:
(a)
ΣM B = 0:
− Ay ( 3.6 ft ) − (146 lb )(1.44 ft ) − ( 63 lb )( 3.24 ft ) − ( 90 lb )( 6.24 ft ) = 0
Ay = − 271.10 lb (b)
ΣM A = 0 :
or A y = 271 lb
or B y = 570 lb
By (3.6 ft ) − (146 lb)(5.04 ft ) − (63 lb)(6.84 ft ) − (90 lb)(9.84 ft ) = 0 By = 570.10 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 2. Free-Body Diagram:
(a)
ΣM C = 0:
( 3.5 kips ) (1.6 + 1.3 + 19.5cos15o ) ft − 2FB (1.6 + 1.3 + 14 ) ft + ( 9.5 kips )(1.6 ft ) = 0 2FB = 5.4009 kips or FB = 2.70 kips
(b) ΣM B = 0:
( 3.5 kips ) (19.5cos15o − 14 ) ft − ( 9.5 kips ) (14 + 1.3) ft + 2 FC (14 + 1.3 + 1.6 ) ft = 0 2FC = 7.5991 kips, or or FC = 3.80 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 3. Free-Body Diagram:
(a)
ΣM K = 0:
( 25 kN )( 5.4 m ) + ( 3 kN )( 3.4 m ) − 2FH ( 2.5 m ) + ( 50 kN )( 0.5 m ) = 0 2FH = 68.080 kN
(b)
ΣM H = 0:
or FH = 34.0 kN
( 25 kN )( 2.9 m ) + ( 3 kN )( 0.9 m ) − ( 50 kN )( 2.0 m ) + 2FK ( 2.5 m ) = 0 2FK = 9.9200 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or FK = 4.96 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 4. Free-Body Diagram: (boom)
(a)
ΣM B = 0:
( 25 kN )( 2.6 m ) + ( 3 kN )( 0.6 m ) − ( 25 kN )( 0.4 m ) − TCD ( 0.7 m ) = 0 TCD = 81.143 kN
(b)
ΣFx = 0:
Bx = 0 so that B = By
ΣFy = 0:
( −25 − 3 − 25 − 81.143) kN + B = 0 B = 134.143 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or TCD = 81.1 kN
or B = 134.1 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 5. Free-Body Diagram:
a1 = ( 20 in.) sin α − ( 8 in.) cos α a2 = ( 32 in.) cos α − ( 20 in.) sin α b = ( 64 in.) cos α From free-body diagram of hand truck
ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0
(1)
ΣFy = 0: P − 2w + 2B = 0
(2)
α = 35°
For
a1 = 20sin 35° − 8cos 35° = 4.9183 in. a2 = 32 cos 35° − 20sin 35° = 14.7413 in.
b = 64cos 35° = 52.426 in. (a)
From Equation (1)
P ( 52.426 in.) − 80 lb (14.7413 in.) + 80 lb ( 4.9183 in.) = 0 ∴ P = 14.9896 lb (b)
or P = 14.99 lb
From Equation (2)
14.9896 lb − 2 ( 80 lb ) + 2 B = 0 ∴ B = 72.505 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
B = 72.5 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 6.
a1 = ( 20 in.) sin α − ( 8 in.) cos α
Free-Body Diagram:
a2 = ( 32 in.) cos α − ( 20 in.) sin α b = ( 64 in.) cos α From free-body diagram of hand truck
ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0 (1) ΣFy = 0: P − 2w + 2B = 0
(2)
α = 40°
For
a1 = 20sin 40° − 8cos 40° = 6.7274 in. a2 = 32 cos 40° − 20sin 40° = 11.6577 in.
b = 64cos 40° = 49.027 in. (a)
From Equation (1)
P ( 49.027 in.) − 80 lb (11.6577 in.) + 80 lb ( 6.7274 in.) = 0 P = 8.0450 lb or P = 8.05 lb (b)
From Equation (2)
8.0450 lb − 2 (80 lb ) + 2 B = 0 B = 75.9775 lb or B = 76.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 7. Free-Body Diagram:
(a) a = 2.9 m
ΣFx = 0:
ΣM B = 0:
Ax = 0
− (12 m ) Ay + (12 − 2.9 ) m ( 3.9 kN ) + (12 − 2.9 − 2.6 ) m ( 6.3 kN ) + ( 2.8 + 1.45 ) m ( 7.9 kN ) + (1.45 m )( 7.3 kN ) = 0
or
ΣFy = 0: or
Ay = 10.0500 kN
or A = 10.05 kN
or B = 15.35 kN
10.0500 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 15.3500 kN
(b) a = 8.1 m
ΣM B = 0:
− (12 m ) Ay + (12 − 8.1) m ( 3.9 kN ) + (12 − 8.1 − 2.6 ) m ( 6.3 kN ) + ( 2.8 + 4.05 ) m ( 7.9 kN ) + ( 4.05 m )( 7.3 kN ) = 0
or
ΣFy = 0: or
Ay = 8.9233 kN
or A = 8.92 kN
8.9233 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 16.4767 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or B = 16.48 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 8. Free-Body Diagram:
(a)
ΣFx = 0:
ΣM B = 0:
Ax = 0
− (12 m ) Ay + (12 m − a )( 3.9 kN ) + (12 − 2.6 ) m − a ( 6.3 kN ) a a + 2.8 m + ( 7.9 kN ) + ( 7.3 kN ) = 0 2 2
or
(12 m ) Ay
= 128.14 kN ⋅ m − (10.2 kN ) a + (15.2 kN ) a 2
(12 m ) Ay
= 128.14 kN ⋅ m − ( 2.6 kN ) a
Thus Ay is maximum for the smallest possible value of a:
a =0 (b) The corresponding value of Ay is
( Ay )max = 10.6783 kN, and ΣFy = 0:
or A = 10.68 kN
or B = 14.72 kN
10.6783 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 14.7217 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 9. Free-Body Diagram:
For (TC )max , TB = 0
ΣM O = 0:
(TC )max ( 4.8 in.) − (80 lb )( 2.4 in.) = 0 (TC ) = 40 lb > [Tmax = 36 lb ] max
(TC )max
= 36.0 lb
For (TC )min , TB = Tmax = 36 lb ΣM O = 0:
(TC )min ( 4.8 in.) + ( 36 lb )(1.6 in.) − (80 lb )( 2.4 in.) = 0 (TC )min
= 28.0 lb
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
28.0 lb ≤ TC ≤ 36.0 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 10. Free-Body Diagram:
For Qmin , TD = 0 ΣM B = 0:
( 7.5 kN )( 0.5 m ) − Qmin ( 3 m ) = 0 Qmin = 1.250 kN
For Qmax , TB = 0 ΣM D = 0:
( 7.5 kN )( 2.75 m ) − Qmax ( 0.75 m ) = 0 Qmax = 27.5 kN
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1.250 kN ≤ Q ≤ 27.5 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 11. Free-Body Diagram:
ΣM D = 0:
( 7.5 kN )( 2.75 m ) − TB ( 2.25 m ) + ( 5 kN )(1.5 m ) − Q ( 0.75 m ) = 0 Q = ( 37.5 − 3TB ) kN
ΣM B = 0:
(1)
( 7.5 kN )( 0.5 m ) − ( 5 kN )( 0.75 m ) + TD ( 2.25 m ) − Q ( 3 m ) = 0 Q = ( 0.75 TD ) kN
(2)
For the loading to be safe, cables must not be slack and tension must not exceed 12 kN. Thus, making 0 ≤ TB ≤ 12 kN in. (1), we have 1.500 kN ≤ Q ≤ 37.5 kN
(3)
And making 0 ≤ TD ≤ 12 kN in. (2), we have 0 ≤ Q ≤ 9.00 kN (3) and (4) now give:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(4) 1.500 kN ≤ Q ≤ 9.00 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 12. Free-Body Diagram:
For (WA )min , E = 0 ΣM F = 0:
(WA )min ( 7.5 ft ) + ( 9 lb )( 4.8 ft ) + ( 28 lb )( 3 ft ) − ( 90 lb )(1.8 ft ) = 0 (WA )min
= 4.6400 lb
For (WA ) max , F = 0 ΣM E = 0:
(WA )max (1.5 ft ) − ( 9 lb )(1.2 ft ) − ( 28 lb )( 3 ft ) − ( 90 lb )( 7.8 ft ) = 0
(WA )max
= 531.20 lb
Thus
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
4.64 lb ≤ WA ≤ 531 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 13. Free-Body Diagram:
ΣM D = 0:
( 750 N )( 0.1 m − a ) − ( 750 N )( a + 0.075 m − 0.1 m ) − (125 N )( 0.05 m ) + B ( 0.2 m ) = 0 87.5 N + 0.2 B a= 1500 N
(1)
Using the bounds on B:
B = − 250 N (i.e. 250 N downward) in (1) gives amin = 0.0250 m B = 500 N (i.e. 500 N upward) in (1) gives amax = 0.1250 m
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
25.0 mm ≤ a ≤ 125.0 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 14. Free-Body Diagram:
Note that W = mg is the weight of the crate in the free-body diagram, and that
0 ≤ E y ≤ 2.5 kN ΣFx = 0: ΣM A = 0: or ΣFy = 0: or
Ax = 0 − (1.2 m )(1.2 kN ) − ( 2.0 m )(1.6 kN ) − ( 3.8 m ) E y + ( 6 m )W = 0
6W = 4.64 kN + 3.8E y
(1)
Ay − 1.2 kN − 1.6 kN − E y + W = 0 Ay = 2.8 kN + E y − W
(2)
Considering the smallest possible value of E y : For
E y = 0, W = Wmin = 0.77333 kN
From (2) the corresponding value of Ay is:
Ay = 2.02667 kN ≤ 2.5 kN, which satisfies the constraint on Ay . For the largest allowable value of E y :
E y = 2.5 kN , W = Wmax = 2.3567 kN From (2) the corresponding value of Ay is:
Ay = 2.9433 kN ≥ 2.5 kN which violates the constraint on Ay . Thus
( Ay )max = 2.5 kN. Solving (1) and (2) for W with ( Ay )max = 2.5 kN, W = Wmax = 1.59091 kN
Therefore:
773.33 N ≤ W ≤ 1590.91 N, or 773.33 N ≤ m(9.81 m/s 2 ) ≤ 1590.91 N, and 78.8 kg ≤ m ≤ 162.2 kg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 15. Free-Body Diagram:
Calculate lengths of vectors BD and CD:
BD = (11.2) 2 + (21.0) 2 ft = 23.8 ft CD = (a)
(11.2) + (8.4)2 ft = 14.0 ft
11.2 ft 11.2 ft (221 lb )(24 ft ) + TCD (11.4 ft ) = 0 − (161 lb )(24 ft ) + 23.8 ft 14.0 ft
ΣM A = 0 :
TCD = 150.000 lb
(b)
ΣFx = 0:
11.2 ft 11.2 ft 161 lb − ( 221 lb ) − (150 lb ) + Ax = 0 23.8 ft 14.0 ft Ax = 63.000 lb
ΣFy = 0:
or
A x = 63.000 lb
21.0 ft 11.2 ft (221 lb) − Ay − (150 lb) = 0 23.8 ft 14.0 ft
Ay = 285.00 lb
A=
TCD = 150.0 lb
Ax2 + Ay2 =
or
A y = 285.00 lb
(63)2 + (285) 2 = 291.88 lb
( 63 )
θ = tan −1 285 = 77.535° Therefore
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
A = 292 lb
77.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 16. Free-Body Diagram:
(a)
Equilibrium for ABCD:
ΣM C = 0:
( A cos 60° )(1.6 in.) − ( 6 lb )(1.6 in.) + ( 4 lb )( 0.8 in.) = 0 A = 8.0000 lb
(b)
ΣFx = 0:
or
C x = 8.0000 lb
C y − 6 lb + ( 8 lb ) sin 60° = 0
or C y = −0.92820 lb C =
60°
Cx + 4 lb + ( 8 lb ) cos 60° = 0 or C x = − 8.0000 lb
ΣFy = 0:
A = 8.00 lb
C x2 + C y2 =
or
(8)2 + ( 0.92820 )2
C y = 0.92820 lb = 8.0537 lb
− 0.92820 = 6.6182° −8
θ = tan −1 Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
C = 8.05 lb
6.62°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 17. Free-Body Diagram:
Equations of equilibrium:
− ( 330 N )( 0.25 m ) + B sin α ( 0.3 m ) + B cos α ( 0.5 m ) = 0
ΣΜ Α = 0:
(1)
Ax − B sin α = 0
ΣFx = 0:
(2)
Ay − ( 330 N ) + B cos α = 0
ΣFy = 0:
(3)
(a) Substitution α = 0 into (1), (2), and (3) and solving for A and B:
B = 165.000 N, Ax = 0, Ay = 165.0 N or A = 165.0 N , B = 165.0 N
(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:
B = 275.00 N, Ax = 275.00 N, Ay = 330.00 N
A=
Ax2 + Ay2 =
θ = tan −1
Ay Ax
(275)2 + (330) 2 = 429.56 N
= tan −1
330 = 50.194° 275
∴ A = 430 N
50.2°, B = 275 N
(c) Substituting α = 30° into (1), (2), and (3) and solving for A and B:
B = 141.506 N, Ax = 70.753 N, Ay = 207.45 N, ⇒
A=
Ax2 + Ay2 =
θ = tan −1
Ay Ax
(70.753) 2 + (207.45) 2 = 219.18 N
= tan −1
207.45 = 71.168° 70.753 ∴ A = 219 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
71.2°, B = 141.5 N
60°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 18. Free-Body Diagram:
Equations of equilibrium:
ΣΜ Α = 0 :
− (82.5 N ⋅ m ) + B sin α (0.3 m ) + B cos α (0.5 m ) = 0
(1)
ΣFx = 0:
Ax − B sin α = 0
(2)
ΣFy = 0:
Ay + B cos α = 0
(3)
(a) Substituting α = 0 into (1), (2), and (3) and solving for A and B:
B = 165.000 N, Ax = 0, Ay = −165.0 N or A = 165.0 N , B = 165.0 N
∴ A = 275 N
(b) Substituting α = 90° into (1), (2), and (3) and solving for A and B:
B = 275.00 N, Ax = 275.00 N, Ay = 0 , B = 275 N
(c) Substituting α = 30° into (1), (2), and (3) and solving for A and B:
B = 141.506 N, Ax = 70.753 N, Ay = −122.548 N A = Ax2 + A y2 = (70.753) 2 + (−122.548) 2 = 141.506 N
θ = tan −1
Ay Ax
= tan −1
122.548 = 60.000° 70.753 ∴ A = 141.5 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
60.0°, B = 141.5 N
60°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 19. Free-Body Diagram: (a) From free-body diagram of lever BCD
ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD
ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 ∴ C x = −380 N
or
C x = 380 N
ΣFy = 0: C y + 0.8 ( 300 N ) = 0
∴ C y = −240 N C x2 + C y2 =
Then
C =
and
θ = tan −1
or
C y = 240 N
( 380 )2 + ( 240 )2
= 449.44 N
Cy − 240 = tan −1 = 32.276° − 380 Cx
or C = 449 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
32.3°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 20. Free-Body Diagram: From free-body diagram of lever BCD
ΣM C = 0: TAB ( 50 mm ) − P ( 75 mm ) = 0 ∴ TAB = 1.5P
(1)
ΣFx = 0: 0.6TAB + P − C x = 0 ∴ C x = P + 0.6TAB
(2)
Cx = P + 0.6 (1.5P ) = 1.9 P
From Equation (1)
ΣFy = 0: 0.8TAB − C y = 0 ∴ C y = 0.8TAB
(3)
C y = 0.8 (1.5P ) = 1.2 P
From Equation (1) From Equations (2) and (3)
C = C x2 + C y2 =
(1.9 P )2 + (1.2 P )2
= 2.2472 P
Since Cmax = 500 N,
∴ 500 N = 2.2472Pmax or
Pmax = 222.49 lb or P = 222 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 21. Free-Body Diagram:
(a)
ΣΜ Βx = 0 : or Fsp =
2.4 in. − A − (0.9 in.)Fsp = 0 cosα
8 lb = kx = k (1.2 in.) cos 30°
Solving for k:
k = 7.69800 lb/in.
k = 7.70 lb/in.
(b)
8 lb =0 cos30°
( 3 lb ) sin 30° + Bx +
ΣFx = 0:
Bx = −10.7376 lb
or
− ( 3 lb ) cos 30° + B y = 0
ΣFy = 0:
By = 2.5981 lb
or B=
( −10.7376 )2 + ( 2.5981)2
θ = tan −1
= 11.0475 lb, and
2.5981 = 13.6020° 10.7376
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
B = 11.05 lb
13.60°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 22. Free-Body Diagram:
(a)
ΣΜ Βx = 0: or
2.4 in. ( 3.6 lb ) − ( 0.9 in.)(12 lb ) = 0 cosα
α = 36.9°
cosα = 0.80000, or α = 36.870°
(b)
ΣFx = 0:
( 3 lb ) sin 36.870° + Bx + (12 lb ) = 0
or
Bx = −14.1600 lb
ΣFy = 0:
− ( 3.6 lb ) cos 36.870° + By = 0
or
By = 2.8800 lb B=
( −14.1600 )2 + ( 2.8800 )2
θ = tan −1
= 14.4499 lb, and
2.8800 = 11.4966° 14.1600
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
B = 14.45 lb
11.50°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 23. Free-Body Diagram:
From free-body diagram for (a):
− B ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0
ΣΜ A = 0:
Β = −187.50 Ν
ΣFx = 0:
or B = 187.5 N
−187.5 N − 50 N + Ax = 0 Ax = 237.50 N
ΣFy = 0:
Ay − 100 N = 0 Ay = 100.000 N A=
and:
Ax2 + Ay2 =
θ = tan −1
Ay Ax
( 237.5)2 + (100 )2
= tan −1
= 257.69 N
100 = 22.834° 237.5
∴ A = 258 N
22.8°
From For (b)
ΣΜ A = 0:
− B cos 45° ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0 Β = 265.17 Ν
or B = 265.17 N
45°
− ( 265.17 N ) cos 45° − 50 N + Ax = 0
ΣFx = 0:
Ax = 237.50 N
Ay + ( 265.17 ) sin 45° − 100 N = 0
ΣFy = 0:
Ay = −87.504 N and:
A=
Ax2 + Ay2 =
θ = tan −1
Ay Ax
(237.50)2 + (−87.504)2 = 253.11 N
= tan −1
87.504 = 20.226° 237.50
∴ A = 253 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
20.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 24. Free-Body Diagram:
From free-body diagram for (a):
− (100 N )( 0.3 m ) + A ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0
ΣΜ B = 0:
A = 237.50 Ν ΣFx = 0:
or A = 238 N
Bx + 237.5 N − 50 N = 0 Bx = −187.50 N
ΣFy = 0:
By − 100 N = 0 By = 100.000 N
and:
B=
Bx2 + By2 =
( −187.5)2 + (100 )2
By
100 = 28.072° 187.5
θ = tan −1
= tan −1
Bx
= 212.50 N
∴ B = 213 N
28.1°
From free-body diagram or (b):
− (100 N )( 0.3 m ) + A cos 45° ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0
ΣΜ B = 0:
A = 335.88 Ν ΣFx = 0:
or A = 336 N
45°
Bx + ( 335.88 N ) cos 45° − 50 N = 0 Bx = −187.503 N
ΣFy = 0:
B y + ( 335.88 N ) sin 45° − 100 N = 0
By = −137.503 N and:
B=
Bx2 + B y2 =
θ = tan −1
By Bx
(−187.503) 2 + (−137.503)2 = 232.52 N
= tan −1
137.503 = 36.254° 187.503
∴ B = 233 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
36.3°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 25. Free-Body Diagram:
Geometry:
x AC = ( 8 in.) cos 20° = 7.5175 in. y AC = ( 8 in.) sin 20° = 2.7362 in. ⇒ yDA = 9.6 in. − 2.7362 in. = 6.8638 in.
yDA −1 6.8638 = tan = 42.397° x 7.5175 AC
α = tan −1
β = 90° − 20° − 42.397° = 27.603° Equilibrium for lever: (a)
TAD cos 27.603° ( 8 in.) − ( 60 lb ) (12 in.) cos 20° = 0
ΣM C = 0:
TAD = 95.435 lb
(b)
TAD = 95.4 lb
Cx + ( 95.435 lb ) cos 42.397° = 0
ΣFx = 0:
C x = −70.478 lb
C y − 60 lb − ( 95.435 lb ) sin 42.397° = 0
ΣFy = 0:
C y = 124.348 lb
Cx2 + C y2 =
Thus:
C =
and
θ = tan −1
Cy Cx
(−70.478) 2 + (124.348) 2 = 142.932 lb
= tan −1
124.348 = 60.456° 70.478 ∴ C = 142.9 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
60.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 26. Free-Body Diagram:
(a) a = 2 in.
ΣΜ A = 0:
( 2 in.)( 20 lb ) − (1.5 in.)(16 lb ) − 32 lb ⋅ in. − ( 2 in.) E sin 60° − ( 5.5 in.) E cos 60° = 0 E = −3.5698 lb
ΣFx = 0:
or E = 3.57 lb
60.0°
Ax − 16 lb + ( 3.5698 lb ) cos 60° = 0 Ax = 14.2151 lb
ΣFy = 0:
Ay − 20 lb − ( 3.5698 lb ) sin 60° = 0
Ay = 23.092 lb A=
(14.2151)2 + ( 23.092 )2
θ = tan −1
= 27.117 lb
23.092 = 58.384° 14.2151
A = 27.1 lb
Therefore:
58.4°
(b) a = 7.5 in.
ΣΜ A = 0:
( 7.5 in.)( 20 lb ) − (1.5 in.)(16 lb ) − 32 lb ⋅ in. − ( 2 in.) E sin 60° − ( 5.5 in.) E cos 60° = 0 E = 20.973 lb
ΣFx = 0:
or E = 21.0 lb
60.0°
A = 26.6 lb
3.97°
Ax − 16 lb − ( 20.973 lb ) cos 60° = 0 Ax = 26.487 lb
ΣFy = 0:
Ay − 20 lb + ( 20.973 lb ) sin 60° = 0
Ay = 1.83685 lb A=
( 26.487 )2 + (1.83685)2
θ = tan −1
= 26.551 lb
1.83685 = 3.9671° 26.487
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 27. Free-Body Diagram:
Geometry:
( 2.52 )2 + ( 0.39 )2
Distance BC =
= 2.55 m
Equilibrium for mast: (a)
2.52 TBC ( 0.75 m ) − (135 N )( 2.16 m ) − ( 225 N )( 0.66 m ) = 0 2.55
ΣΜ A = 0:
TBC = 593.79 N
(b)
or TBC = 594 N
2.52 Ax − ( 593.79 N ) − 225 N − 135 Ν = 0 2.55
ΣFx = 0:
Ax = 586.80 N
0.39 Ay + ( 593.79 N ) − 225 N − 135 Ν = 0 2.55
ΣFy = 0:
Ay = 269.19 N Ax2 + Ay2 =
Thus:
A=
and
θ = tan −1
Ay Ax
( 586.80 )2 + ( 269.19 )2
= tan −1
= 645.60 N
269.19 = 24.643° 586.80 ∴ A = 646 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
24.6°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 28. Free-Body Diagram:
Geometry:
( 2.52 )2 + ( 0.462 )2
Distance BC =
= 2.562 m
Equilibrium for mast: (a)
2.52 TBC ( 0.75 m ) − ( 90 N )( 2.16 m ) − (135 N )( 0.66 m ) = 0 2.562
ΣΜ A = 0:
TBC = 384.30 N
(b)
or
TBC = 384 N
2.52 Ax − ( 384.30 N ) = 0 2.562
ΣFx = 0:
Ax = 378.00 N
ΣFy = 0:
0.462 Ay + ( 384.30 N ) − 135 N − 90 Ν = 0 2.562
Ay = 155.700 N Ax2 + Ay2 =
( 378.00 )2 + (155.700 )2
Ay
155.700 = 22.387° 378.00
Thus:
A=
and
θ = tan −1
Ax
= tan −1
= 408.81 N
∴ A = 409 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
22.4°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 29. Free-Body Diagram:
Geometry: AB =
Distance
(0.3)2 + (0.125)2
= 0.325 m
Equilibrium for bracket:
0.3 0.125 T ( 0.175 m ) − T ( 0.225 m ) + T ( 0.075 m ) = 0 0.325 0.325
(150 N )( 0.225 m ) −
ΣΜ C = 0:
T = 195.000 N
T = 195.0 N
0.3 Cx + T (195 N ) = 0 0.325
ΣFx = 0:
C x = −180.000 N
ΣFy = 0:
0.125 C y − 150 N + T (195 N ) + 195 N = 0 0.325
C y = −120.000 N C x2 + C y2 =
Thus:
C =
and
θ = tan −1
Cy Cx
( −180 )2 + ( −120 )2
= tan −1
= 216.33 N
120 = 33.690° 180 ∴ C = 216 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
33.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 30. Free-Body Diagram:
Geometry: Distance BC =
( 4 ) 2 + ( 3) 2
Distance CD =
(14 )2 + ( 3)2
= 5 in. = 14.3178 in.
