COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 1. \
Then
A, mm 2
x , mm
y , mm
xA, mm3
yA, mm3
1
200 × 150 = 30000
−100
250
− 30 000000
6 750 000
2
400 × 300 = 120000
200
150
24 000 000
18000000
Σ
150 000
21000 000
24 750000
X =
ΣxA 21 000000 = mm ΣA 150000
or X = 140.0 mm
Y =
ΣyA 24 750000 = mm ΣA 150 000
or Y = 165.0 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 2.
A,in 2
x ,in.
y ,in.
xA,in 3
yA,in 3
1
10 × 8 = 80
5
4
400
320
2
1 × 9 × 12 = 54 2
13
4
702
216
Σ
134
1102
536
Then
X =
ΣxA 1102 = ΣA 134
and
Y =
ΣyA 1102 = ΣA 134
or
X = 8.22 in.
or Y = 4.00 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 3.
Then
A, mm 2
x , mm
xA, mm3
1
1 × 90 × 270 = 12 150 2
2 ( 90 ) = 60 3
729 000
2
1 × 135 × 270 = 18 225 2
Σ
30375
X =
90 +
ΣxA 3189375 mm = ΣA 30375
1 (135) = 135 3
2 460 375 3 189 375
or X = 105.0 mm
For the whole triangular area by observation:
Y =
1 ( 270 mm ) 3
or Y = 90.0 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 4.
A,in 2
x ,in.
1
1 ( 21)( 24 ) = 252 2
2
(13)( 40 ) = 520
Σ
2 ( 21) = 14 3 21 +
1 (13) = 27.5 2
xA,in 3
y ,in. 40 −
1 ( 24 ) = 32 3
20
772
Then
yA,in 3
3528
8064
14 300
10 400
17 828
18 464
X =
ΣxA 17828 = in. ΣA 772
or
Y =
ΣyA 18464 = in. ΣA 772
or Y = 23.9 in.
X = 23.1 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 5.
A, mm 2
x , mm
2
1
π ( 225 )
2
1 ( 375)( 225) = 42 188 2
4
−
= 39 761
4 ( 225 ) 3π
= − 95.493
125
y , mm
xA, mm3
yA, mm3
95.493
− 3 796 900
3 796 900
5 273 500
3 164 100
1 476 600
6 961 000
75
81 949
Σ
Then
X =
ΣxA 1476600 mm = ΣA 81 949
or X = 18.02 mm
Y =
ΣyA 6961 000 mm = ΣA 81 949
or
Y = 84.9 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 6.
1 2
3
−
π 4 −
A,in 2
x ,in.
y ,in.
xA,in 3
yA,in 3
17 × 9 = 153
8.5
4.5
1300.5
688.5
2
× ( 4.5 ) = −15.9043 8 −
π 4
( 6 )2 = − 28.274
Σ
4 × 4.5 4 × 4.5 = 6.0901 9 − = 7.0901 − 96.857 3π 3π
−112.761
− 298.19
−182.466
905.45
393.27
10.5465
6.4535
108.822
Then
X =
ΣxA 905.45 = ΣA 108.822
and
Y =
ΣyA 393.27 = ΣA 108.22
or
X = 8.32 in.
or Y = 3.61 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 7.
A,in 2 1
π (16 ) 4
2
= 201.06
2
− ( 8 )( 8 ) = − 64
Σ
137.06
ΣxA 1109.32 = in. ΣA 137.06
Then
X =
and
Y = X by symmetry
x ,in. 4 (16 ) 3π
= 6.7906 4
xA,in 3 1365.32
− 256 1109.32
or
X = 8.09 in.
or Y = 8.09 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 8.
A, mm 2
x , mm
y , mm
xA, mm3
yA, mm3
1
35 343
63.662
0
2 250 006
0
2
− 4417.9
31.831
− 31.831
−140 626
140 626.2
Σ
30925.1
2 109 380
140 626.2
Then
X =
ΣxA 2109 380 = ΣA 30 925.1
and
Y =
ΣyA 140 625 = ΣA 30 925.1
or
X = 68.2 mm
or Y = 4.55 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 9.
A −
1
Therefore, for X =
4
π
2
Σ
π2
2
π
( 2r 4
2 2
r12
r22 − r12
4r1 3π
r13 π 2 4r1 − r1 =− 3 4 3π
4r2 3π
π 2 4r2 2r23 r2 = 3 2 3π
1 2r23 − r13 3
(
)
ΣxA 4r1 = : ΣΑ 3π
( (
or
xA
)
)
4 2r23 − r13 4r1 = 3π 3π 2r22 − r12
or
x
π =
)
r 3 r13 2 2 − 1 r1 4 = 2 r 3π r12 2 2 − 1 r1
r 2ρ 3 − 1 , where ρ = 2 2 r1 2ρ − 1
2 ρ 3 − 2πρ 2 + (π − 1) = 0.
Solving numerically for ρ and noting that ρ > 1:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
r2 = 3.02 r1
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 10.
First, determine the location of the centroid. y2 =
From Fig. 5.8A:
= y1 =
Similarly Then
Σ yA =
(π
2 sin 2 − α r2 π 3 −α 2
(
2 cos α r2 π 3 −α 2
)
(
)
(
)
2 cos α r1 π 3 −α 2
2 cosα r2 π 3 −α 2
(
)
(
)
A2 =
A1 =
( π2 − α ) r12
( π2 − α ) r22 − 23 r1
(
cosα −α 2
π
)
2 3 r2 − r13 cosα 3 π π Σ A = − α r22 − − α r12 2 2 =
and
π = − α r22 − r12 2 Y Σ A = Σ yA
(
Now
( π2 − α ) r22
)
π 2 3 Y − α r22 − r12 = r2 − r13 cos α 2 3
(
)
Y =
(
)
2 r23 − r13 cos α 3 r22 − r12 π2 − α
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
( π2 − α ) r12
COSMOS: Complete Online Solutions Manual Organization System
Using Figure 5.8B, Y of an arc of radius
1 ( r1 + r2 ) is 2 Y =
=
(π
sin − α 1 ( r1 + r2 ) π 2 2 −α 2
(
)
)
1 cos α (r1 + r2 ) π 2 −α 2
(
(
( r2 − r1 ) r22 + r1 r2 + r12 r23 − r13 = r22 − r12 ( r2 − r1 )( r2 + r1 )
Now
=
(1)
)
)
r22 + r1 r2 + r12 r2 + r1
r2 = r + ∆
Let
r1 = r − ∆
r =
Then
1 ( r1 + r2 ) 2 2
and
( r + ∆ ) + ( r + ∆ )( r − ∆ ) + ( r − ∆ ) r23 − r13 = 2 2 r2 − r1 (r + ∆) + (r − ∆) =
2
3r 2 + ∆ 2 2r
In the limit as ∆ → 0 (i.e., r1 = r2 ), then
r23 − r13 3 = r 2 2 2 r2 − r1 =
so that
Y =
3 1 × (r1 + r2 ) 2 2
2 3 cos α × ( r1 + r2 ) π 3 4 −α 2
Which agrees with Eq. (1).
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Y =
1 cos α ! ( r1 + r2 ) π 2 −α 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 11.
Then
X =
A,in 2
x ,in.
xA,in 3
1
27
8.1962
221.30
2
15.5885
3.4641
54.000
3
−18.8495
3.8197
−71.999
Σ
23.739
ΣxA 203.30 = ΣA 23.739
203.30
or
X = 8.56 in.
and by symmetry
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Y =0
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 12.
1 2
A, mm 2
x , mm
y , mm
xA, mm3
yA, mm3
1 ( 240 )(150 ) = 18 000 2
160
50
2 880 000
900 000
3 ( 240 ) = 180 4
3 (150 ) = 45 10
−2160000
−540 000
720 000
360 000
−
1 ( 240 )(150 ) = 12 000 3 6000
Σ
Then
X =
ΣxA 720000 = mm ΣA 6000
Y =
ΣyA 360000 = mm ΣA 6000
or X = 120.0 mm or
Y = 60.0 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 13.
A,in 2
x ,in.
y ,in.
1
(18)(8) = 144
−3
4
− 432
576
2
1 ( 6 )( 9 ) = 27 2
2
−3
54
−81
−5.0930
−3.8197
− 432.00
− 324.00
−810.00
171.00
3
Σ
Then
π 4
(12 )( 9 ) = 84.823 255.82
X =
ΣxA −810.00 = in. 255.82 ΣA
Y =
ΣyA 171.00 = in. ΣA 255.82
xA,in 3
or
yA,in 3
X = − 3.17 in.
or Y = 0.668 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 14.
X = 90 mm
First, by symmetry
1 2
−
3
−
A, mm 2
y , mm
yA, mm3
(180 )(120 ) = 21 600
60
1 296 000
π 4
π 4
( 90 )(120 ) = − 8482.3
120 −
4 × 120 = 69.070 3π
−585 870
( 90 )(120 ) = − 8482.3
120 −
4 × 120 = 69.070 3π
−585 870
4635.4
Σ
Y =
ΣyA 124 260 = 4635.4 ΣA
124 260
or Y = 26.8 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 15.
A, mm 2
x , mm
y , mm
xA, mm3
yA, mm3
1
18 240
−4
12
72 960
218 880
2
−1920
− 56
54
107520
−103 680
3
− 4071.5
− 41.441
− 41.441
168 731
186 731
Σ
12 248.5
−134171
−53 531.1
Then and
X =
ΣxA −134171 = ΣA 12 248.5
Y =
ΣyA −53 531 = ΣA 12 248.5
or
X = −10.95 mm or Y = − 43.7 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 16. \
A, mm 2 2 ( 200 )( 200 ) = 26 667 3
1
−
2
2 (100 )( 50 ) = − 3333.3 3
23 334
Σ
xA, mm3
yA, mm3
x , mm
y , mm
75
70
2 000 000
1866 690
37.5
− 20
−125 000
66 666
1875 000
1 933 360
Then X =
ΣxA 1875 000 = mm ΣA 23 334
or X = 80.4 mm
Y =
ΣyA 1 933 360 = mm ΣA 23 334
or Y = 82.9 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 17. Locate first Y :
Note that the origin of the X axis is at the bottom of the whole area.
A, in 2
Y =
yA, in 3
1
8 × 15 = 120
7.5
900
2
− 4 × 10 = − 40
8
− 320
Σ
Then
y , in.
80
580
ΣyA 580 = = 7.2500 in. ΣA 80
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now, to find the first moment of each area about the x-axis: Area I:
QI = ΣyA =
7.75 5.75 − ( 4 × 5.75 ) , (8 × 7.75) + 2 2
or QI = 174.125 in 3 !
Area II:
QII = ΣyA = −
7.75 4.25 − ( 4 × 4.25 ) , (8 × 7.25) − 2 2
or QII = −174.125 in 3 !
Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 18.
A, mm 2
Y =
yA, mm3
1
(80 )( 20 ) = 1600
90
144 000
2
( 20 )(80 ) = 1600
40
64 000
Σ
Then
y , mm
3200
208 000
ΣyA 208 000 = = 65.000 mm ΣA 3200
Now, for the first moments about the x-axis: Area I
QI = ΣyA = 25 ( 80 × 20 ) + 7.5 ( 20 × 15 ) = 42 250 mm3 ,
or QI = 42.3 × 103 mm3 !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Area II
QII = ΣyA = − 32.5 ( 20 × 65 ) = 42 250 mm3 ,
or QII = 42.3 × 103 mm3 !
Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 19.
(a) With Qx = Σ yA and using Fig. 5.8 A,
(
)
2 r sin π − θ r 2 π2 − θ − Qx = 3 π 2 − θ 2 2 = r 3 cos θ − cos θ sin 2 θ 3
(
) ( 32 r sin θ ) 12 × 2r cos θ × r sin θ
(
)
or Qx =
(b) By observation, Qx is maximum when and then
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 3 r cos3 θ 3
θ =0 Qx =
2 3 r 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 20.
From the problem statement: F is proportional to Qx . Therefore:
FA FB = , or ( Qx ) A ( Qx )B
FB =
( Qx )B F ( Qx ) A A
For the first moments:
Then
( Qx ) A
12 = 225 + ( 300 × 12 ) = 831 600 mm3 2
( Qx )B
12 = ( Qx ) A + 2 225 − ( 48 × 12 ) + 2 ( 225 − 30 )(12 × 60 ) = 1 364 688 mm 3 2
FB =
1364688 ( 280 N ) , 831600
or FB = 459 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 21. Because the wire is homogeneous, its center of gravity will coincide with the centroid for the corresponding line.
L, mm
x , mm
y , mm
xL, mm 2
yL, mm 2
1
400
200
0
80 000
0
2
300
400
150
120 000
45 000
3
600
100
300
60 000
180 000
4
150
− 200
225
− 30 000
33 750
5
200
−100
150
− 20 000
30 000
6
150
0
75
0
11 250
Σ
1800
210 000
300 000
Then
X =
ΣxL 210 000 = = 116.667 mm ΣL 1800
or X = 116.7 mm
and
Y =
ΣyL 300 000 = = 166.667 mm ΣL 1800
or Y = 166.7 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 22.
L, in.
x , in.
y , in.
xL, in 2
y , in 2
1
19
9.5
0
180.5
0
2
15
14.5
6
217.5
90
3
4
10
10
40
40
4
10
5
8
50
80
5
8
0
4
0
32
Σ
56
488
242
Then
X =
ΣxL 488 = ΣL 56
or X = 8.71 in.
and
Y =
ΣyA 242 = 56 ΣA
or Y = 4.32 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 23. Because the wire is homogeneous, its center of gravity will coincide with the centroid for the corresponding line.
L, mm
x , mm
y , mm
xL, mm 2
yL, mm 2
600
75
0
45 000
0
187.5
112.5
81 998
49 199
2
2
− 50 625
50 625
76 373
99 824
1 2 3
3752 + 2252 = 437.32
π 2
Σ
( 225)
−
π
( 225)
1390.75
π
( 225)
Then
X =
ΣxL 76 373 = ΣL 1390.75
or X = 54.9 mm
and
Y =
ΣyL 99 824 = ΣL 1390.75
or Y = 71.8 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 24.
L, mm
x , mm
y , mm
xL, mm 2
yL, mm 2
1
75
37.5
0
2812.5
0
2
150
0
75
0
11 250
95.492
0
45 000
0
0
−112.5
0
− 8437.5
47.746
− 47.746
5625.0
− 5625.0
53 437
− 2812.5
3
(150 )π
4 5
Σ
= 471.24 75
( 75)
π 2
= 117.81
889.05
Then
X =
ΣxL 53 437 = , ΣL 889.05
or X = 60.1 mm
and
Y =
ΣyA − 2812.5 = ΣA 889.05
or Y = − 3.16 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 25.
O From Figure 5.8 b:
r =
( 20 in.) sin 30° π
=
60
π
in.
6 Note also that triangle ABO is equilateral, where O is the origin of the coordinate system in the figure. For equilibrium: (a) ΣM A = 0:
60 20 in. − in. cos 30° (1.75 lb ) − ( 20 in.) sin 60° TBC = 0 π
Solving for TBC :
TBC = 0.34960 lb (b) ΣFx = 0:
or
TBC = 0.350 lb
Ax + ( 0.34960 lb ) cos 60° = 0 Ax = − 0.174800 lb
ΣFx = 0:
Ay − 1.75 lb + ( 0.34960 lb ) sin 60° = 0
Ay = 1.44724 lb Therefore:
A = 1.458 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
83.1°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 26. The wire supported only by the pin at B is a two-force body. For equilibrium the center of gravity of the wire must lie directly under B. Also, because the wire is homogeneous the center of gravity will coincide with the centroid. In other words, x = 0, or ΣxL = 0.
ΣxL = −
2 (150 mm )
π
150 mm 200 mm π (150 mm ) + cosθ (150 mm ) ( 200 mm ) + 200 mm − 2 2
or
cosθ =
5000 11250 or
θ = 63.6°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 27. The wire supported only by the pin at B is a two-force body. For equilibrium the center of gravity of the wire must lie directly under B. Also, because the wire is homogeneous the center of gravity will coincide with the centroid. In other words, x = 0, or ΣxL = 0.
ΣxL = −
2 (150 mm )
π
150 mm 200 mm π (150 mm ) + cosθ (150 mm ) ( 200 mm ) + 200 mm − 2 2
or
l 2 + 300l − 197602 = 0. Solving for l :
l = 319.15, and l = − 619.15, and discarding the negative root l = 319 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 28. The centroid coincides with the center of gravity because the wire is homogeneous.
L 1
r
2
2θ r
x
− −
l
3
−
r sin θ
θ l 2
X =
Then
r 2
xL
−
r2 2
− 2r 2 sin θ
l2 2
ΣxL = 0 ⇒ ΣxL = 0 and ΣL
r2 l2 − 2r 2 sin θ + = 0, or l = r 1 + 4sin θ 2 2
(a) θ = 15° :
l = r 1 + 4sin15°
or l = 1.427 r
(b) θ = 60° :
l = r 1 + 4sin 60°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or l = 2.11 r
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 29.
y =
Then
ΣyA ΣA
(a + h) a ( ab ) − kb ( a − h ) 2 2 y = ba − kb ( a − h )
or
=
2 2 1 a (1 − k ) + kh 2 a(1 − k ) + kh
Let
c =1− k
Then
y =
and
ζ =
h a
a c + kζ 2 2 c + kζ
(1)
Now find a value of ζ (or h) for which y is minimum:
(
)
2 dy a 2kζ ( c + kζ ) − k c + kζ = =0 dζ 2 ( c + kζ ) 2
or
(
)
2ζ ( c + kζ ) − c + kζ 2 = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(2)
COSMOS: Complete Online Solutions Manual Organization System
2cζ + 2ζ
Expanding (2)
2
ζ =
Then
− c − kζ − 2c ±
2
=0
or
kζ
2
+ 2cζ − c = 0
( 2c )2 − 4 ( k ) ( c ) 2k
Taking the positive root, since h > 0 (hence ζ > 0 ) 2
h=a
− 2 (1 − k ) + 4 (1 − k ) + 4k (1 − k )
2k 2
(a) k = 0.2:
h=a
(b) k = 0.6:
h=a
− 2 (1 − 0.2 ) + 4 (1 − 0.2 ) + 4 ( 0.2 )(1 − 0.2 )
2 ( 0.2 )
or h = 0.472a !
