COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 1.
First note: Have
y=
b2 − b1 x + b1 a
I y = ∫ x 2dA b2 − b1 x + b1 a a x 2d ydx 0 0
=∫ ∫
a b − b1 = ∫ 0 x2 2 x + b1 dx a a
1 b − b1 4 1 3 = 2 x + b1x 3 4 a 0 =
1 3 a ( b1 + 3b2 ) 12 Iy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 3 a ( b1 + 3b2 ) 12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 2.
At
5
x = a, y = b :
∴ y =
b a
5 2
5
b = ka 2
x2
or
dI y =
1 3 x dy 3
=
Then
Iy =
x=
or
a b
b 5
a2
2
2 5
y5
1 a3 65 y dy 3 b 65 1 a3 b 65 ∫ y dy 3 b 65 0
1 5 a3 115 = y 3 11 b 65 =
k =
b
0
5 a3 115 b 33 b 65 or I y =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5 3 a b 33
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 3. At x = 0:
First note:
At x = a :
a = k ( 2b − b ) k = ∴ x=
Have
2
c = −b
or
or
0 = k (b + c)
2
a b2 a 2 y − b) 2( b
I y = ∫ x 2dA =∫
a 2 y − b) 2b b 2 ( 0 0
∫
x 2dxdy 3
=
1 2b a 2 y − b ) dy ∫ 0 2( 3 b 2b
1 a3 1 7 = × ( y − b) 6 3b 7 b =
1 3 ab 21 Iy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 3 a b 21
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 4.
y = kx 2 + c
Have
b = k ( 0) + c
x = 0, y = b :
At
c=b
or At
x = 2a, y = 0:
or
k =− y =−
Then
= Then
I y = ∫ x 2dA, 2a
I y = ∫ a x 2dA =
2
0 = k ( 2a ) + b
b 4a 2
b 2 x +b 4a 2
b 4a 2 − x 2 4a 2
(
dA = ydx =
) (
)
b 4a 2 − x 2 dx 4a 2
(
)
b 2a 2 2 2 ∫ x 4a − x dx 4a 2 a 2a
b 2 x3 x5 = − 4a 3 5 a 4a 2 =
b b 8a3 − a3 − 32a5 − a5 2 3 20a
=
7a3b 31a3b − 3 20
(
)
(
)
Iy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
47 3 a b 60
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 5.
First note: Have
y =
b2 − b1 x + b1 a
I x = ∫ y 2dA =
b2 − b1 x + b1 a a 0 0
∫ ∫
y 2d ydx 3
1 a b − b1 = ∫0 2 x + b1 dx 3 a 4 1 1 a b2 − b1 = × x + b1 3 4 b2 − b1 a
a
0
=
1 a b24 − b14 12 b2 − b1
=
1 a ( b2 + b1 )( b2 − b1 ) b22 + b12 12 b2 − b1
=
1 a ( b1 + b2 ) b12 + b22 12
(
) (
(
)
) Ix =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 a ( b1 + b2 ) b12 + b22 12
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 6. SOLUTION
5
At x = a, y = b : b = ka 2 or k =
∴y =
b 5
a2
b a
5
x2
5 2
I x = ∫ y 2dA =
b
a
2 y 5 dy b
2 ∫0 y
a
dA = xdy
2 5
5 175 = 2 × y b 5 17
b
0
17
5a b 5 = 17 b 52
or I x =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5 3 ab 17
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 7. At x = 0: 0 = k ( b + c )
First note: or
2
c = −b At x = a : a = k ( 2b − b )
Have
or
k =
a b2
∴
x=
a 2 y − b) 2( b
2
I x = ∫ y 2dA
=∫
a 2 y − b) 2b b 2 ( 0 b
∫
y 2dxdy
=
a 2b 2 2 y ( y − b ) dy 2 ∫b b
=
a 2b 4 y − 2by 3 + b 2 y 2 dy 2 ∫b b
=
a 1 5 1 4 1 2 3 y − by + b y 2 3 b2 5 b
=
a 1 1 1 2 1 2 3 5 4 3 1 5 1 4 ( 2b ) − ( 2b ) + b ( 2b ) − b − b b + b b 2 3 5 2 3 b 2 5
(
)
2b
( )
( )
8 1 1 1 32 = ab3 −8+ − + − 3 5 2 3 5 =
31 3 ab 30 Ix =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
31 3 ab 30
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 8.