Equilibrium for bracket:
ΣΜ A = 0:
4 3 3 14 T ( 4 in.) − T ( 9 in.) + T ( 4 in.) + T ( 9 in.) = 0 5 5 14.3178 14.3178
(10 lb )( 9 in.) −
T = 32.108 lb
or T = 32.1 lb
4 14 Ax + ( 32.108 lb ) − ( 32.108 lb ) = 0 5 14.3178
ΣFx = 0:
Ax = 5.7089 lb
ΣFy = 0:
Ay +
3 3 ( 32.108 lb ) + ( 32.108 lb ) + 10 lb = 0 5 14.3178
Ay = −35.992 lb Ax2 + Ay2 =
Thus:
A=
and
θ = tan −1
Ay Ax
( 5.7089 )2 + ( −35.992 )2
= tan −1
= 36.442 lb
35.992 = 80.987° 5.7089 ∴ A = 36.4 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
81.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 31. Free-Body Diagram:
Geometry: Distance BC = (7.2)2 + (3)2 = 7.8 in. Distance CD = (10.8)2 + (3)2 = 11.2089 in. Equilibrium for bracket:
7.2 3 10.8 T ( 4 in.) − T ( 9 in.) + T ( 4 in.) 7.8 7.8 11.2089
(10 lb )( 9 in.) −
ΣM A = 0:
3 + T ( 9 in.) = 0 11.2089 or T = 101.0 lb
T = 101.014 lb 7.2 10.8 Ax + (101.014 lb ) − (101.014 lb ) = 0 7.8 11.2089
ΣFx = 0:
Ax = 4.0853 lb
ΣFy = 0:
3 3 Ay + (101.014 lb ) + (101.014 lb ) + 10 lb = 0 7.8 11.2089
Ay = − 75.887 lb Ax2 + Ay2 =
Thus:
A=
and
θ = tan −1
Ay Ax
( 4.0853)2 + ( − 75.887 )2
= tan −1
= 75.997 lb
75.887 = 86.919° 4.0853 ∴ A = 76.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
86.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 32. Free-Body Diagram:
Geometry: Distance AD = (0.9)2 + (0.375)2 = 0.975 m Distance BD = (0.5)2 + (0.375)2 = 0.625 m Equilibrium for beam: (a)
ΣM C = 0:
0.375 0.375 T ( 0.9 m ) − T ( 0.5 m ) = 0 0.975 0.625
(135 N )( 0.7 m ) −
T = 146.250 N (b)
ΣFx = 0:
or T = 146.3 N
0.9 0.5 Cx + T (146.250 N ) + T (146.250 N ) = 0 0.975 0.625
C x = − 252.00 N
ΣFy = 0:
0.375 0.375 Cy + T (146.250 N ) + T (146.250 N ) − 135 N = 0 0.975 0.625
C y = − 9.0000 N Thus:
C = C x2 + C y2 =
and
θ = tan −1
Cy Cx
( − 252 )2 + ( − 9 )2
= tan −1
= 252.16 N
9 = 2.0454° 252
C = 252 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2.05°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 33. Free-Body Diagram:
For both parts (a) and (b)
ΣM D = 0:
− RP − RC x = 0 Cx = −P
ΣFx = 0:
B cosθ − P = 0 B=
ΣFy = 0:
(1)
P cosθ
(2)
P Cy − sin θ + P = 0 cosθ
C y = P ( tanθ − 1)
(a)
(3)
The magnitudes of the forces at B and C are equal:
B = C x2 + C y2 2
2 2 P = ( − P ) + P ( tan θ − 1) cosθ
or
1 = 1 + tan 2 θ − 2 tan θ + 1 cos 2 θ
(
) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
1 , this gives cos 2 θ 1 1 =1+ − 2 tan θ , or 2 cos θ cos 2 θ 1 tan θ = , so 2
tan 2 θ + 1 =
Noting that
θ = 26.565°
θ = 26.6°
(b) Using (2)
B=
P , or 2/ 5
∴ B=
5 P 2
26.6°
∴ C=
5 P 2
26.6°
and using (1) and (3)
C x = − P, C =
Cy = −
P 2 2
P 5 P = 2 2
( −P )2 + −
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 34. Free-Body Diagram:
For both parts (a) and (b)
ΣM D = 0:
− RP − RC x = 0 Cx = −P B cosθ − P = 0
ΣFx = 0:
P cosθ
B=
ΣFy = 0:
(1)
P Cy − cosθ
(2)
sin θ + P = 0
C y = P ( tanθ − 1)
(3)
(a) The magnitude of the reaction at C:
C =
C x2 + C y2
C =
( −P )2 + P ( tan θ
− 1)
2
which is smallest when tan θ = 1 , or
θ = 45.0° (b) Using (2)
B=
P cos 45°
or B = 2P
45.0o
and
C x = − P,
Cy = 0
or C = P
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 35. Free-Body Diagram:
Equilibrium for bracket:
ΣM C = 0:
− T ( a ) − P ( a ) + (T sin 40° )( 2a sin 40° ) + (T cos 40° )( a + 2a cos 40° ) = 0
T = 0.56624P ΣFx = 0:
or T = 0.566P
Cx + ( 0.56624 P ) sin 40° = 0
C x = 0.36397 P
ΣFy = 0:
C y + 0.56624 P − P + ( 0.56624 P ) cos 40° = 0
Cy = 0
or C = 0.364P
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 36. Free-Body Diagram:
(a)
ΣM C = 0:
2a − aTABD − aP + + a TABD cosθ = 0 cosθ or with TABD = 3P/4 :
3 2 3 − a P − aP + + 1 P cosθ = 0 4 cosθ 4 cosθ = (b)
ΣFx = 0:
Cx −
θ = 70.5°
83 P = 0 3 4
Cx =
ΣFy = 0:
1 , and θ = 70.529° 3
2 P 2
3 1 3 P + Cy − P + P = 0 4 3 4
Cy = 0 Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
C=
1 P 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 37. Free-Body Diagram:
Equilibrium for bracket: (a)
ΣFy = 0:
− 600 N + T = 0
T = 600 N (b)
ΣM C = 0:
− ( 600 N )( 0.6 m ) + A ( 0.09 m ) = 0
A = 4000 N ΣFx = 0:
or T = 600 N
or A = 4 kN
or B = 4 kN
B − 4000 N = 0
B = 4000 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 38. Free-Body Diagram:
( ) = − ( 52 kg ) ( 9.81 m/s ) = 510.12 N
WC = − ( 80 kg ) 9.81 m/s 2 = 784.80 N
Note that
WD
2
(a)
ΣM A = 0:
− ( 784.80 N )( 0.8 m ) cos 30° − ( 510.12 N )( 2.2 m ) cos 30° + B ( 3.5 m ) cos 5° = 0
B = 434.69 N
or B = 435 N
55°
(b)
ΣFy = 0:
A cos10° − 784.80 N − 510.12 N + (434.69 N)cos35° = 0 A = 953.33 N
ΣFx = 0:
or A = 953 N
80°
P − ( 953.33 N ) sin10° − (434.69 N)sin35° = 0 P = 414.87 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or P = 415 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 39. Free-Body Diagram:
Equilibrium for rod: (a)
ΣM E = 0:
( 6 lb ) cos 60° ( dOE ) − (T cos 45°) ( dOE ) = 0 T = 4.2426 lb
ΣFx = 0:
(b)
T = 4.24 lb
( 4.2426 lb ) cos 45° − ( 6 lb ) cos 60° − N A sin 45° + N D cos 45° = 0 N A = ND
ΣFy = 0:
(1)
− ( 6 lb ) sin 60° − ( 4.2426 lb ) sin 45° + N A cos 45° + N D cos 45° = 0 N A + N D = 11.5911 lb
(2)
Solving (1) and (2) gives:
N A = N D = 5.7956 lb Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
N A = 5.80 lb
45°
N D = 5.80 lb
45°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 40. Free-Body Diagram:
Equilibrium for rod: (a)
ΣM E = 0:
( 6 lb ) cos 60° ( dOE ) − (T cosθ ) ( dOE ) = 0 T =
3 lb cosθ
(1)
Thus T is minimum when cos θ is maximum: (b) (c)
With θ = 0°, (1) gives: T = 3 lb
ΣFx = 0:
θ = 0° T = 3.00 lb
3 lb − ( 6 lb ) cos 60° − N A sin 45° − N D sin 45° = 0 N A = ND
ΣFy = 0:
(2)
− ( 6 lb ) sin 60° + N A cos 45° + N D cos 45° = 0 N A + N D = 7.3485 lb
(3)
Solving (2) and (3) gives: N A = N D = 3.6742 lb
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
N A = 3.67 lb
45°
N D = 3.67 lb
45°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 41. Free-Body Diagram:
Equilibrium for bracket:
ΣFy = 0:
T sin 20° − 270 N = 0 T = 789.43 N Tx = ( 789.43 N ) cos 20° = 741.82 N, and
Note that:
Ty = ( 789.43 N ) sin 20° = 270 N Thus Ty and the 270-N force form a couple:
270 N ( 0.25 m ) = 67.5 N ⋅ m clockwise ΣM B = 0:
( 741.82 N )( 0.125 m ) − 67.5 N ⋅ m + FCD ( 0.2 m ) = 0 FCD = −126.138 N
ΣFy = 0:
or
FCD = 126.138 N
FAB − 126.138 N − 741.82 N = 0 FAB = 867.96 N
or
FAB = 867.96 N
Thus, FCD acts to the left, while FAB acts to the right, i.e. these forces are exerted by rollers B and C, respectively. Rollers A and B exert no force. The forces exerted on the post are the opposites of the forces exerted by the rollers:
A = D=0
B = 868 N C = 126.1 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 42. Free-Body Diagram:
Equilibrium for bracket:
ΣFy = 0:
T sin 30° − 270 N = 0 T = 540 N Tx = ( 540 N ) cos 30° = 467.65 N, and
Note that:
Ty = ( 540 N ) sin 30° = 270 N Thus Ty and the 270-N force form a couple:
270 N ( 0.25 m ) = 67.5 N ⋅ m clockwise ΣM B = 0:
( 467.65 N )( 0.125 m ) − 67.5 N ⋅ m + FCD ( 0.2 m ) = 0 FCD = 45.219 N or FCD = 45.219 N
ΣFy = 0:
FAB + 45.219 N − 467.65 N = 0
FAB = 422.43 N or FAB = 422.43 N Thus, both FCD and FAB act to the right, i.e. these forces are exerted on the bracket by rollers D and B, respectively. Rollers A and C exert no force. The forces exerted on the post are the opposites of the forces exerted on the bracket: A =C=0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
B = 422 N
D = 45.2 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 43. Free-Body Diagram:
Geometry: Equation of the slot: y =
x2 4
2x dy = 1.20000 = slope of slot at C = 4 dx ( x = 2.4 in.) C It follows for the angles that:
α = tan −1 (1.2 ) = 50.194°
θ = 90° − α = 90° − 50.194° = 39.806° 4.8 − 2.64 = 12.6804° 9.6
β = tan −1 Coordinates for C, D, and E:
( 2.4 )2
xC = 2.4 in.,
yC =
xD = 2.4 in.,
yD = 1.84 in. + (1.6 in.) tan β
4
= 2.44 in.
= 1.84 in. + (1.6 in.) tan12.6804° = 2.20000 in. xE = 0,
yE = yC + ( 2.4 in.) tan θ = 1.44 in. + ( 2.4 in.) tan 39.806° = 3.4400 in. continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
With P = 1 lb:
ΣM E = 0:
P ( yE ) − ( Q sin β )( yE − yD ) − ( Q cos β )( 2.4 in.) = 0
(1 lb )( 3.44 in.) − ( Q sin12.6804° )(1.24 in.) − ( Q cos12.6804° )( 2.4 in.) = 0 Q = 1.31616 lb ΣFx = 0:
P − N C cosθ − Q sin β = 0
1 lb − NC cos 39.806° − (1.31616 lb ) sin12.6804° = 0 NC = 0.92563 lb
ΣFy = 0:
N B + NC sin θ − Q cos β = 0 N B + ( 0.92563 lb ) sin 39.806° − (1.31616 lb ) cos12.6804° = 0 N B = 0.69148 lb (a) N = 0.691 lb , N = 0.926 lb B C
39.8°
Q = 1.316 lb
77.3°
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 44. Free-Body Diagram:
Geometry: Equation of the slot: y =
x2 4
2x dy = 1.20000 = slope of slot at C = 4 ( x = 2.4 in.) dx C It follows for the angles that:
α = tan −1 (1.2 ) = 50.194° θ = 90° − α = 90° − 50.194° = 39.806° 4.8 − 2.64 = 12.6804° 9.6
β = tan −1 Coordinates for C, D, and E:
( 2.4 )2
xC = 2.4 in.,
yC =
xD = 2.4 in.,
yD = 1.84 in. + (1.6 in.) tan β
4
= 2.44 in.
= 1.84 in. + (1.6 in.) tan12.6804° = 2.20000 in. xE = 0,
yE = yC + ( 2.4 in.) tan θ = 1.44 in. + ( 2.4 in.) tan 39.806° = 3.4400 in. continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
With Q = 2 lb: (a)
ΣM E = 0:
P ( yE ) − ( Q sin β )( yE − yD ) − ( Q cos β )( 2.4 in.) = 0 P ( 3.44 in.) − ( 2 lb ) sin12.6804° (1.24 in.) − ( 2 lb ) cos12.6804° ( 2.4 in.) = 0
P = 1.51957 lb (b)
ΣFx = 0:
or P = 1.520 lb
P − NC cosθ − Q sin β = 0
1.51957 lb − NC cos 39.806° − ( 2 lb ) sin12.6804° = 0 NC = 1.40656 lb
ΣFy = 0:
or NC = 1.407 lb
39.8°
N B + NC sin θ − Q cos β = 0 N B + (1.40656 lb ) sin 39.806° − ( 2 lb ) cos12.6804° = 0 N B = 1.05075 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or N B = 1.051 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 45. Note: Weight of block is W = (10 kg)(9.81 m/s2) = 98.1 N (a) Free-Body Diagram:
ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay − 98.1 N = 0 Ay = 98.1 N or A = 98.1 N
Therefore:
ΣM A = 0:
M A − ( 98.1 N )( 0.45 m ) = 0 M A = 44.145 N ⋅ m
or M A = 44.1 N ⋅ m
(b) Free-Body Diagram:
ΣFx = 0:
Ax − 98.1 N = 0
Ax = 98.1 N
ΣFy = 0:
Ay − 98.1 N = 0
Ay = 98.1 N continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Thus:
A=
Ax2 + Ay2 =
( 98.1)2 + ( 98.1)2
= 138.734 N
or A = 138.7 N
ΣM A = 0:
45°
M A + ( 98.1 N )( 0.45 m + 0.1 m ) = 0 M A = 44.145 N ⋅ m
or M A = 44.1 N ⋅ m
(c) Free-Body Diagram:
ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay − 98.1 N − 98.1 N = 0 Ay = 196.2 N
ΣM A = 0:
or A = 196.2 N
M A − ( 98.1 N )( 0.45 m − 0.1 m ) − ( 98.1 N )( 0.45 m + 0.1 m ) = 0 M A = 88.290 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or M A = 88.3 N ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 46. Free-Body Diagram:
With M = 0 and Ti = T0 = 12 lb ΣFx = 0:
C x − 12 lb = 0
Cx = 12 lb
ΣFy = 0:
C y − 12 lb = 0 CY = 12 lb
Thus: C =
C x2 + C y2 =
ΣM C = 0:
(12) 2 + (12)2 = 16.9706 lb or
C = 16.97 lb
or
M C = 2.40 lb ⋅ in.
45°
MC – (12 lb)[(1.8 – 1) in.] + (12 lb)[(2 + 1 − 2.4) in.] = 0 M C = 2.40 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 47. Free-Body Diagram:
With M = 8 lb.in. and Ti = 16 lb, To = 8 lb
ΣFx = 0:
Cx − 16 lb = 0 Cx = 16 lb
ΣFy = 0:
Cy – 8 lb = 0 Cy = 8 lb
Thus: C =
C x2 + C y2 =
and θ = tan −1
Cy Cx
(16)2 + (8)2 = 17.8885 lb
8 = tan −1 = 26.565° 16 ∴
ΣM C = 0:
C = 17.89
26.6°
MC – (16 lb)[(1.8 – 1) in.] + (8 lb)[(2 + 1 –2.4) in.] – 8 lb ⋅ in. = 0 MC = 16.00 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
MC = 16.00 lb ⋅ in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 48. (a)
Free-Body Diagram:
ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay − 2 lb − 1lb = 0 Ay = 3 lb or A = 3 lb
ΣM A = 0:
MA – (2 lb)(8 in.) – (1 lb)(12 in.) = 0
M A = 28 lb ⋅ in. (b)
or M A = 28 lb ⋅ in.
Free Body Diagram:
ΣFx = 0: ΣFy = 0:
Ax = 0
Ay − 2 lb − 1 lb + 1.2 lb = 0 Ay = 1.8 lb or A = 1.8 lb
ΣM A = 0:
MA – (2 lb)(8 in.) – (1 lb)(12 in.) + (1.2 lb)(16 in.) = 0
M A = 8.8 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or M A = 8.8 lb ⋅ in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 49. Free-Body Diagram:
Set M A = 20 lb ⋅ in. counter-clockwise to find Fmin:
ΣM A = 0:
20 lb ⋅ in. − (2 lb)(8 in.) – (1 lb)(12 in.) + Fmin (16 in.) = 0 Fmin = 0.5 lb
Set M A = 20 lb ⋅ in. clockwise to find Fmax :
ΣM A = 0:
− 20 lb ⋅ in. − (2 lb)(8 in.) – (1 lb)(12 in.) + Fmin (16 in.) = 0 Fmax = 3 lb
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
0.5 lb ≤ FE ≤ 3 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 50. (a)
Free-Body Diagram:
ΣFx = 0:
Ex = 0
ΣFy = 0:
E y − 16.2 kN − 5.4 kN − 18 kN = 0 Ey = 39.6 kN
ΣM E = 0:
M E + (16.2 kN)(4.8 m) + (5.4 kN)(2.6 m) − (18 kN)(1.5 m) = 0 M E = − 64.8 kN ⋅ m
(b)
or E = 39.6 kN
or ME = 64.8 kN. m
Free-Body Diagram:
ΣFx = 0:
Ex = 0
ΣFy = 0:
E y − 16.2 kN − 5.4 kN = 0 Ey = 21.6 kN
ΣM E = 0:
or E = 21.6 kN
ME + (16.2 kN)(4.8 m) + (5.4 kN)(2.6 m) = 0
M E = − 91.8 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or ME = 91.8 kN ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 51. Free-Body Diagram:
ΣM E = 0:
ME + (16.2 kN)x + (5.4 kN)(2.6 m) – T(1.5 m) = 0 ME = (1.5 T − 16.2 x – 14.04) kN ⋅ m
(1)
For x = 0.6 m, (1) gives: (ME )1 = (1.5 T − 23.76) kN ⋅ m For x = 7 m, (1) gives: (ME )2 = (1.5 T − 127.44) kN ⋅ m (a)
The maximum absolute value of ME is obtained when (ME )1 = − (ME ) and 1.5 T − 23.76 kN = − (1.5 T – 127.44 kN) T = 50.400 kN
(b)
or T = 50.4 kN
For this value of T: ME = 1.5(50.400) kN ⋅ m − 23.76 kN ⋅ m
= 51.84 kN ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or ME = 51.8 kN ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 52. Free-Body Diagram:
Geometry: Distance BD =
(1.8)2 + (4)2 = 4.3863 m
Note also that: W = mg = (160 kg)(9.81 m/s2) = 1569.60 N With MA = 360 N ⋅ m clockwise: (i.e. corresponding to Tmax )
ΣM A = 0:
1.8 − 360 N ⋅ m – [(540 N) cos 15o](5.6 m) + Tmax (4 m) = 0 4.3863 Tmax = 1998.79 N
or Tmax = 1.999 kN
With MA = 360 N ⋅ m counter-clockwise: (i.e. corresponding to Tmin ) ΣM A = 0:
1.8 360 N ⋅ m – [(540 N) cos 15o](5.6 m) + Tmin (4 m) = 0 4.3863 Tmin = 1560.16 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Tmin = 1.560 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 53. Free-Body Diagram:
(a) Using W = mg:
ΣFx = 0:
− A cos 45° + B sin 45° = 0
B= A ΣFy = 0:
(1)
A sin 45° + B sin 45° − mg = 0 A+ B =
2mg
(2)
From (1) and (2) it follows that
2A =
ΣM B = 0:
2 mg
and
A=
1 mg 2
l 1 mg cosθ + M − mg [l cos(45° − θ )] = 0 2 2
(3)
Using that cos(α − β ) = cos α cos β + sin α sin β , (3) gives
mgl mgl cosθ + M − ( cosθ + sin θ ) = 0 2 2 mgl M − sin θ = 0, and 2 sin θ =
(b)
2M mgl
2(2.7 N ⋅ m) = 20.122° 2 (2kg)(9.81 m/s )(0.8 m)
θ = sin −1
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2M or θ = sin −1 mgl or θ = 20.1°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 54. Free-Body Diagram:
For both parts (a) and (b)
(
)
o l cos (θ + 30° ) cos 30° W − l cos θ + 30 T
ΣM D = 0:
(
)
(
)
+ l sin θ + 30o cos 60o W + l sin θ + 30o T = 0 or W cos(θ + 60°) + T sin (θ + 30° ) − cos (θ + 30° ) = 0 (a)
For T = 0, (1) gives
cos (θ + 60° ) = 0 (b)
(1)
or θ = 30.0°
For T = W , (1) gives: cosθ cos 60° − sin θ sin 60° + sin θ cos 30° + cosθ sin 30° − cosθ cos 30° + sin θ sin 30° = 0
or tan θ sin 30° + ( cos 60° + sin 30° − cos 30° ) = 0 Solving for θ :
tan θ = 2 ( cos 30° − 1) or θ = −150000°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = −15.00°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 55. Free-Body Diagram:
Using W = mg : (a)
P( R cosθ + R cosθ ) − mg ( R sin θ ) = 0
ΣM C = 0:
2P = mg tan θ tan θ = (b)
2P mg
or
2P mg
θ = tan −1
With m = 0.7 kg and P = 3 N:
2(3 N) 2 (0.7 kg)(9.81 m/s )
θ = tan −1
= 41.145°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
θ = 41.1°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 56. Free-Body Diagram:
Using W = mg, and h =
l tan α 2 M − (mg )(h sin θ ) = 0
ΣM C = 0:
or sin θ =
=
M mgh
M 2 cot α mg l
cot α or θ = sin −1 2M mgl Note: θ ≤ 90° − α for cord BC to remain taut, (i.e. for TBC > 0). With l = 1 m, m = 2 kg, and M = 3 N ⋅ m:
2(3 N ⋅ m) cot 30° 2 (2 kg)(9.81 m/s )(1 m)
θ = sin −1
= 31.984°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 32.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 57. Free-Body Diagram: First note
T = tension in spring = ks s = elongation of spring
where
( )θ − ( AB )θ
= AB
= 90°
θ 90° = 2l sin − 2l sin 2 2
θ 1 = 2l sin − 2 2 θ 1 ∴ T = 2kl sin − 2 2
(1)
(a) From free-body diagram of rod BC
θ ΣM C = 0: T l cos − P ( l sin θ ) = 0 2 Substituting T From Equation (1)
θ 1 θ 2kl sin − l cos − P ( l sin θ ) = 0 2 2 2 θ 1 θ θ θ 2kl 2 sin − cos − Pl 2sin cos = 0 2 2 2 2 2 Factoring out
θ 2l cos , leaves 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
θ 1 θ kl sin − − P sin = 0 2 2 2 or
1 kl θ sin = 2 kl − P 2
kl ∴ θ = 2sin −1 2 ( kl − P ) (b) P =
kl 4
kl 2 kl −
θ = 2sin −1
(
kl 4
)
kl 4 −1 4 = 2sin −1 = 2sin 3 2 2 3 kl
= 2sin −1 ( 0.94281) = 141.058°
or θ = 141.1°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 58. Free-Body Diagrams:
(
)
Note that WE = mg = (10 kg ) 9.81 m/s 2 = 98.1 N
ΣM A = 0:
M − rAT = 0 T =
( 58 N ⋅ m )φ M = rA 0.035 m
Since the torsion spring is unstretched when θ = 0:
( 70 mm )φ = ( 35 mm )θ φ =
1 θ 2
Therefore:
T =
( 58 N ⋅ m )θ
2(0.035 m)
ΣM B = 0:
rBT − lWE cosθ = 0
( 0.070 m )
( 58 N⋅ m )θ
2(0.035 m)
− ( 0.090 m )( 98.1N ) cosθ = 0
θ = 0.60890 cosθ Solving for θ numerically:
θ = 0.52645 rad
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 30.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 59. Free-Body Diagram:
Geometry: Triangle ABC is isosceles. Thus distance CD = l cos
θ 2
,
Elongation of spring is equal to distance AB:
x = 2l sin
θ 2
,
and T = kx = 2kl sin (a)
θ 2
.