2
− 2 (1 − 0.6 ) + 4 (1 − 0.6 ) + 4 ( 0.6 )(1 − 0.6 )
2 ( 0.6 )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or h = 0.387a !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 30. From Problem 5.29, note that Eq. (2) yields the value of ζ that minimizes h. Then from Eq. (2) We see
2ζ =
c + kζ 2 c + kζ
(3)
Then, replacing the right-hand side of (1) by 2ζ , from Eq. (3) We obtain
y =
a ( 2ζ) 2
But
ζ=
h a
So
y =h
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Q.E.D.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 31. \
Note that y1 = −
=
h x+h a
h (a − x) a
Choose the area element (EL) as
dA = ( h − y1 ) dx =
h xdx a a
Then
A=
h a h 1 1 xdx = x 2 = ah ∫ 0 a a 2 0 2
Now, noting that xEL = x, and yEL =
1 ( h + y1 ) 2 a
1 2 a h 2 1 2 x = ∫ xdA = x xdx = 2 x3 = a ∫ 0 A ah 3 a a 3 0
y =
1 1 2 h 1 2 1 a 2 2 ∫ ( h + y1 ) dA = ah ∫ 0 2 ( h + y1 ) ( h − y1 ) dx = ah 2 ∫ 0 h − y1 dx A 2
(
)
A
1 a 2 h2 h h 1 2 2 3 1 1 = h − 2 ( a − x ) dx = x + 2 ( a − x ) = a − a = h ∫ 0 ah a a 3 3 a 3 a 0 Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =
2 a! 3
y =
2 h! 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 32.
First determine k: For x = a, y = 0 and therefore
(
)
0 = h 1 − ka3 or k = a −3 , and therefore x3 y = h 1 − 3 a Choosing an area element as in the figure:
xEL = x,
yEL = a 0
y , 2
A = ∫ dA = ∫ ydx = ∫
∫ xEL dA = ∫
a xydx 0
=∫
and dA = ydx a
x3 x4 3 − 3 dx = h x − 3 = ah 4 a 4a 0
a h 1 0
a
x2 x4 x5 3 2 − 3 dx = b − 3 = ab a 5a 0 10 2
a h x 0 2
a
1 a 2 x3 b2 a 2 x3 x 6 b2 x4 x7 9 a y 1 y dA ydx h x dx dx x ab 2 = = − = − + = − + = ∫ EL ∫0 2 ∫ 0 ∫ 0 3 3 6 3 6 2 2 2 28 2 7 a a a a a 0 Now
x =
1 4 3a 2b 2 x dA = = a ∫ EL A 3ab 10 5
y =
1 4 9ab 2 3 yEL dA = = b ∫ A 3ab 28 7
and
Therefore:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 a 5 3 y = b 7
x =
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 33.
For the element (EL) shown
x = a, y = h: h = k1a3
At
k1 =
or
h a3
a = k 2 h3
k2 =
or
a h3
Hence, on line 1
y =
h 3 x a3
and on line 2
y =
h 1/3 x a1/3
Then
h h dA = 1/3 x1/3 − 3 x3 dx a a
and
yEL =
1 h 1/3 h 3 1/3 x + 3 x 2 a a a
h 1/3 h 1 1 3 ∴ A = ∫ dA = ∫ x − 3 x3 dx = h 1/3 x 4/3 − 3 x 4 = ah 1/3 2 a 4a a 4a 0 a 0
∫ xEL dA = ∫
a
h 1/3 h 1 8 2 3 x − 3 x3 dx = h 1/3 x 7/3 − 3 x5 = a h 1/3 a 5a a 7a 0 35
a x 0
1
a 1/3 3 1/3 3 ∫ yEL dA = ∫ 0 2 a1/3 x + a3 x a1/3 x − a3 x dx
h
h
h
h
a
h 2 a x 2/3 x 6 h 2 3 x5/3 1 x 6 8 2 = − dx = − ah = ∫ 2/3 6 0 2 a 2 5 a5/3 7 a 6 35 a 0
From
8 2 ah xA = ∫ xEL dA: x = a h 2 35
or x =
16 a 35
and
8 2 ah yA = ∫ yEL dA: y = ah 2 35
or y =
16 h 35
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 34.
Choose as an area element (EL) the shaded area shown:
π dA = r dr 2
xEL =
2r
π
and r
π 1 2 π 2 r π A = ∫r 2 r dr = r 2 = r2 − r12 1 2 2 2 r1 4
(
)
Then r
x =
1 4 4 r2 2r π 1 3 2 x dA rdr = = ∫ EL ∫ r A π r22 − r12 r1 π 2 π r22 − r12 3 r1
(
)
(
)
or x =
4 r23 − r13 3π r22 − r12
y =
4 r23 − r13 3π r22 − r12
and by symmetry
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 35.
Note that y1 = −
y2 =
b b x + b = ( a − x ) , and a a
b 2 a − x2 a
Then for the shaded area element: dA = ( y2 − y1 ) dx =
b 2 a − x 2 − ( a − x ) dx and a a
a
A = ∫ dA = ∫ 0
=
b 2 b 1 2 x 1 a − x 2 − ( a − x ) dx = x a 2 − x 2 + a 2 sin −1 + ( a − x ) a a 2 a 2 0
b 1 π 1 2 ab (π − 2 ) × − a = 4 a2 2 2
Noting that xEL = x, and that yEL = x =
1 ( y1 + y2 ): 2
1 4 ab 2 2 ∫ xELdA = ab π − 2 ∫ 0 a x x − a − x ( a − x )dx A ( )
21 = − a2 − x2 ab (π − 2 ) 3 2
4
(
)
3 2
1 1 + − ax 2 + x3 3 2
a
= 0
1 a 2 2 a (π − 2 ) 3
4
( )
3 2
1 1 + − a3 + a3 3 2
or x =
2a ! 3 (π − 2 ) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
y =
=
1 4 a 1 yEL dA = y + y1 ) ( y2 − y1 ) dx ∫ ∫ 0 ( 2 A ab (π − 2 ) 2
2
ab (π − 2 )
(
)
2 2 ∫ y2 − y1 =
2 a 2 (π − 2 )
∫
2 ab 0 2
a
(
)
a2 − x2 −
b2 2 a − x ) dx 2( a a
2b 4b 4b a a 1 2 1 3 = 3 2 ax − x 2 dx = 3 ax − x 2 dx = 3 ax − x ∫ ∫ 0 0 3 0 a (π − 2 ) a (π − 2 ) a (π − 2 ) 2
(
)
(
)
or y =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2b ! 3 (π − 2 )
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 36.
x =0
First note that symmetry implies For the element (EL) shown
y = R cos θ, x = R sin θ dx = R cos θ d θ
dA = ydx = R 2 cos 2θ dθ Hence α
1 2 α θ sin 2θ A = ∫ dA = 2∫ 0 R 2 cos 2 θ dθ = 2R 2 + = R ( 2α sin 2α ) 4 0 2 2 α
∫ yEL dA = 2∫ 0 =
(
)
R3 cos 2 α sin α + 2sin α 3
(
)
R3 cos 2 α sin α + 2sin α 3 y = R2 ( 2α + sin 2α ) 2
(
But yA = ∫ yEL dA so
or
α
R 2 1 cosθ R 2 cos 2 θ dθ = R3 cos 2 θ sin θ + sin θ 2 3 3 0
(
)
)
cos 2 α + 2 2 y = R sin α 3 ( 2α + sin 2α )
Alternatively,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
y =
2 3 − sin 2 α R sin α 3 2α + sin 2α
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 37.
x = 0, y = b
At
b = k (0 − a)
2
y=
Now
xEL = x, yEL =
and
dA = ydx =
and
b a2
b 2 x − a) 2( a
Then
Then
k =
or
a
A = ∫ dA = ∫ 0
y b 2 = x − a) 2( 2 2a
b ( x − a )2 dx a2
a b b 1 2 3 x − a dx = x − a = ab ( ) ( ) 2 2 3 0 a 3a
2 a a 3 2 2 ∫ xEL dA = ∫ 0 x a 2 ( x − a ) dx = a 2 ∫ 0 ( x − 2ax + a x )dx
b
=
b x4 2 3 a2 2 1 2 x = ab − ax + 3 2 12 a 2 4 a
∫ yEL dA = ∫ 0 =
b
a
b b2 1 2 b 2 5 x − a ) 2 ( x − a ) dx = x − a) 2( 4 ( 2a a 2a 5 0
1 2 ab 10
1 2 1 ab Hence xA = ∫ xEL dA: x ab = 3 12 1 2 1 yA = ∫ yEL dA: y ab = ab 3 10
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x = y =
1 a 4
3 b 10
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 38. For the element (EL) shown on line 1 at
x = a, b = k 2 a 2 ∴ y =
or
∴ y =
b a2
b 2 x a2
x = a, −2b = k1a3
On line 2 at
k2 =
or
k2 =
−2b a3
−2b 3 x a3
2b b dA = 2 x 2 + 3 x3 dx a a Then
b 2 x3 b x3 2 x 4 A = ∫ dA = ∫ 2 x 2 + + dx = 2 x 4a a a 3
a
a 0
0
1 1 5 = ab + = ab 3 2 6 and ∫ xEL dA = ∫
a
b 2 2b 3 b x 4 2 x5 2 2 1 + x + 3 x dx = 2 = a b + 2 a 4 5 4 5 a a a 0
a x 0
13 2 ab 20 2b 3 b 2 2b 3 a1 b 2 ∫ yEL dA = ∫ 0 2 a 2 x − a3 x a 2 x + a3 x dx
=
2
1 b 2 2b =∫ 2 x − 3 x 3 2 a a a 0
a
2
b 2 x5 2 − 2 x 7 dx = 4 2a 5 7a 0
2 13 1 = b 2a5 − = − ab 2 10 7 70 Then
xA = ∫ xEL dA:
yA = ∫ yEL dA:
5 13 2 x ab = ab 6 20
5 13 2 y ab − ab 6 70
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =
39 a 50
or y = −
39 b 175
or
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 39. Using the area element shown:
xEL = x,
yEL =
A = ∫ dA = ∫
L h 1 0
y , 2
and dA = ydx L
x x2 x 2 2 x3 5 + − 2 2 dx = h x + − = hL 2 L 2L 3 L 0 6 L L
x 2 1 x3 2 x 4 x x2 x2 x3 1 2 L L ∫ xEL dA = ∫ 0 xh 1 + L − 2 L2 dx = h∫ 0 x + L − 2 L2 dx = h 2 + 3 L − 4 L2 = 3 hL 0 2
1 2 h2 L x x2 h2 L x2 x4 x x2 x3 ∫ yEL dA = 2 ∫ y dx = 2 ∫ 0 1 + L − 2 L2 dx = 2 ∫ 0 1 + L2 + 4 L4 + 2 L − 4 L2 − 4 L3 dx L
h2 x3 4 x5 x 2 4 x3 x 4 4 2 h L = − 2 − 3 = x + 2 + 4 + L 2 L 0 10 3L 5L 3L Now
x =
1 6 1 2 2 ∫ xEL dA = 5hL 3 hL = 5 L and A
y =
1 6 4 2 12 ∫ yEL dA = 5hL 10 h L = 25 h A
Therefore:
x = y =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 L 5 12 h 25
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 40.
Note that y1 = 0 at x = a, or
(
)
0 = 2b 1 − ka 2 , i.e. k =
1 a2
Also, note that the slope of y2 is
y2 =
− 3b and y2 = 0 at x = 2a. Therefore a
3b ( 2a − x ) . a
Pick the area element dA ( EL ) such that: for 0 ≤ x ≤ a dA = ( 3b − y1 ) dx,
and xEL = x,
yEL =
1 ( 3b + y1 ) 2
and for a ≤ x ≤ 2a dA = y2 dx,
and xEL = x,
yEL =
1 y2 2
Then: 2b a 2a a 2 a 3b A = ∫ dA = ∫ 0 ( 3b − y1 ) dx + ∫a y2dx = ∫ 0 3b − 2 a 2 − x 2 dx + ∫a ( 2a − x ) dx = a a
(
a b 0
)
a
2b 2 3b 1 2 a 3b + 2 x 2 dx + ∫a ( 2a − x ) dx = b x + 2 x3 + − ( 2a − x )2 ∫ a a 2 a 3a 0
2a
= a
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
2 3b 19 2 ab 1 + − ab − ( 2a − a ) = 3 2 a 6 Now for the centroid: x =
1 6 a 2 2 3b 2a ∫ xdA = 19ab b∫ 0 x 1 + a 2 x dx + a ∫a x ( 2a − x ) dx = A 6 1 2 1 3 1 x + 2 x 4 + ax 2 − x3 19a 2 3 a 2a 0 a
2a
a
=
6 1 1 8 1 = + + 3 4 − − 1 + 3 3 19 2 2
or x =
y =
18 a! 19
1 6 a1 1 yEL dA = ( 3b + y1 )( 3b − y1 ) dx + ∫ a2a y2 y2dx ∫ ∫ 0 A 19ab 2 2 =
1 6 a1 2a 1 2 y2 dx = 9b 2 − y12 dx + ∫ a ∫ 2 19ab 0 2 2
=
2 2 1 6 a 1 2 4b 2 2 2 2a 9b 2 ∫ 0 9b − 4 a − x dx + ∫a 2 ( 2a − x ) dx 2 19ab 2 a a
=
3b a 8 4 2 2a 9 5 + 2 x 2 − 4 x 4 dx + ∫ a 2 ( 2a − x ) dx ∫ 0 19a a a a
=
a 2a 3b 8 4 9 1 3 5 x + 2 x3 − 4 x5 + 2 − ( 2a − x ) 19a a 3a 5a 0 a 3
=
3b 8 4 3 5 + − + 3 (1) 19 3 5
(
)
(
)
y =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
148 b! 95
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 41.
For y2
x = a, y = b : a = kb2
at
or
a b2
k =
b 1/2 x a
Then
y2 =
Now
xEL = x a y b x1/2 x1/2 : yEL = 2 = , dA = y2dx = b dx 2 2 2 a a
and for
0≤ x≤
For
a 1 b x 1 x1/2 ≤ x ≤ a : yEL = ( y1 + y2 ) = − + 2 2 2a 2 a
x1/2 x 1 dA = ( y2 − y1 ) dx = b − + dx a a 2
Then
a/2
A = ∫ dA = ∫ 0 b
x1/2 x 1 x1/2 a dx + ∫a/2 b − + dx a a a 2 a
=
a/2 2 x3/2 b 2 3/2 x2 1 x + b − + x 2a 2 a/2 a 3 0 3 a
3/2 3/2 2 b a 3/2 a = + ( a ) − 3 a 2 2 2 1 a 1 a + b − a 2 − + ( a ) − 2 2 2 2a
( )
13 ab 24 1/2 x1/2 x 1 a/2 x a x dA x b dx x b = + − + dx ∫ EL ∫0 ∫ a a/2 a a 2 =
and
b = a
a
a/2 2 x5/2 x3 x 4 2 5/2 x + b − + 5 3a 4 a/2 0 5 a
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
=
5/2 5/2 2 b a 5/2 a + ( a ) − 5 a 2 2
3 2 1 3 a 1 2 a + b − ( a ) − + ( a ) − 2 4 2 3a 71 2 = ab 240
b x1/2 x1/2
a/2 dx b ∫ yEL dA = ∫ 0 2 a a
1 x1/2 x1/2 x 1 a b x + ∫ a/2 − + − + dx b 2a 2 a a a 2 a
a/2 3 b2 1 2 b 2 x 2 1 x 1 = + − − x 2a 2 0 2 2a 3a a 2 a/2
=
2 2 3 b a 2 a b2 a 1 − + ( a ) − − 4a 2 2 6a 2 2
=
11 2 ab 48
Hence xA = ∫ xEL dA:
yA = ∫ yEL dA:
71 2 13 x ab = ab 24 240 13 11 2 y ab = ab 24 48
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =
17 a = 0.546a ! 130
y =
11 b = 0.423b ! 26
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 42.
First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Now Then and
xEL = r cos θ
and
dL = rd θ
7π /4
7π /4
L = ∫ dL = ∫π /4 rdθ = r [θ ]π /4 =
3 πr 2
7π /4 ∫ xEL dL = ∫π /4 r cosθ ( rdθ )
1 1 7π /4 2 = r 2 [sin θ ]π /4 = r 2 − − = −r 2 2 2
Thus
3 xL = ∫ xdL : x π r = −r 2 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =−
2 2 r 3π
COSMOS: Complete Online Solutions Manual Organization System
SOLUTION 5.43 CONTINUED
(
dy = a 2/3 − x 2/3 dx
Then
Then
and
Hence
1/2
−1/3
xEL = x
Now and
) ( −x )
dy dL = 1 + dx
2
dx = 1 + a 2/3 − x 2/3
(
a
L = ∫ dL = ∫ 0
) ( −x ) 1/2
−1/3
1/2 2
dx
a
a1/3 3 3 dx = a1/3 x 2/3 = a 1/ 3 2 x 2 0
a 1/3 3 2 a a 1/3 3 5/3 x dL x dx a x = = ∫ EL ∫ 0 x1/3 5 = 5a 0
3 3 xL = ∫ xEL dL : x a = a 2 2 5
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =
2 a 5
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 43.
First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Now
xEL = a cos3 θ
dx 2 + dy 2
dL =
and
x = a cos3 θ : dx = −3a cos2 θ sin θ dθ
Where
y = a sin 3 θ : dy = 3a sin 2 θ cosθ dθ
Then
(
dL = −3a cos 2 θ sin θ dθ
1/2
) + (3a sin θ cosθ dθ ) 2
2
2
(
= 3a cosθ sin θ cos 2 θ + sin 2 θ
)
1/2
dθ
= 3a cosθ sin θ dθ π /2
∴ L = ∫ dL = ∫0 = and
π /2
1 3a cosθ sin θ dθ = 3a sin 2 θ 2 0
3 a 2
π /2 3 ∫ xELdL = ∫0 a cos θ ( 3a cosθ sin θ dθ ) π /2
1 = 3a − cos5 θ 5 0 2
=
3 2 a 5
3 3 xL = ∫ xEL dL : x a = a 2 2 5
Hence
x =
Alternative solution x x = a cos3 θ ⇒ cos 2 θ = a y y = a sin 3 θ ⇒ sin 2 θ = a
x ∴ a
2/3
y + a
2/3
=1
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2/3
2/3
(
y = a 2/3 − x 2/3
)
3/2
2 a ! 5
COSMOS: Complete Online Solutions Manual Organization System
(
dy = a 2/3 − x 2/3 dx
Then
Then
and
Hence
1/2
−1/3
xEL = x
Now and
) ( −x )
dy dL = 1 + dx
2
dx = 1 + a 2/3 − x 2/3
(
a
L = ∫ dL = ∫ 0
) ( −x ) 1/2
−1/3
1/2 2
dx
a
a1/3 3 3 dx = a1/3 x 2/3 = a 1/ 3 2 x 2 0
a 1/3 3 2 a a 1/3 3 5/3 x dL = x dx = a x ∫ EL ∫ 0 x1/3 5 = 5a 0
3 3 xL = ∫ xEL dL : x a = a 2 2 5
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =
2 a ! 5
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 44.