Have
y = kx 2 + c
At
x = 0, y = b: b = k (0) + c
or
c=b
At
x = 2a, y = 0: 0 = k (2a) 2 + b
or
k =−
Then
y =
Now
dI x = =
b 4a 2
b 4a 2 − x 2 4a 2
(
)
1 3 y dx 3 3 1 b3 4a 2 − x 2 dx 6 3 64a
(
)
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then
I x = ∫ dI x =
3 1 b3 2 a 4a 2 − x 2 dx 6 ∫a 3 64a
=
b3 2a 64a 6 − 48a 4 x 2 + 12a 2 x 4 − x 6 dx 6 ∫a 192a
(
)
(
)
2a
b3 12 2 5 x 7 6 4 3 64 a x 16 a x a x − = − + 5 7 a 192a 6 =
b3 64a 7( 2 − 1) − 16a 7 ( 8 − 1) 192a 6
+
=
12 7 1 a ( 32 − 1) − (128 − 1) 5 7
ab3 372 127 3 − 64 − 112 + = 0.043006ab 192 5 7
I x = 0.0430ab3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 9.
x2 y2 + =1 a 2 b2
x = a 1−
y2 b2
dA = xdy dI x = y 2dA = y 2 xdy b
b
I x = ∫ dI x = ∫ − b xy 2dy = a ∫ − b y 2 1 − Set: y = b sin θ
y2 dy b2
dy = b cosθ dθ
π
I x = a ∫ 2π b 2 sin 2 θ 1 − sin 2 θ b cosθ dθ −
2
π
π
−
−
= ab3 ∫ 2π sin 2 θ cos 2 θ dθ = ab3 ∫ 2π 2
2
1 2 sin 2θ dθ 4 π
π
1 1 1 1 2 = ab3 ∫ 2π (1 − cos 4θ ) dθ = ab3 θ − sin 4θ − 2 4 8 4 −π 2
=
2
1 3 π π π 3 ab − − = ab 8 2 2 8
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Ix =
1 π ab3 8
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 10.
At
2a = kb3
x = 2a, y = b:
or
k =
2a b3
Then
x=
2a 3 y b3
or
y =
Now
dI x =
b
( 2a )
1
1 3
x3
1 3 1 b3 y dx = xdx 3 3 2a 2a
Then
1 b3 2 a 1 b3 1 2 I x = ∫ dI x = xdx x = ∫ 3 2a a 6 a 2 a =
b3 4a 2 − a 2 12a
(
) Ix =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 3 ab 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 11. −a At x = a : b = k 1 − e a
First note: or Have
k =
b 1 − e−1
I x = ∫ y 2dA b a 1− e 0 0
=∫ ∫
−x 1− e a
−1
3
y 2dydx 3
=
−x 1 b a 1 − e a dx −1 ∫ 0 31 − e
=
−x −2 x −3 x 1 b a 1 − 3e a + 3e a − e a dx −1 ∫ 0 31 − e
3
3
a
−x 1 b a −2 x a −3x x − 3( − a ) e a + 3 − e a − − e a = −1 31 − e 2 3 0
3
1 b 1 1 = a + 3ae−1 − 1.5ae−2 + ae −3 − 3a − 1.5a + a −1 3 1 − e 3 3
=
1 ab3 3 1 − e −1
(
)
3
11 1.91723 − 6
= 0.1107ab3
I x = 0.1107ab3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 12. x2 y2 + =1 a 2 b2
y = b 1−
x2 a2
dA = 2 ydx dI y = x 2dA = 2 x 2 ydx a
a
I y = ∫ dI y = ∫ 0 2 x 2 ydx = 2b ∫ 0 x 2 1 − x = a sin θ
Set:
x2 dx a2
dx = a cosθ dθ
π
I y = 2b∫ 02 a 2 sin 2 θ 1 − sin 2 θ a cosθ dθ 3
π
2
2
3
π
= 2a b∫ sin θ cos θ dθ = 2a b∫ 02 2 0
π
1 2 sin 2θ dθ 4 π
1 1 1 1 2 = a3b∫ 02 (1 − cos 4θ ) dθ = a3b θ − sin 4θ 2 2 4 4 0
=
1 3 π π a b − 0 = a3b 4 2 8 Iy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 3 πa b 8
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 13.