Equilibrium for rod:
ΣM C = 0:
θ P ( l cosθ ) − T l cos = 0 2 Pl cosθ − kl 2 (2sin
θ 2
θ
cos ) = 0 2
P cosθ − kl sin θ = 0
tan θ = (b)
P kl
P or θ = tan −1 kl
For p = 2kl :
2kl −1 = tan (2) = 63.435° kl
θ = tan −1
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 63.4°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 60. Free-Body Diagram:
Spring force: Fs = ks = k ( l − l cosθ ) = kl (1 − cosθ ) (a)
l Fs ( l sin θ ) − W cosθ = 0 2
ΣM D = 0:
kl (sin θ − cosθ sin θ ) −
kl (tan θ − sin θ ) − (b)
W cosθ = 0 2
W =0 2
or tan θ − sin θ =
W 2kl
For given values of W = 4 lb, l = 30 in., k = 1.8 lb/ft = 0.15 lb/in.
tan θ − sin θ = Solving numerically:
4 lb = 0.44444 2(0.15 lb/in.)(30 in.)
θ = 50.584°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 50.6°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 61. Free-Body Diagram: 1. Three non-concurrent, non-parallel reactions (a)
Completely constrained
(b)
Determinate
(c)
Equilibrium
From free-body diagram of bracket:
ΣM A = 0: B (1 m ) − (100 N )( 0.6 m ) = 0 ∴ B = 60.0 N
ΣFx = 0: Ax − 60 N = 0 ∴ A x = 60.0 N
ΣFy = 0: Ay − 100 N = 0 ∴ A y = 100 N
( 60.0 )2 + (100 )2
Then
A=
= 116.619 N
and
θ = tan −1 = 59.036° 60.0
100
∴ A = 116.6 N
59.0°
2. Four concurrent reactions through A (a)
Improperly constrained
(b)
Indeterminate
(c)
No equilibrium
3. Two reactions (a)
Partially constrained
(b)
Determinate
(c)
Equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
From free-body diagram of bracket
ΣM A = 0: C (1.2 m ) − (100 N )( 0.6 m ) = 0 ∴ C = 50.0 N
ΣFy = 0: A − 100 N + 50 N = 0 ∴ A = 50.0 N
4. Three non-concurrent, non-parallel reactions (a)
Completely constrained
(b)
Determinate
(c)
Equilibrium
From free-body diagram of bracket
1.0 = 39.8° 1.2
θ = tan −1 BC =
(1.2 )2 + (1.0 )2
= 1.56205 m
1.2 ΣM A = 0: B (1 m ) − (100 N )( 0.6 m ) = 0 1.56205 39.8°
∴ B = 78.1 N
ΣFx = 0: C − ( 78.102 N ) cos 39.806° = 0 ∴ C = 60.0 N
ΣFy = 0: A + ( 78.102 N ) sin 39.806° − 100 N = 0 ∴ A = 50.0 N
5. Four non-concurrent, non-parallel reactions (a)
Completely constrained
(b)
Indeterminate
(c)
Equilibrium
From free-body diagram of bracket
ΣM C = 0:
(100 N )( 0.6 m ) − Ay (1.2 m ) = 0 ∴ Ay = 50 N
or A y = 50.0 N
6. Four non-concurrent non-parallel reactions (a)
Completely constrained
(b)
Indeterminate
(c)
Equilibrium continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
From free-body diagram of bracket
ΣM A = 0: − Bx (1 m ) − (100 N )( 0.6 m ) = 0 ∴ Bx = −60.0 N or B x = 60.0 N
ΣFx = 0: − 60 + Ax = 0 ∴ Ax = 60.0 N or A x = 60.0 N
7. Three non-concurrent, non-parallel reactions (a)
Completely constrained
(b)
Determinate
(c)
Equilibrium
From free-body diagram of bracket
ΣFx = 0: Ax = 0 ΣM A = 0: C (1.2 m ) − (100 N )( 0.6 m ) = 0 ∴ C = 50.0 N
or C = 50.0 N
ΣFy = 0: Ay − 100 N + 50.0 N = 0 ∴ Ay = 50.0 N ∴ A = 50.0 N
8. Three concurrent, non-parallel reactions (a)
Improperly constrained
(b)
Indeterminate
(c)
No equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 62. Free-Body Diagram: 1. Three non-concurrent, non-parallel reactions Completely constrained
(a) (b)
Determinate
(c)
Equilibrium
From free-body diagram of plate
ΣM A = 0: C ( 30 in.) − 50 lb (15 in.) = 0 C = 25.0 lb
ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 50 lb + 25 lb = 0
Ay = 25 lb
A = 25.0 lb
2. Three non-current, non-parallel reactions Completely constrained
(a) (b)
Determinate
(c)
Equilibrium
From free-body diagram of plate B = 0
ΣFx = 0:
ΣM B = 0:
( 50 lb )(15 in.) − D ( 30 in.) = 0 D = 25.0 lb
ΣFy = 0: 25.0 lb − 50 lb + C = 0 C = 25.0 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
3. Four non-concurrent, non-parallel reactions Completely constrained
(a) (b)
Indeterminate
(c)
Equilibrium
From free-body diagram of plate
ΣM D = 0: Ax ( 20 in.) − ( 50 lb )(15 in.) ∴ A x = 37.5 lb
∴ D x = 37.5 lb
ΣFx = 0: Dx + 37.5 lb = 0 4. Three concurrent reactions Improperly constrained
(a) (b)
Indeterminate
(c)
No equilibrium
5. Two parallel reactions (a)
Partial constraint
(b)
Determinate
(c)
Equilibrium
From free-body diagram of plate
ΣM D = 0: C ( 30 in.) − ( 50 lb )(15 in.) = 0 C = 25.0 lb
ΣFy = 0: D − 50 lb + 25 lb = 0 D = 25.0 lb
6. Three non-concurrent, non-parallel reactions (a)
Completely constrained
(b)
Determinate
(c)
Equilibrium
From free-body diagram of plate
ΣM D = 0: B ( 20 in.) − ( 50 lb )(15 in.) = 0 B = 37.5 lb ΣFx = 0: Dx + 37.5 lb = 0
ΣFy = 0: Dy − 50 lb = 0
D x = 37.5 lb
D y = 50.0 lb or D = 62.5 lb
53.1° continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
7. Two parallel reactions (a)
Improperly constrained
(b)
Reactions determined by dynamics No equilibrium
(c) 8. Four non-concurrent, non-parallel reactions
Completely constrained
(a) (b)
Indeterminate
(c)
Equilibrium
From free-body diagram of plate
ΣM D = 0: B ( 30 in.) − ( 50 lb )(15 in.) = 0 B = 25.0 lb
ΣFy = 0: Dy − 50 lb + 25.0 lb = 0
D y = 25.0 lb ΣFx = 0: Dx + C = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 63. Free-Body Diagram:
Note that the wheel is a three-force body, and let point D be the intersection of the three forces. With a = 75 mm, it follows from the force triangle that
A P 90 N = = 125 100 75 Then:
P = 100 ( 90 N ) = 120 N 75
or P = 120.0 N
A = 125 ( 90 N ) = 150 N, and 75
(100 )
θ = tan −1 75 = 36.870°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or A = 150.0 N
36.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 64. Free-Body Diagram:
Note that the wheel is a three-force body, and let point D be the intersection of the three forces. From the force triangle it follows that
90 N = a
A = 90
A (100) + ( a ) 2
(100)
2
(a ) 2
2
+1
(1)
Setting A = 180 N and solving for a: 90 N = a
180 N
( )
2
2
a =
a=
( )
(100)2 + a 2
(100) + a
2
4 (100) 3
2
= 57.735 mm
From (1) it follows that A will decrease as a increases. Therefore the value of a calculated is a lower limit:
a ≼ 57.7 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 65. Free-Body Diagram:
Geometry:
EF = ( 2.4 tan 30° + 0.9 ) in. AF = EF tan 30°
tan φ =
0.9 ( 2.4 tan30° + 0.9 ) tan 30° + 2.4
φ = 13.6019° Equilibrium: force triangle
Using the law of sines on the force triangle:
Fsp 3 lb B = = sin120° sin ( 60° − φ ) sinφ
B = 11.05 lb Fsp = 9.2376 lb (a) Fsp = kx
9.2376 lb = k (1.2 in.) Solving for k:
k = 7.698 lb/in.
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or k = 7.70 lb/in.
B = 11.05 lb
13.60°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 66. Free-Body Diagram:
Note that the bent rod is a three-force body. D is the point where the lines of action of the three forces intersect. (a) The requirement B = C means that the force triangle must be isosceles. Therefore θ = φ . Which leads to the force triangle shown.
From the geometry it follows that tan θ = 1 2
or θ = 26.6°
θ = 26.565° (b) From the force triangle:
2B sin θ = P, or with sin θ = B=C =
P = 1 2 5
1 5
5P 2
Therefore:
B= C=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5P 2 5P 2
26.6° 26.6°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 67. (a) Free-Body Diagram: (α = 90° )
The bracket is a three-force body and A is the intersection of the lines of action of the three forces.
6
θ = tan −1 = 26.565° 12 From the force triangle:
A = (75 lb) cot θ = (75 lb) cot 26.565° = 150.000 lb
C =
75 lb 75 lb = = 167.705 lb sin θ sin 26.565° or A = 150.0 lb or C = 167.7 lb
63.4° continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) Free-Body Diagram: (α = 45° ) Let E be the intersection of the lines of action of the three forces acting on the bracket. Triangle ABE is isosceles and therefore
AE = AB = 16 in. From triangle CEF
CF −1 6 = tan = 12.0948° EF 28
θ = tan −1
From force triangle:
β = 180° − 135° − θ = 180° − 135° − 12.0948° = 32.905° Using the law of sines:
A C 75 lb = = sin 32.905° sin135° sin12.0948°
Solving for A and C:
A = 194.452 lb C = 253.10 lb or A = 194.5 lb or C = 253 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
77.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 68. Free-Body Diagram: Let C be the intersection of the lines of action of the three forces acting on the girder From triangle BCD:
h = ( 40 ft ) cot 30° = 69.282 ft From triangle ACD:
69.282 ft = 73.8979° 20 ft
α = tan −1
or α = 73.9° From force triangle:
β = 90° − α = 90° − 73.8979° = 16.1021° γ = 180° − 30° − β = 180° − 30° − 16.1021° = 133.898° Using the law of sines:
TA TB 6000 lb = = sin 30° sin16.1021° sin133.898° Solving for TA and TB :
TA = 4163.3 lb,
TB = 2309.4 lb or TA = 4160 lb and TB = 2310 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 69. Free-Body Diagram:
From the free-body diagram:
(900 mm)sin 50° = 82.726° 88 mm
θ = tan −1
From the force triangle:
FN = (130 N ) tan θ = (130 N ) tan 82.726° = 1018.48 N Force on nail is therefore
RB =
or FN = 1.018 kN
130 N 130 N = = 1026.74 N cosθ cos82.726° or R B = 1.027 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
82.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 70. Free-Body Diagram:
From force triangle: 2600 N = 83.636° 290 N
θ = tan −1
From free-body diagram:
tan θ = l =
(900 mm)sin50° l
( 900 mm ) sin 50° tan 83.636°
= 76.894 mm or l = 76.9 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 71. Free-Body Diagram:
We note from the free-body diagram that the ladder is a three-force body. Point C in the free-body diagram is the intersection between the lines of action of the three forces. It then follows that:
sin θ =
1.75 m ( 9.2 − 1.8) m
θ = 13.6793° Also:
9.2 − 1.8 m = 2.8 m AG = 2 9.2 BD = m cosθ = ( 4.6 m ) cosθ 2 CD = CG + GD
= =
AG sin θ 2.8
sin θ
+ BG sin θ +
9.2 2
sin θ continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then
2.8 + 4.6sin13.6793° CD tan φ = = sin13.6793° BD 4.6cos13.6793°
φ = 70.928° Now using the law of sines on the force triangle:
FW B W = = sin(90° − φ ) sin θ sin [φ + (90° − θ )]
FW B W = = cos φ sin θ sin(φ − θ ) (a) From the law of sines and noting that W = ( 53 kg ) (9.81 m/s 2 ) = 519.93 N
FW 519.93 N = cos 70.928° cos(70.928° − 13.6793°) FW = 314.03 N
or FW = 314 N
76.3°
or B = 227 N
70.9°
(b) In the same way
B 519.93 N = sin13.6793° cos(70.928° − 13.6793°)
B = 227.28 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 72. Free-Body Diagram:
We note from the free-body diagram that the ladder is a three-force body. Point D in the free-body diagram is the intersection between the lines of action of the three forces. It then follows that:
BD =
9.2 m cosθ = ( 4.6 m ) cosθ =, but also that 2
1.75 BD = 1.75 tan θ + tan θ
m
Therefore
BD =
9.2 m cosθ = ( 4.6 m ) cosθ 2
This implies:
4.6 cosθ = 1.75 tan θ +
1.75 tan θ
92sin θ = 35(1 + tan 2 θ ) = 35 sec2 θ 92sin θ cos 2 θ = 35 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Solving numerically for the smallest possible root:
θ = 31.722° Then
sin 31.722° =
1.75 9.2 − a
a = 5.8717 m
or a = 5.87 m
(b) From the force triangle
FW =
W cos 31.722°
FW = 611.24 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or FW = 611 N
58.3°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 73. Free-Body Diagram: Let D be the intersection of the lines of action of the three forces acting on the tool. From the free-body diagram:
yDC =
(14.4 in.) cos 35° = 32.409 in. xBC = tan 20° tan 20°
yBC = (14.4 in.) sin 35° = 8.2595 in.
α = tan −1
yDC
3.6 in. − yBC − 1.8 in.
3.6 in. = tan −1 ( 32.409 − 8.2595 − 1.8 ) in. = 9.1505°
From the force triangle, using the law of sines:
20 lb A = sin α sin 20° or A = 43.0 lb
80.8° on tool, and A = 43.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
80.8° on rim of can.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 74. Free-Body Diagram: Let E be the intersection of the lines of action of the three forces acting on the tool. From the free-body diagram, using law of sines:
6 in. + ( 0.76 in.) tan 35° L = sin 95° sin 30°
L = 13.0146 in. Also: yBD = L − y AE − 0.88 in.
= 13.0146 in. −
0.76 in. − 0.88 in. cos 35°
= 11.2068 in. And
1.8 in. yBD
α = tan −1
1.8 in. = tan −1 = 9.1247° 11.2086 in. Then from the force triangle and using the law of sines:
B 14 lb = sin150° sin 9.1247° Solving for B:
B = 44.141 lb, or on the member B = 44.141 lb
80.9°, and on the lid B = 44.1 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
80.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 75. Free-Body Diagram: Based on the roller having impending motion to the left, the only contact between the roller and floor will be at the edge of the tile. First note
(
)
W = mg = ( 20 kg ) 9.81 m/s 2 = 196.2 N
From the geometry of the three forces acting on the roller
92 mm
α = cos −1 = 23.074° 100 mm and
θ = 90° − 30° − α = 60° − 23.074 = 36.926°
Applying the law of sines to the force triangle,
W P = sin θ sin α or
196.2 N P = sin 36.926° sin 23.074° ∴ P = 127.991 N
or P = 128.0 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
30°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 76. Free-Body Diagram: Based on the roller having impending motion to the right, the only contact between the roller and floor will be at the edge of the tile. First note
(
W = mg = ( 20 kg ) 9.81 m/s 2
)
= 196.2 N
From the geometry of the three forces acting on the roller
92 mm = 23.074° 100 mm
α = cos −1 and
θ = 90° + 30° − α = 120° − 23.074° = 96.926°
Applying the law of sines to the force triangle,
W P = sin θ sin α or
196.2 N P = sin 96.926° sin 23.074 ∴ P = 77.460 N
or P = 77.5 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
30°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 77. Free-Body Diagram: Note that the clamp is a three-force body. D is the intersection of the lines of action of the three forces. From the free-body diagram it follows that:
y AD = (4.2 in.) tan 78o = 19.7594 in. yBD = y AD − 2.8 in.
= (19.7594 − 2.8) in. = 16.9594 in. Then
yBD 7.8 in.
θ = tan −1
16.9594 in. = tan −1 = 65.3013° , and 7.8 in.
α = 90° − θ − 12° = 90° − 65.3013° − 12° = 12.6987° (a) Using the maximum allowable compressive force on the clamp:
( RB ) y = RB sin θ = 40 lb or RB =
40 lb = 44.028 lb sin 65.301°
or R B = 44.0 lb (b)
65.3°
Using the law of sines for the force triangle:
RB NA T = = sin12° sin α sin(90° + θ )
44.028 lb NA T = = sin12° sin12.6987° sin155.301° which gives:
N A = 46.551 lb (c)
T = 88.485 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or N A = 46.6 lb
or T = 88.5 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 78. Free-Body Diagram: (for hoist AD) Note that the hoist AD is a three-force body. E is the intersection between the lines of action of the three forces acting on the hoist. From the free-body diagram:
x AE = (48 in.) cos 30° = 41.5692 in. y AD = (48 in.)sin 30° = 24 in. yBE = x AD tan 75° = (41.5692 in.)tan75°
= 155.1384 in. Then:
yBE − 16 in. −1 139.1384 = tan x 41.5692 AD
α = tan −1
= 73.36588°
β = 75° − α = 75° − 73.36588° = 1.63412° θ = 180° − 15° − β = 165° − 1.63412° = 163.366° From the force triangle and using the law of sines:
260 lb B A = = sinβ sin θ sin15° 260 lb B A = = sin 1.63412° sin 163.366° sin 15° Solving for A and B: (a)
(b)
B = 2609.9 lb or B = 2.61kips
75.0°
or A = 2.36 kips
73.4°
A = 2359.8 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 79. Free-Body Diagram:
Note that the member is a three-force body. In the free-body diagram, D is the intersection between the lines of action of the three forces. (a)
From the force triangle:
T − 110 N 3 = T 4 3T = 4T − 440 N
T = 440 N (b)
From the force triangle:
C 5 = T 4 C =
5 5 T = (440 N) = 550 N 4 4
or C = 550 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
36.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 80. Free-Body Diagram:
Note that the member is a three-force body. In the free-body diagram, E is the intersection between the lines of action of the three forces. From the free-body diagram:
15
α = tan −1 = 61.928° 8 8
β = tan −1 = 33.690° 12 From the force triangle:
α − β = 61.928° − 33.690° = 28.238° 180° − α = 180° − 61.928° = 118.072°
Using the law of sines: T − 18 lb T C = = sin(α − β ) sin β sin(180° − α )
T − 18 lb T C = = sin ( 22.238° ) sin ( 33.690° ) sin(118.072°) Then:
(T
− 18 lb ) sin ( 33.690° ) = T sin ( 28.238° )
T = 122.414 lb and
or T = 122.4 lb
(122.414 lb ) sin (118.072°) = C sin ( 33.690° ) C = 194.723 lb or C = 194.7 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
33.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 81. Free-Body Diagram: Note that the peavey is a three-force body. In the free-body diagram, D is the intersection of the lines of action of the three forces acting on the peavey. It then follows:
44 in. = 40.2364° 44 in. + 8 in.
β = tan −1
α = 45° − β = 45° − 40.2364° = 4.7636°
From the force triangle, using the law of sines:
W C A = = sin β sin α sin135°
80 lb C A = = sin 40.236° sin 4.7636° sin135° Solving for C and A: (a)
(b)
C = 10.2852 lb or C = 10.29 lb
45.0°
or A = 87.6 lb
85.2°
A = 87.576 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 82. Free-Body Diagram: Note that the peavey is a three-force body. In the free-body diagram, D is the intersection of the lines of action of the three forces acting on the peavey. It then follows:
44 in. DC + 8 in.
β = tan −1
where DC = ( 44 in. + a ) tan 30°
R a= −R tan 30° 4 in. = − 4 in. tan 30° = 2.9282 in. Then:
DC = ( 46.9282 in.) tan 30° = 27.0940 in. and
44 in. = 51.4245° 35.0940 in.