First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Have at
x = a, y = a : a = ka 2
Thus
y =
Then
dy 2 dL = 1 + dx = 1 + x dx dx a
1 2 x a
dy =
and
∴ L = ∫ dL = ∫ =
2
x 4 4x2 a 2 4x2 1 + 2 x 2 dx = 1 + 2 + ln x + 1 + 2 4 a 2 a a a
(
a
0
)
a a 5 + ln 2 + 5 = 1.4789a 2 4
∫ xEL dL = ∫
a
3/2 4 4x2 2 a2 1 + 2 dx = 1 + 2 x 2 3 8 a a 0
a x 0
a 2 3/2 5 − 1 = 0.8484a 2 12 xL = ∫ xEL dL: x (1.4789a ) = 0.8484a 2
=
Then
1 a
2 xdx a
2
a 0
k =
or
(
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x = 0.574a
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 45.
xEL = x,
Have
1 πx x sin L 2
dA = ydx
and L/2
A = ∫ dA = ∫0 x sin
and
yEL =
L/2
L2 πx L πx − x cos dx = 2 sin π L L L 0 π
πx
=
L2
π2
πx L/2 x = ∫ xEL dA = ∫0 x x sin dx L L/2
2 L2 π x 2 L3 π x L 2 π x = 2 x sin + 3 cos − x sin L π L π L 0 π
Also
L/2 1
y = ∫ yEL dA = ∫0
2
x sin
=
L3
π2
−2
L3
π3
πx
πx dx x sin L L L/2
1 2 L2 πx L 2 L3 πx = 2 x sin − x − 3 cos 2 π L π L π 0
=
Hence
L2 L L3 1 1 L3 1 6 + π2 − = ( ) − 2 2 2 6 8 4π 2 96π
(
)
L2 z 1 xA = ∫ xEL dA: x 2 = L3 2 − 3 π π π
or L2 L3 1 2 − 3 yA = ∫ yEL dA: y 2 = 2 2 π π 96π π
or y = 0.1653L !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x = 0.363L !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 46. First note that by symmetry y = 0. Using the area element shown in the figure,
xEL =
dA =
2 2 r cosθ = R cos 2θ cosθ 3 3
1 2 1 r dθ = R 2 cos 2 2θ dθ 2 2 π
π
π
1 1 A = ∫ dA = R 2 ∫ 4π cos 2 θ dθ = R 2 ∫ 04 cos 2 θ dθ = R 2 ∫ 04 (1 + cos 4θ ) dθ − 2 2 4
π
1 1 4 1 = R 2 θ + sin 4θ = π R 2 2 4 0 8 π
2
1
2
π
2 2 2 3 ∫ xEL dA = ∫−4π 3 R cos 2θ cosθ 2 R cos 2θ dθ = 3 R ∫ 04 cos 2θ cosθ dθ ρ π
=
2 3 4 R ∫ 0 1 − 2sin 2 θ 3
(
)
3
cosθ dθ =
π
2 3 4 R ∫ 0 1 − 6sin 2 θ + 12sin 4 θ − 8sin 6 θ cosθ dθ 3
(
)
π
2 12 8 4 = R3 sin θ − 2sin 3 θ + sin 5 θ − sin 7 θ 3 5 7 0 =
2 3 2 2 12 1 8 1 16 2 3 1− + R − = R 3 2 2 5 4 7 8 105
Now:
x=
1 8 16 2 3 128 2 xEL dA = R = R ∫ 2 A 105π π R 105 or x = 0.549 R
y =0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 47.
From the solution to problem 5.2:
A = 134 in 2 ,
ΣxA = 1102 in 3,
ΣyA = 536 in 3
and from the solution of problem 5.22
L = 56 in., and ΣxL = 488 in 2 Applying the theorems of Pappus-Guldinus, we have (a) Rotation about the x-axis:
(
)
Volume = 2π yarea A = 2πΣyA = 2π 536 in 3 = 3367.8 in 3
or
V = 1.949 ft 3
Area = 2π ylength L = 2πΣyL = 2π 6 (15 ) + 10 ( 4 ) + 8 (10 ) + 4 (18 ) = 1520.53 in 2
or
A = 10.56 ft 2
(b) Rotation about x = 19 in.:
(
)
Volume = 2π (19 − xarea ) A = 2π (19 A − ΣxA ) = 2π (19 in ) 134 in 2 − 1102 in 3
= 9072.9 in 3
or
V = 5.25 ft 3
Area = 2π (19 − xline ) L = 2π (19L − ΣxL ) = 2π (19 in.)( 56 in.) − 488 in 2 = 3619.1 in 2
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
A = 25.1 ft 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 48.
From the solution to problem 5.4:
A = 772 in 2 ,
ΣxA = 17828 in 3 ,
( Area )
ΣyA = 18464 in 3
and for the line
L
y
xL
yL
1
13
27.5
0
357.5
0
2
40
34
20
1360
800
3
34
17
40
578
1360
10.5
28
334.85
892.92
21
8
336
128
2966.4
3180.9
4
(a)
x
212 + 242 = 31.890
5
16
Σ
134.89
(
)
or V = 64.8 ft 3 !
(
)
or A = 129.4 ft 2 !
V = 2π xarea A = 2πΣxA = 2π 17828 in 3 = 112 017 in 3 A = 2π xline L = 2πΣxL = 2π 2966.4 in 2 = 18 638.1 in 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) V = 2π ( 40 − yarea ) A = 2π ( 40 A − ΣyA )
(
)
= 2π ( 40 in.) 772 in 2 − 18 464 in 3 = 78 012 in 3 or V = 45.1 ft 3 ! A = 2π ( yline ) y = 40 L = − 2π ΣL ( y − 40 ) = − 2π ( ΣLy − 40ΣL )
= − 2π ( 3180.9 − 40 × 134.89 ) = 13 915.3 in 2 or A = 96.6 ft 2 !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 49.
From the solution of Problem 5.1:
A = 150000 mm 2 ,
x A = 140 mm,
y A = 165 mm
From the solution of Problem 5.21:
L = 1800 mm,
xL = 116.667 mm,
yL = 166.667 mm
Applying the theorems of Pappus-Guldinus, we have (a) Rotation about the x-axis:
Ax = 2π yL L = 2π (166.667 mm )(1800 mm ) = 1884 960 mm 2
(
or
A = 1.885 × 106 mm 2
or
V = 155.5 × 106 mm3
)
Vx = 2π y A = 2π (165 mm ) 150 000 mm 2 = 155 509 000 mm 3
(b) Rotation about x = 400 mm:
Ax = 400 mm = 2π ( 400 mm − xL ) L = 2π ( 400 − 116.667 ) mm (1800 mm ) = 3 204 420 mm 2 or
(
A = 3.20 × 106 mm 2
)
Vx = 2π ( 400 mm − x A ) A = 2π ( 400 − 140 ) mm 150 000 mm 2 = 245 040 000 mm 3 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
V = 245 × 106 mm3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 50.
Applying the second theorem of Pappus-Guldinus, we have (a) Rotation about axis AA′:
π ab 2 2 Volume = 2π yA = 2π ( a ) =π a b 2
V = π 2a 2b
(b) Rotation about axis BB′:
π ab 2 2 Volume = 2π yA = 2π ( 2a ) = 2π a b 2
V = 2π 2a 2b
(c) Rotation about y-axis:
4a π ab 2 2 Volume = 2π yA = 2π = πa b 3π 2 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
V =
2 2 πa b 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 51. The area A and circumference C of the cross section of the bar are
A=
π 4
d 2 and C = π d .
Also, the semicircular ends of the link can be obtained by rotating the cross section through a horizontal semicircular arc of radius R. Now, applying the theorems of Pappus-Guldinus, we have for the volume V:
V = 2 (Vside ) + 2 (V
end
) = 2 ( AL ) + 2 (π RA) = 2 ( L + π R ) A
2 π or V = 2 3 in. + π ( 0.75 in.) ( 0.5 in.) = 2.1034 in 3 4
or V = 2.10 in 3
For the area A:
A = 2 ( Aside ) + 2 ( Aend ) = 2 ( CL ) + 2 (π RC ) = 2 ( L + π R ) C or A = 2 3 in. + π ( 0.75 in.) π ( 0.5 in.) = 16.8270 in 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or A = 16.83 in 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 52.
Following the second theorem of Pappus-Guldinus, in each case a specific generating area A will be rotated about the x axis to produce the given shape. Values of y are from Fig. 5.8A. (1) Hemisphere: the generating area is a quarter circle
Have
4a π V = 2π yA = 2π a 2 3π 4
or V =
2 3 πa ! 3
(2) Semiellipsoid of revolution: the generating area is a quarter ellipse Have
4a π V = 2π yA = 2π ha 3π 4 or V =
2 2 πa h! 3
(3) Paraboloid of revolution: the generating area is a quarter parabola Have
3 2 V = 2π yA = 2π a ah 8 3 or V =
1 2 πa h! 2
or V =
1 2 πa h! 3
(4) Cone: the generating area is a triangle
Have
a 1 V = 2π yA = 2π ha 3 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 53. The required volume can be generated by rotating the area shown about the y axis. Applying the second theorem of Pappus-Guldinus, we have
5 1 V = 2π xA = 2π + 7.5 mm × × 5 mm × 5 mm 3 2
or V = 720 mm3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 54. Applying the first theorem of Pappus-Guldinus, the contact area AC of a belt is given by: AC = π yL = π ΣyL
where the individual lengths are the lengths of the belt cross section that are in contact with the pulley. (a)
0.125 0.125 in. AC = π 2 ( y1L1 ) + y2 L2 = π 2 3 − + ( 3 − 0.125 ) in. ( 0.625 in.) in. 2 cos 20° or AC = 8.10 in 2 (b)
0.375 0.375 in. AC = π 2 ( y1L1 ) = 2π 3 − 0.08 − in. 2 cos 20° or AC = 6.85 in 2 (c)
2 ( 0.25 ) AC = π 2 ( y1L1 ) = π 3 − in. π ( 0.25 in.) π or AC = 7.01 in 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 55.
Volume: The volume can be obtained by rotating the triangular area shown through π radians about the y axis. The area of the triangle is:
A=
1 ( 52 )( 60 ) = 1560 mm2 2
Applying the theorems of Pappus-Guldinus, we have
(
V = π xA = π ( 52 mm ) 1560 mm 2
)
or V = 255 × 103 mm3 !
The surface area can be obtained by rotating the triangle shown through an angle of π radians about the y axis.
Considering each line BD, DE, and BE separately: 22 = 31 mm 2
Line BD : L1 = 222 + 602 = 63.906 mm
x1 = 20 +
Line DE : L2 = 52 mm
x2 = 20 + 22 + 26 = 68 mm
Line BE : L3 = 742 + 602 = 95.268 mm
x1 = 20 +
74 = 57 mm 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then applying the theorems of Pappus-Guldinus for the part of the surface area generated by the lines: AL = πΣxA = π ( 31)( 63.906 ) + ( 68 )( 52 ) + ( 57 )( 95.268 ) = π [10947.6] = 34.392 × 103 mm 2
The area of the “end triangles”: 1 AE = 2 ( 52 )( 60 ) = 3.12 × 103 mm 2 2 Total surface area is therefore:
A = AL + AE = ( 34.392 + 3.12 ) × 103 mm 2
or A = 37.5 × 103 mm 2 !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 56. The mass of the escutcheon is given by m = ( density )V , where V is the volume. V can be generated by rotating the area A about the x-axis.
From the figure: L1 = 752 − 12.52 = 73.9510 m
L2 =
37.5 = 76.8864 mm tan 26°
a = L2 − L1 = 2.9354 mm
φ = sin −1 α=
12.5 = 9.5941° 75
26° − 9.5941° = 8.2030° = 0.143168 rad 2
Area A can be obtained by combining the following four areas:
Applying the second theorem of Pappus-Guldinus and using Figure 5.8 a, we have V = 2π yA = 2π ΣyA continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
A, mm 2
Seg . 1
1 ( 76.886 )( 37.5) = 1441.61 2
2
− α ( 75 ) = − 805.32
2
3
−
1 ( 73.951)(12.5) = − 462.19 2
− ( 2.9354 )(12.5 ) = − 36.693
4
y A , mm3
y , mm
1 ( 37.5) = 12.5 3
18 020.1
2 ( 75) sin α sin (α + φ ) = 15.2303 3α
−12 265.3
1 (12.5) = 4.1667 3
−1925.81
1 (12.5) = 6.25 2
− 229.33
Σ
3599.7
Then
(
)
V = 2π ΣyA = 2π 3599.7 mm3 = 22618 mm3 m = ( density )V
(
)(
= 8470 kg/m3 22.618 × 10−6 m3
)
= 0.191574 kg or m = 191.6 g !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 57.
The volume of the waste wood is:
Vwaste = Vblank − Vtop , where 2
Vblank = π ( 22 in.) (1.25 in.) = 1900.664 in 3
Vtop = V1 + V2 + V3 + V4 The volumes Vi can be obtained through the use of the theorem of Pappus-Guldinus: 2 2 Vtop = π ( 21.15 in.) ( 0.75 in.) + π ( 21.4 in.) ( 0.5 in.)
( 4 )( 0.5) in. × π 0.5 in. 2 + 2π 21.15 + ( 4 )( 0.75) in. × π 0.75 in. 2 + 2π 21.4 + ( ) ( ) 3π 4 3π 4 = (1053.979 + 719.362 + 26.663 + 59.592 ) in 3 = 1859.596 in 3 Therefore
Vwaste = 1900.664 in 3 − 1859.596 in 3 = 41.068 in 3 Then
Wwaste = γ woodVwaste N tops
(
)(
)
= 0.025 lb/in 3 41.068 in 3 ( 5000 tops ) = 5133.5 lb,or Vwaste = 5.13 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 58.
The total surface area can be divided up into the top circle, bottom circle, and the edge.
ATotal = ATop circle + ABottom circle + AEdge,or 2 2 ATotal = π ( 21.4 in.) + π ( 21.15 in.)
2 ( 0.5 ) π + 2π 21.4 + in. × ( 0.5 in.) + π 2
2 ( 0.75 ) π in. × ( 0.75 in.) 2π 21.15 + π 2
= (1438.72 + 1405.31 + 107.176 + 160.091) = 3111.3 in 2 Now, knowing that 1 gallon of lacquer covers 500 ft2, the number of gallons needed, NGallons is
N Gallons = ASurface × coverage × ( number of tops ) × ( number of coats ) N Gallons = 3111.3 in 2 ×
1 Gallon
( 500 ) (144 in 2 )
× 5000 × 3
= 648.19 gal or N Gallons = 648
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 59.
The mass of the lamp shade is given by
m = ρV = ρ At where A is the surface area and t is the thickness of the shade. The area can be generated by rotating the line shown about the x axis. Applying the first theorem of Pappus-Guldinus we have
A = 2π yL = 2πΣyL = 2π ( y1L1 + y2 L2 + y3L3 + y4 L4 ) 13 mm 13 + 16 or A = 2π (13 mm ) + mm × 2 2 16 + 28 + mm × 2
( 32 mm )2 + ( 3 mm )2
(8 mm )2 + (12 mm )2
28 + 33 + mm × 2
( 28 mm )2 + ( 5 mm )2
= 2π ( 84.5 + 466.03 + 317.29 + 867.51) = 10903.4 mm 2 Then
(
)(
)
m = ρ At = 2800 kg/m 3 10.9034 × 10−3 m 2 ( 0.001 m ) or m = 30.5 g
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 60. Free-Body Diagram: First note that the required surface area A can be generated by rotating the parabolic cross section through 2π radians about the x axis. Applying the first theorem of Pappus-Guldinus, we have
A = 2π yL 2
Now, since
x = ky ,
x = a : a = k ( 7.5 )
at
2
or
a = 56.25 k
(1) x = ( a + 15 ) mm: a + 15 = k (12.5 )
At
2
or
(2)
a + 15 = 156.25k
Then
Eq. (2) a + 15 156.25k : = Eq. (1) a 56.25k
or a = 8.4375 mm
Eq. (1) ⇒ k = 0.15 ∴ x = 0.15 y 2
and
1 mm dx = 0.3 y dy
2
Now
dx dL = 1 + dy = 1 + 0.09 y 2 dy dy
So
A = 2π yL
yL = ∫ ydL
and 12.5
∴ A = 2π ∫7.5 y 1 + 0.09 y 2 dy 2 1 2 = 2π 1 + 0.09 y 3 0.18
(
= 1013 mm 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
12.5 3/2
)
7.5
or A = 1013 mm 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 61.
(a) Note that in the free-body diagram: R1 =
1 ( 4.2 m )( 600 N/m ) = 1260 N, 2
and R2 =
1 ( 4.2 m )( 240 N/m ) = 504 N 2
Then for the equivalence of the systems of forces: ΣFy :
R = R1 + R2 = 1260 + 504 = 1764 N
ΣM A :
1 2 − x (1764 N ) = 2 + 4.2 m (1260 N ) + 2 + 4.2 m ( 504 N ) = 3.8000 m 3 3
R = 1764 N
or x = 3.80 m (b) Equilibrium: ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay − 1764 = 0 A = 1764 N
ΣΜ Α = 0:
M A − ( 3.80 m )(1764 N ) = 0 M A = 6.70 kN ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 62.