At
x = 2a, y = b : 2a = kb3 2a 3 y b3
Then
x=
or
y =
Now
I y = ∫ x 2dA
Then
I y = ∫ a x2
b
( 2a )
=
=
=
1
b
( 2a )
1 3
x 3 dx
7
b
( 2a )
x3
dA = ydx
2a
=
1
1 3
1 3
b 1
( 2a ) 3
2a ∫ a x 3 dx
3 103 x 10
3b 10 ( 2a )
1 3
2a
a
2a 103 − a 103 ( )
10 3ba3 103 2 − 1 3 1 10 ( 2 ) 3
= 2.1619a3b or I y = 2.16a3b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 14. First note: or Have
−a At x = a : b = k 1 − e a
k =
b 1 − e−1
I y = ∫ x 2dA b a 1− e 0 0
−x 1− e a
−1
2 x d ydx
=
∫ ∫
=
∫ 0 x 1 − e−1 1 − e a dx
a 2
b
−x
a
−x 2 b 1 3 e a 1 2 1 x x 2 x 2 = − − − − + 3 1 − e−1 3 a 1 a − a 0 =
2 b 1 3 a 3 −1 a 3 + a a e 2 + 2 + 2 − a × 2 −1 a 1 − e 3 a
=
a3b 1 + 5e −1 − 2 −1 1− e 3
(
)
= 0.273a3b
I y = 0.273 a3b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 15.
k1 =
or Then
y1 =
and
x1 =
b 4 x a4 a b
1 4
b = k2a 4
b a4
k2 = b
y2 =
1 4
b 1
a4
1
x4
a a x2 = 4 y 4 b
1
y4
A = ∫ ( y2 − y1 ) dx = b∫
Now
1
b = k1a 4
x = a, y = b:
At
x 14
a 0
a
1 4
−
x 4 dx a4
a
4 x 54 1 x5 = 3 ab = b − 5 5 a 14 5 a 4 0 I x = ∫ y 2dA
Then
dA = ( x1 − x2 ) dy
a 1 a b I x = ∫ 0 y 2 1 y 4 − 4 y 4 dy 4 b b b
4 y 134 1 y 7 = a − 7 b4 13 b 14 0
1 4 = ab3 − 13 7 or I x =
Now
kx =
Ix = A
15 3 ab 91 = 3 ab 5
15 3 ab 91
25 2 b = 0.52414b 91 or k x = 0.524b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 16. First note:
At x = a :
2b = k a
or Straight line: Now:
k=
2b a
y1 =
b x a
∴ y2 =
2b a
x
b a 2b 12 A = 2∫ 0 x − x dx a a a
4 x 23 1 2 = 2b − x 3 a 2a 0 = Have
5 ab 3
I x = ∫ y 2dA 1
2b 2 x a a 0 bx a
= 2∫ ∫
=
y 2dydx
2 a 8b3 32 b3 3 x − 3 x dx ∫ 3 0 a 23 a a
2b3 2 8 5 1 = × 3 x 2 − 3 x 4 3 5 a2 4a 0
Ix = And
kx =
=
59 3 ab 30
Ix A 59 3 ab 30 5 ab 3
= b 1.18
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k x = 1.086 b
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 17. At
x = a, y = b:
k1 =
or Then
Now
y1 =
1
b = k1a 4
b = k2a 4
b a4
b
b 4 x a4
k2 =
y2 =
and
A = ∫ ( y2 − y1 ) dx = b∫
1
a4
x 14
a 0
a
1 4
−
b a
1 4
1
x4
x 4 dx a4
a
4 x 54 1 x5 = 3 ab = b − 1 4 5 5 a4 5 a 0
dA = ( y2 − y1 ) dx
Now
I y = ∫ x 2dA
Then
b 1 b a I y = ∫ 0 x 2 1 x 4 − 4 x 4 dx 4 a a = b∫
x 94
a 0
a
1 4
−
x 6 dx a4 a
4 x 134 1 x 7 = b − 7 a4 13 a 14 0
1 4 = b a3 − a3 7 13
or I y =
Now
ky =
Iy A
=
15 3 ab 91 = 3 ab 5
15 3 a b 91
25 a = 0.52414a 91 or k y = 0.524a