β = tan −1
α = 60° − β = 60° − 51.4245° = 8.5755° Now from the force triangle, using the law of sines:
W C A = = sin β sin α sin120°
80 lb C A = = sin 51.424° sin 8.5755° sin120°
Solving for C and A: (a)
C = 15.2587 lb or C = 15.26 lb
(b)
A = 88.621 lb or A = 88.6 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
81.4°
30.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 83. Free-Body Diagram: From the free-body diagram, the member AB is a threeforce body. Let D be the intersection of the lines of action of the three forces acting on AB. Then, using triangle BCD:
CD = ( 250 mm ) tan 60° = 433.01 mm Also:
AF = AE + EF = AE + CD = (300 + 433.01) mm = 733.01 mm
FD 250 = tan −1 AF 733.01 = 18.8324°
θ = tan −1
From the force triangle
α = 180° − 30° − 18.8324° = 131.168° Using the law of sines
A B 330 N = = sin 30° sin18.8324° sin131.168° Solving for A and B:
A = 219.19 N,
B = 141.507 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or A = 219 N
71.2°
or B = 141.5 N
60.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 84. Free-Body Diagram:
From the free-body diagram it follows that
tan θ =
9.6 − 8sin20° 8cos20°
θ = 42.397° Also:
BE = 20sin 20° + ( 20cos 20° ) tan 42.397° = 12sin 20° (12cos 20° ) tan φ
φ = 60.456° Then using the law of sines on the force triangle:
TAD C 60 lb = = sin ( 90° − φ ) sin ( 90° + θ ) sin (φ − θ ) TAD C 60 lb = = cos 60.456° cos 42.397° sin18.059° (a)
TAD = 95.438 lb
(b)
C = 142.935 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or TAD = 95.41 lb or C = 142.935 lb
60.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 85. Free-Body Diagram:
(a)
Using the law of cosines on triangle ABC: 2
2
R 2 = ( 2R ) + ( 2R ) − 2 ( 2R )( 2R ) cosθ
1 = 8 − 8cosθ cosθ =
7 8
θ = 28.955° Also,
2R cos (θ + α ) = R cos α 2R ( cosθ cos α − sin θ sin α ) = R cos α tan α =
2 cosθ − 1 2cos 28.955° − 1 = 2 sin θ 2 sin 28.955° or α = 37.8°
α = 37.761° (b)
From the free-body diagram:
2R R = sin φ sin θ
sin φ = 2sin θ = 2 sin 28.955°
φ = 75.522° Now using the law of sines on the force triangle:
NA NB W = = sin [90° − (φ − α )] sin 90° − (θ + α ) sin (θ + α ) + (φ − α )
NA NB mg = = cos(φ − α ) cos (θ + α ) sin (θ + φ ) NA NB mg = = cos 37.762° cos 66.716° sin104.478°
Solving for N A and N B :
N A = 0.816 mg N B = 0.408 mg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
66.7° 37.8°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 86. Free-Body Diagram:
(a)
Note that the rod is a three-force body. Using the law of cosines on triangle ABC: 2
R 2 = ( 2R ) + L2 − 2 ( 2 R ) L cosθ cosθ =
3R 2 + L2 4RL
(1)
Also,
L cos 45° = 2 R cos(θ + 45°) 2 L cos 45° = 2R(cosθ cos 45° − sin θ sin 45°) 2 L = cosθ − sin θ 4R Using (1) and that sin θ = 1 − cos 2 θ
sin θ =
( 4 RL )2 − ( 3R 2 + L2 ) 4RL
2
, this gives continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
L 3R 2 + L2 = − 4R 4RL
(
( 4RL )2 − ( 3R 2 + L2 )
2
4RL
)
( 4RL )2 − ( 3R 2 + L2 )
L2 − 3R 2 + L2 = −
2
Squaring both sides and simplifying:
(
)
9R 4 = 16R 2 L2 − 9R 4 + 6R 2 L2 + L4 , or
L4 − 10R 2 L2 + 18R 4 = 0 Solving for L2 :
(
)
(
)
L2 = 5 ± 7 R 2 , and taking the largest root L2 = 5 + 7 R 2 (b)
or L = 2.77 R
Using the value of L obtained in (a) and (1)
cosθ =
(
)
3R 2 + 5 + 7 R 2
(
4R 5 + 7
)
1/2
R
θ = 15.7380° Now using the law of sines on triangle ABC in the free body diagram: 2R R = sin φ sin θ
sin φ = 2sin θ = 2 sin15.7380°
φ = 32.852° Now using the law of sines on the force triangle:
NA NB mg = = cos (135° − 32.852° ) sin ( 45° − 15.7380° ) sin (15.7380° + 32.852° ) Solving for N A and N B :
N A = 1.303 mg N B = 0.652 mg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
60.7° 12.15°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 87. Free-Body Diagram: Note that the wheel is a two-force body and therefore the force at C is directed along CA and perpendicular to the incline. The wheelbarrow is a three-force body. Let D be the intersection of the lines of action of the three forces acting on the wheelbarrow. Then, using the triangle DEG
DE = EG tan 72° = ( 8 in.) tan 72° = 24.6215 in. DF = DE − EF = 24.6215 in. − 9 in. = 15.6215 in. Using triangle DFB:
φ = tan −1
FB 40 = tan −1 = 68.667° DF 15.6215
From the force triangle: α = φ − 18° = 68.667° − 18° = 50.667°
β = 180° − 50.667° − 18° = 111.333° Using the law of sines:
B C 120 lb = = sin18° sin 50.667° sin111.333° B = 39.809 lb, C = 9.644 lb (a)
(b)
Noting that the force on each handle is B/2:
1 B = 19.90 lb 2
39.3°
C = 99.6 lb
72.0°
Reaction at C:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 88. Free-Body Diagram:
From the free-body diagram:
a = ( 40 in.) tan θ − 32 in. =
8 in. − ( 23 in.) tan18° tan18°
θ = 40.048° Then,
φ = 90° − 18° − 40.048° = 31.952° Now, using the law of sines on the force triangle:
2( B/2) C 120 lb = = sin18° sin 31.952° sin (162° − 31.952° ) and solving for B/2 and C:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(a)
1 B = 24.2 lb 2
58.0°
(b)
C = 83.0 lb
72.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 89. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, E is the intersection between the lines of action of the three forces. Using triangle ACF in the free-body diagram:
yCF = d tan θ From triangle CEF:
xFE = yCF tan θ = d tan 2 θ and from triangle AGE:
cosθ = Noting that 1 + tan 2 θ = sec 2 θ =
d + xFE
( L2 )
=
d + d tan 2 θ
( L2 )
(1)
1 cos 2 θ
(1) gives
cosθ =
2d 1 L cos 2 θ
cos3 θ =
, or
2d L
Using the given values of d = 2.8 in., and L = 10 in.
cos3 θ =
2(2.8 in.) = 0.56 10 in.
cosθ = 0.82426
θ = 34.486°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 34.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 90. Free-Body Diagram: As shown in the free-body diagram of the slender rod AB, the three forces intersect at C. From the force geometry
tan β =
xGB y AB
where
y AB = L cosθ
xGB =
and
∴ tan β =
1 2
1 L sin θ 2
L sin θ
L cosθ
=
1 tan θ 2 or tan θ = 2 tan β
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 91. Free-Body Diagram
(a) As shown in the free-body diagram. of the slender rod AB, the three forces intersect at C. From the geometry of the forces
xCB yBC
tan β = where
xCB =
1 L sin θ 2
yBC = L cosθ
and
∴ tan β =
1 tan θ 2
or
tan θ = 2 tan β
For
β = 25° tan θ = 2 tan 25° = 0.93262 ∴ θ = 43.003°
or θ = 43.0°
(
)
W = mg = (10 kg ) 9.81 m/s 2 = 98.1 N
(b)
From force triangle
A = W tan β = ( 98.1 N ) tan 25° = 45.745 N or A = 45.7 N and
B=
W 98.1 N = = 108.241 N cos β cos 25° or B = 108.2 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
65.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 92. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, D is the intersection between the lines of action of the three forces. Using triangle BCE: a = BE = BC sin θ
and from triangle BCD BC = BD sin θ
Then a = BD sin 2 θ Also from triangle ABD BD = L sin θ , so
a = L sin 3 θ 1
a 3 or θ = sin L −1
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 93. Free-Body Diagram:
Note that the athlete is a three-force body. From the free-body diagram
1 a tan θ 4a 2 = tan θ tan (θ + φ )
3a +
tan (θ + φ ) =
4 tan θ 1 3 + tan θ 2
(1)
From the force triangle, using the law of sines
FH W = or, using FH = 0.8W sin θ sin 180° − (θ + φ )
sin (θ + φ ) = 1.25sin θ Now, using (1)
−1
4 tan θ θ + φ = tan 1 3 + tan θ 2
−1 = sin (1.25sin θ )
Solving numerically for θ
θ = 15.04°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 94. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, E is the intersection of the lines of action of the three forces. (a)
Using triangle DBC which is isosceles DB = a
and using triangle BDE ED = DB tan 2θ = a tan 2θ
From triangle GED
ED =
a tan 2θ =
( L − a) , tan θ
and therefore
L−a , or tan θ
a (tan θ tan 2θ + 1) = L
(1)
From triangle BCD:
a=
L a
1.25 L 2
cos θ
= 1.6 cos θ
(2)
Using (2) in (1): 1.6 cos θ = 1 + tan θ tan 2θ
(3)
(
)
2 1 − cos 2 θ sin θ sin 2θ sin θ 2sin θ cosθ , (3) gives = = Noting that tan θ tan 2θ = cosθ cos 2θ cosθ 2cos 2 θ − 1 2cos 2 θ − 1
1.6 cosθ = 1 +
(
2 1 − cos 2 θ 2
) , or
2 cos θ − 1
3
3.2 cos θ − 1.6 cos θ − 1 = 0 or θ = 23.5°
Solving numerically, θ = 23.515° (b) Substituting into (2) for L = 8 in.,
a=
5 ( 8 in.) = 5.4528° 8 cos 23.515° or a = 5.45 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 95. Free-Body Diagram:
The forces acting on the three-force member intersect at D. (a) From triangle ACO
r −1 1 = tan = 18.4349° 3r 3
θ = tan −1
tan θ =
(b) From triangle DCG
∴ DC = and
or θ = 18.43°
r DC
r r = = 3r tan θ tan18.4349°
DO = DC + r = 3r + r = 4r
yDO x AG
α = tan −1 where
yDO = ( DO ) cosθ = ( 4r ) cos18.4349° = 3.4947r
and
x AG = ( 2r ) cosθ = ( 2r ) cos18.4349° = 1.89737r
3.4947r ∴ α = tan −1 = 63.435° 1.89737r where
90° + (α − θ ) = 90° + 45° = 135.00°
Applying the law of sines to the force triangle,
mg R = A sin 90° + (α − θ ) sin θ ∴ RA = ( 0.44721) mg Finally,
P = RA cos α
= ( 0.44721mg ) cos 63.435° = 0.20000mg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or P =
mg 5
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 96. Free-Body Diagram:
ΣM A = 0:
( 450 mm ) i × D + (150 mm ) i × ( −180 N ) j + ( 250 mm ) i × ( − 300 N ) k = 0
( 450 mm ) Dyk − (450 mm)Dz j − (150 mm)(180 N)k + (250 mm)(300 N) j = 0 Setting the coefficients of the unit vectors equal to zero:
k:
Dy (450 mm) − (180 N )(150 mm ) = 0,
or
Dy = 60.000 N
i:
( 300 N )( 250 mm ) − Dz ( 450 mm ) = 0,
or
Dz = 166.667 N D = ( 60.0 N ) j + (166.7 N ) k
ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay + 60.000 N − 180 N = 0, or Ay = 120.000 N
ΣFz = 0:
Az + 166.667 N − 300 N = 0, or Az = 133.333 N
A = (120.0 N ) j + (133.3 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 97. Free-Body Diagram:
ΣFx = 0: ΣM D = 0:
Dx = 0 ( − 7 in.) i × C + ( 2 in.) i + ( 3 in.) k × ( 530 lb ) j + ( −192 lb ) k + ( −3 in.) i + ( 6 in.) j × ( −96 lb ) j + ( 265 lb ) k = 0
or − ( 7 in.) C yk + ( 7 in.) C z j + ( 2 in.)( 530 lb ) k + ( 2 in.)(192 lb ) j − ( 3 in.)( 530 lb ) i + ( 3 in.)( 96 lb ) k + ( 3 in.)( 265 lb ) j + ( 6 in.)( 265 lb ) i = 0 Setting the coefficients of the unit vectors to zero:
k:
− C y ( 7 in.) + ( 96 lb )( 3 in.) + ( 530 lb )( 2 in.) = 0,
or
C y = 192.571 lb
j:
C z ( 7 in.) + ( 265 lb )( 3 in.) + (192 lb )( 2 in.) = 0,
or
C z = −168.429 lb C = (192.6 lb ) j − (168.4 lb ) k
Then: ΣFy = 0:
192.571 lb − 96 lb + Dy + 530 lb = 0,
ΣFz = 0:
−168.429 lb + 265 lb + Dz − 192 lb = 0,
or
Dy = −626.57 lb or
Dz = 95.429 lb
D = − ( 626 lb ) j + ( 95.4 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 98. Free-Body Diagram:
ΣFx = 0:
Dx = 0
ΣM D = 0:
( − 7 in.) i × C + ( 2 in.) i + ( 3 in.) k × ( 530 lb ) j + ( − 192 lb ) k + ( − 3 in.) i + ( 6 in.) j × ( 265 lb ) j + ( − 96 lb ) k = 0
or − ( 7 in.) C yk + ( 7 in.) C z j + ( 2 in.)( 530 lb ) k + ( 2 in.)(192 lb ) j − ( 3 in.)( 530 lb ) i
− ( 3 in.)( 265 lb ) k − ( 3 in.)( 96 lb ) j − ( 6 in.)( 96 lb ) i = 0 Setting the coefficients of the unit vectors equal to zero:
k:
j:
− C y ( 7 in.) − ( 265 lb )( 3 in.) + ( 530 lb )( 2 in.) = 0, C z ( 7 in.) + ( 96 lb )( 3 in.) + (192 lb )( 2 in.) = 0, or
or
C y = 37.857 lb
C z = − 96.000 lb
C = ( 37.9 lb ) j − ( 96.0 lb ) k Then:
ΣFy = 0:
37.857 lb + 265 lb + Dy + 530 lb = 0, or
Dy = − 832.86 lb
ΣFz = 0:
− 96 lb + 96 lb + Dz − 192 lb = 0,
Dz = 192.000 lb
or
D = − ( 833 lb ) j + (192.0 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 99. Free-Body Diagram:
(
)
Note that W = mg = (18 kg ) 9.81 m/s 2 = 176.580 N Moment equilibrium: ΣM A = 0:
(
)
rB/ A × By j + Bz k + rC/ A × C zk + rG/ A × ( −176.580 N ) j = 0
or
i j k i j k i j k 1.5 0 0 + 1.2 1.2sin 60° −1.2cos 60° + 0.6 0.6sin 60° − 0.6cos 60° = 0 Cz 0 B y Bz 0 0 0 −176.580 0 or
(
)
1.2C z sin 60° − (105.948 N ) cos 60° i + ( −1.5Bz − 1.2C z ) j + 1.5By − 105.948 N k = 0
Solving the equation one component at a time: From i component:
1.2C z sin 60° − (105.948 N ) cos 60° = 0,
From j component:
−1.5Bz − 1.2C z = 0,
From k component:
1.5By − 105.948 N = 0,
or
or
C z = 50.974 N
Bz = − 0.8 ( 50.974 N ) = − 40.779 N or
By = 70.632 N
Force equations:
ΣFy = 0:
Ay − 176.580 N + 70.632 N = 0,
or
Ay = 105.948 N
ΣFz = 0:
Az + 50.974 N − 40.779 N = 0,
or
Az = −10.195 N
Therefore:
A = (105.9 N ) j − (10.20 N ) k B = ( 70.6 N ) j − ( 40.8 N ) k C = ( 51.0 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 100. Free-Body Diagram:
(a)
( 250 mm ) i × D + (150 mm ) i + ( 50 mm ) j × (150 N ) k
ΣM C = 0:
+ (150 mm ) i + ( − 50 mm ) j × T k + ( 325 mm ) i + ( 55 mm ) j × (− FE ) j = 0
or
( 250 mm ) Dyk − ( 250 mm ) Dz j + (150 mm )(150 N ) j − ( 50 mm )(150 N ) i − (150 mm ) T j − ( 50 mm ) T j − ( 325 mm ) FE k = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vectors equal to zero:
i:
(150 N )( 50 mm ) − T ( 50 mm ) = 0 ,
j:
( −150 N )(150 mm ) − (150 N )(150 mm ) − Dz ( 250 mm ) = 0,
k:
( Dy ) ( 250 mm ) − FE ( 325 mm ) = 0 ,
or
or
T = 150 N
Dy =
T = 150 N
or
Dz = −180 N
325 FE 250
Spring force FE = kx, where
k = 366 N/m elongation of spring x = ( yE )θ =180° − ( yE )θ = 0°
= ( 300 + 55 ) mm − ( 300 − 55 ) mm = 110 mm So,
FE = ( 366 N/m )( 0.110 m ) = 40.26 N
Substituting into expression for Dy:
Dy = 52.338 N Force equations:
ΣFx = 0:
Dx = 0
ΣFy = 0:
C y + 52.338 N − 40.26 N = 0,
ΣFz = 0:
C z + 150 N + 150 N − 180
or
C y = −12.078 N
N = 0,
or
C z = −120.000 N
Therefore:
C = − (12.08 N ) j − (120.0 N ) k D = ( 52.3 N ) j − (180.0 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 101. Free-Body Diagram:
Start by determining the spring force, FE : FE = − FE cosθ j + FE sin θ k
The magnitude FE = kx, where
k = 366 N/m, and elongation of spring x = ( yE )θ = 90° − ( yE )θ = 0°
=
( 300 mm )2 + ( 55 mm )2 − ( 300 mm − 55mm )
= 305 mm − 245 mm = 60 mm
So, FE = ( 366 N/m )( 0.06 m ) = 21.96 N. Note that the length of the spring at θ = 90° is therefore 305 mm. Then 300 55 FE = − ( 21.96 N ) j + ( 21.96 N ) k 305 305
or FE = − ( 21.6 N ) j + ( 3.96 N ) k continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( 250 mm ) i × D + (150 mm ) i + ( 50 mm ) j × (150 N ) k + (150 mm ) i + ( −50 mm ) j × T k
ΣM C = 0:
+ ( 325 mm ) i + ( −55 mm ) k × − ( 21.6 N ) j + ( 3.96 N ) k = 0
( 250 mm ) Dyk − ( 250 mm ) Dz j + (150 mm )(150 N ) j
or
− ( 50 mm )(150 N ) i − (150 mm ) T j − ( 50 mm ) T j − ( 325 mm )( 21.6 N ) k − ( 325 mm )( 3.96 N ) j − ( 55 mm )( 21.6 N ) i = 0 Setting the coefficients of the unit vectors equal to zero: (a)
i:
(150 N )( 50 mm ) − T ( 50 mm ) − ( 21.6 N )( 55 mm ) = 0,
or
T = 126.240 N T = 126.2 N
j:
( −150 N )(150 mm ) − (126.24 N )(150 mm ) − ( 3.96 N )( 325 mm ) − Dz ( 250 mm ) = 0, or Dz = −170.892 N
k:
( Dy ) ( 250 mm ) − ( 21.6 N )( 325 mm ) = 0,
Dy = 28.080 N
or
Force equations:
ΣFx = 0:
Dx = 0
ΣFy = 0:
C y + 28.080 N − 21.6 N = 0,
ΣFz = 0:
C z + 126.240 N + 150 N − 170.892 N + 3.96 N = 0,
or
C y = −6.4800 N or
C z = −109.308 N
Therefore:
C = − ( 6.48 N ) j − (109.3 N ) k D = ( 28.1 N ) j − (170.9 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 102. Free-Body Diagram:
(
)
The weight W is W = mg = (170 kg ) 9.81 m/s 2 = 1667.7 N
ΣM C = 0: or
rCA × N A + rCB × N B + rCG × W = 0
( −0.3 m ) i + (1.2 m ) k × N A j + (1.8 m ) i + ( 0.9 m ) k × N B j + ( 0.6 m ) i + ( 0.6 m ) k × ( −W ) j = 0
or
− ( 0.3 m ) N Ak − (1.2 m ) N Ai + (1.8 m ) N Bk − ( 0.9 m ) N Bi − ( 0.6 m )Wk + ( 0.6 m )Wi = 0
Equating the coefficients of the unit vectors to zero: i:
−1.2 N A − 0.9 N B + 0.6W = 0
4 N A + 3 N B 0 = 2W
j:
(1)
− 0.3 N A + 1.8 N B − 0.6W = 0 − N A + 6 N B 0 = 2W
− 2 × Eq. (1) + Eq. ( 2 )
(2)
gives
−9 N A = 2W
NA =
2 W = 370.60 N 9 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now (2) gives
NB =
1 2 10 W 2W + W = 6 9 27
N B = 617.67 N,
and from (1)
ΣFy = 0:
N A + N B + NC − W = 0 370.60 N + 617.67 N + NC − 1667.7 N = 0 NC = 679.43 N
Therefore the forces on the blocks are:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
N A = 371 N
N B = 618 N
NC = 679 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 103. Free-Body Diagram:
The location of the bucket of sand will be ( xS , c, zS ).
(
)
The weight W is W = mg = (170 kg ) 9.81 m/s 2 = 1667.7 N
ΣFy = 0: N = ΣM O = 0:
or
3N − W − WS = 0
1 (W + WS ) 3
(1)
rOA × N + rOB × N + rOC × N + rOG × W − rOS × WS = 0
( 0.3 m ) i + (1.2 m ) k × Nj + ( 2.4 m ) i + ( 0.9 m ) k × Nj
+ ( 0.6 m ) i × Nj + (1.2 m ) i + ( 0.6 m ) k × ( −W ) j + ( xS i + zS k ) × ( −WS ) j = 0 or
( 0.3 m ) N k − (1.2 m ) N i + ( 2.4 m ) N k − ( 0.9 m ) N i + ( 0.6 m ) N k − (1.2 m )W k + ( 0.6 m )W i − xSWS k + zSWS i = 0
Equating the coefficients of the unit vectors to zero:
i:
− (1.2 ) N − ( 0.9 ) N + ( 0.6 )W + zSWS = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
or, using (1)
1 −2.1 (W + WS ) + 0.6W + zSWS = 0 3 WS = k:
0.1W zS − 0.7 m
0.3 N + 2.4 N + 0.6 N − 1.2W − xSWS = 0
or, using (1)
1 3.3 (W + WS ) − 1.2W − xSWS = 0 3 WS =
0.1W 1.1 m − xS
(2)
For (WS )min , (1) and (2) imply that xS, should be chosen as small as possible and that zS should be chosen as large as possible with the constraint that
(1.1 m − xS ) = ( zS
− 0.7 m )
xS + zS = 1.8 m.
or
The smallest xS and the largest zS that satisfy this condition are xS = 0.6 m
zS = 1.2 m The corresponding value of WS is:
WS =
0.1(1667.7 N ) = 333.54 N 1.1 m − 0.6 m
Therefore the smallest mass of the bucket of sand is
( mS )min
=
333.54 N = 34.000kg 9.81 m/s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
( mS )min
= 34.0 kg
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 104. Free-Body Diagram:
WAB = ( 5 lb/ft )( 2 ft ) = 10 lb
First note
WBC = ( 5 lb/ft )( 4 ft ) = 20 lb W = WAB + WBC = 30 lb
To locate the equivalent force of the pipe assembly weight rG/B × W = Σ ( ri × Wi ) = rG ( AB ) × WAB + rG ( BC ) × WBC
( xGi + zGk ) × ( −30 lb ) j = (1 ft ) k × ( −10 lb ) j + ( 2 ft ) i × ( −20 lb ) j
or
∴
− ( 30 lb ) xGk + ( 30 lb ) zG i = (10 lb ⋅ ft ) i − ( 40 lb ⋅ ft ) k
From i-coefficient k-coefficient
zG =
10 lb ⋅ ft 1 = ft 30 lb 3
xG =
40 lb ⋅ ft 1 = 1 ft 30 lb 3
From free-body diagram. of piping
ΣM x = 0:
W ( zG ) − TA ( 2 ft ) = 0 1 1 ∴ TA = ft 30 lb ft = 5 lb 2 3
ΣFy = 0:
or
TA = 5.00 lb
5 lb + TD + TC − 30 lb = 0
∴ TD + TC = 25 lb
(1) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM z = 0:
4 TD (1.25 ft ) + TC ( 4 ft ) − 30 lb ft = 0 3 ∴ 1.25TD + 4TC = 40 lb ⋅ ft
−4 Equation (1)
−4TD − 4TC = −100
(3)
−2.75TD = −60
Equation (2) + Equation (3)
∴ TD = 21.818 lb From Equation (1)
(2)
or
TD = 21.8 lb
TC = 25 − 21.818 = 3.1818 lb
or
Results:
TC = 3.18 lb TA = 5.00 lb TC = 3.18 lb TD = 21.8 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 105. Free-Body Diagram:
First note
W AB = (5 lb/ft )(2 ft ) = 10 lb WBC = ( 5 lb/ft )( 4 ft ) = 20 lb
From free-body diagram. of pipe assembly
ΣFy = 0: TA + TC + TD − 10 lb − 20 lb = 0 ∴ TA + TC + TD = 30 lb
(1)
ΣM x = 0: (10 lb )(1 ft ) − TA ( 2 ft ) = 0 or
TA = 5.00 lb TC + TD = 25 lb
From Equations (1) and (2)
(2) (3)
ΣM z = 0: TC ( 4 ft ) + TD ( amax ) − 20 lb ( 2 ft ) = 0 or
( 4 ft ) TC
+ TD amax = 40 lb ⋅ ft
(4) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Using Equation (3) to eliminate TC
4 ( 25 − TD ) + TD amax = 40 amax = 4 −
or
60 TD
By observation, a is maximum when TD is maximum. From Equation (3), (TD )max occurs when TC = 0.