With R1 = ( 20 lb/ft )(18 ft ) = 360 lb, and R2 =
ΣFy : or
1 ( 60 lb/ft )(18 ft ) = 360 lb: 3
− R = − R1 − R2 R = 360 lb + 360 lb = 720 lb R = 720 lb
+ ΣM A :
− x ( 720 lb ) = − ( 9 ft )( 360 lb ) − (13.5 ft )( 360 ft ) x = 11.25 ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 63.
R = (1800 N/m )( 3.2 m ) = 5.76 kN + ΣM A = 0:
− ( 5.76 kN )(1.2 m + 1.6 m ) + By ( 3.6 m ) = 0, or
By = 4.48 kN B = 4.48 kN ΣFy = 0:
Ay + 4.48 − 5.76 = 0, or Ay = 1.28 kN
+ ΣFx = 0:
Ax = 0
Therefore:
A = 1.28 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 64.
kN R1 = 1.5 (1.6 m ) = 2.4 kN m
R2 =
1 kN 3 ( 2.4 m ) = 3.6 kN 2 m
kN R3 = 3 (1.6 m ) = 4.8 kN m Equilibrium:
+ ΣFx = 0:
Ax = 0
+ ΣM B = 0:
( 4.8 m )( 2.4 kN ) + ( 2.4 m )( 3.6 kN ) + ( 0.8 m )( 4.8 kN ) − ( 4.0 m ) Ay Ay = 6.0000 kN
+ ΣFy = 0:
6 kN − 2.4 kN − 3.6 kN − 4.8 kN + By = 0 By = 4.8000 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
=0
A = 6.00 kN B = 4.80 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 65.
lb R1 = 240 ( 4.8 ft ) = 1152 lb ft R2 =
1 lb 180 ( 3.6 ft ) = 324 lb 2 ft
Equilibrium:
+ ΣFx = 0:
Ax = 0
+ ΣFy = 0:
Ay − 1152 lb + 324 lb = 0 Ay = 828.00 lb
+ ΣM A = 0:
A = 828 lb
M A − ( 2.4 ft )(1152 lb ) + ( 6 ft )( 324 lb ) = 0 M A = 820.80 lb ⋅ ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M A = 821 lb ⋅ ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 66. The distributed load given can be simplified as in the diagram below with the resultants R1 and R2.
The resultants are:
R1 = ( 6 ft )( 30 lb/ft ) = 180 lb, and R2 =
1 ( 4.5 ft )(120 lb/ft ) = 270 lb 2
Now, for equilibrium:
ΣFx = 0:
Ax = 0
ΣFy = 0:
Ay + 180 − 270 = 0 Ay = 90.0 lb
Therefore:
ΣM A = 0:
A = 90.0 lb
or M = 675 lb ⋅ ft
2 M A + ( 3 ft )(180 lb ) − 1.5 + × 4.5 ft × ( 270 lb ) = 0 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 67.
kN R1 = 1.5 ( 2.4 m ) = 3.6 kN m
R2 =
2 kN 9 ( 2.4 m ) = 14.4 kN 3 m
Equilibrium:
+ ΣFx = 0: + ΣM B = 0:
Ax = 0
− ( 3.3 m ) Ay − (1.8 m )( 3.6 kN ) + ( 2.1 m )(14.4 kN ) = 0 Ay = 7.2000 kN
+ ΣFy = 0:
A = 7.20 kN
B = 3.60 kN
7.2 kN + 3.6 kN − 14.4 kN + By = 0 By = 3.6000 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 68.
The resultants:
R1 =
2 ( 3.2 ft )(120 lb/ft ) = 256 lb 3
R2 =
1 ( 2.4 ft )(120 lb/ft ) = 96 lb 3
R3 =
1 (1.6 ft )( 45 lb/ft ) = 24 lb 3
Then for equilibrium:
ΣFx = 0: ΣM B = 0:
Ax = 0
3 − ( 7.2 ft ) Ay + 4 + × 3.2 ft × ( 256 lb ) 8 3 1 + 1.6 + × 2.4 ft × ( 96 lb ) + × 1.6 ft ( 24 lb = 0 ) 4 4
Ay = 231.56 lb
ΣFy = 0:
A = 232 lb
B = 144.4 lb
23.56 − 256 − 96 − 24 + By = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 69.
Have
RI =
1 ( 9 m )( 2 kN/m ) = 9 kN 2
RII = ( 9 m )(1.5 kN/m ) = 13.5 kN Then
ΣFx = 0: C x = 0 ΣM B = 0: − 50 kN ⋅ m − (1 m )( 9 kN ) − ( 2.5 m )(13.5 kN ) + ( 6 m ) C y = 0
or
C y = 15.4583 kN
C = 15.46 kN
B = 7.04 kN
ΣFy = 0: By − 9 kN − 13.5 kN + 15.4583 = 0 or
By = 7.0417 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution70.
Have
RI =
1 ( 9 m ) ( 3.5 − w0 ) kN/m = 4.5 ( 3.5 − w0 ) kN 2
RII = ( 9 m ) ( w0 kN/m ) = 9w0 kN (a) Then or
ΣM C = 0: − 50 kN ⋅ m + ( 5 m ) 4.5 ( 3.5 − w0 ) kN + ( 3.5 m ) ( 9w0 kN ) = 0 9w0 + 28.75 = 0
so
w0 = − 3.1944 kN/m
w0 = 3.19 kN/m
C = 1.375 kN
Note: the negative sign means that the distributed force w0 is upward.
(b)
ΣFx = 0: C x = 0 ΣFy = 0: − 4.5 ( 3.5 + 3.19 ) kN + 9 ( 3.19 ) kN + C y = 0 or
C y = 1.375 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 71.
The distributed load can be represented in terms of resultants: R1 = ( 8 m )( 300 N/m ) = 2400 N
R2 =
1 ( 8 − a ) m ( 2400 N/m ) = 1200 ( 8 − a ) N 2
For equilibrium: ΣM B = 0:
1 − 8 Ay + 4 ( 2400 ) + ( 8 − a ) 1200 ( 8 − a ) = 0 3 Ay = 1200 + 50 ( 8 − a )
ΣM A = 0:
2
(1)
2 8By − 4 ( 2400 ) − a + ( 8 − a ) 1200 ( 8 − a ) = 0 3 By = 1200 + 50 (16 + a )( 8 − a )
(a) ΣFy = 0:
(2)
Ay + By − 2400 − 1200 ( 8 − a ) = 0
(3)
Using the requirement By = 2 Ay and (1) 2 3 1200 + 50 ( 8 − a ) − 2400 − 1200 ( 8 − a ) = 0
or
(8 − a )2 − 8 (8 − a ) + 8 = 0,
which gives continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(8 − a ) =
8±
( − 8 )2 − 4 ( 8 ) 2
= 6.82843 m or 1.17157 m
a = 1.17157 m or a = 6.82843 m, and therefore
amin = 1.17157 m or amin = 1.172 m ! (b) ΣFx = 0:
Ax = 0
Equation (1) gives: Ay = 1200 + 50 ( 6.82843)
2
= 3531.4 N or A = 3.53 kN
!
B = 7.06 kN
!
By = 2 Ay gives By = 2 ( 3531.4 N ) , and
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 72.
The distributed load can be represented in terms of resultants: R1 = ( 8 m )( 300 N/m ) = 2400 N
R2 =
1 ( 8 − a ) m ( 2400 N/m ) = 1200 ( 8 − a ) N 2
For equilibrium: ΣM B = 0:
1 − 8 Ay + 4 ( 2400 ) + ( 8 − a ) 1200 ( 8 − a ) = 0 3 Ay = 1200 + 50 ( 8 − a )
ΣM A = 0:
2
(1)
2 8By − 4 ( 2400 ) − a + ( 8 − a ) 1200 ( 8 − a ) = 0 3
By = 1200 + 50 (16 + a )( 8 − a )
(2)
(a) Dividing Equation (1) by Equation (2): By Ay
=
1200 + 50 (16 + a )( 8 − a ) 1200 + 50 ( 8 − a )
2
=
( ) 24 + ( 64 − 16a + a )
=
152 − 8a − a 2 88 − 16a + a 2
24 + 128 − 8a − a 2
2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Differentiating d By da Ay
By Ay
:
(
) (
)
( − 8 − 2a ) 88 − 16a + a 2 − 152 − 8a − a 2 ( −16 + 2a ) =0 = 2 88 − 16a + a 2
(
)
2
a − 20a + 72 = 0
or
a=
or
20 ±
( − 20 )2 − 4 ( 72 ) 2
Knowing that a ≤ 8 m: a = 4.7085 m or
a = 4.71 m !
(b) For equilibrium:
ΣFx = 0:
Ax = 0
and from (1): Ay = 1200 + 50 ( 8 − 4.7085 )
2
= 1741.70 N A = 1.742 kN
!
B = 4.61 kN
!
Also, ΣFy = 0:
1741.70 − 2400 − 1200 ( 8 − 4.7085 ) + By = 0 By = 4608.1 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 73.
R1 = ( 3.6 ft )( wA kips/ft ) = 3.6wA kips R2 =
1 1 ( 5.4 ft ) wA kips/ft = 1.35wA kips 2 2
1 R3 = ( 5.4 ft ) wA kips/ft = 2.7wA kips 2 Equilibrium:
− (1.8 ft ) ( 3.6wA ) kips + (1.8 ft ) (1.35wA ) kips
+ ΣM C = 0:
+ ( 2.7 ft ) ( 2.7 wA ) kips + ( 2.1 ft )( 6 kips ) − ( 2.4 ft )( 4.5 kips ) − ( 3.6 ft )(1 kip ) = 0 wA = 0.55556 kips/ft
+ ΣFyA = 0:
or
wA = 556 lb/ft
RR − ( 3.6 )( 0.55556 ) kips + 1.35 ( 0.55556 ) kips
+ 2.7 ( 0.55556 ) kips − 6 kips − 4.5 kips − 1 kip = 0 Solving for RR :
RR = 7.2500 kips
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
RR = 7.25 kips
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 74.
R1 = ( 3.6 ft )( wA kips/ft ) = 3.6wA kips
R2 =
1 ( 5.4 ft )( 0.6wA kips/ft ) = 1.62wA kips 2
R3 = ( 5.4 ft )( 0.4wA kips/ft ) = 2.16wA kips Equilibrium: + ΣM A = 0:
− (1.8 ft ) ( 3.6wA ) kips + ( 3.6 ft ) RR + ( 5.4 ft ) (1.62wA ) kips + ( 6.3 ft ) ( 2.16 wA ) kips − (1.5 ft )( 6 kips )
− ( 6 ft )( 4.5 kips ) − ( 7.2 ft ) P = 0 or
+ ΣFy y = 0: or
28.836wA + 3.6RR − 7.2 P − 36 = 0
(1)
RR + 3.6wA + 1.62wA + 2.16wA − 6 − 4.5 − P = 0
7.38wA + RR − P − 10.5 = 0
( 28.836 ) Eq. ( 2 ) − ( 7.38) Eq. (1) = 0 gives 2.268RR − 37.098 + 24.3P = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(2)
COSMOS: Complete Online Solutions Manual Organization System
Since RR ≥ 0, the maximum acceptable value of P is that for which RR = 0, and P = 1.52667 kips
or
P = 1.527 kips !
(b) Now, from (2): 7.38wA − 1.52667 − 10.5 = 0
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
wA = 1.630 kips/ft !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 75.
Noting that the weight of a section of the dam is Wi = γ Vi (Vi being the volume of that section ) :
lb W1 = 150 3 (10.5 ft )( 9 ft )(1 ft ) = 14175 lb ft
lb 1 W2 = 150 3 (10.5 ft )( 21 ft )(1 ft ) = 16537.5 lb ft 2 lb W3 = 150 3 (18 ft )( 30 ft )(1 ft ) = 81000 lb ft lb 1 W4 = 150 3 ( 3 ft )( 30 ft )(1 ft ) = 6750 lb 2 ft From the free-body diagram: x1 = 5.25 ft, x2 =
2 (10.5 ft ) = 7 ft, x3 = 19.5 ft, and x4 = 29.5 ft 3
For the distance a: a 3 = , or a = 2.4 ft 24 30
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Therefore: lb 1 Ws = 62.4 3 ( 2.4 ft )( 24 ft )(1 ft ) = 1797.12 lb, and ft 2
xs = 31.5 −
1 ( 2.4 ) = 30.7 ft 3
Now, for the pressure force P: P= =
1 1 PB A = (γ W hB ) A 2 2 1 lb 62.4 3 ( 24 ft ) ( 24 ft )(1 ft ) 2 ft
= 17971.2 lb Then, for equilibrium: (a) ΣFx = 0:
H −P=0 H = 17971.2 lb or H = 17.97 kips
ΣFy = 0:
!
V − 14175 − 16537.5 − 81000 − 6750 − 1797.12 = 0 V = 120259.62 lb or V = 120.3 kips
!
(b) From moment equilibrium: ΣM A = 0:
1 x (120259.62 lb ) + × 24 ft (17971.2 lb ) − ( 5.25 ft )(14175 lb ) − ( 7 ft )(16537.5 lb ) 3
(19.5 ft )(81000 lb ) − ( 29.5 ft )( 6750 lb ) − ( 30.7 ft )(1797.12 lb ) = 0 or x = 15.63 ft ! (c) free-body diagram for section of water:
continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
For equilibrium: ΣF = 0:
Ws + P + ( − R ) = 0
where R is the force of the water on the face BD of the dam, and
P = 17971.2 lb, and Ws = 1797.12 lb Then from the force triangle: R=
(17971.2 lb )2 + (1797.12 lb )2
= 18.06 kips
1797.12 θ = tan −1 = 5.71° 17971.2
Therefore: R = 18.06 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5.71° !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 76. Free-Body Diagram:
Locations of centers of gravity:
x1 =
1 x2 = 5 + ( 2 ) m = 6 m 2
5 ( 5 m ) = 3.125 m 8
1 25 x3 = 7 + ( 4 ) = m 3 3
5 x4 = 7 + ( 4 ) = 9.5 m 8
Weights: Wi = ρi gVi 2 W1 = 2400 kg/m3 9.81 m/s 2 ( 5 m )( 8 m )(1 m ) = 627 840 N 3
(
)(
)
(
)(
)
W2 = 2400 kg/m3 9.81 m/s 2 ( 2 m )( 8 m )(1 m ) = 376 700 N
1 W3 = 2400 kg/m3 9.81 m/s 2 ( 4 m )( 6 m )(1 m ) = 188 352 N 3
(
)(
)
2 W4 = 2400 kg/m3 9.81 m/s 2 ( 4 m )( 6 m )(1 m ) = 156 960 N 3 The pressure force P is: 1 1 P = Aρ gh = ( 6 m )(1 m ) 1000 kg/m3 9.81 m/s 2 ( 6 m ) = 176 580 N 2 2
(
)(
)
(
)(
)
Equilibrium: (a) + ΣFx = 0:
H − 176.580 kN = 0 H = 176.580 kN
+ ΣFy = 0:
H = 176.6 kN
!
V − 627.84 kN − 376.70 kN − 188.352 kN − 156.960 kN = 0 V = 1349.85 kN
(b) + ΣM A = 0:
or
or
V = 1350 kN
x (1349.85 kN ) − ( 3.125 m )( 627.84 kN ) − ( 6 m )( 376.70 kN ) 25 − m (188.352 kN ) − ( 9.5 m )(156.960 kN ) + ( 2 m )(176.580 kN ) = 0 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
!
COSMOS: Complete Online Solutions Manual Organization System
x = 5.1337 m Thus the point of application of the resultant is:
5.13 m to the right of A. !
(c) Free-body diagram and force triangle for the water section BCD
From the force triangle: R=
(176.580 )2 + (156.960 )2
= 236.26 kN
156.960
θ = tan −1 = 41.634° 176.580 or on the face BD of the dam
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
R = 236 kN
41.6° !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 77. Free-Body Diagram:
Note that valve opens when B = 0. Pressures p1 and p2 at top and bottom of valve:
( = (10
)( ) kg/m )( 9.81 m/s ) ( d ) = ( 9810d ) N/m
p1 = 103 kg/m 3 9.81 m/s 2 ( d − 0.225 m ) = ( 9810d − 2207.3) N/m 2 p2
3
3
2
2
Force P1 and P2:
P1 =
1 1 p1 A = ( 9810d − 2207.3) N/m 2 ( 0.225 m )( 0.225 m ) 2 2
= ( 248.32d − 55.872 ) N P2 =
1 1 p2 A = ( 9810d ) N/m 2 ( 0.225 m )( 0.225 m ) 2 2
= ( 248.32d ) N + ΣM A = 0:
− ( 0.15 − 0.09 ) m ( 248.32d − 55.872 ) N + ( 0.09 − 0.075 ) m ( 248.32d ) N = 0
Thus d = 0.30000 m, or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
d = 300 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 78. Free-Body Diagram:
Note that valve opens when B = 0. Pressures p1 and p2 at top and bottom of valve:
( = (10
)( ) kg/m )( 9.81 m/s ) ( 0.450 m ) = 4414.5 N/m
p1 = 103 kg/m 3 9.81 m/s 2 ( 0.225 m ) = 2207.3 N/m 2 p2
3
3
2
2
Force P1 and P2:
P1 =
1 1 p1 A = 2207.3 N/m 2 ( 0.225 m )( 0.225 m ) 2 2
(
)
= 55.872 N P2 =
1 1 p2 A = 4414.5 N/m 2 ( 0.225 m )( 0.225 m ) 2 2
(
)
= 111.742 N + ΣM A = 0:
− ( 0.15 − h ) m ( 55.872 N ) + ( h − 0.075 ) m (111.742 N ) = 0
Solving for h: h = 0.100 000 m, or h = 100.0 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 79. Since gate is 4 ft wide: p1 = 4γ ( h − 3)
p2 = 4γ h p1′ = 4γ ′ ( d − 3)
p2′ = 4γ ′d
) )
( (
1 1 ( 3 ft ) p1′ − p1 = ( 3 ft ) 4γ ′ ( d − 3) − 4γ ( h − 3) = 6γ ′ ( d − 3) − 6γ ( h − 3) 2 2 1 1 P2′ − P2 = ( 3 ft ) p2′ − p2 = ( 3 ft ) [ 4γ ′d − 4γ h ] = 6γ ′d − 6γ h 2 2 P1′ − P1 =
This gives the free-body diagram:
+ ΣM A = 0: or
( 3 ft ) B − (1 ft ) ( P1′ − P1 ) − ( 2 ft ) ( P2′ − P2 ) = 0 B= =
) (
(
1 ′ 2 ′ P1 − P1 − P2 − P2 3 3
)
1 2 6γ ′ ( d − 3) − 6γ ( h − 3) − [ 6γ ′d − 6γ h ] 3 3
= 2γ ′ ( d − 3) − 2γ ( h − 3) + 4γ ′d − 4γ h or + ΣFx = 0:
B = 6γ ′ ( d − 1) − 6γ ( h − 1)
(
) (
(1)
)
A + B − P1′ − P1 − P2′ − P2 = 0, or using (1) A + 6γ ′ ( d − 1) − 6γ ( h − 1) − 6γ ′ ( d − 3) − 6γ ( h − 3) − [ 6γ ′d − 6γ h ] = 0, or
A = 6γ ′ ( d − 2 ) − 6γ ( h − 2 ) Using the given data in (1) and (2): h = 6 ft, d = 9 ft, γ = 62.4 lb/ft 3 , γ ′ = 64 lb/ft 3 A = 6 ( 64 )( 9 − 2 ) − 6 ( 62.4 )( 6 − 2 )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(2)
COSMOS: Complete Online Solutions Manual Organization System
= 2688 lb − 1497.6 lb = 1190.4 lb B = 6 ( 64 )( 9 − 1) − 6 ( 62.4 )( 6 − 1) = 3072 lb − 1872 lb = 1200 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
A = 1190 lb
!