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 18. First note:
At x = a :
2b = k a
or
Straight line:
Now:
k=
2b a
y1 =
b x a
∴ y2 =
2b a
x
b a 2b 12 A = 2∫ 0 x − x dx a a a
4 x 23 1 2 = 2b − x 3 a 2a 0
= Have
5 ab 3
I y = ∫ x 2dA 1
2b 2 x a a b 0 x a
= 2∫ ∫
x 2dydx
2b 12 b a x − x dx = 2∫ 0 x 2 a a 7 2 x2 1 x 4 = 2b 2 × − 7 a 4 a
=
a
0
9 3 ab 14
Iy =
9 3 a b 14 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
ky =
=
=a
Iy A
9 3 ab 14 5 ab 3
27 70
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
k y = 0.621 a
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 19. First note:
At x = 0: b = c cos ( 0 )
c=b
or
At x = 2a : b = b sin k ( 2a ) 2ka =
or
k= Then
π 2
π 4a
π π 2a A = ∫ a b sin x − b cos x dx 4a 4a 2a
π 4a π 4a = b − cos x− sin x 4a π 4a a π =− = Have
4ab 1 1 + (1) − π 2 2
4ab
π
(
)
2 −1
I x = ∫ y 2dA π
2 a b sin 4a x
= ∫a ∫
b cos
=
π
4a
x
y 2dydx
1 2a 3 3 π 3 3 π ∫ b sin 4a x − b cos 4a x dx 3 a 2a
b3 4a π 1 4a π 4a π 1 4a 3 π x+ cos3 x − sin x− sin x = − cos 3 π 4a 3π 4a π 4a 3π 4a a =
4ab3 −1 + 3π
3 3 1 1 1 1 1 1 1 − − + − + 3 2 3 2 3 2 2
=
4ab3 5 2 2− 3π 6 3 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Ix =
2 ab3 5 2 − 4 9π
(
)
= 0.217 ab3 And
kx =
=
I x = 0.217 ab3
Ix A 2 ab3 5 2 − 4 9π 4 ab 2 − 1
π
( (
)
)
= 0.642b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k x = 0.642 b
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 20. At x = 0: b = c cos ( 0 )
First note:
c=b
or
At x = 2a : b = b sin k ( 2a ) 2ka =
or
k=
π 2
π 4a
π π 2a A = ∫ a b sin x − b cos x dx 4a 4a
Then
2a
π 4a π 4a = b − cos x− sin x 4a π 4a a π =−
= Have
4ab 1 1 + (1) − π 2 2
4ab
π
(
)
2 −1
I y = ∫ x 2dA π
2 a b sin 4a x 2 x dydx a b cos π x 4a
=
∫ ∫
=
2a 2 ∫ a x b sin 4a x − b cos 4a x dx
π
π
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
2 π 2 π x π 2x = b + − sin x cos x cos x 2 3 π 4a 4a 4a π π 4a 4a 4a 2a
2 2x π 2 π x π cos x sin x sin x − − + 3 π 2 π 4a 4a 4a π 4a 4a 4a a
2a
64a3b π π π π π π 2 2 Iy = sin x cos x x sin x cos x 2 x − + + − 4a 2a 4a 4a π 3 4a 16a 2 a
=
64a3b π 2 1 1 π 2 1 π 1 2 2 + − − + − ( )( ) ( ) 4 2 16 π 3 2
I y = 1.482a3b
= 1.48228a3b And
ky =
=
Iy A 1.48228a3b 4ab 2 −1
π
(
)
= 1.676a
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k y = 1.676a
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 21.