Therefore, (TD )max = 25 lb and
amax = 4 −
60 25
= 1.600 ft Results: (a) amax = 1.600 ft
(b)
TA = 5.00 lb TC = 0 TD = 25.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 106. Free-Body Diagram:
The free-body diagram indicates the forces on the camera and tripod slid along their lines of action to the plane ABCD. Note that the x-coordinate of the center of mass of the camera is:
xCAM = − ( 2.4 in. − 1 in.) = −1.4 in. ΣM B = 0:
or
( − 3 in.) k × C y j + ( −1.5 in.) k − (1.4 in.) i × ( − 0.44 lb ) j + ( −1.5 in.) k − ( 2.8 in.) i × ( − 0.53 lb ) j + ( −1.5 in.) k − ( 3.2 in.) i × Ay j = 0 ( 3 in.) C yi − (1.5 in.)( 0.44 lb ) i + (1.4 in.)( 0.44 lb ) k − (1.5 in.)( 0.53 lb ) i + ( 2.8 in.)( 0.53 lb ) k + (1.5 in.) Ay i − ( 3.2 in.) Ayk = 0
Setting the coefficients of the unit vectors equal to zero: k:
− Ay ( 3.2 in.) + ( 0.53 lb )( 2.8 in.) + ( 0.44 lb )(1.4 in.) = 0
Ay = 0.65625 lb
or A y = 0.656 lb
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
i:
( 3 in.) C y − (1.5 in.)( 0.44 lb ) − (1.5 in )( 0.53 lb ) + (1.5 in.) (0.65625 lb) = 0 C y = 0.156875 lb
or C y = 0.1569 lb
or B y = 0.1569 lb
ΣFx = By − 0.53 lb − 0.44 lb + 0.156875 lb + 0.156875 lb = 0
By = 0.156875 lb (b) Free-Body Diagram:
Condition for no tipping: By > 0
ΣM A = 0:
( 3.2 in.) i + ( −1.5 in.) k × C y j + ( 3.2 in.) i + (1.5 in.) k × B y j
{
}
+ (1.8 in.) i × ( − 0.44 lb ) j + 1.8 in. − (1.4 in.) cosθ i − (1.4 in.) sinθ k × ( − 0.53 lb ) j = 0 or
( 3.2 in.) C yk + (1.5 in.) C yi + ( 3.2 in.) By k − (1.5 in.) Byi − (1.8 in.)( 0.44 lb ) k + 1.8 in. − (1.4 in.) cosθ ( − 0.53 lb ) k + (1.4 in.) sinθ ( − 0.53 lb ) i = 0
Setting the coefficients of the unit vectors equal to zero: i:
C y (1.5 in.) − By (1.5 in.) − ( 0.53 lb )(1.4 in.) sin θ = 0
C y = B y + ( 0.53 lb ) k:
1.4 sin θ 1.5
( By + C y ) ( 3.2 in.) − ( 0.44 lb )(1.8 in.) − ( 0.53 lb ) 1.8 in. − (1.4 in ) cosθ = 0 or
1.4 2By ( 3.2 in.) + ( 0.53 lb ) ( 3.2 in.) sin θ + (1.4 in.) cosθ − ( 0.44 lb + 0.53 lb )(1.8 in.) = 0 1.5 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Solving for By : By =
1.4 1 ( 0.44 lb + 0.53 lb )1.8 in. − 0.53 lb ( 3.2 in.) sin θ + (1.4 in.) cosθ 2 ( 3.2 in.) 1.5
and By > 0 2.3531 > 2.1333sin θ + cosθ
To solve for θ :
2.1333sin θ + cosθ = A cos (θ + α ) = A ( cosθ cos α − sin θ sin α ) where A=
( 2.1333)2 + (1)2
= 2.3561, and
− 2.1333 , which (noting that cos α > 0) gives 1
α = tan −1
α = − 64.885° The inequality for By becomes:
2.3531 > 2.3561cos(θ − 64.885°) or cos (θ − 64.885° ) < 0.99873 or θ − 64.885° < cos −1 ( 0.99873) or θ < 64.885° ± 2.8879°
θ max = 62.00°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 107. Free-Body Diagram:
ΣM B = 0:
or
rBA × TA + rBC × TC + rBO × WAB + rBF × WBD + rBG × WAD = 0
( )
3 L L 3 1 − Li × TA j + − 4 i + Lk × TC j − i × − Wj 4 2 tan 60° 3
L 1 3L 1 3 3 + − i + Lk × − Wj + − i + Lk × − Wj = 0 4 4 4 3 4 3
or
− LTAk −
3 3 L L 3 L 3 LTC k − LTC i + Wk + Wk + LWi − Wk + LWi = 0 4 4 6 12 12 4 12
Equating the coefficients of the unit vectors to zero:
i:
W 3 W 3 3 L+ L − TC L = 0 3 4 3 4 4
TC = k:
2W 3 3
− TA L + TA =
W 3L W L W L 2W 3 L + + − =0 3 4 3 4 3 2 3 34 3
W 3 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣFy = 0:
TB + TB =
W 2W + −W = 0 3 3 3 2 1 1 − W 3 3
Therefore:
TA = TB =
2 1 1 − W 3 3
TC =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
W 3
2W 3 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 108. Free-Body Diagram:
Note that:
xC =
L 1 − zC 2 3
(a) Setting: TA = TB = T
ΣM O = 0: or
rOA × TA + rOB × TB + rOC × TC + rOH × W + rOF × WBD + rOG × WAD = 0
−
L L i × TA j + i × TB j + 2 2
( )
3 L L 3 − 4 i + Lk × TC j 4 2 tan 60°
L 1 L 1 3 3 Lk × − Wj + − i + Lk × − Wj + ( xC i + zC k ) × ( − Wj) = 0 + i + 4 4 4 3 4 3
or
( )
3 L L L L 3 T k + LTC i − TAk + TAk + − 4 2 tan 60° C 2 2 4
−
1L 1 3 1L 1 3 Wk + LWi + Wk + LWi − xCWk + zCWi = 0 34 3 4 34 3 4 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
i:
W 3 W 3 3L L+ L − TC + WzC = 0 3 4 3 4 4
(1)
or, using the relation between xC, and zC:
L 3 3 − LTC + + − 3 xC + 4 2 2 3 k:
L W = 0
(2)
1 L L 3 1 1 LW + LW − xCW = 0 − T + T + L − TC − 2 2 2 4 12 12
1 3 L − TC = xCW 4 2
(3)
Substituting (3) into (2)
1 1 3 3 3 − LTC + + LW − 3 L − TC = 0 4 2 4 2 2 3
4 W 3 4 ΣFy = 0: 2T + W − 2W = 0 3 W T = 3 TC =
TA = TB =
Therefore:
TC = (b) Using TC in (1):
W 3
4 W 3
W 3 W 3 4 3 L+ L − W L + WzC = 0 3 4 3 4 3 4 1 zC = 1 − L 2 3 and from geometry
xC =
L 1 1 zC = 2− 3 L − 2 3 3
(
)
Therefore:
xC =
1 2− 3 L 3
(
)
1 zC = 1 − L 2 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 109. Free-Body Diagram:
(a) ΣFy = 0:
3 ( R ) − 135 N = 0
R = 45.0 N
ΣM A = 0:
rAB × R B + rAC × R C + rAG × FW = 0
or
( 0.9 m ) i + l k × R j + l i + ( 0.9 m ) k × R j + ( 0.450 m ) i + ( 0.450 m ) k × ( − FW j) = 0
or
( 0.9 m ) R k − lR i + lR k − ( 0.9 m ) R i − ( 0.450 m ) FW k + ( 0.450 m ) FW i = 0
Equating the coefficients of the i unit vector to zero:
i:
− lR − ( 0.9 m ) R + ( 0.45 m ) FW = 0
Using that FW = 3R
− l − ( 0.9 m ) + ( 0.45 m )( 3) = 0 l = 0.450 m
or l = 450 mm continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) Free-Body Diagram:
ΣM A = 0: rAB × R B + rAC × R C + rAG × FW = 0 or ( 0.9 m ) i + ( 0.5 m ) k × R j + ( 0.5 m ) i + ( 0.9 m ) k × R j + ( 0.450 m ) i + ( 0.450 m ) k × ( −135 N ) j = 0
( 0.9 m ) R k − ( 0.5 m ) R i + ( 0.5 m ) R k − ( 0.9 m ) R i − ( 0.450 m ) FW k + ( 0.450 m ) FW i = 0 Equating the coefficients of the unit vectors to zero i:
− 0.5RB − 0.9 RC + 60.75 = 0
(1)
k:
0.9 RB + 0.5RC − 60.75 = 0
(2)
0.5 × [ Eq. (1)] + 0.9 × [ Eq. (2) ]
gives
− 0.5 ( 0.5 ) + ( 0.9 )( 0.9 ) RB + ( 0.5 − 0.9 ) 60.75 = 0 RB = 43.393 N
Now using (1)
− 0.5 ( 43.393) − 0.9 RC + 60.67 = 0 RC = 43.393 N
ΣFy = 0:
RA + 43.393 + 43.393 − 135 = 0 RA = 48.2 N RB = 43.4 N
RC = 43.4 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 110. Free-Body Diagram:
ΣM O = 0:
( 0.75 ft ) i × ( Ay j + Azk ) + ( 3.75 ft ) i × ( By j + Bzk ) + ( 2.25 ft ) i + ( 3 ft ) k × ( − 27 lb ) j + ( 4.5 ft ) i + ( 5.25 ft ) k × C y j = 0
or
( 0.75 ft ) Ayk − ( 0.75 ft ) Az j + ( 3.75 ft ) Byk − ( 3.75 ft ) Bz j − ( 2.25 ft )( 27 lb ) k + ( 3 ft )( 27 lb ) i + ( 4.5 ft ) C yk − ( 5.25 ft ) C y i = 0
Setting the coefficients of the unit vectors equal to zero:
i:
( 27 lb )( 3 ft ) − C y ( 5.25 ft ) = 0 C y = 15.4286 lb
k:
( 27 lb )(1.5 ft ) + By ( 3 ft ) − (15.4286 lb )( 3.75 ft ) = 0 By = − 5.78575 lb
ΣFy = 0:
Ay − 5.78575 lb − 27 lb + 15.4286 lb = 0 Ay = 17.3572 lb
Therefore: (a) (b) (c)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
A y = 17.36 lb
B y = 5.79 lb C y = 15.43 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 111. Free-Body Diagram:
ΣM O = 0:
( 0.75 ft ) i × ( Ay j + Azk ) + ( 3.75 ft ) i × ( By j + Bzk ) + ( 2.25 ft ) i + ( 3 ft ) k × ( − 27 lb ) j + ( 3.75 ft ) i + ( 6 ft ) k × C y j = 0
or
( 0.75 ft ) Ayk − ( 0.75 ft ) Az j + ( 3.75 ft ) Byk − ( 3.75 ft ) Bz j − ( 2.25 ft )( 27 lb ) k + ( 3 ft )( 27 lb ) i + ( 3.75 ft ) C yk − ( 6.0 ft ) C y i = 0
Setting the coefficients of the unit vectors equal to zero: ΣM x = 0:
( 27 lb )( 3 ft ) − C y ( 6 ft ) = 0 C y = 13.5000 lb
ΣM z = 0:
− ( 27 lb )(1.5 ft ) + By ( 3 ft ) − (13.5000 lb )( 3 ft ) = 0 By = 0
ΣFy = 0:
Ay + 13.5000 lb − 27 lb = 0 Ay = 13.5000 lb
Therefore:
A y = 13.50 lb
(a) (b) (c)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
By = 0 C y = 13.50 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 112 Free-Body Diagram:
Express all forces in terms of rectangular components:
rE = ( 3 ft ) i + ( 3 ft ) j rB = ( 3 ft ) sin 30° j + ( 3 ft ) cos 30°k = (1.5 ft ) j + ( 2.598 ft ) k rD = − ( 3 ft ) i + ( 3 ft ) j
or
or
rA = (10 ft ) sin 30° j − (10 ft ) cos 30°k = ( 5 ft ) j + (8.66 ft ) k uuur BE = rE − rB = ( 3 ft ) i + ( 3 ft ) j − (1.5 ft ) j − ( 2.598 ft ) k uuur BE = ( 3 ft ) i + (1.5 ft ) j − ( 2.598 ft ) k, and BE = 4.243 ft uuur BD = rD − rB = − ( 3 ft ) i + ( 3 ft ) j − (1.5 ft ) j − ( 2.598 ft ) k uuur BD = − ( 3 ft ) i + (1.5 ft ) j − ( 2.598 ft ) k, and BD = 4.243 ft
Then
uuur ur BD T BD = TBD = TBD ( − 0.707i + 0.3535j − 0.6123k ) BD uuur ur BE T BE = TBE = TBE ( 0.707i + 0.3535j − 0.6123k ) BE continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
rB × TBD + rB × TBE + ( 5 ft ) j + ( 8.66 ft ) k × ( − 75 lb ) j
ΣM C = 0:
i j k i j k 0 1.5 2.598 TBD + 0 1.5 2.598 + 649.5 i = 0 or − 0.707 0.3535 − 0.6123 0.707 0.3535 − 0.6123
Equating the coefficients of the unit vectors to zero:
j:
−1.837 TBD + 1.837 TBE = 0
i:
−1.837 TBD + 1.837 TBE + 649.5 lb = 0
TBD = 176.8 lb
TBE = 176.8 lb Force equations:
C x + (176.8 )( − 0.707 ) + (176.8 )( 0.707 ) = 0,
or
Cx = 0
C y + (176.8 )( 0.3535 ) + (176.8 )( 0.3535 ) − 75 lb = 0,
or
C z + (176.8 )( − 0.6123) + (176.8 )( − 0.6123) = 0,
C z = 216.5 lb
or
C y = − 50 lb
C = − ( 50 lb ) j + ( 216.5 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 113. Free-Body Diagram:
Express the forces in terms of their rectangular components: uuur FB 12i − 18j + 36k 2 3 6 TFB = TFB = TFB = TFB i − TFB j + TFBk 2 2 2 FB 7 7 (12 ) + ( −18) + ( 36 ) 7
TFC = TFC
uuur FC = TFC FC
−12i − 18j + 36k
( −12 )
2
2
+ ( −18 ) + ( 36 )
2
2 3 6 = − TFBi − TFB j + TFBk 7 7 7
From the free-body diagram, note that
zE 12 = 27 18 z E = 18.00 ft continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then, using TED = 2720 lb
TED = 2720
− 27 j + 57.75k
( − 27 )2 + (18 + 39.75)2
TED = ( 32 lb )( − 36j + 77k ) (a)
ΣM A = 0:
rAD × TED + rAF × TFB + rAE × W = 0
i j k i j k i j k i j k TFB TFC or 32 0 0 39.75 + 0 18 −12 + 0 18 −12 + 2720 0 27 −18 = 0 7 7 0 − 36 77 2 −3 6 0 −1 0 − 2 −3 6 Equating the coefficients of the unit vectors to zero
i:
32 ( 39.75 )( 36 ) +
TFB T ( 72 ) + FC ( 72 ) + 2720 ( −18) = 0 7 7
72 72 TFB + TFC − 3168 = 0 7 7 j:
(1)
TFB T ( − 24 ) + FC ( 24 ) = 0 7 7 TFB = TFC
(2)
Substituting Eq. (2) in (1) gives
72 2 TFB − 3168 = 0 7
or TFB = 154.0 lb TFC = 154.0 lb (b) ΣFx = 0:
Ax +
2 2 (154.0) − (154.0 ) = 0 7 7
Ax = 0
ΣFy = 0:
Ay −
3 3 (154.0) − (154.0 ) − ( 32 )( 36 ) − 2720 = 0 7 7
Ay = 4004 lb ΣFz = 0:
Az +
6 6 (154.0) + (154.0 ) + ( 32 )( 77 ) = 0 7 7
Az = − 2728 lb
Therefore:
A = ( 4.00 kips ) j − ( 2.73 kips ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 114. Free-Body Diagram
First express tensions in terms of rectangular components: uuur BE − 8i − 8j + 4k 2 2 1 TBE = TBE = TBE = − TBE i − TBE j + TBE k 2 2 2 BE 3 3 3 ( − 8) + ( − 8) + ( 4 )
TBF = TBF
uuur BF = TBF BF
8i − 8j + 14k
(8)
2
2
+ ( − 8 ) + (14 )
2
=
4 4 7 TBF i − TBF j + TBF k 9 9 9
TCD = TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) ΣM A = 0:
or
rAB × TBE + rAB × TBF + rAC × TCD = 0
8j ×
TBE T ( − 2i − 2 j + k ) + 8j × BF ( 4i − 4 j + 7k ) 3 9
+ 10 j × TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
(a)
i:
8 56 TBE + TBF − 10TCD cos φ cosθ = 0 3 9
(1)
k:
16 32 TBE − TBF − 10TCD cos φ sin θ = 0 3 9
(2)
− 2 × Eq. (1) + Eq. ( 2 ) gives:
56 32 − 2 − TBF − 10 ( 600 ) cos10° ( − 2 cos 30° + sin 30° ) = 0 9 9 TBF = 455.00 N
Using this in Eq. (1),
8 56 TBE + ( 455.00 ) − 10 ( 600 ) cos10° cos 30° = 0 3 9 TBE = 857.29 N
Therefore:
TBE = 857 N TBF = 455 N (b)
ΣFx = 0:
ΣFy = 0:
Ax −
2 4 (857.29 N ) + ( 455.00 N ) + ( 600 N ) cos10° sin 30° = 0 3 9
Ax = 73.9 N 2 4 Ay − ( 857.29 N ) − ( 455.00 N ) + ( 600 N ) sin10° = 0 3 9
Ay = 878 N ΣFz = 0:
Az +
1 7 (857.29 N ) + ( 455.00 N ) − ( 600 N ) cos10° cos 30° = 0 3 9
Az = −127.9 N Therefore:
A = ( 73.9 N ) i + ( 878 N ) j − (127.9 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 115. Free-Body Diagram:
First express tensions in terms of rectangular components: uuur BE − 8i − 8j + 4k 2 2 1 = TBE = − TBE i − TBE j + TBE k TBE = TBE 2 2 2 BE 3 3 3 ( − 8) + ( − 8) + ( 4 )
TBF = TBF
uuur BF = TBF BF
8i − 8j + 14k
(8)
2
2
+ ( − 8 ) + (14 )
2
=
4 4 7 TBF i − TBF j + TBF k 9 9 9
TCD = TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) ΣM A = 0: or
rAB × TBE + rAB × TBF + rAC × TCD = 0
8j ×
TBE T (− 2i − 2 j + k ) + 8j × BF (4i − 4 j + 7k ) 3 9
+ 10 j × TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
8 56 TBE + TBF − 10TCD cos φ cosθ = 0 3 9
i:
8 56 (840 N ) + ( 450 N ) = 10TCD cos φ cosθ 3 9
(1)
16 32 TBE − TBF − 10TCD cos φ sin θ = 0 3 9
k:
16 32 (840 N ) − ( 450 N ) = 10TCD cos φ sin θ 3 9 (a)
(2)
Eq. ( 2) gives: Eq. (1) 16 (840) − 32 ( 450) 10TCD cos φ sin θ 3 9 = 8 10TCD cos φ cos θ (840) + 56 ( 450) 3 9
tan θ =
1 1.75
θ = 29.7°
θ = 29.745° (b) Substituting into (1) gives:
8 56 (840 N ) + ( 450 N ) − 10TCD cos8° cos 29.745° = 0, 3 9
or
TCD = 586.19 N
or TCD = 586 N (c)
ΣFx = 0:
Ax −
2 4 (840 N ) + ( 450 N ) + ( 586.19 N ) cos8° sin 29.745° = 0 3 9
Ax = 72.0 N
ΣFy = 0:
Ay −
2 4 (840 N ) − ( 450 N ) − ( 586.19 N ) sin 8° = 0 3 9
Ay = 842 N ΣFz = 0:
Az +
1 3 (840 N ) + ( 450 N ) − ( 586.19 N ) cos8° cos 29.745° = 0 3 9
Az = −126.0 N Therefore:
A = ( 72.0 N ) i + ( 842 N ) j − (126.0 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 116. Free-Body Diagram:
Express all forces in terms of rectangular components:
rA = ( 2.4 m ) i rB = (1.8 m ) j uuur AD = − ( 2.4 m ) i + ( 0.3 m ) j + (1.2 m ) k uuur BE = − (1.8 m ) i + ( 0.6 m ) j − ( 0.9 m ) k W = − ( 880 N ) j Then
uuur ur AD = TAD T AD = TAD AD uuur ur BE T BE = TBE = TBE BE
− 2.4i + 0.3j + 1.2k
( − 2.4 )
2
2
+ ( 0.3) + (1.2 )
2
−1.8i + 0.6 j − 0.9k
( −1.8)
2
2
+ ( 0.6 ) + ( − 0.9 )
2
8 1 4 = − TADi + TAD j + TADk 9 9 9 6 2 3 = − TADi + TAD j − TADk 7 7 7 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM C = 0:
or
rA × TAD + rB × TBE + rA × W = 0
i 2.4 8 − 9
j 0 1 9
k i j k 0 TAD + 1.8 0 0 TBE + ( 2.4 ) i × ( − 880 ) j = 0 4 6 2 3 − − 9 7 7 7
Equating the coefficients of the unit vectors to zero:
−
j:
9.6 5.4 TAD + TBE = 0 9 7
2.4 3.6 TAD + TBE − 2112 = 0 9 7
k:
or TAD = 2160 N
TBE = 2990 N Force equations:
Cx −
8 6 ( 2160.0 N ) − ( 2986.7 N ) = 0, 9 7
Cy +
1 2 ( 2160.0 N ) + ( 2986.7 N ) − 880 N = 0, or 9 7
Cz +
4 3 ( 2160.0 N ) − ( 2986.7 N ) = 0, 9 7
or
or
C x = 4480.0 N
C y = − 213.34 N
C z = 320.01 N
C = ( 4480 N ) i − ( 213 N ) j + ( 320 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 117. Free-Body Diagram:
Express all forces in terms of rectangular components:
rA = ( 2.4 m ) i rB = (1.8 m ) j uuur AD = − ( 2.4 m ) i + ( 0.3 m ) j + (1.2 m ) k uuur BE = − (1.8 m ) i + ( 0.6 m ) j − ( 0.9 m ) k WA = − ( 440 N ) j WB = − ( 440 N ) j Then
uuur ur AD T AD = TAD = TAD AD uuur ur BE = TBE T BE = TBE BE
− 2.4i + 0.3j + 1.2k
( − 2.4 )
2
2
+ ( 0.3) + (1.2 )
2
−1.8i + 0.6 j − 0.9k
( −1.8)
2
2
+ ( 0.6 ) + ( − 0.9 )
2
8 1 4 = − TADi + TAD j + TADk 9 9 9 6 2 3 = − TADi + TAD j − TADk 7 7 7 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM C = 0:
or
rA × TAD + rB × TBE + rA × WA + rB × WB = 0
i 2.4 8 − 9
j 0 1 9
k i j k 0 TAD + 1.8 0 0 TBE + ( 2.4 ) i × (− 440) j + (1.8 ) i × (− 440) j = 0 4 6 2 3 − − 9 7 7 7
Equating the coefficients of the unit vectors to zero:
j:
−
9.6 5.4 TAD + TBE = 0 9 7
2.4 3.6 TAD + TBE − 1848 = 0 9 7
k:
or TAD = 1890 N
TBE = 2610 N Force equations:
Cx −
8 6 (1890.00 N ) − ( 2613.3 N ) = 0, 9 7
Cy +
1 2 (1890.00 N ) + ( 2613.3 N ) − 440 N − 440 N = 0, 9 7
Cz +
4 3 (1890.00 N ) − ( 2613.3 N ) = 0, 9 7
or
or
C x = 3920.0 N
or
C y = −76.657 N
C z = 279.99 N
C = ( 3920 N ) i − ( 76.7 N ) j + ( 280 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 118. Free-Body Diagram:
Express all forces in terms of rectangular components:
rA = (140 in.) i rC = ( 72 in.) i uuur EG = − (120 in.) i + (126 in.) k uuuur FH = − (120 in.) i − ( 90 in.) k uur CI = − ( 72 in.) i + ( 44.8 in.) j W = − (140 lb ) j Then
uuur ur EG = TEG T EG = TEG EG
−120i + 126k
( −120 )
uuuur ur FH T FH = TFH = TFH FH uur ur CI T CI = TCI = TCI CI
2
+ (126 )
2
=−
−120i − 90k
( −120 )2 + ( − 90 )2 − 72i + 44.8j
( − 72 )
2
+ ( 44.8 )
2
=−
20 21 TEG i + TEGk 29 29
= −0.8TFH i − 0.6TFH k 45 28 TCI i + TCI j 53 53 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM D = 0:
or
rE × TEG + rF × TFH + rC × TCI + rA × W = 0
i j k i j k i j k TEG TFH T 120 0 10 + 120 0 −10 + 72 0 0 CI − 19600 lb ⋅ in. = 0 29 5 53 − 20 0 21 −4 0 −3 − 45 28 0
Noting that TCI = TFH and equating the coefficients of the unit vectors to zero:
j: k:
− 93.793TEG + 80TCI = 0 38.038TCI − 19600 lb ⋅ in. = 0
or TCI = TFH = 515 lb or TEG = 440 lb Force equations:
ΣFx = 0:
Dx −
20 45 4 ( 439.50 lb ) − ( 515.28 lb ) − ( 515.28 lb ) = 0, 29 53 5
ΣFy = 0:
Dy +
28 ( 515.28 lb ) − 140 lb = 0, 53
ΣFz = 0:
Dz +
21 3 ( 439.50 lb ) − ( 515.28) lb = 0, 29 5
or
or
Dx = 1152.83 lb
Dy = −132.223 lb or
Dz = − 9.0906 lb
D = (1153 lb ) i − (132.2 lb ) j − ( 9.09 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 119. Free-Body Diagram:
Express all forces in terms of rectangular components:
rB = (120 in.) i rC = ( 72 in.) i uuur EG = − (120 in.) i + (126 in.) k uuuur FH = − (120 in.) i − ( 90 in.) k uur CI = − ( 72 in.) i + ( 44.8 in.) j W = − (140 lb) j Then
uuur ur EG T EG = TEG = TEG EG
−120i + 126k
uuuur ur FH T FH = TFH = TFH FH uur ur CI T CI = TCI = TCI CI
( −120 )
2
+ (126 )
2
=−
−120i − 90k
( −120 )2 + ( − 90 )2 − 72i + 44.8j
( − 72 )
2
+ ( 44.8 )
2
=−
20 21 TEG i + TEGk 29 29
= − 0.8TFH i − 0.6TFH k 45 28 TCI i + TCI j 53 53 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM D = 0: or
rE × TEG + rF × TFH + rC × TCI + rA × W = 0 i j k i j k i j k TEG TFH T 120 0 10 + 120 0 −10 + 72 0 0 CI − 19600 lb ⋅ in. = 0 29 5 53 − 20 0 21 −4 0 −3 − 45 28 0
Noting that TCI = TFH and equating the coefficients of the unit vectors to zero:
j: k:
− 93.793TEG + 80TCI = 0 38.038TCI − 16800 lb ⋅ in. = 0 or TCI = TFH = 442 lb
TEG = 377 lb Force equations:
ΣFx = 0:
Dx −
20 45 4 ( 376.72 lb ) − ( 441.67 lb ) − ( 441.67 lb ) = 0, 29 53 5
ΣFy = 0:
Dy +
28 ( 441.67 lb ) − 140 lb = 0, 53
ΣFz = 0:
Dz +
21 3 ( 376.72 lb ) − ( 441.67 lb ) = 0, 29 5
or
or
Dx = 988.15 lb
Dy = − 93.335 lb or
Dz = − 7.7952 lb
D = ( 998 lb ) i − ( 93.3 lb ) j − ( 7.80 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 120. Free-Body Diagram:
Geometry: Using triangle ACD and the law of sines
sin α sin 50° or α = 20.946° = 15 in. 7 in.