B = 1200 lb
!
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 80. First, determine the force on the dam face without the silt.
Pw =
Have
=
1 1 Apw = A ( ρ gh ) 2 2 1 ( 6 m )(1 m ) 103 kg/m 3 9.81 m/s 2 ( 6 m ) 2
(
)(
)
= 176.58 kN Next, determine the force on the dam face with silt.
Pw′ =
Have
1 ( 4.5 m )(1m ) 103 kg/m 3 9.81 m/s 2 ( 4.5 m ) 2
(
)(
)
= 99.326 kN
( Ps )I
(
)(
)
= (1.5 m )(1 m ) 103 kg/m 3 9.81 m/s 2 ( 4.5 m ) = 66.218 kN
( Ps )II
=
1 (1.5 m )(1 m ) 1.76 × 103 kg/m3 9.81 m/s 2 (1.5 m ) 2
(
)(
)
= 19.424 kN Then
P′ = Pw′ + ( Ps )I + ( Ps )II = 184.97 kN
The percentage increase, % inc., is then given by
% inc. =
(184.97 − 176.58) × 100% = 4.7503% P′ − Pw × 100% = 176.58 Pw % inc. = 4.75%
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 81.
From Problem 5.80, the force on the dam face before the silt is deposited, is Pw = 176.58 kN. The maximum allowable force Pallow on the dam is then: Pallow = 1.5Pw = (1.5 )(176.58 kN ) = 264.87 kN
Next determine the force P′ on the dam face after a depth d of silt has settled.
Have
Pw′ =
(
)(
)(
)
)
1 ( 6 − d ) m × (1 m ) 103 kg/m3 9.81 m/s 2 ( 6 − d ) m 2 2
= 4.905 ( 6 − d ) kN
( Ps )I
(
= d (1 m ) 103 kg/m3 9.81 m/s 2 ( 6 − d ) m
(
)
= 9.81 6d − d 2 kN
( Ps )II
=
(
)(
)
1 d (1 m ) 1.76 × 103 kg/m3 9.81 m/s 2 ( d ) m 2
= 8.6328d 2 kN
(
)
(
)
P′ = Pw′ + ( Ps )I + ( Ps )II = 4.905 36 − 12d + d 2 + 9.81 6d − d 2 + 8.6328d 2 kN = 3.7278d 2 + 176.58 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now required that P′ = Pallow to determine the maximum value of d. ∴
or Finally
(3.7278d
2
)
+ 176.58 kN = 264.87 kN
d = 4.8667 m
4.8667 m = 20 × 10−3
m ×N year
or N = 243 years !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 82.
Pressure force from the water on board AB:
1 Api where p1 and p2 are the pressures at the top and bottom of the board: 2 1 kg m P1 = ( 0.5 m )(1.5 m ) 103 3 9.81 2 ( 0.6 m ) = 2207.3 N 2 m s Pi =
P2 =
1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 (1 m ) = 3678.8 N 2 m s
Free-Body Diagram:
Ax denotes the force from one piling and is therefore multiplied by two in the free-body diagram. 1 2 + ΣM A = 0: − ( 0.3 m ) B + ( 0.5 ) m ( 2207.3 N ) + ( 0.5) m ( 3678.8 N ) = 0, or 3 3 B = 5313.8 N 4 4 + ΣFx = 0: 2 Ax + ( 2207.3 N ) + ( 3678.8 N ) = 0, or 5 5 Ax = − 2354.4 N 3 3 5318.8 N − ( 2207.3 N ) − ( 3678.8 N ) + Ay = 0, or + ΣFy = 0: 5 5 Ay = −1782.14 N
Therefore: (a) A x = 2.35 kN (b) (c)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
!
A y = 1.782 kN ! B = 5.31 kN !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 83. Pressure force from the water on board AB:
Pi =
1 Api where p1 and p2 are the pressures at the top and bottom of the board: 2
P1 =
1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 ( 0.6 m ) = 2207.3 N 2 m s
P2 =
1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 (1 m ) = 3678.8 N 2 m s
Note that the board can move in two ways: by rotating about A if the rope is pulled upward, and by sliding down at A if the rope is pulled sideways to the left. Case 1 (rotation about A): For minimum tension the rope will be perpendicular to the board. Free-Body Diagram:
+ ΣM A = 0:
1 − ( 0.5 m ) TBC + ( 0.5 ) m ( 2207.3 N ) + 3
2 3 ( 0.5 ) m ( 3678.8 N ) = 0, or
TBC = 3188.3 N Case 2 (sliding down at A): When the board is just about to slide down at A, A y = 0. continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Free-Body Diagram:
+ ΣM B = 0:
1 − ( 0.4 m ) ( 2 Ax ) − ( 0.5 ) m ( 3678.8 N ) − 3
2 3 ( 0.5 ) m ( 2207.3 N ) = 0, or
2 Ax = − 3372.3 N + ΣFx = 0:
− TBC − 3372.3 +
4 4 ( 2207.3 N ) + ( 3678.8 N ) = 0, or 5 5
TBC = 1336.58 N Thus:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
( TBC )min
= 1.337 kN
!
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 84. Free-Body Diagram:
Force from water pressure:
1 ApB where A is the rectangular cross sectional area through line BD, and pB is the pressure at 2 point B. Thus 1 1 P = A (γ h ) = (16 ft )(10 ft ) 62.4 lb/ft 3 (10 ft ) = 18720.0 lb = 18.72 kips 2 2 1 W = γ V = 62.4 lb/ft 3 ( 3 ft )( 6 ft )( 6 ft ) = 3369.61 lb = 3.3696 kips 2 Equilibrium: 20 + ΣM A = 0: (18.72 kips ) ft − B ( 3 ft ) + ( 3.3696 kips )( 2 ft ) = 0. 3 P−
(
(
)
)
Solving for B:
B = 43.846 kips, or + ΣFx = 0:
B = 43.8 kips
18.72 kips + Ax = 0, or Ax = −18.7200 kips
+ ΣFy = 0:
Ay − 3.3693 kips + 43.846 kips = 0, or Ay = − 40.476 kips A=
( −18.7200 )2 + ( −40.476 )2
= 44.595 kips
40.476
θ = tan −1 = 65.180° 18.7200
Therefore: A = 44.6 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
65.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 85. Consider a 1-in. thick section of the gate and a triangular section BDE of water above the gate Free-Body Diagram:
Pressure force P:
1 1 1 ApB = ( d × 1 in.)(γ d ) = γ d 2 lb 2 2 2 Weight of water section above gate: P=
4 1 8 WW = γ VW = γ × d × d × 1 in. = γ d 2 lb 2 15 15 For impending motion of gate: B y = 0, and for equilibrium: + ΣM a = 0:
2 1 8 4 d 1 2 2 (16 ) − d γ d − − 6 γ d = 0, and 3 15 15 3 2 3
d = 27.301 in., or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
d = 27.3 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 86. Consider a 1-in. thick section of the gate and a triangular section BDE of water above the gate Free-Body Diagram:
Pressure force P:
1 1 1 ApB = ( d × 1 in.)(γ d ) = γ d 2 lb 2 2 2 Weight of water section above gate: P=
4 1 8 WW = γ VW = γ × d × d × 1 in. = γ d 2 lb 2 15 15 For impending motion of gate: B y = 0, and for equilibrium: + ΣM a = 0:
2 1 8 4 d 1 2 2 (16 ) − d γ d − − (10 − h ) γ d = 0, and 3 3 15 15 3 2
with d = 30 in.
2 1 8 4 2 (16 ) − 30 γ 30 − 3 3 15 15
d 1 2 3 − (10 − h ) 2 γ 30 = 0, and
h = 2.8444 in., or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
h = 2.84 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 87. Free-Body Diagram:
(
)
W = (125 kg ) 9.81 m/s 2 = 1226.25 N Denoting the water pressure at a depth h by ph, the forces due to the water pressure P1, P2, P3, P4 can be obtained as follows: 1 P1 = ADC p( 0.15 m ) , or with 2
(
)( ) 1 = ( 0.15 m )(1 m ) (1471.50 N/m ) = 110.363 N 2
p( 0.15 m ) = 1000 kg/m3 9.81 m/s 2 ( 0.15 m ) = 1471.50 N/m 2
P1
2
P2 = ACB p( 0.15 m) , or
(
)
P2 = ( 0.6 m )(1 m ) 1471.50 N/m 2 = 882.90 N 1 ABA p( 0.15 m ) , or 2 1 P3 = ( 0.6 m )(1 m ) 1471.50 N/m 2 = 441.45 N 2 1 P4 = ABA p( 0.75 m ) , or with 2
P3 =
(
(
)
)(
)
p( 0.75 m ) = 1000 kg/m3 9.81 m/s 2 ( 0.75 m ) = 7357.5 N/m 2
P4 =
(
)
1 ( 0.16 m )(1 m ) 7357.5 N/m 2 = 2207.3 N 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now from the free-body diagram: − (1.2 m ) D + ( 0.6 m )(1226.25 N ) + ( 0.3 m )(1226.25 N )
+ ΣM A = 0:
− ( 0.6 + 0.05 m ) (110.363 N ) − ( 0.3 m )( 882.90 N ) − ( 0.4 m )( 441.45 N )
− ( 0.2 m )( 2207.3 N ) = 0, or
D = 124.149 N, and D = 124.1 N
+ ΣFx = 0:
!
Ax + 110.363 N + 441.45 N + 2207.3 N = 0, or Ax = −2759.1 N
+ ΣFy = 0:
Ay − 3 (1226.25 N ) + 882.90 N = 0, or Ay = 2795.9 N
Then, A=
( −2759.1)2 + ( 2795.9 )2
θ = tan −1
= 3930 N, and
2795.9 = 45.4° 2759.1 Therefore: A = 3930 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
45.4° !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 88. Free-Body Diagram:
(
)
W = (125 kg ) 9.81 m/s 2 = 1226.25 N Denoting the water pressure at a depth h by ph, the forces due to the water pressure P1, P2, P3, P4 can be obtained as follows: 1 P1 = ADC p( d − 0.6 m ) , or w 2 1 P1 = ( d − 0.6 ) m × (1 m ) γ N/m3 ( d − 0.6 ) m 2 1 2 = γ ( d − 0.6 ) N 2 where γ denotes the specific weight of water. In the same way 1 P2 = ACB p( d − 0.6 m) , or 2
(
(
)
)
P2 = ( 0.6 m ) × (1 m ) γ N/m3 ( d − 0.6 ) m = 0.6γ ( d − 0.6 ) N
1 ABA p( d − 0.6 m ) , or 2 1 P3 = ( 0.6 m ) × (1 m ) γ N/m3 ( d − 0.6 ) m 2 = 0.3γ ( d − 0.6 ) N
P3 =
(
)
1 ABA p( d m ) , or 2 1 P4 = ( 0.6 m ) × (1 m ) γ N/m3 ( d m ) 2 = 0.3γ d N P4 =
(
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now from the free-body diagram: + ΣM A = 0:
( 0.6 m )(1226.25 N ) + ( 0.3 m )(1226.25 N ) 1 1 2 − 0.6 m + ( d − 0.6) m γ ( d − 0.6) N − ( 0.3 m ) 0.6γ ( d − 0.6) N 2 3
2 1 − ( 0.6 m ) 0.3γ ( d − 0.6 ) N − ( 0.6 m ) 0.3γ ( d − 0.6 ) N + 0.18γ N = 0, or 3 3 1 1103.63 − 0.036 ( d − 0.6 )3 + 0.3 ( d − 0.6 )2 + 0.36 ( d − 0.6 ) = γ 6
(
)(
)
With γ = 1000 kg/m3 9.81 m/s 2 = 9810 N/m3 , this gives 1 1103.63 − 0.036 = 0.076501 ( d − 0.6 )3 + 0.3 ( d − 0.6 )2 + 0.36 ( d − 0.6 ) = 6 9810 N/m3 Solving for d numerically:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
d = 0.782 m !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 89. (a) Free-body diagram for a 24-in. long parabolic section of water: In the free body diagram force P is:
P=
1 1 1 3 24 3 AP = A (γ h ) = ft ft 62.4 lb/ft 3 ft = 3.9000 lb 2 2 2 12 12 12 Ww = γ V
(
)
2 4.5 3 24 = 62.4 lb/ft 3 ft ft ft 3 12 12 12 = 7.8000 lb
(
)
From the force triangle:
R=
P 2 + Ww 2 =
θ = tan −1
( 3.9 )2 + ( 7.8)2
= 8.7207 lb
Ww 7.8 = tan −1 = 63.435°, or P 3.9
R = 8.72 lb
(b)
63.4°
Free-body diagram for a 24-in. long section of the water: From (a) WW = 7.8000 lb From the free-body diagram:
By = 7.8000 lb +ΣM B = 0:
M B + ( 2.25 − 1.8 ) in. ( 7.8000 lb ) = 0, or
M B = −3.5100 lb ⋅ in. Therefore, the force-couple system on the gutter is:
R = 7.8 lb ; M = 3.51 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 90.
Note, for the axes shown y
yV
−R
−2π R 4
3 − r 8
1 4 πr 4
V
1
(π R ) ( 2R ) = 2π R
2
2 − π r3 3
Σ
r3 2π R 3 − 3
2
3
r4 −2π R 4 − 8
1 R4 − r 4 Σ yV 8 Y = =− 1 ΣV 3 R − r3 3
Then
1−
1 r 8 R
1−
1 r 3 R
=
(a )
r =
4
3
3 R: y = − 4
1−
1 3 3 4
1 3 1− 3 4
4
3
R
or y = −1.118R 1−
(b)
y = −1.2R : − 1.2R = −
4
or
1 r 8 R
1 r 1− 3 R
4
3
R
3
r r − 3.2 + 1.6 = 0 R R
Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
r = 0.884 R
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 91. Labeling the two parts of the body as follows:
ΣyV Then Y = = ΣV
(
7 π a 2h 2 24 2 π a 2h 3
(
)
)
V
y
yV
1
1 2 πa h 2
h 2
1 2 2 πa h 4
2
1 2 πa h 6
h 4
1 π a 2h 2 24
Σ
2 2 πa h 3
7 π a 2h 2 24
or Y =
7 h 16
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 92. Labeling the two parts of the body as follows:
z
V 1 2
Σ
Then Z =
( (
− 12 a3h ΣzV = 2 π a 2h ΣV 3
1 2 πa h 2 1 2 πa h 6 2 2 πa h 3
−
4a 3π a
π
zV
2 − a 3h 3 1 3 ah 6 1 − a 3h 2
) )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Z = −
3a 4π
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 93.
V
x
xV
Rectangular prism
Lab
1 L 2
1 2 L ab 2
Pyramid
1 b a h 3 2
1 ΣV = ab L + h 6
Then
Now
L+
ΣxV =
X ΣV = ΣxV
1 h 4
1 1 abh L + h 6 4
1 2 1 ab 3L + h L + h 6 4
so that
1 1 1 X ab L + h = ab 3L2 + hL + h 2 6 6 4 1 h 1 h 1 h2 X 1 + L 3 = + + 6 L 6 L 4 L2
or
(a) X = ? when h = Substituting
(1)
1 L 2
h 1 = into Eq. (1) L 2 2 1 1 1 1 11 X 1 + = L 3 + + 6 2 6 2 4 2
or X =
(b)
57 L 104
X = 0.548L
h = ? when X = L L
Substituting into Eq. (1) or or
1 h 1 h 1 h2 L 1 + = L 3 + + 6 L 6 L 4 L2
1+
1h 1 1h 1 h2 = + + 6L 2 6 L 24 L2 h2 = 12 L2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴
h = 2 3 L
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 94. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume.
V , mm3
y , mm
z , mm
yV , mm 4
zV , mm 4
1
( 60 )(105)(10 ) = 63000
−5
52.5
− 315 000
3 307 500
2
1 2 π ( 30 ) (10 ) = 14 137.2 2
−5
− 70 686
1 664 400
3
(15)( 30 )( 60 ) = 27 000
15
30
405 000
810 000
4
− π (19 ) (10 ) = −11 341.1
−5
105
56 706
−1 190 820
5
1 2 − π (19 ) (15 ) = − 8505.9 2
30
−186 585
−255 180
−110 565
4 335 900
2
Σ Then Y =
30 −
4 (19 ) 3π
= 21.936
105 +
4 ( 30 ) 3π
=117.732
84 290
ΣyV −110 565 mm = 84 290 ΣV
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Y = −1.312 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 95. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume.