dI x =
(a)
Ix =
1 3 a dx 3 1 3 a a3 2 a ∫ − a dx = ( 2a ) = a 4 3 3 3
dI y = x 2dA = x 2adx
I y = a∫
a 2 x dx −a
JO = I x + I y =
JO =
kO2 A
a
x3 2 = a = a4 3 −a 3
2 4 2 4 a + a 3 3
4 4 a JO 2 k = = 3 2 = a2 A 3 2a 2
JO =
4 4 a 3
kO = a
2 3
(b)
dI x = Ix =
1 3 a dx 12 a 3 2a a 3 2a 1 4 dx = [ x] = 6 a ∫ 12 0 12 0
dI y = x 2dA = x 2 ( adx ) I y = a∫
2a 2 x dx 0
JO = I x + I y =
J O = kO2 A
2a
x3 8 = a = a4 3 3 0
1 4 8 4 17 4 a + a = a 6 3 6
17 4 a J 17 2 kO2 = O = 6 2 = a A 12 2a
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
JO =
17 4 a 6
kO = a
17 12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 22. Have: A = ( 2a )( 3b ) −
1 ( 2a )( b ) 2
= 5ab
Have:
JP = Ix + I y
Where:
I x = ∫ y 2dA a 2b b − x a
= 2∫ 0 ∫
=
y 2dydx
3 2 a 3 b − − 2 b x ∫ ( ) a dx 3 0
2 x4 = b3 8x + 3 3 4a = And
a
0
11 3 ab 2
I y = ∫ x 2dA a 2b 2 b x dydx − x a
= 2∫ 0 ∫
a b = 2∫ 0 x 2 2b − − x dx a a
1 4 2 = 2b x3 + x 4a 0 3 =
11 3 ab 6 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then:
Also:
JP =
kP =
=
11 3 11 3 ab + a b 2 6 JP =
11 ab a 2 + 3b 2 6
kP =
11 2 a + 3b 2 30
(
)
JP A 11 ab a 2 + 3b 2 6 5ab
(
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 23.
y1 :
x = a,
At
y = 2b: 2b = ma
or
m=
2b a
Then
y1 =
2b x a
y2 :
x = 0, y = b: b = k ( 0 ) + c or
At
x = a, y = 2b: 2b = ka 2 + b
At
k =
or
y2 =
Then Now
c=b
b a2
b 2 b x + b = 2 x2 + a2 a2 a
(
)
2b a b A = ∫ ( y2 − y1 ) dx = ∫ 0 2 x 2 + a 2 − x dx a a
(
)
a
b 1 b = 2 x3 + a 2 x − x 2 a 0 a 3 = Now
1 b 1 3 b a + a3 − a 2 = ab 2 3 a 3 a a
I y = ∫ x 2dA = ∫ 0 x 2 ( y2 − y1 ) dx =
2b x dx
a 2 2 2 ∫ 0 x a2 ( x + a ) − a
b
a
b 1 1 2b x 4 = 2 x5 + a 2 x3 − 3 a 5 a 4 0 =
b a5 1 5 2b a 4 1 3 + a − = ab 2 3 a 4 30 a 5 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
1 1 I x = ∫ dI x = ∫ y23 − y13 dx 3 3 =
1 a b3 2 x + a2 ∫ 0 6 3 a
=
1 b3 a 1 6 x + 3x 4a 2 + 3x 2a 4 + a 6 − 8x3 dx ∫ 3 a3 0 a3
(
)
3
−
8b3 3 x dx a3
(
)
a
1 b3 1 x 7 3 2 5 3 4 3 8 4 6 Ix = a x a x a x + + + − 3 3 4x 3 a a 7 5 3 0 =
Finally
1 b3 1 a 7 3 7 26 3 + a + a 7 + a 7 − 2a 4 = ab 3 3 3 a a 7 5 105 26 3 1 3 ab + ab 105 30
JP = Ix + I y =
or J P =
And
kP =
JP = A
ab 7a 2 + 52b 2 210
(
ab 7a 2 + 52b 2 210 1 ab 3 or k P =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(
)
) 7a 2 + 52b 2 70
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 24. x = r 2 − y2
First note:
JP = Ix + I y r
I x = ∫ y 2dA = 2∫ r ∫ 0
r 2 − y2
2
y 2dxdy
r
= 2∫ r y 2 r 2 − y 2 dy 2
Let Then Thus
y = r sin θ dy = r cosθ dθ ;
y = r:
θ =
π 2
;
y=
r : 2
θ =
π 6
π
I x = 2∫ π2 r 2 sin 2 θ ( r cosθ )( r cosθ dθ ) 6
Now
sin 2θ = 2sin θ cosθ Ix =
thus
1 2 sin 2θ 4
1 4 π2 2 r ∫ π sin 2θ dθ 2 6
1 θ sin 4θ = r4 − 2 2 8
π 2
π 6
=
1 4π π 1 3 + × r − 2 4 12 8 2
=
3 r4 π + 4 3 8 r
I y = ∫ x 2dA = 2∫ r ∫0
r 2 − y2
2
=
sin 2 θ cos 2 θ =
x 2dxdy
3
2 r 2 2 ∫ r r − y 2 dy 3 2
(
)