β = 50° + 20.946° = 70.946° Expressing FCD in terms of its rectangular coordinates:
FCD = FCD sin β j + FCD cos β k
= FCD sin 70.946° j + FCD cos 70.946°k FCD = 0.94521FCD j + 0.32646 FCDk
ΣM B = 0:
( − 26 in.) i × A + ( −13 in.) i + (16 in.) sin 50°j + (16 in.) cos 50°k × ( − 75 lb ) j + ( − 26 in.) i + ( 7 in.) k × FCD = 0
or
− ( 26 in.) Ayk + ( 26 in.) Az j + (13 in.)( 75 lb ) k + (16 in.)( 75 lb ) cos 50°i − ( 26 in.) ( 0.94521FCD ) k + ( 26 in.) ( 0.32646 FCD ) j − ( 7 in.) ( 0.94521FCD ) i = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(a) Setting the coefficients of the unit vectors to zero:
i:
( 75 lb ) (16 in.) cos 50° − ( 0.94521FCD ) ( 7 in.) = 0 FCD = 116.6 lb
(b) ΣFx = 0:
k:
Ax = 0
− 0.94521(116.580 lb ) ( 26 in.) + ( 75 lb )(13 in.) − Ay ( 26 in.) = 0
Ay = − 72.693 lb j:
0.32646 (116.580 lb ) ( 26 in.) + Az ( 26 in.) = 0 Az = − 38.059 lb
ΣFy = 0:
− 72.693 lb + 0.94521(116.580 lb ) − 75 lb + By = 0
By = 37.500 lb ΣFz = 0:
− 38.059 lb + 0.32646 (116.580 lb ) + Bz = 0
Bz = 0 Therefore:
A = − ( 72.7 lb ) j − ( 38.1 lb ) k B = ( 37.5 lb ) j
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 121. Free-Body Diagram:
Express tension in terms of rectangular components: uuuur DG = − ( 4.8 in.) j − ( 9 in.) k uuuur − 4.7 j − 9k DG 8 15 TDG = TDG = TDG = − TDG j − TDG k 2 2 DG 17 17 ( − 4.8) + ( − 9 ) Equilibrium:
ΣM F = 0:
( 6.4 in.) i + ( − 2.4 in.) j × TDG + ( 5.2 in.) j × E + ( 7.6 in.) j + ( 9.6 in.) k × ( − 55 lb ) i = 0
or
15 8 15 TDG i − ( 6.4 in.) TDG k + ( 6.4 in.) TDG j 17 17 17
( 2.4 in.)
− ( 5.2 in.) Ex k + ( 5.2 in.) Ez i + ( 7.6 in.) (55 lb)k − ( 9.6 in.) (55 lb)j = 0 Setting the coefficients of the unit vectors equal to zero: (a)
j:
15 TDG ( 6.4 in.) − ( 55 lb )( 9.6 in.) = 0 17 TDG = 93.5 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b)
k:
8 (93.500 lb) ( 6.4 in.) = 0 17
( 55 lb )( 7.6 in.) − Ex ( 5.2 in.) − E x = 26.231 lb
i:
15 Ez ( 5.2 in.) + (93.500 lb) ( 2.4 in.) = 0 17 E z = − 38.077 lb
ΣFx = 0:
− 55 lb + 26.231 lb + Fx = 0 Fx = 28.796 lb
ΣFy = 0:
Fy −
8 ( 93.500 lb ) = 0 17
Fy = 44.000 lb
ΣFz = 0:
− 38.077 lb + Fz −
15 ( 93.500 lb ) = 0 17
Fz = 120.577 lb Therefore:
E = ( 26.2 lb ) i − ( 38.1 lb ) k F = ( 28.8 lb ) i + ( 44.0 lb ) j + (120.6 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 122. Free-Body Diagram:
(
)
W = mg = (15 kg ) 9.81 m/s 2 = 147.15 N
First note (a)
( 0.08 m ) i + ( 0.25 m ) j − ( 0.2 m ) k T TEF = λ EF TEF = TEF = EF ( 0.08i + 0.25j − 0.2k ) 0.33 ( 0.08 )2 + ( 0.25 )2 + ( 0.2 )2 m From free-body diagram of rectangular plate ΣM x = 0:
(147.15 N )( 0.1 m ) − (TEF ) y ( 0.2 m ) = 0 0.25 14.715 N ⋅ m − TEF ( 0.2 m ) = 0 0.33
or
TEF = 97.119 N
or
or TEF = 97.1 N
(b)
ΣFx = 0:
Ax + (TEF ) x = 0
0.08 Ax + ( 97.119 N ) = 0 0.33 ∴ Ax = −23.544 N
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM B( z -axis ) = 0:
− Ay ( 0.3 m ) − (TEF ) y ( 0.04 m ) + W ( 0.15 m ) = 0
0.25 − Ay ( 0.3 m ) − 97.119 N ( 0.04 m ) + 147.15 N ( 0.15 m ) = 0 0.33
or
∴ Ay = 63.765 N ΣM B( y -axis ) = 0:
Az ( 0.3 m ) + (TEF ) x ( 0.2 m ) + (TEF ) z ( 0.04 m ) = 0 0.08 0.2 Az ( 0.3 m ) + TEF ( 0.2 m ) − TEF ( 0.04 m ) = 0 0.33 0.33 ∴ Az = −7.848 N
and A = − ( 23.5 N ) i + ( 63.8 N ) j − ( 7.85 N ) k ΣFy = 0:
Ay − W + (TEF ) y + By = 0
0.25 63.765 N − 147.15 N + ( 97.119 N ) + By = 0 0.33 ∴ By = 9.81 N ΣFz = 0:
Az − (TEF ) z + Bz = 0
0.2 −7.848 N − ( 97.119 N ) + Bz = 0 0.33 ∴ Bz = 66.708 N
and B = ( 9.81 N ) j + ( 66.7 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 123. Free-Body Diagram:
(
(a)
)
W = mg = (15 kg ) 9.81 m/s 2 = 147.15 N
First note
TEH = λ EH TEH
− ( 0.3 m ) i + ( 0.12 m ) j − ( 0.2 m ) k T = T = EH − ( 0.3) i + ( 0.12 ) j − ( 0.2 ) k EH 2 2 2 0.38 ( 0.3) + ( 0.12 ) + ( 0.2 ) m
From free-body diagram of rectangular plate
ΣM x = 0:
(147.15 N )( 0.1 m ) − (TEH ) y ( 0.2 m ) = 0 0.12 TEH ( 0.2 m ) = 0 0.38
or
(147.15 N )( 0.1 m ) −
or
TEH = 232.99 N or TEH = 233 N
(b)
ΣFx = 0:
Ax + (TEH ) x = 0
0.3 Ax − ( 232.99 N ) = 0 0.38 ∴ Ax = 183.938 N continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM B( z -axis ) = 0:
− Ay ( 0.3 m ) − (TEH ) y ( 0.04 m ) + W ( 0.15 m ) = 0 0.12 − Ay ( 0.3 m ) − ( 232.99 N ) ( 0.04 m ) + (147.15 N )( 0.15 m ) = 0 0.38
or
∴ Ay = 63.765 N ΣM B( y -axis ) = 0:
Az ( 0.3 m ) + (TEH ) x ( 0.2 m ) + (TEH ) z ( 0.04 m ) = 0
0.3 Az ( 0.3 m ) − ( 232.99 N ) ( 0.2 m ) − 0.38
or
0.2 ( 232.99 ) ( 0.04 m ) = 0 0.38
∴ Az = 138.976 N
and A = (183.9 N ) i + ( 63.8 N ) j + (139.0 N ) k ΣFy = 0:
Ay + By − W + (TEH ) y = 0
0.12 63.765 N + By − 147.15 N + ( 232.99 N ) = 0 0.38 ∴ By = 9.8092 N ΣFz = 0:
Az + Bz − (TEH ) z = 0
0.2 138.976 N + Bz − ( 232.99 N ) = 0 0.38 ∴ Bz = −16.3497 N and B = ( 9.81 N ) j − (16.35 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 124. Free-Body Diagram:
Express tension, weight in terms of rectangular components: uuur EF = ( 300 mm ) i + (1350 mm ) j − ( 700 mm ) k uuur EF 300 i + 1350 j − 700 k T=T =T EF ( 300 )2 + (1350 )2 + ( − 700 )2
=
6 27 14 Ti + T j− Tk 31 31 31
(
)
W = − (mg ) j = − ( 7 kg ) 9.81 m s 2 j = − (68.67 N)j ΣM B = 0:
− ( 750 mm ) i × A + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j + ( −100 mm ) i + ( 700 mm ) k × T = 0
or
− ( 750 mm ) Ayk + (125 mm ) Az j + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + −100 0 700 ( mm ) = 0 31 6 27 −14 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vectors equal to zero: (a)
i:
−
27 T ( 700 mm ) + ( 68.67 N )( 350 mm ) = 0 31 or T = 39.4N
T = 39.422 N (b)
k:
27 − Ay ( 750 mm ) + ( 68.67 N )( 375 mm ) − ( 39.422 N ) (100 mm ) = 0 31 Ay = 29.757 N
j:
14 6 Az ( 750 mm ) − ( 39.422 N ) (100 mm ) + ( 39.422 N ) ( 700 mm ) = 0 31 31 Az = − 4.7476 N
ΣFx = 0:
Bx +
6 ( 39.422 N ) = 0 31
Bx = − 7.6301 N
ΣFy = 0:
29.757 N + B y − 68.67 N +
27 ( 39.422 N ) = 0 31
By = 4.5777 N ΣFz = 0:
− 4.7476 N + Bz −
14 ( 39.422 N ) = 0 31
Bz = 22.551 N Therefore:
A = ( 29.8 N ) j − ( 4.75 N ) k B = − ( 7.63 N ) i + ( 4.58 N ) j + ( 22.6 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 125. Free-Body Diagram:
Express tension, weight in terms of rectangular components: uur IF = ( 75 mm ) i + (1350 mm ) j − ( 250 mm ) k
uur IF T=T =T IF =
75i + 1350 j − 250 k
( 75)2 + (1350 )2 + ( − 250 )2
3 54 10 Ti + Tj− Tk 55 55 55
(
)
W = − (mg ) j = − ( 7 kg ) 9.81 m/s 2 j = − (68.67 N)j ΣM B = 0:
− ( 750 mm ) i × A + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j + (125 mm ) i + ( 250 mm ) k × T = 0
or
− ( 750 mm ) Ay k + (125 mm ) Az j + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + 125 0 250 ( mm ) = 0 55 3 54 −10 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vectors equal to zero: (a)
i:
−
54 T ( 250 mm ) + ( 68.67 N )( 350 mm ) = 0 55
T = 97.918 N (b)
k:
or T = 97.9 N
54 − Ay ( 750 mm ) + ( 68.67 N )( 375 mm ) − ( 97.918 N ) (125 mm ) = 0 55
Ay = 50.358 N j:
10 Az ( 750 mm ) − ( 97.918 N ) (125 mm ) + 55
3 55 ( 97.918 N ) ( 250 mm ) = 0
Az = − 4.7475 N
ΣFx = 0:
Bx +
3 ( 97.918 N ) = 0 55
Bx = − 5.3410 N
ΣFy = 0:
50.358 N + B y − 68.67 N +
54 ( 97.918 N ) = 0 55
By = − 77.826 N ΣFz = 0:
− 4.7475 N + Bz −
10 ( 97.918 N ) = 0 55
Bz = 22.551 N
Therefore:
A = ( 50.4 N ) j − ( 4.75 N ) k B = − ( 5.34 N ) i − ( 77.8 N ) j + ( 22.6 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 126. Free-Body Diagram:
Express forces, weight in terms of rectangular components: uuur CE = ( 3 ft ) i + ( 4 ft ) j − ( 2 ft ) k
FCE = FCE
uuur CE = FCE CE
3i + 4 j + 2k
( 3) 2 + ( 4 )2 + ( 2 ) 2
= 0.55709 FCE i + 0.74278 FCE j + 0.37139 FCE k
W = − (mg ) j = − (300 lb)j ΣM B = 0:
or
( 4 ft ) k × A + (1.5 ft ) i + ( 2 ft ) k × ( − 300 lb ) j + ( 3 ft ) i + ( 4 ft ) k × FCE = 0 − ( 4 ft ) Ay i + ( 4 ft ) Az j − (1.5 ft )( 300 lb ) k + ( 2 ft )( 300 lb ) i i j k + 3 0 4 FCE ( ft ) = 0 0.55709 0.74278 0.37139 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vectors equal to zero:
k:
( 0.74278 FCE ) ( 3 ft ) − ( 300 lb )(1.5 ft ) = 0 FCE = 201.94 lb
or FCE = 202 lb j:
Ax ( 4 ft ) + 0.55709 ( 201.94 lb ) ( 4 ft ) − 0.37139 ( 201.94 lb ) ( 3 ft ) = 0 Ax = − 56.250 lb
i:
− Ay ( 4 ft ) − 0.74278 ( 201.94 lb ) ( 4 ft ) + ( 300 lb )( 2 ft ) = 0
Ay = 0 ΣFx = 0:
− 56.250 lb + Bx + 0.55709 ( 201.94 lb ) = 0 Bx = − 56.249 lb
ΣFy = 0:
0 + By − 300 lb + 0.74278 ( 201.94 lb ) = 0
By = 150.003 lb ΣFz = 0:
Bz + 0.371391( 201.94 lb ) = 0 Bz = − 74.999 lb
Therefore:
A = − ( 56.3 lb ) i B = − ( 56.2 lb ) i + (150.0 lb ) j − ( 75.0 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 127. Free-Body Diagram:
Express forces, weight in terms of rectangular components: uuur CA = − (1.2 m ) i + (1.2 m ) j − ( 0.6 m ) k
uuur CB = (1.2 m ) i + (1.2 m ) j − ( 0.6 m ) k By symmetry FCA = FCB , and at the load corresponding to buckling FCA = FCB = 1.8 kN
FCA
uuur CA = FCA = (1.8 kN ) CA
−1.2 i + 1.2 j − 0.6 k
( −1.2 )2 + (1.2 )2 + ( − 0.6 )2
FCA = − (1.2 kN ) i + (1.2 kN ) j − ( 0.6 kN ) k FCB
uuur CB = FCB = (1.8 kN ) CB
1.2 i + 1.2 j − 0.6 k
(1.2 )2 + (1.2 )2 + ( − 0.6 )2
FCB = (1.2 kN ) i + (1.2 kN ) j − ( 0.6 kN ) k continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM D = 0:
( 2.4 m ) i × E + ( 2.4 m ) i + (1.2 m ) j × FCB + (1.2 m ) j × FCA + (1.2 m ) i + ( 0.6 m ) j × Pk = 0 i
or
( 2.4 m ) Ex
j
k
i
j
k
0 0 + 2.4 1.2 0 kN ⋅ m E y Ez 1.2 1.2 − 0.6
i j k i + 0 1.2 0 kN ⋅ m + (1.2 m ) −1.2 1.2 − 0.6 0
j k ( 0.6 m ) 0 = 0 0 P
Setting the coefficient of the unit vector i equal to zero: (a)
i : P(0.6 m) − ( 0.6 )(1.2 ) kN ⋅ m − ( 0.6 )(1.2 ) kN ⋅ m = 0 P = 2.4000 kN or P = 2.40 kN
(b)
By symmetry, Dz = Ez
ΣFz = 0:
Dz + Dz + 2.4 kN − 0.6 kN − 0.6 kN = 0 Dz = Ez = − 0.60000 kN
Therefore:
E z = − ( 0.600 kN ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 128. Free-Body Diagram:
Notice that the forces in the belts can be equivalently moved to the center of the pulley because their net moment about this point is zero. (a) ΣFx = 0:
3 lb + ( 3 lb ) cos 30° − T = 0 T = 5.5981 lb or T = 5.60 lb
(b) ΣFy = 0:
ΣFz = 0:
Dy = 0 Dz − ( 3 lb ) sin 30° = 0 D = (1.500 lb ) k
ΣM D = 0:
M D + ( 0.72 in.) j − (1.2 in.) k × ( −T ) i + ( 0.88 in.) j − ( 3 in.) k × ( 3 lb )(1 + cos 30° ) i − ( 3 lb ) sin 30°k = 0
i or M Dx i + M Dy j + M Dz k + 0 −T
(
)
j ( 0.72 in.) 0
k i 0 ( −1.2 in.) + 0 1 + cos 30°
j k ( 0.88 in.) ( − 3 in.) ( 3 lb ) = 0 − sin 30° 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vectors equal to zero:
i:
M Dx − ( 3 lb ) sin 30° ( 0.88 in.) = 0 M Dx = 1.3200 lb ⋅ in.
j:
M Dy + ( 5.5981 lb )(1.2 in.) − ( 3 lb )( 3 in.)(1 + cos 30° ) = 0
M Dy = 10.0765 lb ⋅ in. k:
M Dz + ( 5.5981 lb )( 0.72 in.) − ( 3 lb )( 0.88 in.)(1 + cos 30° ) = 0 M Dz = 0.89568 lb ⋅ in.
or M D = (1.320 lb ⋅ in.) i + (10.08 lb ⋅ in.) j + ( 0.896 lb ⋅ in.) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 129. Free-Body Diagram:
Express the tension in terms of its rectangular components: uuuur DG = − ( 4.8 in.) j − ( 9 in.) k
TDC = TDG
ΣM E = 0:
uuuur DG = TDG DG
− 4.8 j − 9 k
( − 4.8)
2
+ ( − 9)
2
=−
8 15 TDG j − TDG k 17 17
M E + ( 6.4 in.) i + ( − 7.6 in.) j × TDG + ( 2.4 in.) j + ( 9.6 in.) k × ( − 44 lb ) i = 0
15 8 15 TDG i − ( 6.4 in.) TDGk + ( 6.4 in.) TDG j 17 17 17
or ( M Ex i + M Ey j + M Ez k ) + ( 7.6 in.)
+ ( 2.4 in.)( 44 lb ) k − ( 9.6 in.)( 44 lb ) j = 0 Setting the coefficient of the unit vector j equal to zero: (a) j:
15 TDG ( 6.4 in.) − ( 44 lb )( 9.6 in.) = 0 17 TDG = 74.800 lb or TDG = 74.8 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b)
ΣFx = 0:
E x − 44 lb = 0, or Ex = 44.000 lb
ΣFy = 0:
Ey −
8 ( 74.8 lb ) = 0, or E y = 35.200 lb 17
ΣFz = 0:
Ez −
15 ( 74.8 lb ) = 0, or Ez = 66.000 lb 17 or E = ( 44.0 lb ) i + ( 35.2 lb ) j + ( 66.0 lb ) k
Using the moment equation again and setting the coefficients of the unit vectors i and k equal to zero:
i:
15 M Ex + ( 7.6 in.) ( 74.800 lb ) = 0 17 M Ex = −501.60 lb ⋅ in.
k:
8 M Ez + ( 44 lb )( 2.4 in.) − ( 74.8 lb ) ( 6.4 in.) = 0 17 M Ex = 119.680 lb ⋅ in. or M E = − ( 502 lb ⋅ in.) i + (119.7 lb ⋅ in.) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 130. Free-Body Diagram:
Express forces and moments in terms of rectangular components:
FDE = FDE
− 40 i − 70 j + 40k
( − 40 )
2
2
+ ( − 70 ) + ( 40 )
2
=
FDE (− 4i − 7 j + 4k ) 9
FA = ( 24 N )( sin 20° i − cos 20° j) B = By j + Bzk , (a) ΣFx = 0:
M B = M By j + M Bzk
4 − FDE + 24sin 20° = 0 9 FDE = 18.4691 N
ΣM B = 0:
or
FCF
or FDE = 18.47 N
rBC × FCF + rBD × FDE + rBA × FA + M B = 0
i j k i j k i j k 18.4691 −1 + M B y j + M B zk 0 − 48 36 + 0 − 80 60 + ( 80 )( 24 ) 0 0 9 −4 −7 4 0 −1 0 sin 20° − cos 20° 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
i:
36FCF +
18.4691 (100 ) + (80 )( 24 )( − cos 20° ) = 0 9 FCF = 44.417 N
or FCF = 44.4 N
(b)
j:
18.4691 ( − 240 ) + (80 )( 24 )( − sin 20° ) + M By = 0 9 M By = 1149.19 N ⋅ mm
k:
18.4691 ( − 320 ) + M Bz = 0 9 M Bz = 656.68 N ⋅ mm
ΣFy = 0:
By − 44.417 −
7 (18.4691) − 24 cos 20° = 0 9
By = 81.3 N
ΣFz = 0:
Bz +
4 (18.4691) = 0 9
Bz = −8.21 N Therefore:
B = ( 81.3 N ) j − ( 8.21 N ) k M B = (1.149 N ⋅ m ) j + ( 0.657 N ⋅ m ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 131. Free-Body Diagram:
Express tension, weight in terms of rectangular components: uuur EF = ( 300 mm ) i + (1350 mm ) j − ( 700 mm ) k
uuur EF =T T=T EF
=
300 i + 1350 j − 700 k
( 300 )2 + (1350 )2 + ( − 700 )2
6 27 14 Ti + T j− Tk 31 31 31
(
)
W = − ( mg ) j = − ( 7 kg ) 9.81 m/s 2 j = − ( 68.67 N ) j
ΣM B = 0:
M B + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j
+ ( −100 mm ) i + ( 700 mm ) k × T = 0 or
( M By j + M Bzk ) + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + −100 0 700 ( mm ) = 0 31 6 27 −14 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Setting the coefficients of the unit vector i equal to zero: (a)
i:
−
27 T ( 700 mm ) − ( 68.67 N )( 350 mm ) = 0 31 or T = 39.4 N
T = 39.422 N (b)
ΣFx = 0:
Bx +
6 ( 39.422 N ) = 0 31
Bx = − 7.6301 N
ΣFy = 0:
By − 68.67 N +
27 ( 39.422 N ) = 0 31
By = 34.335 N
ΣFz = 0:
Bz −
14 ( 39.422 N ) = 0 31
Bz = 17.8035 N
B = − ( 7.63 N ) i + ( 34.3 N ) j + (17.80 N ) k Using the moment equation again and setting the coefficients of the unit vectors j and k to zero:
ΣM B ( y − axis) = 0:
14 M By − ( 39.422 N ) (100 mm ) + 31
6 31 ( 39.422 N ) ( 700 mm ) = 0
M By = − 3.5607 N ⋅ m
ΣM B ( z − axis) = 0:
27 M Bz + ( 68.67 N )( 375 mm ) − ( 39.422 N ) (100 mm ) = 0 31 M Bz = − 22.318 N ⋅ m,
Therefore:
M B = − ( 3.56 N ⋅ m ) j − ( 22.3 N ⋅ m ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 132. Free-Body Diagram:
Express tensions, load in terms of rectangular components: uuur BD = − ( 60 in.) i + ( 25 in.) k
uuur BE = − ( 60 in.) i + ( 25 in.) j uuur CF = − ( 60 in.) i + ( 25 in.) j BD = BE = CF =
TBD TBE TCF
= 65 in.
uuur BD 12 5 = TBD = − TBD i + TBD k BD 13 13 uuur BE 12 5 = TBE = − TBE i + TBE j BE 13 13 uuur CF 12 5 = TCF = − TCF i + TCF j CF 13 13
ΣM A = 0: or
( −60 )2 + ( 25)2
rB × TBD + rB × TBE + rC × TCF + rG × W = 0
i j k i j k i j k i j k TBD TBE TCF 60 0 0 in. + 60 0 0 in. + 60 0 − 30 in. + 60 0 −15 lb ⋅ in. = 0 13 13 13 −12 0 5 −12 5 0 −12 5 0 0 − 500 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
i:
150 TCF − 7500 = 0 13 TCF = 650.00 lb
j:
−
300 360 TBD + ( 650 lb ) = 0 13 13 TBD = 780.00 lb
k:
or TCF = 650 lb
or TBD = 780 lb
300 300 TBE − 30000 + ( 650.00 lb ) = 0 13 13 TBE = 650.00 lb
ΣFx = 0:
Ax −
or TBE = 650 lb
12 12 12 ( 780 lb ) − ( 650 lb ) − ( 650 lb ) = 0 13 13 13
Ax = 1920.00 lb
ΣFy = 0:
Ay +
5 5 ( 780 lb ) + ( 650 lb ) − 500 lb = 0 13 13
Ay = 0
ΣFz = 0:
Az +
5 ( 780 lb ) = 0 13
Az = −300.00 lb Therefore,
A = (1920 lb ) i − ( 300 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 133. Free-Body Diagram:
Express tensions, load in terms of rectangular components: uuur BD = − ( 60 in.) i + ( 25 in.) k
uuur BE = − ( 60 in.) i + ( 25 in.) j uuur CF = − ( 60 in.) i + ( 25 in.) j BD = BE = CF =
( −60 )2 + ( 25)2
= 65 in.
uuur BD 12 5 = − TBD i + TBD k BD 13 13 uuur BE 12 5 = TBE = − TBE i + TBE j BE 13 13 uuur CF 12 5 = TCF = − TCF i + TCF j CF 13 13
TBD = TBD
TBE TCF
WG = − ( 500 lb ) j WC = − ( 800 lb ) j
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣM A = 0:
rB × TBD + rB × TBE + rC × TCF + rG × WG + rC × WC = 0
i j k i j k i j k i j k TBD TBE TCF 60 0 0 in. + 60 0 0 in. + 60 0 − 30 in. + 60 0 −15 lb ⋅ in. 13 13 13 −12 0 5 −12 5 0 −12 5 0 0 − 500 0
or
i j k + 60 0 −30 lb ⋅ in. = 0 0 −800 0 Equating the coefficients of the unit vectors to zero:
i:
150 TCF − 7500 − 24000 = 0 13 TCF = 2730 lb
j:
−
or TCF = 2.73 kips
300 360 TBD + ( 2730 lb ) = 0 13 13 TBD = 3276 lb
k:
or TBD = 3.28 kips
300 300 TBE − 30000 + ( 2730 lb ) − ( 60 )(800 lb ) = 0 13 13 TBE = 650.00 lb
ΣFx = 0:
Ax −
or TBE = 650 lb
12 12 12 ( 3276 lb ) − ( 650 lb ) − ( 2730 lb ) = 0 13 13 13
Ax = 6144 lb
ΣFy = 0:
Ay +
5 5 ( 2730 lb ) + ( 650 lb ) − 500 lb − 800 lb = 0 13 13
Ay = 0
ΣFz = 0:
Az +
5 ( 3276 lb ) = 0 13
Az = −1260.00 lb Therefore,
A = ( 6.14 kips ) i − (1.260 kips ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 134.