Then Z =
V , mm3
z , mm
zV , mm 4
1
( 60 )(105)(10 ) = 63000
52.5
3 307 500
2
1 2 π ( 30 ) (10 ) = 14 137.2 2
3
(15)( 30 )( 60 ) = 27 000
4
105 +
4 ( 30 ) 3π
= 117.732
1 664 400
30
810 000
− π (19 ) (10 ) = −11 341.1
105
−1 190 820
5
1 2 − π (19 ) (15 ) = − 8505.9 2
30
− 255 180
Σ
84 290
2
ΣzV 4 335 900 = mm ΣV 84 290
4 335 900
or Z = 51.4 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 96. Assume that the bracket is homogeneous so that its center of gravity coincides with the centroid of the volume.
V , mm3
x , mm
xV , mm 4
1
(100 )(88)(12 ) =105600
50
5 280 000
2
(100 )(12 )(88) = 105600
50
5 280 000
3
1 ( 62 )( 51)(10 ) = 15 810 2
39
616 590
4
−
1 ( 66 )( 45)(12 ) = −17 820 2
Σ Then X =
34 +
2 ( 66 ) = 78 3
209 190
ΣxV 9 786 600 = mm ΣV 209190
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
−1 389 960 9 786 600 or X = 46.8 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 97. Assume that the bracket is homogeneous so that it center of gravity coincides with the centroid of the volume.
V , mm 1
(100 )(88)(12 ) = 105600
2
(100 )(12 )(88) = 105600
3
1 ( 62 )( 51)(10 ) = 15 810 2
4
−
1 ( 66 )( 45)(12 ) = −17 820 2
Σ Then Z =
3
z , mm
zV , mm 4
6
633 600
12 +
1 (88) = 56 2
5 913 600
12 +
1 ( 51) = 29 3
458 490
55 +
2 ( 45) = 85 3
209 190
ΣzV 5 491 000 = mm ΣV 209 190
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
−1 514 700 5 491 000
or Z = 26.2 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 98. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume.
Then X =
V , in 3
x , in.
xV , in 4
1
( 8)( 0.9)( 2.7) = 19.44
4
77.76
2
1 ( 2.1)( 6)( 2.7) = 17.01 2
2
34.02
3
1 2 π (1.35) ( 0.9) = 2.5765 2 2
4
− π ( 0.8 ) ( 0.9 ) = −1.80956
Σ
37.217
ΣxV 119.392 = in. ΣV 37.217
8+
1.8
8
22.088
π −14.4765 119.392
or X = 3.21 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 99. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume.
Then Y =
V , in 3
y , in.
yV , in 4
1
( 8)( 0.9)( 2.7) = 19.44
0.45
8.748
2
1 ( 2.1)( 6)( 2.7) = 17.01 2
1.6
27.216
3
1 2 π (1.35) ( 0.9) = 2.5765 2
0.45
1.15943
4
− π ( 0.8 ) ( 0.9 ) = −1.80956
0.45
− 0.81430
Σ
37.217
ΣyV 36.309 = in. ΣV 37.217
2
36.309 or Y = 0.976 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 100. Labeling the five parts of the body as follows, and noting that the center of gravity coincides with the centroid of the area due to the uniform thickness.
4 × 150 z5 = − 300 − = − 236.34, 3π
A5 = −
π 2
(150 )2 = −11 250π
= − 35 343
xA,106 mm3 yA, 106 mm3 zA, 106 mm3
A mm 2
x , mm
y , mm
z , mm
1
( 600 )( 400 ) = 240000
300
200
0
72
48
0
2
( 300 )( 400 ) = 120000
600
200
−150
72
24
−18
3
− (120 )( 280 ) = − 3360
600
140
− 240
− 20.160
− 4.7040
8.0640
4
( 600 )( 300 ) = 180000
300
400
−150
54
72
− 27
5
− 35 343
240
400
− 236.34
− 2.7000
− 4.5
2.6588
Σ
471 057
169.358
125.159
− 28.583 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Therefore: X =
ΣxA 169 358 000 = = 359.53 mm 471 057 ΣA
or X = 360 mm !
Y =
ΣyA 125159 000 = = 265.70 mm 471 057 ΣA
or Y = 266 mm !
Z =
ΣzA − 28 583 000 = = − 60.678 mm 471 057 ΣA
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Z = − 60.7 mm !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 101. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area.
A, in 2
x , in.
y , in.
z , in.
xA, in 3
yA, in 3
zA, in 3
1
1 ( 4.5)( 3) = 6.75 2
1.5
7
0
10.125
47.25
0
2
( 4.5)(10 ) = 45
2.25
3
4
101.25
135
180
3
− ( 2.25 )( 5 ) = −11.25 − 2.25
1.125
1.5
6
−12.6563
−16.875
− 67.5
2.25
0
17.8925
0
71.211
116.611
165.375
183.71 1
4
π 2
( 2.25)2 = 7.9522
Σ
48.452
8+
4 ( 2.25 ) 3π
Then X =
ΣxA 116.611 = in. ΣA 48.452
or X = 2.41 in.
Y =
ΣyA 165.375 = in. ΣA 48.452
or Y = 3.41 in.
Z =
ΣzA 183.711 = in. 48.452 ΣA
or Z = 3.79 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 102. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area.
X = 150 mm !
First note that by symmetry: For 1: y = 180 + 96 +
4 (150 ) = 339.7 mm 3π
z =0 For 2: y = 180 + z =
2 ( 96 )
π
2 ( 96 )
π
= 241.1 mm
= 61.11 mm
For 3: Length DE =
(180 )2 + ( 96 )2
y = 90 mm,
= 204 mm
z = 48 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
y , mm
z , mm
yA, mm3
zA, mm3
(150 )2 = 35.34 × 103
339.7
0
12.005 × 106
0
( 96 )( 300 ) = 45.24 × 103
244.1
61.11
10.907 × 106
2.765 × 106
90
48
5.508 × 106
2.938 × 106
28.420 × 106
5.702 × 106
A, mm 2
π
1
2
2
π 2
3
( 204 )( 300 ) = 61.2 × 103 − 2.25
Σ
141.78 × 103
Then
Y =
ΣyA 28.420 × 106 = mm ΣA 141.78 × 103
Z =
ΣzA 5.702 × 106 = mm ΣA 141.78 × 103
or Y = 200 mm !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Y = 40.2 mm !
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 103. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area.
A, mm 2
x , mm
y , mm
xA, mm3
yA, mm3
1
( 360 )( 270 ) = 97 200
0
135
0
13 122 000
2
( 339 )( 270 ) = 91 530
168
135
15 377 000
12 356 600
3
1 ( 339 )( 72 ) = 12 204 2
224
294
2 733 700
3 588 000
4
( 360 )( 343.63) = 123 707
168
306
20 783 000
37 854 000
5
1 ( 343.63)( 45) = 7731.73 2
224
318
1 731 900
2 458 700
6
7731.7
224
318
1 731 900
2 458 700
7
12 204
224
294
2 733 700
3 588 000
8
91 530
168
135
15 377 000
12 356 600
ÎŁ
443 838
60 468 200
87 782 600
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then X =
ΣxA 60 468 200 = mm ΣA 443 838
or X = 136.2 mm !
Y =
ΣyA 87 782 600 = mm ΣA 443 838
or Y = 197.8 mm !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 104. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. Note that by symmetry X = 9 in.
A, in 2
y , in.
z , in.
yA, in 3
zA, in 3
1
16.2
1.8
2
29.16
32.4
2
16.2
1.8
2
29.16
32.4
3
97.2
2.7
0
262.44
0
4
1017.876
−15.2789
20.72113
−15552
21091.54
5
1017.876
−15.2789
20.72113
−15552
21091.54
6
− 706.858
−12.7324
23.2676
9000
−16446.9
7
− 706.858
−12.7324
23.2676
9000
−16446.9
8
1017.876
− 22.9183
13.08169
− 23328
13315.54
Σ
1769.511
− 36111.24
22669.6
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Therefore X = 9 in. !
Y =
ΣyA − 36111.24 = ΣA 1769.511
or Y = − 20.4 in. !
Z =
ΣzA 22669.6 = ΣA 1769.511
or Z = 12.81 in. !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 105. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area.
1 2
A, in 2
x , in.
y , in.
xA, in 3
yA, in 3
π ( 8 )(12 ) = 96π
0
6
0
576π
10
−128
−160π
12
− 42.667
96π
−
π 2
π
3
2
( 4 )2
= 8π
=
π
−
4 ( 4) 3π
8
π
=−
16 3π
4
(8)(12 ) = 96
6
12
576
1152
5
(8)(12 ) = 96
6
8
576
768
8
− 42.667
− 64π
6
Then
2 ( 4)
(8)( 4 ) = −16π
−
π 2
( 4 )2
= − 8π
4 ( 4) 3π
=
16 3π
7
( 4 )(12 ) = 48
6
10
288
480
8
( 4 )(12 ) = 48
6
10
288
480
Σ
539.33
1512.6
4287.4
X =
ΣxA 1514.67 = in. or X = 2.81 in. ΣA 539.33
Y =
ΣyA 4287.4 = in. or Y = 7.95 in. ΣA 539.33
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 106. First, assume that the sheet metal is homogeneous so that the center of gravity of the awning coincides with the centroid of the corresponding area.
yII = yVI = 80 + zII = zVI = yIV = 80 + zIV =
3π ( 2 )( 500 )
π
2
π 4
= 292.2 mm
= 212.2 mm = 398.3 mm
π
( 2 )( 500 )
π
3π
( 4 )( 500 )
AII = AVI = AIV =
( 4 )( 500 )
= 318.3 mm
( 500 )2
= 196 350 mm 2
( 500 )( 680 ) = 534 071 mm 2
yA, mm3
zA, mm3
A, mm 2
y , mm
z , mm
I
(80)(500) = 40 000
40
250
1.6 × 106
10 × 106
II
196 350
292.2
212.2
57.4 × 106
41.67 × 106
III
(80)(680) = 54 400
40
500
0.2176 × 106
27.2 × 106
IV
534 071
398.3
318.3
212.7 × 106
170 × 106
V
(80)(500) = 40 000
40
250
1.6 × 106
10 × 106
VI
196 350
292.2
212.2
57.4 × 106
41.67 × 106
332.9 × 106
300.5 × 106
Σ
1.061 × 106
X = 340 mm
Now, symmetry implies and
(
)
Y ΣA = Σ yA: Y 1.061 × 106 mm 2 = 332.9 × 106 mm 3
(
6
Z ΣA = Σ zA: Z 1.061 × 10 mm
2
) = 300.5 × 10
or Y = 314 mm 6
mm
3
or Z = 283 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 107. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area.
1
A,in 2
y ,in.
z , in.
yA, in 3
zA, in 3
(15)(14 ) = 120
0
7
0
1470
1.25
7
43.75
245
1.25
0
46.875
0
1.25
7
43.75
245
6.5
0
− 510.51
0
−21.848
4
(14)( 2.5) = 35.0 (15)( 2.5) = 37.5 (14)( 2.5) = 35.0
5
− π ( 5 ) = − 78.540
0
6
1 2 − π (1.5 ) = −1.76715 4
0
7
( 4 )(12 ) = 48
6
10
288
480
8
( 4 )(12 ) = 48
6
10
288
480
Σ
235.43
134.375
1405.79
2 3
2
13 −
4 (1.5 ) 3π
= 12.36348
Then Y =
ΣyA 134.375 = in. ΣA 235.43
or Y = 0.571 in.
Z =
ΣzA 1405.79 = in. ΣA 235.43
or Z = 5.97 in.
and by symmetry
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
X = 7.50 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 108.
2
2
2
AB 2 = ( 500 mm ) + ( 750 mm ) + ( 300 mm ) , or
AB = 950 mm L, mm
x , mm
y , mm
z , mm
xL, mm 2
yL, mm 2
zL, mm 2
AB
950
250
375
150
237.5 × 103
356.25 × 103
142.5 × 103
BD
300
500
0
150
150 × 103
0
45 × 103
DO
500
250
0
0
125 × 103
0
0
OA
750
0
375
0
0
281.25 × 103
0
Σ
2500
512.5 × 103
637.5 × 103
187.5 × 103
Then
X =
ΣxL 512.5 × 103 = 2500 ΣL
or X = 205 mm
Y =
ΣyL 637.5 × 103 = 2500 ΣL
or Y = 255 mm
Z =
ΣzL 187.5 × 103 = ΣL 2500
or Z = 75 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 109. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the line
1 2 3 4
Σ
π 2
L, mm
x , mm
y , mm
z , mm
xL, mm 2
yL, mm 2
zL, mm 2
300 280 260
0 140 230
150 0 0
0 0 120
0 39 200 59 800
45 000 0 0
0 0 31 200
3 2 × 300 360 = 5 π π
600
480
π
π
54 000
90 000
72 000
153 000
135 000
103 200
( 300 ) = 150π 1311.24
Then
X =
ΣxL 153 000 = ΣL 1311.24
or X = 116.7 mm
Y =
ΣyL 135 000 = ΣL 1311.24
or Y = 103.0 mm
Z =
ΣzL 103 200 = ΣL 1311.24
or Z = 78.7 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 110. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the line.
L,ft
x , ft
y ,ft
xL, ft 2
yL,ft 2
1
10
4cos 45° = 2.8284
5
28.284
50
2
10
4cos 45° = 2.8284
5
28.284
50
3
4π
0
12.5465
0
157.664
4
4π
2 ( 4)
10
32
125.664
5
2π
2 ( 4)
12.5465
16
78.832
Σ
51.416
104.568
462.16
π π
= =
8
π 8
π
Then
X =
ΣxL 104.568 = ΣL 51.416
or
Y =
ΣyL 462.16 = ΣL 51.416
or Y = 8.99 ft
and by symmetry:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
X = 2.03 ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 111. First note by symmetry:
Z = 3.00 ft To simplify the calculations replace: (a) The two rectangular sides with an element of length
L(a) = 2 2 ( 7 ft ) + 2 ( 5 ft ) = 48 ft and center of gravity at (3.5 ft, 2.5 ft, 3 ft) (b) The two semicircular members with an element of length
Lb = 2 π ( 3 ft ) = 6π ft 2×3 ft, 3 ft = ( 2 ft, 6.9099 ft, 3 ft ) and with center of gravity at 2 ft, 5 + π (c) The cross members 1 and 2 with an element of length
Lc = 2 ( 6 ft ) = 12 ft and with center of gravity at ( 2 ft, 5 ft, 3 ft ) (d) This leaves a single straight piece of pipe, labeled (d) in the figure. Now for the centroid of the frame:
L,ft
x , ft
y ,ft
xL, ft 2
yL,ft 2
(a)
48
3.5
2.5
(b)
6π = 18.8496
2
6.9099
168 37.699
120 130.249
(c) (d)
12 6 85.850
2 7
5 5
24 42 271.70
60 30 340.25
Σ Then
X =
ΣxL 271.70 = ΣL 84.850
or
Y =
ΣyL 340.25 = ΣL 84.850
or Y = 4.01 ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
X = 3.20 ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 112. Y = Z = 0
First, note that symmetry implies
xI =
5 2π ( 0.5 in.) = 0.3125 in., WI = 0.0374 lb/in 3 ( 0.5 in )3 = 0.009791 lb 8 3
(
)
(
)
2
xII = 1.6 in. + 0.5 in. = 2.1 in. WII = 0.0374 lb/in 3 (π )( 0.5 in ) ( 3.2 in.) = 0.093996 lb 2 π xIII = 3.7 in. − 1 in. = 2.7 in., WIII = − 0.0374 lb/in 3 ( 0.12 in ) ( 2 in.) = −0.000846 lb 4
(
)
2 2 π xIV = 7.3 in. − 2.8 in. = 4.5 in., WIV = 0.284 lb/in 3 ( 0.12 in ) ( 5.6 in ) = 0.017987 lb 4
(
xV = 7.3 in. +
π 1 ( 0.4 in.) = 7.4 in., WV = 0.284 lb/in 3 ( 0.06 in )2 ( 0.4 in.) = 0.000428 lb 4 3
(
Σ
Have
)
)
W , lb
x , in.
xW , in ⋅ lb
I
0.009791
0.3125
0.003060
II
0.093996
2.1
0.197393
III
−0.000846
2.7
−0.002284
IV
0.017987
4.5
0.080942
V
0.000428
7.4
0.003169
0.12136
0.28228
X ΣW = ΣxW : X ( 0.12136 lb ) = 0.28228 in. ⋅ lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or X = 2.33 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 113.
Determine first the masses of the component pieces:
π m1 = 8800 kg/m3 0.0162 − 0.0122 m 2 × ( 0.014 m ) = 0.0108372 kg 4
(
) (
)
π m2 = 1250 kg/m 3 0.0362 − 0.0162 m 2 × ( 0.014 m ) = 0.0142942 kg 4
(
) (
)
π m3 = 1250 kg/m 3 0.0602 − 0.0362 m 2 × ( 0.006 m ) = 0.0135717 kg 4
(
) (
)
π m4 = 1250 kg/m3 0.0802 − 0.0602 m 2 × ( 0.010 m ) = 0.027489 kg 4
(
) (
)
Now, for the center of mass:
Then X =
m, kg
x , mm
xm, kg ⋅ mm
1
0.0108372
7
0.075860
2
0.0142942
7
0.100059
3
0.0135717
3
0.040715
4
0.027489
5
0.137445
Σ
0.066192
0.35408
Σxm 0.35408 or = 0.066192 Σm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
X = 5.35 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 114.
Assume that the stone is homogeneous so that its center of gravity coincides with the centroid of the volume and locate the center of gravity. To determine the centroid of the truncated pyramid note that: 3 1 y1 = (1.4 m ) = 1.05 m, and V1 = ( 0.3 m )( 0.3 m )(1.4 m ) = 0.042 m3 4 3
y2 =
3 ( 0.7 m ) = 0.525 m, and 4
V2 = −
1 ( 0.15 m )( 0.15 m )( 0.7 m ) = − 0.00525 m3 3
Then Vstone = V1 + V2 = 0.042 m3 − 0.00525 m3 = 0.03675 m3, and
(
)
(
3 3 ΣyV (1.05 m ) 0.042 m + ( 0.525 m ) − 0.00525 m y= = ΣV 0.03675 m3
)
= 1.12500 m The center of gravity of the stone is therefore 0.425 m (i.e. 1.125 m – 0.7m) above the base. Now to determine the center of gravity of the marker:
( )( )( ) = ( 7860 kg/m )( 9.81 m/s ) ⎡⎣( 0.3 m )( 0.3 m ) h ⎤⎦ = ( 6939.6 h ) N
Wstone = ( ρ gV ) stone = 2570 kg/m3 9.81 m/s 2 0.03675 m3 = 926.53 N Wsteel = ( ρ gV ) steel
3
2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then ymar ker =
0.3 m =
ΣyW , or ΣW
( 0.425 m )( 926.53 N ) + ( − h2 m ) ( 6939.6 h ) N , or ( 926.53 + 6939.6 h ) N
h 2 + 0.6 h − 0.033378 = 0. Solving for h and discarding the negative root, this gives h = 0.051252 m, or
h = 50 mm !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 115.