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Let Then
Now
Thus
y = r sin θ Iy =
2 π2 3 3 ∫ π r cos θ 3 6
(
) ( r cosθ dθ )
(
)
cos 4 θ = cos 2 θ 1 − sin 2 θ = cos 2 θ −
Iy =
1 2 sin 2θ 4
2 4 π2 2 1 r ∫ π cos θ − sin 2 2θ dθ 3 4 6 π
2 θ sin 2θ 1 θ sin 4θ 2 = r 4 + − − 3 2 4 4 2 8 π 6
Then
=
1 4 π 1 π π 1 3 1 π 1 1 3 r − × − + × − × + × × 3 2 4 2 6 2 2 4 6 4 4 2
=
r4 π 3 3 − 4 3 8
JP =
=
r4 π 3 r4 π 3 3 + + − 43 8 4 3 8
r4 8π − 3 3 48
(
) J P = 0.415r 4
Now
r
A = 2∫ r xdy 2
r
= ∫ r r 2 − y 2 dy 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Let
y = r sin θ π
A = 2∫π2 ( r cosθ )( r cosθ dθ ) 6
π
2 θ
sin 2θ 2 = 2r + 4 π 2 6
π π 1 3 = r 2 − − × 2 2 6 2
= Have
kP =
=
r2 4π − 3 3 12
(
)
JP A r4 8π − 3 3 48 r2 4π − 3 3 12
( (
) ) k P = 0.822 r
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 25.
J O ≡ I 0 = ∫ r 2dA
(a) Have
dA =
Where
Then
R 3π J O = ∫R 2 r 2 1 2
3π rdr 2
r dr
R
=
3π 4 2 3π 4 r = R2 − R14 8 8 R1
(
)
JO =
I x = 3 ( I x )1
so that
( )1 + ( I y )2 + ( I y )3 = 3 ( I y )1
Iy = Iy
( I x )1 = ( I y )1
Symmetry implies
Ix = I y
Then
Then
)
( I x )1 = ( I x )2 = ( I x )3
By inspection
Now
(
I x = ( I x )1 + ( I x )2 + ( I x )3
(b) Now
Similarly,
3π 4 R2 − R14 8
JO = I x + I y Ix = I y =
JO 3π 4 = R2 − R14 2 16
(
)
or I x = I y =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
3π 4 R2 − R14 16
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 26.
R
( (
3π 3π 2 rdr = R2 − R12 2 4
(
) ( )
Then
R2 = Rm + kO2 =
t
t 2
)(
(
1 ( R1 + R2 ) 2
Rm =
For
) )
3π 4 R2 − R14 R22 + R12 R22 − R12 J 1 2 2 O 8 kO = = = = R2 + R12 2 2 3π 2 A 2 2 R − R 2 2 1 R2 − R1 4
Now
And
(
A = ∫ dA = ∫R 2 1
And
Then
3π 4 R2 − R14 8
JO =
(a) From Problem 9.25
R1 = Rm −
and 2
kO2
(
t 2
2
1 = Rm2 + t 2 4
Rm2 kO
Or
(b) Have
)
t = R2 − R1
and
1 t t Rm + + Rm − 2 2 2
R1, R2
)
)
R − kO % error = m × 100% = kO
1− 1+
=
Rm2 +
Rm −
Rm2 +
1 t 4 Rm
1 t 1+ 4 Rm
2
Rm
1 2 t 4 × 100%
1 2 t 4
2
× 100%
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then
t = 1: % error = Rm
1− 1+ 1+
1 4
1 4 × 100%
or % error = −10.56%
t 1 = : % error = Rm 4
1− 1+
11 44
11 1+ 4 4
2
× 100%
2
or % error = −0.772%
1 t = : % error = Rm 16
1 1 1− 1+ 4 16 1+
1 1 4 16
2
2
× 100%
or % error = −0.0488%
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 27. π
Have:
a cos 2θ
A = 2∫ 04 ∫ 0
rdrdθ
π
= ∫ 04 a 2 cos 2 2θ dθ π
2 θ
sin 4θ 4 =a + 8 0 2 = Have:
π 8
a2
J O = ∫ r 2dA π
a cos 2θ
= 2∫ 04 ∫ 0
r 2 ( rdrdθ )
π
1 = ∫ 04 a 4 cos 4 2θ dθ 2 Now:
(
cos 4 2θ = cos 2 2θ 1 − sin 2 2θ
= cos 2 2θ −
)
1 2 sin 4θ 4
π
Then:
1 1 J O = a 4 ∫ 04 cos 2 2θ − sin 2 4θ dθ 2 4 1 θ sin 4θ 1 θ sin 8θ = a 4 + − − 2 2 8 4 2 16
=
π
4 0
1 4π 1 π a − × 4 4 4 4
JO =
3π 4 a 64 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And:
kO =
=
JO A
3π 4 a 64
π
8
a2 kO =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
a 6 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 28.