First note
Free-Body Diagram:
TDI = λ DI TDI =
= TEH = λ EH TEH =
= TFG = λ FGTFG =
=
− ( 0.65 m ) i + ( 0.2 m ) j − ( 0.44 m ) k
( 0.65)2 + ( 0.2 )2 + ( 0.44 )2 m
TDI
TDI ( − 0.65i + 0.2j − 0.44k ) 0.81 − ( 0.45 m ) i + ( 0.24 m ) j
( 0.45)2 + ( 0.24 )2 m
TEH
TEH ( − 0.45 i ) + ( 0.24 j) 0.51
− ( 0.45 m ) i + ( 0.2 m ) j + ( 0.36 m ) k
( 0.45
)
2
2
2
+ ( 0.2 ) + ( 0.36 ) m
TFG
TFG ( −0.45i + 0.2j + 0.36k ) 0.61
From free-body diagram of frame ΣM A = 0: rD/ A × TDI + rC/ A × ( −280 N ) j + rH / A × TEH + rF / A × TFG + rF / A × ( −360 N ) j = 0 or
i j k i j k i j k i j k TDI TEH TFG 0.65 0.2 0 0.32 0 + 0.65 0 0 ( 280 N ) + 0 + 0.45 0 0.06 0.81 0.51 0.61 −0.65 0.2 −0.44 −0.45 0.24 0 −0.45 0.2 0.36 0 −1 0 i j k + 0.45 0 0.06 ( 360 N ) = 0 0 −1 0
or
( − 0.088 i + 0.286 j + 0.26 k ) + ( − 0.012 i − 0.189 j + 0.09 k )
TDI T + ( − 0.65 k ) 280 N + ( 0.144 k ) EH 0.81 0.51
TFG + ( 0.06 i − 0.45 k )( 360 N ) = 0 0.61 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
From i-coefficient
T T −0.088 DI − 0.012 FG + 0.06 ( 360 N ) = 0 0.81 0.61
∴ 0.108642TDI + 0.0196721TFG = 21.6 From j-coefficient
(1)
T T 0.286 DI − 0.189 FG = 0 0.81 0.61
∴ TFG = 1.13959TDI
(2)
From k-coefficient
T T T 0.26 DI − 0.65 ( 280 N ) + 0.144 EH + 0.09 FG 0.81 0.51 0.61 − 0.45 ( 360 N ) = 0 ∴ 0.32099TDI + 0.28235TEH + 0.147541TFG = 344 N
(3)
Substitution of Equation (2) into Equation (1)
0.108642TDI + 0.0196721(1.13959TDI ) = 21.6 ∴ TDI = 164.810 N TDI = 164.8 N
or Then from Equation (2)
TFG = 1.13959 (164.810 N ) = 187.816 N TFG = 187.8 N
or And from Equation (3)
0.32099 (164.810 N ) + 0.28235TEH + 0.147541(187.816 N ) = 344 N ∴ TEH = 932.84 N TEH = 933 N
or The vector forms of the cable forces are:
TDI =
164.810 N ( −0.65i + 0.2j − 0.44k ) 0.81
= − (132.25 N ) i + ( 40.694 N ) j − ( 89.526 N ) k TEH =
932.84 N ( − 0.45i + 0.24 j) = − (823.09 N ) i + ( 438.98 N ) j 0.51
187.816 N ( − 0.45i + 0.2 j + 0.36k ) 0.61 = − (138.553 N ) i + ( 61.579 N ) j + (110.842 N ) k
TFG =
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then, from free-body diagram of frame
ΣFx = 0: Ax − 132.25 − 823.09 − 138.553 = 0 ∴ Ax = 1093.89 N ΣFy = 0: Ay + 40.694 + 438.98 + 61.579 − 360 − 280 = 0 ∴ Ay = 98.747 N ΣFz = 0: Az − 89.526 + 110.842 = 0 ∴ Az = −21.316 N or
A = (1094 N ) i + ( 98.7 N ) j − ( 21.3 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 135. Free-Body Diagram: First note
TDI = λ DI TDI =
= TEH = λ EH TEH =
=
TFG = λ FGTFG =
− ( 0.65 m ) i + ( 0.2 m ) j − ( 0.44 m ) k
( 0.65)2 + ( 0.2 )2 + ( 0.44 )2 m TDI ( −65i + 20 j − 44k ) 81 − ( 0.45 m ) i + ( 0.24 m ) j
( 0.45)2 + ( 0.24 )2 m
TDI
TEH
TEH ( −15i + 8j) 17 − ( 0.45 m ) i + ( 0.2 m ) j + ( 0.36 m ) k
( 0.45)2 + ( 0.2 )2 + ( 0.36 )2 m
TFG
TFG ( −45i + 20j + 36k ) 61 From free-body diagram of frame
=
ΣM A = 0: rD/ A × TDI + rC/ A × − ( 280 N ) j + ( 50 N ) k + rH / A × TEH + rF / A × TFG + rF / A × ( −360 N ) j or
i j k i j k i j k TDI 0.65 0.2 0 0 + 0 0.32 0 + 0.65 0 81 −65 20 −44 −15 8 0 0 −280 50 i j k T + 0.45 0 0.06 FG 61 −45 20 36
and
TEH 17
i j k + 0.45 0 0.06 ( 360 N ) = 0 0 −1 0
TDI TEH + ( −32.5j − 182k ) + ( 4.8k ) 81 17
( −8.8i + 28.6 j + 26k )
T + ( −1.2i − 18.9 j + 9.0k ) FG + ( 0.06i − 0.45k ) ( 360 ) = 0 61 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
T T −8.8 DI − 1.2 FG 81 61
From i-coefficient
+ 0.06 ( 360 ) = 0
∴ 0.108642TDI + 0.0196721TFG = 21.6
(1)
T T From j-coefficient 28.6 DI − 32.5 − 18.9 FG = 0 81 61
∴ 0.35309TDI − 0.30984TFG = 32.5
(2)
From k-coefficient T T T 26 DI − 182 + 4.8 EH + 9.0 FG − 0.45 ( 360 ) = 0 81 17 61 ∴ 0.32099TDI + 0.28235TEH + 0.147541TFG = 344
−3.25 × Equation (1) Add Equation (2)
(3)
−0.35309TDI − 0.063935TFG = −70.201 0.35309TDI − 0.30984TFG =
−0.37378TFG
32.5
= −37.701
∴ TFG = 100.864 N TFG = 100.9 N
or Then from Equation (1)
0.108642TDI + 0.0196721(100.864 ) = 21.6 ∴ TDI = 180.554 N
TDI = 180.6 N
or and from Equation (3)
0.32099 (180.554 ) + 0.28235TEH + 0.147541(100.864 ) = 344 ∴ TEH = 960.38 N TEH = 960 N
or The vector forms of the cable forces are:
TDI =
180.554 N ( −65i + 20j − 44k ) 81
= − (144.889 N ) i + ( 44.581 N ) j − ( 98.079 N ) k TEH =
960.38 N ( −15i + 8j) = − (847.39 N ) i + ( 451.94 N ) j 17
100.864 N ( −45i + 20j + 36k ) 61 = − ( 74.409 N ) i + ( 33.070 N ) j + ( 59.527 N ) k
TFG =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then from free-body diagram of frame
ΣFx = 0: Ax − 144.889 − 847.39 − 74.409 = 0 ∴ Ax = 1066.69 N ΣFy = 0: Ay + 44.581 + 451.94 + 33.070 − 360 − 280 = 0 ∴ Ay = 110.409 N ΣFz = 0: Az − 98.079 + 59.527 + 50 = 0 ∴ Az = −11.448 N
Therefore,
A = (1067 N ) i + (110.4 N ) j − (11.45 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 136. Free-Body Diagram:
ΣFx = 0:
Bx + C x = 0, or Bx = − C x
(1)
ΣFy = 0:
Ay + By + C y = 0
(2)
ΣFy = 0:
Az − P = 0, or Az = P = 40.0 lb
(3)
ΣM O = 0:
or
rOA × A + rOB × B + rOC × C + M Ai − M C k = 0
(
)
(
)
(
)
ai × Ay j + Azk + bj × Bxi + By j + ck × C x i + C y j + M Ai − M C k = 0 or
a Ayk − a Az j − bBx j + cCx j − cC y i + M Ai − M C k = 0
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
i : − cC y + M A = 0 Cy = j:
(4)
− a Az + cC x = 0, or using (3) Cx =
k:
MA 36 lb ⋅ ft = = 36.0 lb c 1 ft
a 9 in. P= ( 40 lb ) = 30.0 lb c 12 in.
(5)
a Ay − b Bx − M C = 0, or, using (1) and (5) b M 6 in. 0 Ay = − P + C = − = − 20.0 lb ( 40 lb ) + c a 12 in. 9 in.
(6)
Finally substituting into (1) and (2) gives: Βx = −30.0 lb
By = − Ay − C y = 20.0 lb − 36.0 lb = −16.00 lb Therefore:
A = − ( 20.0 lb ) j + ( 40.0 lb ) k
B = − ( 30.0 lb ) i − (16.00 lb ) j C = ( 30.0 lb ) i + ( 36.0 lb ) j
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 137. Free-Body Diagram:
ΣFx = 0:
Bx + C x = 0, or Bx = − C x
(1)
ΣFy = 0:
Ay + By + C y = 0
(2)
ΣFz = 0:
Az − P = 0, or Az = P = 60.0 N
(3)
ΣM O = 0:
rOA × A + rOB × B + rOC × C + M Ai − M C k = 0
(
)
(
)
(
)
or
ai × Ay j + Azk + bj × Bxi + By j + ck × C x i + C y j + M Ai − M C k = 0
or
a Ayk − a Az j − bBx j + cCx j − cC y i + M Ai − M C k = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equating the coefficients of the unit vectors to zero:
i:
− cC y + M A = 0 Cy =
j:
(4)
− a Az + cC x = 0, or using (3) Cx =
k:
MA 6.3 N ⋅ m = = 35.0 N c 0.180 m
a 0.240 m P= ( 60 N ) = 80.0 N c 0.180 m
(5)
a Ay − b Bx − M C = 0, or, using (1) and (5) b M 0.200 m 13 N ⋅ m Ay = − P + C = − = − 12.50 N ( 60 N ) + c a 0.180 m 0.240 m.
(6)
Finally substituting into (1) and (2) gives: Βx = −80.0 N
By = − Ay − C y = 12.50 N − 35.0 N = −22.5 N Therefore:
A = − (12.50 N ) j + ( 60.0 N ) k
B = − ( 80.0 N ) i − ( 22.5 N ) j
C = ( 80.0 N ) i + ( 35.0 N ) j
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 138. Free-Body Diagram:
ΣFx = 0:
Bx = 0
ΣM D( x - axis) = 0:
(80 N )( 2.6 m ) − Bz ( 2 m ) = 0 or B = (104.0 N ) k
Bz = 104.000 N
ΣM D ( z - axis) = 0:
C y ( 4 m ) − 144 N ⋅ m = 0
C y = 36.000 N
ΣM D( y - axis) = 0:
− C z ( 4 m ) − (104 N )( 6 m ) + ( 80 N )( 6 m ) = 0 C z = − 36.000 N and C = ( 36.0 N ) j − ( 36.0 N ) k
ΣFy = 0:
Dy + 36 = 0, or Dy = −36.000 N
ΣFz = 0:
Dz − 36 + 104 − 80 = 0, or Dz = 12.000 N
Therefore:
D = − ( 36.0 N ) j + (12.00 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 139. Free-Body Diagram:
ΣFx = 0:
Bx = 0
ΣM D ( x - axis) = 0:
(80 N )( 2.6 m ) − Bz ( 2 m ) = 0 or B = (104.0 N ) k
Bz = 104.000 N
ΣM D ( z - axis) = 0:
Cy (4 m ) = 0
Cy = 0
ΣM D ( y - axis) = 0:
− C z ( 4 m ) − (104 N )( 6 m ) + ( 80 N )( 6 m ) = 0 C z = − 36.000 N and C = − ( 36.0 N ) k
ΣFy = 0: ΣFz = 0:
Dy = 0
Dz − 36 + 104 − 80 = 0, or Dz = 12.000 N
Therefore:
D = (12.00 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 140. Free-Body Diagram:
Express the forces in terms of rectangular components:
(
)
W = − ( mg ) j = − ( 3 kg ) 9.81 m/s 2 j = − ( 29.43 N ) j
N B = N B ( 0.8j + 0.6k )
( xB )2 + ( 325 + 75)2 + (100 )2
LAB = 525 mm =
xB = 325 mm
Then,
TBC = TBC
uuur BC = TBC BC
325i + 400 j − 100k
( 325)
2
2
+ ( 400 ) + ( −100 )
2
=
13 16 4 TBC i + TBC j − TBC k 21 21 21 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equilibrium:
ΣM A = 0:
rG/ A × W + rB/ A × N B + rC/ A × TBC = 0
i j k i j k i j k T or 162.5 − 200 50 + 325 − 400 100 N B + 650 0 0 BC = 0 21 − 29.43 0 0 0 0.8 0.6 13 16 − 4 Equating the coefficients of the unit vectors to zero:
i:
1471.5 − 320 N B = 0 N B = 4.5984 N
or
N B = ( 3.6787 N ) j + ( 2.7590 N ) k
j:
− 195 N B +
2600 TBC = 0 21 TBC = 7.2425 N 13 ( 7.2425 N ) = 0 21 Ax = −4.4835 N
ΣFx = 0:
Ax +
ΣFy = 0:
Ay − 29.43 N + 3.6787 N +
16 ( 7.2425 N ) = 0 21
Ay = 20.233 N
ΣFy = 0:
Az + 2.7590 N −
4 ( 7.2425 N ) = 0 21
Az = −1.37948 N Therefore: (a)
TBC = 7.24 N
(b)
A = − ( 4.48 N ) i + ( 20.2 N ) j − (1.379 Ν ) k N B = ( 3.68 N ) j + ( 2.76 N ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 141. Free-Body Diagram:
(a) The force acting at E on the free-body diagram of rod AB is perpendicular to AB and CD. Letting λ E = direction cosines for force E, λE =
rB/ A × k rB/ A × k
− ( 32 in.) i + ( 24 in.) j − ( 40 in.) k × k = 2 2 ( 32 ) + ( 24 ) in.
= 0.6i + 0.8 j Also,
W = − (10 lb ) j B = Bk
E = E ( 0.6i + 0.8 j) From free-body diagram of rod AB
ΣM A = 0: rG/ A × W + rE/ A × E + rB/ A × B = 0 i j k i j k i j k ∴ −16 12 −20 (10 lb ) + −24 18 −30 E + −32 24 −40 B = 0 0 −1 0 0.6 0.8 0 0 0 1
( −20i + 16k )(10 lb ) + ( 24i − 18 j − 30k ) E + ( 24i + 32 j) B = 0 From k-coefficient
160 − 30 E = 0 ∴ E = 5.3333 lb
and
E = 5.3333 lb ( 0.6i + 0.8 j) E = ( 3.20 lb ) i + ( 4.27 lb ) j
or (b) From j-coefficient
−18 ( 5.3333 lb ) + 32 B = 0 ∴ B = 3.00 lb
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
B = ( 3.00 lb ) k
COSMOS: Complete Online Solutions Manual Organization System
From free-body diagram of rod AB
ΣF = 0: A + W + E + B = 0 Ax i + Ay j + Az k − (10 lb ) j + ( 3.20 lb ) i + ( 4.27 lb ) j + ( 3.00 lb ) k = 0 From i-coefficient
Ax + 3.20 lb = 0
∴ Ax = −3.20 lb j-coefficient
Ay − 10 lb + 4.27 lb = 0
∴ Ay = 5.73 lb k-coefficient
Az + 3.00 lb = 0
∴ Az = −3.00 lb Therefore
A = − ( 3.20 lb ) i + ( 5.73 lb ) j − ( 3.00 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 142. Free-Body Diagram:
There is only one unknown of interest and, therefore only one equation is needed:
ΣM AB = 0 Geometry:
1.05 m = 16.2602° 3.5 m
θ = tan −1
xG = (1.25 m ) cos16.2602° = 1.2 m yG = 1.95 m − (1.25 m ) sin16.2602° = 1.6 m
λ BA
uuur BA = = BA
−3.6i + 1.05j
( −3.6 )2 + (1.05 )2
=−
24 7 i+ j 25 25 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
rK/A = (1.8 m ) i − ( 0.525 m ) j + ( 0.225 m ) k rG/A = (1.2 m ) i − (1.95 m − 1.6 m ) j + ( 0.45 m ) k
= (1.2 m ) i − ( 0.35 m ) j + ( 0.45 m ) k
(
)
W = − ( mg ) j = − ( 25 kg ) 9.81 m/s 2 j = − ( 245.25 kg ) j
PHG = PHG
uuuur HG = PHG HG
−0.05i + 1.6 j − 0.4 k
( −0.05)
2
2
+ (1.6 ) + ( −0.4 )
2
32 8 1 = PHG − i + j− k 33 33 33
Now,
ΣM BA = 0:
(
)
(
)
λ BA ⋅ rK / A × W + λ BA ⋅ rG/ A × PHG = 0
− 24 7 0 − 24 7 0 1 PHG + 1.2 − 0.35 0.45 =0 1.8 − 0.525 0.225 25 25 )( 33) ( −1 −8 0 − 245.25 0 32
−
1324.35 342.45 + P =0 25 25 ( )( 35) HG
Therefore: PHG = 127.620 N or PHG = 127.6 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 143. Free-Body Diagram:
There is only one unknown of interest and, therefore only one equation is needed: ΣM AB = 0
Geometry:
1.05 m = 16.2602° 3.5 m
θ = tan −1
xI = ( 2.50 m ) cos16.2602° = 2.4 m yI = 1.95 m − ( 2.50 m ) sin16.2602° = 1.25 m
λ BA =
uuur BA = BA
−3.6i + 1.05j
( −3.6 )
2
+ (1.05 )
2
=−
24 7 i+ j 25 25 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
rK/A = (1.8 m ) i − ( 0.525 m ) j + ( 0.225 m ) k rI/A = ( 2.4 m ) i − ( 0.7 m ) j + ( 0.45 m ) k
(
)
W = − ( mg ) j = − ( 25 kg ) 9.81 m/s 2 j = − ( 245.25 kg ) j
PJI
uur JI = PJI = PJI JI
−0.025i + 1.25j − 0.25k
( −0.025)2 + (1.25)2 + ( −0.25)2
50 10 1 = PJI − i + j + k 51 51 51
Now,
ΣM BA = 0:
(
)
(
)
λ BA ⋅ rK / A × W + λ BA ⋅ rI / A × PJI = 0
− 24 7 0 − 24 7 0 1 PJI + 12.4 − 0.7 0.45 =0 1.8 − 0.525 0.225 25 25 51) ( )( −1 50 −10 0 − 245.25 0 −
1324.35 536.85 + P =0 25 ( 25)( 51) JI
Therefore: PJI = 125.811 N or PJI = 125.8 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 144. Free-Body Diagram:
Express forces in terms of their rectangular components: uuur BG − 40 i + 74 j − 32 k 37 16 20 TBG = TBG j− k = TBG = TBG − i + 2 2 2 BG 45 45 45 − + + − 40 74 32 ( ) ( ) ( )
TBH = TBH
uuuur BH = TBH BH
30 i + 60 j − 60 k
( 30 )2 + ( 60 )2 + ( − 60 )2
2 2 1 = TBH i + j − k 3 3 3
P = − ( 75 lb ) j
λ AD
uuur AD = = AD
80 i − 60 j 2
(80 ) + ( − 60 )
2
= 0.8 i − 0.6 j
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
rB/A = ( 40 in.) i rC/A = ( 80 in.) i Now,
ΣM AD = 0:
(
)
(
)
(
)
λ AD ⋅ rB/ A × TBG + λ AD ⋅ rB/ A × TBH + λ AD ⋅ rC/ A × P = 0
0.8 0 − 0.6 0.8 0 − 0.6 0.8 0 − 0.6 TBG TBH + 40 0 0 + 80 0 40 0 0 0 =0 45 3 − 20 37 −16 1 2 −2 0 − 75 0
−
888 48 TBG − TBH + 3600 = 0 45 3
Noting that TBG = TBH = T and solving:
T = 100.746 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or T = 100.7 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 145. Free-Body Diagram:
Express forces in terms of their rectangular components: uuur BG − 40 i + 74 j − 32 k 37 16 20 = TBG = TBG − i + TBG = TBG j− k 2 2 2 BG 45 45 45 − + + − 40 74 32 ( ) ( ) ( )
P = − ( 75 lb ) j
λ AD =
uuur AD = AD
80 i − 60 j
(80 )
2
+ ( − 60 )
2
= 0.8 i − 0.6 j
rB/ A = ( 40 in.) i rC/ A = ( 80 in.) i Now,
ΣM AD = 0:
(
)
(
)
λ AD ⋅ rB/ A × TBG + λ AD ⋅ rC/ A × P = 0
0.8 0 − 0.6 0.8 0 − 0.6 TBG + 80 0 40 0 0 0 =0 45 − 20 37 −16 0 − 75 0
−
888 TBG + 3600 = 0 45
Solving for TBG :
TBG = 182.432 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or TBG = 182.4 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 146. Free-Body Diagram:
Express forces in terms of their rectangular components:
W1 = W2 = − ( 30 lb ) j uuuur ( x − 6) i + y j − 6 k BH T=T =T BH ( x − 6 )2 + y 2 + ( − 6 )2
λ AF =
uuur AF = AF
6i − 3 j − 6k
( 6)
2
2
+ ( − 3) + ( − 6 )
2
=
2 1 2 i− j− k 3 3 3
rG/ A = ( 3 ft ) i rB/ A = ( 6 ft ) i rI / A = ( 6 ft ) i − ( 3 ft ) k continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now,
(
ΣM AF = 0:
)
(
)
(
)
λ AF ⋅ rG/ A × W1 + λ AF ⋅ rB/ A × T + λ AF ⋅ rI / A × W2 = 0
−1 − 2 2 −1 − 2 1 0 0 + 6 0 0 3 0 − 30 0 ( x − 6) y − 6 2 3
60 + ( −36 − 12 y )
T 3
( x − 6 )2 +
T 3
( x − 6)
2
2
+ y + 36
y 2 + 36
−1 − 2 1 0 −3 = 0 3 0 − 30 0
2 + 6
+ 60 = 0
Solving for T : T =
30 30 + y
( x − 6 )2 +
y 2 + 36
It is thus clear that for a given y, T will have its minimum value when x = 6 ft. Denoting this minimum by Tm:
Tm =
30 3+ y
y 2 + 36
Now to find the minimum of Tm, differentiate Tm with respect to y and equate the derivative to zero.