Since the brass plates are equally spaced and by the symmetry of the cylinder: X =Y =0!
For the pipe: Specific weight of steel: γ s = 0.284 lb/in 3
y1 = 4 in. outside diameter: 2.5 in. Inside diameter: 2.5 in. − 2 ( 0.25 in.) = 2.00 in.
π
( 2.5
)
2
− 2.02 8 = 14.137 in 3
Volume:
V1 =
Weight:
W1 = γ sV1 = 0.284 lb/in 3 14.137 in 3 = 4.015 lb
4
(
)(
)
For each brass plate: Specific weight for brass: γ B = 0.306 lb/in 3
8 2.667 in. 3 1 Volume: V2 = ( 8 )( 4 )( 0.2 ) = 3.2 in 3 2 y2 =
(
)(
)
Weight: W1 = γ sV1 = 0.306 lb/in 3 3.2 in 3 = 0.979 lb continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
For flagpole base: ΣW = ( 4.015 lb ) + 3 ( 0.979 lb ) = 6.952 lb ΣyW = ( 4 in.)( 4.015 lb ) + 3 ⎡⎣( 2.667 in.)( 0.979 lb ) ⎤⎦ = 23.892 in.⋅ lb, or
Y =
ΣyW 23.892 in.⋅ lb = = 3.437 in. ΣW 6.952 lb Y = 3.437 in. !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 116. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x The equation of the generating curve is
r 2 = a 2 − x 2 and then
(
x 2 + y 2 = a 2 so that
)
dV = π a 2 − x 2 dx Component 1 a/2
⎡ x3 ⎤ a/2 V1 = ∫0 π a 2 − x 2 dx = π ⎢ a 2 x − ⎥ 3 ⎦0 ⎣
(
=
and
)
11 3 πa 24
a/2 2 2 ∫1 xEL dV = ∫0 x ⎡⎣π ( a − x ) dx ⎤⎦ a/2
⎡ x2 x4 ⎤ = π ⎢a 2 − ⎥ 4 ⎦0 ⎣ 2
= Now
7 π a4 64
7 ⎛ 11 ⎞ x1V1 = ∫1 xEL dV : x1 ⎜ π a3 ⎟ = π a4 ⎝ 24 ⎠ 64
or x1 = Component 2 a
⎡ x3 ⎤ a V2 = ∫a /2 π a 2 − x 2 dx = π ⎢ a 2 x − ⎥ 3 ⎦ a/2 ⎣
(
)
⎧ ⎡ a3 ⎤ ⎢ 2 ⎛ a ⎞ ⎪⎡ 2 = π ⎨⎢a ( a ) − ⎥ − a ⎜ ⎟ − 3 ⎦ ⎢ ⎝2⎠ ⎪⎣ ⎢⎣ ⎩
3 ⎤⎫
( a2 )
⎥ ⎪⎬ 3 ⎥⎪ ⎥⎦ ⎭ continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
21 a! 88
COSMOS: Complete Online Solutions Manual Organization System
=
5 π a3 24
and
a x ⎡π a/2 ⎣
∫2 xELdV = ∫
(
a
⎡ x2 x4 ⎤ a − x dx ⎤ = π ⎢ a 2 − ⎥ ⎦ 4 ⎦ a/2 ⎣ 2 2
2
)
2 ⎧⎡ 2 4 ⎡ a ) ⎤ ⎢ 2 a2 ( ⎪ 2 (a) ⎥− a = π ⎨⎢a − − 2 4 ⎥ ⎢ 2 ⎪ ⎢⎣ ⎦ ⎣⎢ ⎩ 9 = π a4 64
( )
Now
⎤⎫ ⎥ ⎪⎬ 4 ⎥⎪ ⎦⎥ ⎭
( a2 )
4
9 ⎛ 5 ⎞ x2V2 = ∫2 xELdV : x2 ⎜ π a3 ⎟ = π a4 ⎝ 24 ⎠ 64 or x2 =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
27 a! 40
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 117. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x x2 y2 + = 1 so that h2 a 2
The equation of the generating curve is r2 =
a2 2 h − x 2 and then 2 h
(
)
dV = π
a2 2 h − x 2 dx 2 h
(
)
Component 1 h/2
V1 = ∫0 π =
and
a2 2 a2 2 − = h x dx π h2 h2
(
)
h/2
⎡ 2 x3 ⎤ ⎢h x − ⎥ 3 ⎦0 ⎣
11 2 πa h 24
2 ⎤ h/2 ⎡ a 2 2 x dV x π = ∫1 EL ∫0 ⎢ h 2 h − x dx ⎥ ⎣ ⎦
(
)
h/2
a2 ⎡ x2 x4 ⎤ = π 2 ⎢h2 − ⎥ 4 ⎦0 h ⎣ 2
7 π a 2h 2 64 7 ⎛ 11 ⎞ x1V1 = ∫1 xEL dV : x1 ⎜ π a 2h ⎟ = π a 2h 2 ⎝ 24 ⎠ 64 =
Now
or x1 =
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
21 h! 88
COSMOS: Complete Online Solutions Manual Organization System
Component 2 h
V2 = ∫h/2 π
h
a2 2 a2 ⎡ 2 x3 ⎤ 2 − = − π h x dx h x ⎢ ⎥ 3 ⎦h/2 h2 h2 ⎣
(
)
3 ⎧ 3 ⎡ h ⎤⎫ h) ⎤ ⎢ 2 ⎛ h ⎞ a 2 ⎪⎡ 2 ( 2 ⎥⎪ ⎥− h ⎜ ⎟ − = π 2 ⎨⎢h ( h ) − ⎬ 3 ⎥ ⎢ ⎝ 2⎠ 3 ⎥⎪ h ⎪⎣⎢ ⎦ ⎢ ⎥ ⎣ ⎦⎭ ⎩ 5 πa 2 h = 24
()
and
⎡ a2
⎤
h 2 2 ∫2 xELdV = ∫h/2 x ⎢π h2 ( h − x ) dx ⎥ ⎣ ⎦
=π
a2 h2
h
⎡ 2 x2 x4 ⎤ − ⎢h ⎥ 4 ⎦ h/2 ⎣ 2
2 ⎧ 2 4 ⎡ h ) ⎤ ⎢ 2 h2 ( a2 ⎪⎡ 2 ( h ) ⎥− h = π 2 ⎨⎢h − − 2 4 ⎥ ⎢ 2 h ⎪⎢ ⎣ ⎦ ⎢ ⎣ ⎩ 9 = π a 2h 2 64
( )
Now
⎤⎫ ⎥ ⎪⎬ 4 ⎥⎪ ⎥⎦ ⎭
( h2 )
4
9 ⎛ 5 ⎞ x2V2 = ∫2 xEL dV : x2 ⎜ π a 2h ⎟ = π a 2h 2 24 64 ⎝ ⎠ or x2 =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
27 h! 40
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 118. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x
x=h−
The equation of the generating curve is
r2 =
h 2 y so that a2
a2 ( h − x ) and then h dV = π
a2 ( h − x ) dx h
Component 1 h/2
V1 = ∫0 π
a2 ( h − x ) dx h h/2
a2 ⎡ x2 ⎤ = π ⎢ hx − ⎥ h ⎣ 2 ⎦0 = and
3 2 πa h 8 ⎡ a2
a2 =π h =
Now
⎤
h/2 ∫1 xELdV = ∫0 x ⎢π h ( h − x ) dx ⎥ ⎣ ⎦ h/2
⎡ x 2 x3 ⎤ − ⎥ ⎢h 3 ⎦0 ⎣ 2
1 π a 2h 2 12
1 ⎛3 ⎞ x1V1 = ∫1 xEL dV : x1 ⎜ π a 2h ⎟ = π a 2h 2 8 12 ⎝ ⎠
or x1 = continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 h! 9
COSMOS: Complete Online Solutions Manual Organization System
Component 2 h
h
V2 = ∫h/2 π
a2 a2 ⎡ x2 ⎤ ( h − x ) dx = π ⎢hx − ⎥ 2 ⎦ h/2 h h ⎣
⎧ 2 ⎡ h) ⎤ ⎢ ⎛ h ⎞ ( a2 ⎪⎡ ⎢ ⎥ = π ⎨ h (h) − − h⎜ ⎟ − 2 ⎥ ⎢ ⎝2⎠ h ⎪⎢ ⎣ ⎦ ⎢⎣ ⎩ 1 = πa 2 h 8
⎤⎫ ⎥ ⎪⎬ 2 ⎥⎪ ⎥⎦ ⎭
( h2 )
2
h
and
⎡ a2 ⎤ a 2 ⎡ x 2 x3 ⎤ h ∫2 xEL dV = ∫h/2 x ⎢π h ( h − x ) dx ⎥ = π h ⎢ h 2 − 3 ⎥ ⎣ ⎦ ⎣ ⎦ h/2 2 ⎧ 2 3 ⎡ h ) ⎤ ⎢ h2 ( a2 ⎪⎡ ( h ) ⎥− h =π − − ⎨⎢h 3 ⎥ ⎢ 2 h ⎪⎢ 2 ⎣ ⎦ ⎢ ⎣ ⎩ 1 = π a 2h 2 12
( )
Now
x2V2 =
3 ⎤⎫
( h2 )
⎥ ⎪⎬ 3 ⎥⎪ ⎥⎦ ⎭
⎛ 2 ⎞ 2 2 ∫2 xEL dV : x2 ⎜ 8 π a h ⎟ = 12 π a h ⎝ ⎠ 1
1
or x2 =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 h! 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 119.
y = 0!
First note that symmetry implies
z = 0! Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x ⎛ x2 ⎞ Now r = b⎜⎜1 − 2 ⎟⎟ so that a ⎠ ⎝ 2
2⎛
x2 ⎞ dV = πb ⎜⎜1 − 2 ⎟⎟ dx a ⎠ ⎝
Then
⎛ a π b 2 ⎜⎜1 0
2
⎛ x2 ⎞ 2x2 x4 ⎞ a − 2 ⎟⎟ dx = ∫0 π b 2 ⎜⎜1 − 2 + 4 ⎟⎟ dx a ⎠ a a ⎠ ⎝ ⎝
V =∫
a
2⎛
2 x3 x5 ⎞ = π b ⎜⎜ x − 2 + 4 ⎟⎟ 3a 5a ⎠ ⎝ 0 2 1⎞ ⎛ = π ab 2 ⎜1 − + ⎟ 3 5⎠ ⎝ 8 = π ab 2 15 and
2x2 x4 ⎞ a 2 ⎛ 1 x dV π b x = − + 4 ⎟⎟ dx ⎜ ∫ EL ∫0 ⎜ a2 a ⎠ ⎝ 2⎛
x2 2x4 x6 ⎞ = π b ⎜⎜ − 2 + 4 ⎟⎟ 4a 6a ⎠ ⎝ 2
a
0
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
⎛1 1 1⎞ = π a 2b 2 ⎜ − + ⎟ ⎝2 2 6⎠
= Then
1 2 2 πa b 6
1 ⎛ 8 ⎞ xV = ∫ xEL dV : x ⎜ π ab 2 ⎟ = π a 2b 2 ⎝ 15 ⎠ 16 or x =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
15 a! 6
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 120. y = 0
First, note that symmetry implies
z = 0 Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x Now r = 1 −
1 so that x 2
1 dV = π 1 − dx x 2 1 = π 1 − + 2 dx x x 3
Then
2 1 1 3 V = ∫1 π 1 − + 2 dx = π x − 2 ln x − x x 1 x 1 1 = π 3 − 2 ln3 − − 1 − 2 ln 1 − 3 1 = ( 0.46944π ) m 3
and
3
x2 2 1 1 − + 2 dx = π − 2 x + ln x x x 2 1
3 x π 1
∫ x EL dV = ∫
32 13 = π − 2 ( 3) + ln 3 − − 2 (1) + ln1 2 2
= (1.09861π ) m Now
(
)
xV = ∫ x EL dV : X 0.46944π m 3 = 1.09861π m 4 or x = 2.34 m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 121.
First, by symmetry:
x =a! y =0! Next determine the constants k in y = kx1/3 : x = a, b = ka1/3 or k =
At
b a1/3
b 1/3 a x , or x = 3 y 3 1/3 a b Choosing horizontal disks of thickness dy for volume elements ( dV in the figure above)
Therefore, y =
2 b V = ∫0 π a 2 − ( a − x )
b
(
)
= π ∫0 2ax − x 2 dy a a2 b = π ∫0 2a × 3 y 3 − 6 y 6 dy b b b
a2 1 1 1 5 = π 3 2 × y 4 − 3 × y 7 = π a 2b 4 7 0 14 b b 1 ∫ yELdV , or V 14 b a 2 3 a 2 6 y= ∫ y π 2 y − b6 y dy 5π a 2b 0 b3
Now y =
b
14 y5 1 y8 = 4 2 × − 3 5 5b b 8 0
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
y=
77 b! 100
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 122. First note that by symmetry:
y =0! z = 0!
Choose as a volume element a disk of radius y and thickness dx. Then:
xEL = x, and dV = π y 2dx, or dV = π h 2 cos 2
πx 2a
dx
Using the identity: cos 2 x = dV =
1 (1 + cos 2 x ) , this gives 2 1 2 πx π h 1 + cos dx. 2 a
Then: V = ∫ dV =
π h2
a
πx π h2 a πx 1 a 1 cos dx x + sin + = = π h 2a. ∫ 0 2 a 2 π a 0 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Also,
∫ xELdV = =
=
=
π h2
πx
a x + x cos ∫ 0 2 a
π h 2 x 2
dx. Integrating by parts,
a a πx π x sin sin + − x ∫ 2 2 0 π a a 0
π h 2 a 2 2 2
+
a
a a πx a π x sin + cos x π a π a 0
π h 2 a 2
a 2a 1 2 2 4 + 0 − 0 − = π a h 1 − 2 2 2 π π 4 π
Now, x=
1 2 1 2 2 4 xEL dV = π a h 1 − 2 , or ∫ 2 V πh a 4 π x=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 4 a 1 − 2 ! 2 π
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 123. First note that by symmetry: x =0! y =0!
Choosing the volume element shown in the figure, i.e. a cylindrical shell of radius r, height h and thickness dr:
yEL =
1 y, 2
and
dV = 2π ry dr = 2π r cos
πr
dr , and 2a πr a V = ∫ dV = 2π h ∫0 r cos dr , or, integrating by parts 2a a
V = 2π h
2a πr πr r sin dr − ∫ sin π 2a 2a 0 a
π r 2a πr cos = 4ah r sin + π 2 a 2a 0
2a 2 2 = 4ah a − = 4a h 1 − π π Also, a
2 2 ∫ yEL dV = π h ∫0 r cos
π h 2 1
πr 2a
dr =
π h2
πr
a ∫ r 1 + cos a dr 2 0
a a πr π r = + − ∫ sin r sin dr r 2 2 0 π a a 0 2
a
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
=
=
π h 2 1
a a πr a π r 2 + + a r sin cos π π 2 2 a a 0
π h2 1
2a 1 2 2 4 a 2 a + 0 + 0 − = π a h 1 − 2 π π 4 2 2 π
Now, y=
1 ∫ yEL dV = V
1 2 2 1 4 π a h 1 − 2 , or 2 4 π 4a 2 h 1 − π y=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(π
+ 2) h! 16
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 124. Choose as the element of a horizontal slice of thickness dy. For any number N of sides, the area of the base of the pyramid is given by
Abase = kb 2 where k = k ( N ) ; see note below. Using similar triangles, have
s h− y = b h
or
s=
b (h − y) h
Then
dV = Aslicedy = ks 2dy = k
and
V = ∫0 k
h
= Also
b2 2 h − y ) dy 2( h h
b2 b2 1 2 3 h y dy k − = − (h − y) ( ) h2 h 2 3 0
1 2 kb h 3 yEL = y
2 b2 h h b 2 so then ∫ y EL dV = ∫0 y k 2 ( h − y ) dy = k 2 ∫0 h 2 y − 2hy 2 + y 3 dy h h
(
)
h
2 1 1 2 2 b2 1 kb h = k 2 h 2 y 2 − hy 3 + y 4 = 3 4 0 12 h 2 Now
1 2 2 1 yV = ∫ y EL dV : y kb 2h = kb h 3 12 or y =
Note:
1 Abase = N × b × 2 N = b2 π 4 tan N = k ( N ) b2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
b 2 tan πN
1 h Q.E.D. 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 125. Since the spherical cup is uniform, the center of gravity will coincide with the centroid. Also, because the cup is thin, it can be treated like an area in finding the centroid. An element of area is obtained by rotating arc ds about the y axis. With the y axis pointing downwards,
dA = 2π rds = 2π ( R sin θ ) Rdθ = 2π R 2 sin θ dθ yEL = y = R cosθ φ
φ
A = ∫ dA = 2π R 2 ∫0 sin θ dθ = 2π R 2 [ − cosθ ]0 = 2π R 2 (1 − cos φ ) φ 2 3 φ ∫ yEL dA = ∫0 ( R cosθ ) ( 2π R sin θ dθ ) = 2π R ∫0 cosθ sin θ dθ φ
1 = 2π R3 − cos 2 θ = π R3 1 − cos 2 φ 2 0
(
)
Then,
y=
1 1 3 2 ∫ yEL dA = 2π R 2 1 − cos φ π R 1 − cos φ , or A ( )
y=
R (1 + cos φ ) 2
(
)
Using
cos φ = y=
R−h h =1− : R R R h h 1 + 1 − = R − R 2 2
The center of gravity is therefore located at a distance of
h h R − y = R − R − = , above the base.(Q.E.D) 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 126. (a) Bowl First note that symmetry implies
x = 0!
z = 0! for the coordinate axes shown below. Now assume that the bowl may be treated as a shell; the center of gravity of the bowl will coincide with the centroid of the shell. For the walls of the bowl, an element of area is obtained by rotating the arc ds about the y axis. Then dAwall = ( 2π R sin θ )( Rdθ ) and Then
and
( yEL ) wall
= − R cos θ π /2
π /2
Awall = ∫π /6 2π R 2 sin θ dθ = 2π R 2 [ − cosθ ]π /6 = π 3R 2 ywall Awall = ∫ ( yEL )wall dA
(
π /2
= ∫π /6 ( − R cosθ ) 2π R 2 sin θ dθ = π R3 cos 2 θ
)
π /2 π /6
3 = − π R3 4
π
R2,
By observation
Abase =
Now
y ΣA = ΣyA
or
or
4
ybase = −
3 R 2
π 3 π 3 y π 3R 2 + R 2 = − π R3 + R 2 − R 4 4 4 2 y = −0.48763R
R = 350 mm ∴ y = −170.7 mm !
(b) Punch First note that symmetry implies
x = 0! z = 0! and that because the punch is homogeneous, its center of gravity will coincide with the centroid of the corresponding volume. Choose as the element of volume a disk of radius x and thickness dy. Then dV = π x 2dy, yEL = y continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
x2 + y 2 = R2
Now
so that 0
V = ∫−
Then
(
)
dV = π R 2 − y 2 dy
(
)
π R 2 − y 2 dy = π R 2 y − 3/2 R
0
1 3 y 3 −
3/2 R
3 3 1 3 3 = −π R 2 − R − − R = π 3R3 2 3 2 8
and
0
∫ yELdV = ∫−
0
y π R 2 − y 2 ) dy = π 3/2 R ( ) (
1 2 2 1 4 R y − y 4 − 2
3/2 R
4
1 3 1 3 15 = −π R 2 − R − − R = − π R4 2 2 4 2 64 2
Now or
15 3 yV = ∫ yEL dV : y π 3 R3 = − π R 4 64 8 y =−
5 8 3
R
R = 350 mm
∴ y = −126.3 mm !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 127. The centroid can be found by integration. The equation for the bottom of the gravel is: y = a + bx + cz, where the constants a, b, and c can be determined as follows: For x = 0, and z = 0: y = − 3 in., and therefore
−
3 1 ft = a, or a = − ft 12 4
For x = 30 ft, and z = 0: y = − 5 in., and therefore
−
5 1 1 ft = − ft + b ( 30 ft ) , or b = − 12 4 180
For x = 0, and z = 50 ft: y = − 6 in., and therefore
−
6 1 1 ft = − ft + c ( 50 ft ) , or c = − 12 4 200
Therefore:
1 1 1 y = − ft − x− z 4 180 200 Now x dV x = ∫ EL V
A volume element can be chosen as:
dV = y dxdz, or
dV =
1⎛ 1 1 ⎞ x+ z ⎟ dx dz, and ⎜1 + 4⎝ 45 50 ⎠
xEL = x continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then 50 30 ⎛ ⎞ ∫ xEL dV = ∫0 ∫0 4 ⎜1 + 45 x + 50 z ⎟ dx dz ⎝ ⎠
x
1
1
30
1 50 ⎡ x 2 1 3 z 2⎤ = ∫0 ⎢ + x + x ⎥ dz 4 ⎣ 2 135 100 ⎦ 0
=
1 50 ∫ ( 650 + 9 z ) dz 4 0
=
1⎡ 9 ⎤ 650 z + z 2 ⎥ ⎢ 4⎣ 2 ⎦0
50
= 10937.5 ft 4
The volume is: 50 30 1 ⎛
V ∫ dV = ∫0 ∫0
1 1 ⎞ x+ z ⎟ dx dz ⎜1 + 4⎝ 45 50 ⎠ 30
1 50 ⎡ 1 2 z ⎤ = ∫0 ⎢ x + x + x dz 4 ⎣ 90 50 ⎥⎦ 0
=
1 50 ⎛ 3 ⎞ 40 + z ⎟ dz ∫ 0 ⎜ 4 ⎝ 5 ⎠ 50
1⎡ 3 2⎤ = ⎢ 40 z + z 4⎣ 10 ⎥⎦ 0
= 687.50 ft 3 Then
x dV 10937.5ft 4 x = ∫ EL = = 15.9091 ft V 687.5 ft 3 Therefore:
V = 688 ft 3 W x = 15.91 ft W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 128.
Choosing the element of volume shown, i.e. a filament of sides, y, dx, and dz:
dV = y dx dy, and z EL = z
x z b a V = ∫ dV = ∫ 0 ∫ 0 y0 − y1 − y2 dx dz a b =∫
b y x 0 0
a
x2 zx 1 a b − y1 − y2 dz = ∫ 0 y0a − y1a − y2 z dz b 0 b 2a 2 b
1 a z2 1 1 = y0az − y1az − y2 = y0 − y1 − y2 ab b 2 0 2 2 2
xz
z2 dx dz
b a ∫ zEL dV = ∫ 0 ∫ 0 y0 z − y1 a − y2 b
=∫
b y zx 0 0
a
x2 z z2x za z 2a b − y1 − y2 − y2 dz dz = ∫ 0 y0 za − y1 b 0 b 2a 2 b
z 2a z 2a z 3a 1 1 2 1 = y0 − y1 − y2 = y0 − y1 − y2 ab 2 4 3b 0 2 4 3 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now,
z =
1 1 1 1 1 z EL dV = y0 − y1 − y2 ab 2 , or ∫ 1 1 2 4 3 V y0 − y1 − y2 ab 2 2 1 1 1 y0 − y1 − y2 2 4 3 b z = 1 1 y0 − y1 − y2 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 129. x =0
First note that symmetry implies
Choose as the element of volume a vertical slice of width 2x, thickness dz, and height y. Then 1 dV = 2 xy dz, yEL = y, zEL = z 2 h h h⎛ z⎞ Now and y = − z = ⎜1 − ⎟ x = a2 − z2 2 2a 2⎝ a⎠ z⎞ ⎛ dV = h a 2 − z 2 ⎜1 − ⎟ dz ⎝ a⎠
So
Then
V =∫ = =
Then
a h 0
z⎞ 1 2 ⎪⎧ 1 ⎡ ⎛ ⎛ z ⎞⎤ a − z ⎜1 − ⎟ dz = h ⎨ ⎢ z a 2 − z 2 + a 2 sin −1 ⎜ ⎟ ⎥ + a − z2 a⎠ ⎝ ⎝ a ⎠ ⎦ 3a ⎪⎩ 2 ⎣ 2
(
2
3/2 ⎪ ⎫
)
a
⎬ ⎭⎪ − a
1 2 ⎡ −1 a h ⎣sin (1) − sin −1 ( −1) ⎤⎦ 2
π 2
a 2h
h⎛ z ⎞⎤ ⎡ a ⎡1 2 2⎛ ∫ yELdV = ∫ − a ⎢ 2 × 2 ⎜1 − a ⎟ ⎥ ⎢h a − z ⎜1 − ⎝ ⎠⎦ ⎣ ⎝ ⎣ =
z⎞ ⎤ ⎟ dz ⎥ a⎠ ⎦
h2 a z z2 ⎞ 2 2⎛ a z − − + 1 2 ⎜ ⎟ dz ∫ ⎜ a a 2 ⎟⎠ 4 −a ⎝ continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
=
h2 4
⎧⎪ 1 ⎡ ⎡2 2 2 2 2 −1 ⎛ z ⎞ ⎤ a − z2 ⎨ ⎢ z a − z + a sin ⎜ ⎟ ⎥ + ⎢ a a 2 3 ⎝ ⎠⎦ ⎣ ⎩⎪ ⎣
(
1 ⎡ z + 2 ⎢− a2 − z 2 a ⎣ 4
(
=
3 2
⎤ ⎥ ⎦ a
3 2
a2 z 2 a4 ⎛ z ⎞ ⎤ ⎪⎫ + a − z 2 + sin −1 ⎜ ⎟ ⎥ ⎬ 8 8 ⎝ a ⎠ ⎦ ⎭⎪ −a
5h 2a 2 ⎡ −1 sin (1) − sin −1 ( −1) ⎤⎦ ⎣ 32
⎛ π a2 yV = ∫ yEL dV : y ⎜⎜ ⎝ 2
Then
)
)
⎞ 5h 2a 2 h ⎟⎟ = (π ) 32 ⎠
or y =
and
5 h 16
⎡ z⎞ ⎤ a 2 2⎛ ∫ zELdV = ∫ − a z ⎢ h a − z ⎜1 − a ⎟ dz ⎥ ⎝
⎣
⎪⎧ 1 = h ⎨− a 2 − z 2 ⎩⎪ 3
(
=−
)
3 2
⎠
⎦
1⎡ z − ⎢− a 2 − z 2 a⎣ 4
(
)
3 2
a2z 2 a 4 −1 ⎛ z ⎞ ⎤ ⎪⎫ + a − z2 + sin ⎜ ⎟ ⎥ ⎬ 8 8 ⎝ a ⎠ ⎦ ⎭⎪
a
−a
a3h ⎡ −1 sin (1) − sin −1 ( −1) ⎤⎦ ⎣ 8
⎛ π a 2h ⎞ π a 3h zV = ∫ z EL dV : z ⎜⎜ ⎟⎟ = − 8 ⎝ 2 ⎠
or z = −
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
a 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 130.
A, mm 2 1
xA, mm3
yA, mm3
x , mm
y , mm
21 × 22 = 462
1.5
11
693
5082
2
−
1 ( 6 )( 9 ) = −27 2
−6
2
162
−54
3
−
1 ( 6 )(12 ) = −36 2
8
2
−288
−72
567
4956
Σ
399
Then
X =
Σ xA 567 mm 3 = ΣA 399 mm 2
or X = 1.421 mm
and
Y =
Σ yA 4956 mm 3 = ΣA 399 mm 2
or Y = 12.42 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 131.
A, in 2
1 2 Σ
1 (10)(15) = 50 3
π 4
(15)2
= 176.71
x , in.
y , in.
xA, in 3
yA, in 3
4.5
7.5
225
375
6.366
16.366
1125
2892
226.71
1350
3267
X Σ A = Σx A
Then
(
)
X 226.71 in 2 = 1350 in 3
or X = 5.95 in.
Y ΣA = Σy A
and
(
)
Y 226.71 in 2 = 3267 in 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Y = 14.41 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 132.
First note that because the wire is homogeneous, its center of gravity will coincide with the centroid of the corresponding line. L, mm
1
y , mm
xL, mm 2
yL, mm 2
6
3
80.50
40.25
2
16
12
14
192
224
3
21
1.5
22
31.50
462
4
16
−9
14
−144
224
− 4.5
3
− 48.67
32.45
111.32
982.7
5
Σ Then
122 + 62 = 13.416
x , mm
62 + 92 = 10.817 77.233
X ΣL = Σx L
X (77.233 mm) = 111.32 mm 2 and
or X = 1.441 mm
Y ΣL = Σ y L
Y (77.233 mm) = 982.7 mm 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Y = 12.72 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 133.
First note that for equilibrium, the center of gravity of the wire must lie on a vertical line through C. Further, because the wire is homogeneous, its center of gravity will coincide with the centroid of the corresponding line. Thus ΣM C = 0, which implies that x = 0
or
Σ xi Li = 0
Hence
L ( L ) + ( − 4 in.)(8 in.) + ( − 4 in.)(10 in.) = 0 2
or
L2 = 144 in 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or L = 12.00 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 134.
For the element (EL) shown At
x = a, y = h : h = ka3
Then
x=
h a3
k =
or
a 1/3 y h1/3
dA = xdy
Now
= xEL = h
A = ∫ dA =∫ 0
Then
a 1/3 y dy h1/3 1 1 a 1/3 x= y , yEL = y 2 2 h1/ 3
a 1/3 3 a y dy = y 4/3 4 h1/3 h1/3
( )
h
= 0
3 ah 4 h
1 a 1/3 a 1/3 1 a 3 5/3 3 2 and ∫ xEL dA = ∫ y 1/3 y dy = y = a h 1/3 2/3 2h h 2 h 5 0 10 h 0
h
a 3 7/3 3 2 a 1/3 ∫ yEL dA = ∫ y h1/3 y dy = h1/3 7 y = 7 ah 0 h 0
Hence
3 2 3 xA = ∫ xEL dA : x ah = a h 4 10
x =
2 a 5
3 3 yA = ∫ yEL dA: y ah = ah 2 4 7
y =
4 h 7
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 135.
For
2b = ka 2
y1 at x = a, y = 2b
or k =
2b a2
2b 2 x a2
Then
y1 =
By observation
y2 = −
b x ( x + 2b) = b 2 − a a
xEL = x
Now and for 0 ≤ x ≤ a :
1 b y1 = 2 x 2 2 a
and
dA = y1dx =
1 b x y2 = 2 − 2 2 a
and
x dA = y2dx = b 2 − dx a
yEL =
2b 2 x dx a2
For a ≤ x ≤ 2a : yEL = Then
a
A = ∫ dA = ∫ 0
2b 2 x 2a x dx + ∫ a b 2 − dx 2 a a 2a
a 2 a 2b x3 x 7 = 2 + b − 2 − = ab a 2 6 a 3 0 0
and
x a 2b 2 2a ∫ xEL dA = ∫ 0 x a 2 x dx + ∫ a x b 2 − a dx
a
2a
=
2 x3 2b x 4 + b x − 2 3a 0 a 4 0
=
1 2 1 2 2 2 3 2a − ( a ) a b + b ( 2a ) − ( a ) + 3a 2
=
7 2 ab 6
{
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
( )
COSMOS: Complete Online Solutions Manual Organization System
x x a b 2 2b 2 2a b ∫ yEL dA = ∫ 0 a 2 x a 2 x dx + ∫ 0 2 2 − a b 2 − a dx 2a
a 3 2b 2 x5 b2 a x = 4 + − 2 − 2 3 a a 5 0 a 17 2 = ab 30
Hence
7 7 xA = ∫ xEL dA: x ab = a 2b 6 6 7 17 2 yA = ∫ yEL dA: y ab = ab 6 30
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x =a y =
17 b 35
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 136. The volume can be generated by rotating the triangle and circular sector shown about the y axis. Applying the second theorem of Pappus-Guldinus and using Fig. 5.8A, we have
V = 2π xA = 2πΣxA = 2π ( x1 A1 + x2 A2 ) 1 1 1 1 3 2R sin 30o o π 2 = 2π × R × R × R + cos 30 R 2 3 × π 6 3 2 2 2 6 R3 R3 3 3 = 2π + π R3 = 8 16 3 2 3 =
Since
3 3 3 π (12 in.) = 3526.03 in 3 8
1 gal = 231 in 3 V =
3526.03 in 3 = 15.26 gal 231 in 3/gal V = 15.26 gal
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 137.
Have
RI = ( 9 ft )( 200 lb/ft ) = 1800 lb RII =
Then
1 ( 3 ft )( 200 lb/ft ) = 300 lb 2
ΣFx = 0: Ax = 0
ΣM A = 0: − ( 4.5 ft )(1800 lb ) − (10 ft )( 300 lb ) + ( 9 ft ) B y = 0 or
By = 1233.3 lb
B = 1233 lb
A = 867 lb
ΣFy = 0: Ay − 1800 lb − 300 lb + 1233.3 lb = 0 or
Ay = 866.7 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 138.
Have
Then
RI =
1 ( 4 m )( 2000 kN/m ) = 2667 N 3
RII =
1 ( 2 m )(1000 kN/m ) = 666.7 N 3
ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 2667 N − 666.7 N = 0
or
Ay = 3334 N
A = 3.33 kN
ΣM A = 0: M A − (1 m )( 2667 N ) − ( 5.5 m )( 666.7 N ) or
M A = 6334 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M A = 6.33 kN ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 139.
Consider the free-body diagram of the side.
Have Now
P=
1 1 Ap = A (γ d ) 2 2
ΣM A = 0:
( 9 ft ) T
−
d P=0 3
Then, for d max:
( 9 ft ) ( 0.2 ) ( 40 × 103 lb ) −
d max 1 3 (12 ft ) ( d max ) 62.4 lb/ft d max = 0 3 2
or
3 216 × 103 ft 3 = 374.4 d max
or
3 d max = 576.92 ft 3
(
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
d max = 8.32 ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 140. First, assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the corresponding volume.
x , in.
I II
V , in 3 (4)(3.6)(0.75) = 10.8 (2.4)(2.0)(0.6) = 2.88
2.0 3.7
0.375 1.95
21.6 10.656
4.05 5.616
III
π(0.45)2 (0.4) = 0.2545
4.2
2.15
1.0688
0.54711
1.2
0.375
− 0.7068
− 0.22089
32.618
9.9922
IV
Σ
2
− π (0.5) (0.75) = − 0.5890 13.3454
y , in.
xV , in 4
yV , in 4
X ΣV = Σ x V
Have
(
)
X 13.3454 in 3 = 32.618 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or X = 2.44 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 5, Solution 141. First, assume that the sheet metal is homogeneous so that the center of gravity of the bracket coincides with the centroid of the corresponding area. Then (see diagram)
zV = 22.5 −
4 ( 6.25 ) 3π
= 19.85 mm AV = −
π 2
( 6.25)2
= − 61.36 mm 2
A, mm 2
x , mm
y , mm
z , mm
xA, mm3
yA, mm3
zA, mm3
I
( 25)( 60) = 1500
12.5
0
30
18 750
0
45 000
II
(12.5)( 60 ) = 750
25
− 6.25
30
18 750
− 4687.5
22 500
III
( 7.5)( 60 ) = 450
28.75
−12.5
30
12 937.5
− 5625
13 500
IV
− (12.5 )( 30 ) = − 375
10
0
37.5
− 3750
0
−14 062.5
V
− 61.36
10
0
19.85
− 613.6
0
−1218.0
Σ
2263.64
46 074
−10 313
65 720
Have
X ΣA = ΣxA
(
)
X 2263.64 mm 2 = 46 074 mm 3
Y ΣA = Σ yA
(
)
Y 2263.64 mm 2 = −10 313 mm 3
or X = 20.4 mm or Y = − 4.55 mm
Z ΣA = Σ zA
(
)
Z 2263.64 mm 2 = 65 720 mm 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or Z = 29.0 mm