dTm dy
1 ( 3 + y ) 36 + y 2 2 =
(
)
−
1 2
(
( 2 y ) − 36 + y 2
(3 + y )
2
)
1 2
(1) 30
=0
Setting the numerator equal to zero and simplifying:
( 3 + y ) y − y 2 − 36 = 0 y = 12 ft x = 6 ft, y = 12 ft
(a) Minimum occurs at: (b) Using the expression for T:
Tmin =
30 3 + 12
( 6 − 6 )2 + (12 )2 + 36
= 26.833 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Tmin = 26.8 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 147. Free-Body Diagram:
Express forces in terms of their rectangular components:
W1 = W2 = − ( 30 lb ) j uuuur BH − 6i + y j − 6k =T T=T BH ( −6 )2 + y 2 + ( − 6 )2 uuur AF 6i − 3 j − 6k 2 1 2 = = i− j− k λ AF = AF ( 6 ) 2 + ( − 3)2 + ( − 6 ) 2 3 3 3 rG/ A = ( 3 ft ) i rB/ A = ( 6 ft ) i rI / A = ( 6 ft ) i − ( 3 ft ) k continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now,
(
ΣM AF = 0:
)
(
)
(
)
λ AF ⋅ rG/ A × W1 + λ AF ⋅ rB/ A × T + λ AF ⋅ rI / A × W2 = 0
2 −1 − 2 2 −1 − 2 1 3 0 0 + 6 0 0 3 −6 y −6 0 − 30 0
60 + ( − 36 − 12 y )
( −6 )2
T 3
( − 6 )2 +
2 −1 − 2 1 + 6 0 −3 = 0 3 + y 2 + 36 0 − 30 0 T 3
y 2 + 36
+ 60 = 0
Solving for T :
T =
30 30 + y
T =
30 3+ y
( −6 )2 +
y 2 + 36
y 2 + 72
Now to find the minimum of T, differentiate T with respect to y and equate the derivative to zero.
dTm dy
1 ( 3 + y ) 72 + y 2 2 =
(
)
−
1 2
( 2 y ) − ( 72 +
(3 + y )
2
1 2 2 y
)
(1) 30
=0
Setting the numerator equal to zero and simplifying:
( 3 + y ) y − y 2 − 72 = 0, or
y = 24 ft x = 0, y = 24 ft
(a) Minimum occurs at: (b) Using the expression for T:
Tmin =
30 3 + 24
( 24 )2 + 72
= 28.284 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
Tmin = 28.3 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 148. Free-Body Diagram:
Express forces in terms of their rectangular components:
(
)
(
)
(
)
WAB = − (1.25 kg/m ) 9.81 m/s 2 ( 0.9 m ) j = − (11.0363 Ν ) j WBC = − (1.25 kg/m ) 9.81 m/s 2 ( 0.3 m ) j = − ( 3.6788 Ν ) j
WCD = − (1.25 kg/m ) 9.81 m/s 2 (1.35 m ) j = − (16.5544 Ν ) j
uuur FE T=T =T FE
−0.6i + 0.9 j − 1.35k
( − 0.6 )
2
2
+ ( 0.9 ) + ( −1.35 )
2
=
T ( −2i + 3j − 4.5k ) 33.25
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
λ AD
uuur AD = = AD
0.9i − 0.3j − 1.35k
( 0.9 )
2
2
+ ( −0.3) + ( −1.35 )
2
=
6 2 9 i− j− k 11 11 11
rG/ A = ( 0.45 m ) i
rF / A = ( 0.6 m ) i rB/ A = ( 0.9 m ) i
rH/A = ( 0.9 m ) i − ( 0.3 m ) j − ( 0.675 m ) k Now,
ΣM AD = 0:
(
)
(
)
(
)
(
)
λ AD ⋅ rG/ A × WAB + λ AD ⋅ rF / A × T + λ AD ⋅ rB/ A × WBC + λ AD ⋅ rH / A × WCD = 0
6 −2 −9 6 − 2 −9 6 −2 −9 T 1 1 0.45 0 0 + 0.6 0 0 0 0 + 0.9 11 11 33.25 11 0 −11.0363 0 0 − 3.6788 0 − 2 3 − 4.5 6 −2 −9 1 + 0.9 − 0.3 − 0.675 = 0 11 0 −16.5544 0
4.0634 − 0.34054T + 2.7089 + 6.0950 = 0
Solving for T:
TBG = 37.785 N
or TBG = 37.8 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 149. Free-Body Diagram:
Express forces in terms of their rectangular components:
(
)
(
)
(
)
WAB = − (1.25 kg/m ) 9.81 m/s 2 ( 0.9 m ) j = − (11.0363 Ν ) j WBC = − (1.25 kg/m ) 9.81 m/s 2 ( 0.3 m ) j = − ( 3.6788 Ν ) j
WCD = − (1.25 kg/m ) 9.81 m/s 2 (1.35 m ) j = − (16.5544 Ν ) j
uuur CE T=T =T CE
−0.9 i + 1.2 j − 1.35 k
( − 0.9 )
2
2
+ (1.2 ) + ( −1.35 )
2
=
T ( −3 i + 4 j − 4.5 k ) 45.25
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
λ AD
uuur AD = = AD
0.9 i − 0.3 j − 1.35 k
( 0.9 )
2
2
+ ( − 0.3) + ( −1.35 )
2
=
6 2 9 i− j− k 11 11 11
rG/ A = ( 0.45 m ) i
rC/ A = ( 0.9 m ) i − ( 0.3 m ) j rB/ A = ( 0.9 m ) i
rH/A = ( 0.9 m ) i − ( 0.3 m ) j − ( 0.675 m ) k Now,
ΣM AD = 0:
(
)
(
)
(
)
(
)
λ AD ⋅ rG/ A × WAB + λ AD ⋅ rC/ A × T + λ AD ⋅ rB/ A × WBC + λ AD ⋅ rH / A × WCD = 0
6 −2 −9 6 − 2 −9 6 −2 −9 T 1 1 0.45 0 0 + 0.9 − 0.3 0 0 0 + 0.9 11 11 45.25 11 0 −11.0363 0 0 − 3.6788 0 − 3 4 − 4.5 6 −2 −9 1 + 0.9 − 0.3 − 0.675 = 0 11 0 −16.5544 0
4.0634 − 0.32840T + 2.7089 + 6.0950 = 0
Solving for T:
T = 39.182 N
or T = 39.2 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 150. Free-Body Diagram:
Express forces in terms of their rectangular components: uuur FG 18 i − 6 j − 9 k T TFG = TFG = TFG = FG ( 6 i − 2 j − 3 k ) 2 2 2 FG 7 (18) + ( − 6 ) + ( − 9 )
λ AB
uuur AB = = AB
ΣM AB = 0:
13.5 i + 9 j − 27 k
(13.5)2 + ( 9 )2 + ( − 27 )2
=
3 2 6 i+ j− k 7 7 7
λ AB ⋅ ( rAE × FE ) + λ AB ⋅ ( rBG × TFG ) = 0 3 2 −6 3 2 −6 T 1 1 −1.5 3 − 9 18 + 13.5 −13 0 FG = 0 7 7 7 0 1 0 6 − 2 −3
18 ( 9 + 27 ) +
TFG (117 + 162 − 468 + 81) = 0 7
Solving for TFG: TFG = 42.000 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
TFG = 42.0 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 151. Free-Body Diagram:
(a) The location of D follows from the geometry of the problem. Since the steel plate is rectangular rD/ A is perpendicular to rB/ A and therefore:
rD/ A ⋅ rB/ A = 0 Denoting the coordinates of D by (0, y, z): rD/ A = − ( 0.1 m ) i + yj + ( z − 0.7 m ) k
rB/ A = ( 0.3 m ) i − ( 0.4 m ) k
and
Thus, rD/ A ⋅ rB/ A = − 0.03 − 0.4 z + 0.28 = 0 or
z = 0.625 m.
rD/ A =
( − 0.1 m )2 +
2
y 2 + ( 0.625 m − 0.7 m ) = 0.75 m continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Solving for y:
y = 0.73951 m x = 0, y = 0.740 m, z = 0.625 m
Location of D is therefore: (b) Consider moment equilibrium about axis AB:
λ AB
uuur AB = = AB
0.3i − 0.4k
( 0.3)2 + ( − 0.4 )2
= 0.6i − 0.8k
rD/ A = − ( 0.1 m ) i + ( 0.73951 m ) j − ( 0.075 m ) k
rD/B = − ( 0.4 m ) i + ( 0.73951 m ) j + ( 0.625 m − 0.3 m ) k N D = N Di
(
)
W = − ( mg ) j = − ( 40 kg ) 9.81 m/s 2 j = − ( 392.4 N ) j Then,
ΣM AB = 0:
(
)
(
)
λ AB ⋅ rD/ A × N D + λ AB ⋅ rG/B × W = 0
0.6 0 − 0.8 0.6 0 −0.8 − 0.1 0.73951 − 0.075 + − 0.2 0.36976 0.1625 = 0 ND − 392.4 0 0 0 0 0.59161 N D − 24.525 = 0 N D = 41.455 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or N D = ( 41.455 N ) i
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 152. Free-Body Diagram: From free-body diagram of beam
ΣFx = 0: Bx = 0
so that
B = By
ΣFy = 0: A + B − (100 + 200 + 300 ) N = 0 A + B = 600 N
or
Therefore, if either A or B has a magnitude of the maximum of 360 N,
the other support reaction will be < 360 N ( 600 N − 360 N = 240 N ) .
(100 N )( d ) − ( 200 N )( 0.9 − d ) − ( 300 N )(1.8 − d )
ΣM A = 0:
+ B (1.8 − d ) = 0 d =
or
720 − 1.8B 600 − B
Since B ≤ 360 N,
d =
720 − 1.8 ( 360 ) 600 − 360
ΣM B = 0:
= 0.300 m
or
d ≥ 300 mm
(100 N )(1.8) − A (1.8 − d ) + ( 200 N )( 0.9 ) = 0 d =
or
1.8 A − 360 A
Since A ≤ 360 N,
d =
1.8 ( 360 ) − 360 360
= 0.800 m
or
d ≤ 800 mm
or 300 mm ≤ d ≤ 800 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 153. Free-Body Diagram: Cmax = 1000 N
Have
C 2 = C x2 + C y2
Now
∴ Cy =
(1000 )2 − Cx2
(1)
From free-body diagram of pedal ΣFx = 0: C x − Tmax = 0 ∴ C x = Tmax
(2)
ΣM D = 0: C y ( 0.4 m ) − Tmax ( 0.18 m ) sin 60° = 0 ∴ C y = 0.38971Tmax
(3)
Equating the expressions for C y in Equations (1) and (3), with C x = Tmax from Equation (2) 2 (1000 )2 − Tmax
= 0.389711Tmax
2 ∴ Tmax = 868,150
and
Tmax = 931.75 N or Tmax = 932 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 154. Free-Body Diagram: From free-body diagram of inverted T-member
ΣM C = 0: T ( 25 in.) − T (10 in.) − ( 30 lb )(10 in.) = 0 ∴ T = 20 lb
or T = 20.0 lb ΣFx = 0: C x − 20 lb = 0
∴ C x = 20 lb C x = 20.0 lb
or
ΣFy = 0: C y + 20 lb − 30 lb = 0 ∴ C y = 10 lb C y = 10.00 lb
or Then and
C =
C x2 + C y2 =
( 20 )2 + (10 )2
= 22.361 lb
Cy −1 10 = tan = 26.565° 20 Cx
θ = tan −1
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
C = 22.4 lb
26.6°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 155. Free-Body Diagram:
From free-body diagram of frame with T = 300 lb
5 ΣFx = 0: C x − 100 lb + 300 lb = 0 13 ∴ C x = −15.3846 lb
or
C x = 15.3846 lb
12 ΣFy = 0: C y − 180 lb − 300 lb = 0 13
∴ C y = 456.92 lb Then and
C =
or
C y = 456.92 lb
(15.3846 )2 + ( 456.92 )2
C x2 + C y2 =
= 457.18 lb
Cy −1 456.92 = tan = −88.072° −15.3846 Cx
θ = tan −1
or C = 457 lb
88.1°
12 ΣM C = 0: M C + (180 lb )( 20 in.) + (100 lb )(16 in.) − 300 lb (16 in.) = 0 13
∴ M C = −769.23 lb ⋅ in. or M C = 769 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 156. Free-Body Diagram: (a) From free-body diagram of rod AB
ΣM C = 0: P ( l cosθ ) + P ( l sin θ ) − M = 0 or sin θ + cosθ = (b) For
M Pl
M = 150 lb ⋅ in., P = 20 lb, and l = 6 in. sin θ + cosθ =
150 lb ⋅ in. 5 = = 1.25 20 lb 6 in. ( )( ) 4 sin 2 θ + cos 2 θ = 1
Using identity
(
sin θ + 1 − sin 2 θ
(1 − sin θ ) 2
1 2
)
1 2
= 1.25
= 1.25 − sin θ
1 − sin 2 θ = 1.5625 − 2.5sin θ + sin 2 θ 2sin 2 θ − 2.5sin θ + 0.5625 = 0
Using quadratic formula
sin θ = = or
− ( −2.5) ±
( 6.25) − 4 ( 2 )( 0.5625) 2 ( 2)
2.5 ± 1.75 4
sin θ = 0.95572 ∴ θ = 72.886°
and
sin θ = 0.29428
θ = 17.1144°
and
or θ = 17.11° and θ = 72.9°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 157.
From geometry of forces
yBE 1.5 ft
β = tan −1 where
yBE = 2.0 − yDE = 2.0 − 1.5 tan 35° = 0.94969 ft
0.94969 ∴ β = tan −1 = 32.339° 1.5 and
α = 90° − β = 90° − 32.339° = 57.661° θ = β + 35° = 32.339° + 35° = 67.339°
Applying the law of sines to the force triangle,
200 lb T B = = sin θ sin α sin 55° or
(a)
( 200 lb ) sin 67.339°
T =
=
T B = sin 57.661° sin 55°
( 200 lb )( sin 57.661° ) sin 67.339°
= 183.116 lb or T = 183.1 lb
(b)
B=
( 200 lb )( sin 55° ) sin 67.339°
= 177.536 lb or B = 177.5 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
32.3°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 158. Free-Body Diagram: yED = xED = a,
Since Slope of ED is
45°
∴ slope of HC is
45°
DE =
Also and
2a
a 1 DH = HE = DE = 2 2
For triangles DHC and EHC
sin β =
a = 25 mm and sin β =
R = 125 mm
25 mm = 0.141421 2 (125 mm )
∴ β = 8.1301° and
a 2R
c = R sin ( 45° − β )
Now For
a/ 2 = R
or β = 8.13°
c = (125 in.) sin ( 45° − 8.1301° ) = 75.00 in. or c = 75.0 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 159. Free-Body Diagram:
First note
(
)
W = mg = (17 kg ) 9.81 m/s 2 = 166.77 N
h=
(1.2 )2 − (1.125)2
= 0.41758 m
From free-body diagram of plywood sheet (1.125 m ) ΣM z = 0: C ( h ) − W =0 2
C ( 0.41758 m ) − (166.77 N ) ( 0.5625 m ) = 0 ∴ C = 224.65 N
or
C = − ( 225 N ) i
ΣM B( y -axis ) = 0: − ( 224.65 N ) ( 0.6 m ) + Ax (1.2 m ) = 0
or
∴ Ax = 112.324 N
A x = (112.3 N ) i
ΣM B( x-axis ) = 0: (166.77 N ) ( 0.3 m ) − Ay (1.2 m ) = 0 ∴ Ay = 41.693 N
or
A y = ( 41.7 N ) j
ΣM A( y -axis ) = 0: ( 224.65 N ) ( 0.6 m ) − Bx (1.2 m ) = 0 ∴ Bx = 112.325 N
or
B x = (112.3 N ) i
ΣM A( x-axis ) = 0: B y (1.2 m ) − (166.77 N ) ( 0.9 m ) = 0 ∴ By = 125.078 N
or
B y = (125.1 N ) j
∴ A = (112.3 N ) i + ( 41.7 N ) j
B = (112.3 N ) i + (125.1 N ) j C = − ( 225 N ) i
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 160. Free-Body Diagram:
First note
(
)
W = mg = ( 30 kg ) 9.81 m/s 2 = 294.3 N
FEC = λ EC FEC = ( sin15° ) i + ( cos15° ) j FEC From free-body diagram of cover (a)
ΣM z = 0:
( FEC cos15° ) (1.0 m ) − W ( 0.5 m ) = 0 or FEC cos15° (1.0 m ) − ( 294.3 N )( 0.5 m ) = 0 ∴ FEC = 152.341 N
(b)
or FEC = 152.3 N
ΣM x = 0: W ( 0.4 m ) − Ay ( 0.8 m ) − ( FEC cos15° ) ( 0.8 m ) = 0 or ( 294.3 N )( 0.4 m ) − Ay ( 0.8 m ) − (152.341 N ) cos15° ( 0.8 m ) = 0
∴ Ay = 0 ΣM y = 0: Ax ( 0.8 m ) + ( FEC sin15° ) ( 0.8 m ) = 0
or Ax ( 0.8 m ) + (152.341 N ) sin15° ( 0.8 m ) = 0
∴ Ax = −39.429 N ΣFx = 0: Ax + Bx + FEC sin15° = 0 −39.429 N + Bx + (152.341 N ) sin15° = 0 ∴ Bx = 0 ΣFy = 0: FEC cos15° − W + By = 0 or (152.341 N ) cos15° − 294.3 N + B y = 0
∴ By = 147.180 N
or A = − ( 39.4 N ) i B = (147.2 N ) j
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 161. Free-Body Diagram:
λCD =
First note
=
λCE = =
− ( 23 in.) i + ( 22.5 in.) j − (15 in.) k 35.5 in.
1 ( −23i + 22.5j − 15k ) 35.5
( 9 in.) i + ( 22.5 in.) j − (15 in.) k 28.5 in.
1 ( 9i + 22.5 j − 15k ) 28.5
W = − ( 285 lb ) j From free-body diagram of plate (a)
ΣM x = 0:
22.5 22.5 T (15 in.) − T (15 in.) = 0 35.5 28.5
( 285 lb )( 7.5 in.) −
∴ T = 100.121 lb
or T = 100.1 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
23 9 ΣFx = 0: Ax − T +T =0 35.5 28.5
(b)
23 ( 9 Ax − (100.121 lb ) + 100.121 lb ) =0 35.5 28.5 ∴ Ax = 33.250 lb
22.5 ΣM B( z -axis ) = 0: − Ay ( 26 in.) + W (13 in.) − T ( 6 in.) − 35.5 or
22.5 ( 6 in.) = 0 T 28.5
22.5 − Ay ( 26 in.) + ( 285 lb )(13 in.) − (100.121 lb ) ( 6 in.) 35.5 22.5 − (100.121 lb ) ( 6 in.) = 0 28.5
∴ Ay = 109.615 lb 15 ΣM B( y -axis ) = 0: Az ( 26 in.) − T ( 6 in.) − 35.5
23 (15 in.) T 35.5
15 9 − T ( 6 in.) + T (15 in.) = 0 28.5 28.5 or
1 −1 Az ( 26 in.) + ( 90 + 345) − ( 90 − 135) (100.121 lb ) = 0 28.5 35.5 ∴ Az = 41.106 lb
or A = ( 33.3 lb ) i + (109.6 lb ) j + ( 41.1 lb ) k 22.5 22.5 ΣFy = 0: By − W + T +T + Ay = 0 35.5 28.5 22.5 22.5 B y − 285 lb + (100.121 lb ) + + 109.615 lb = 0 35.5 28.5 ∴ By = 32.885 lb
15 15 ΣFz = 0: Bz + Az − T −T =0 35.5 28.5 15 15 Bz + 41.106 lb − (100.121 lb ) + =0 35.5 28.5 ∴ Bz = 53.894 lb
or B = ( 32.9 lb ) j + ( 53.9 lb ) k
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 162. First note
Free-Body Diagram:
TBG = λBGTBG =
− (18 in.) i + (13.5 in.) k 2
2
(18) + (13.5) in.
TBG
= TBG ( −0.8i + 0.6k )
TDH = λDH TDH =
− (18 in.) i + ( 24 in.) j
(18)2 + ( 24 )2 in.
TDH
= TDH ( −0.6i + 0.8j) Since λFJ = λDH ,
TFJ = TFJ ( −0.6i + 0.8j) From free-body diagram of member ABF
ΣM A( x-axis ) = 0:
( 0.8TFJ ) ( 48 in.) + ( 0.8TDH )( 24 in.) − (120 lb )( 36 in.) − (120 lb )(12 in.) = 0 ∴ 3.2TFJ + 1.6TDH = 480
ΣM A( z -axis ) = 0:
(1)
( 0.8TFJ ) (18 in.) + ( 0.8TDH )(18 in.) − (120 lb )(18 in.) − (120 lb )(18 in.) = 0 ∴
− 3.2TFJ − 3.2TDH = −960
(2)
Equation (1) + Equation (2) Substituting in Equation (1)
ΣM A( y -axis ) = 0:
TDH = 300 lb
TFJ = 0
( 0.6TFJ ) ( 48 in.) + 0.6 ( 300 lb ) ( 24 in.) − ( 0.6TBG ) (18 in.) = 0 ∴ TBG = 400 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
ΣFx = 0: − 0.6TFJ − 0.6TDH − 0.8TBG + Ax = 0
−0.6 ( 300 lb ) − 0.8 ( 400 lb ) + Ax = 0 ∴ Ax = 500 lb ΣFy = 0: 0.8TFJ + 0.8TDH − 240 lb + Ay = 0 0.8 ( 300 lb ) − 240 + Ay = 0
∴ Ay = 0 ΣFz = 0: 0.6TBG + Az = 0
0.6 ( 400 lb ) + Az = 0 ∴ Az = −240 lb Therefore,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
A = ( 500 lb ) i − ( 240 lb ) k
COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 163. Free-Body Diagram: First note
λ AE =
− ( 70 mm ) i + ( 240 mm ) k
( 70 )
2
=
2
+ ( 240 ) mm
1 ( −7i + 24k ) 25
rC/ A = ( 90 mm ) i + (100 mm ) k FC = − ( 600 N ) j rD/ A = ( 90 mm ) i + ( 240 mm ) k T = λDF T =
=
− (160 mm ) i + (110 mm ) j − ( 80 mm ) k
(160 )2 + (110 )2 + (80 )2
mm
T
T ( −16 i + 11j − 8k ) 21
From the free-body diagram of the bend rod
(
)
(
)
ΣM AE = 0: λ AE ⋅ rC/ A × FC + λ AE ⋅ rD/ A × T = 0 ∴
−7 0 24 −7 0 24 600 T 90 0 100 =0 + 90 0 240 25 ( 21) 25 0 −1 0 −16 11 −8 600 T + (18 480 + 23 760 ) =0 25 25 ( 21)
( −700 − 2160 )
∴ T = 853.13 N
or T = 853 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.