y =
By observation
b y 2h
x=
or
b dA = xdy = 2h
Now
dI x = y 2dA =
Then
I x = ∫ dI x = 2∫ 0
h
b 3 y dy 2h
1 3 bh 4
= 0
y =
From above Now
h
y dy
b 3 y dy 2h
And
b y4 = h 4
h x b 2
2h x b
2h dA = ( h − y ) dx = h − x dx b =
h ( b − 2 x ) dx b
And
dI y = x 2dA = x 2
Then
I y = ∫ dI y = 2∫ 02
b
h ( b − 2 x ) dx b h 2 x ( b − 2 x ) dx b b
h 1 1 2 = 2 bx3 − x 4 b 3 2 0 3 4 h b b 1b 1 3 bh =2 − = b 3 2 2 2 48
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now
JO = I x + I y =
1 3 1 3 bh + bh 4 48
or J O =
And
bh 12h 2 + b 2 J 1 2 48 O kO = 12h 2 + b 2 = = 1 A 24 bh 2
(
)
(
bh 12h 2 + b 2 48
(
)
) or kO =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
12h 2 + b 2 24
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 29.
First the circular area is divided into an increasing number of identical circular sectors. The sectors can be approximated by isosceles triangles. For a large number of sectors the approximate dimensions of one of the isosceles triangles are as shown. For an isosceles triangle (see Problem 9.28)
JO =
b = r ∆θ
Then with
=
dJ O sector dθ
and
)
h=r
1 4 r ∆θ 12 + ∆θ 2 48
(
)
∆ J O sector 2 1 4 = lim = lim r 12 + ( ∆θ ) ∆θ → 0 ∆θ ∆θ → 0 48 =
Then
(
1 ( r ∆θ )( r ) 12r 2 + ( r ∆θ )2 48
( ∆ J O )sector
Now
bh 12h 2 + b 2 48
1 4 r 4
( J O )circle
= ∫ dJ O sector =
1
1
2π 2π 4 4 ∫ 0 4 r dθ = 4 r [θ ]0
or ( J O )circle =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
π 2
r4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 30.
From the solution to sample Problem 9.2, the centroidal polar moment of inertia of a circular area is
( J C )cir
=
π 2
r4
The area of the circle is
Acir = π r 2 So that
A2 J C ( A ) = cir 2π
Two methods of solution will be presented. However, both methods depend upon the observation that as a given element of area dA is moved closer to some point C, The value of J C will be decreased ( J C = ∫ r 2dA ; as r decreases, so must J C ). Solution 1 Imagine taking the area A and drawing it into a thin strip of negligible width and of sufficient length so that its area is equal to A. To minimize the value of ( J C ) A , the area would have to be distributed as closely as possible about C. This is accomplished by winding the strip into a tightly wound roll with C as its center; any voids in the roll would place the corresponding area farther from C than is necessary, thus increasing the value of ( J C ) A . (The process is analogous to rewinding a length of tape back into a roll.) Since the shape of the roll is circular, with the centroid of its area at C, it follows that
( JC ) A
≥
A2 Q.E.D. 2π
where the equality applies when the original area is circular. continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Solution 2 Consider an area A, with its centroid at point C, and a circular area of area A, with its center (and centroid) at point C. Without loss of generality, assume that A1 = A2
A3 = A4
It then follows that
( J C ) A = ( J C )cir
+ J C ( A1 ) − J C ( A2 ) + J C ( A3 ) − J C ( A4 )
Now observe that
J C ( A1 ) − J C ( A2 ) ≥ 0 J C ( A3 ) − J C ( A4 ) ≥ 0 since as a given area is moved farther away from C its polar moment of inertia with respect to C must increase. ∴ ( J C ) A ≥ ( J C )cir
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
( JC ) A
≥
A2 Q.E.D. 2π
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 31.
Area: A = 2 (10 mm )( 40 mm ) + ( 90 mm )(10 mm ) = 1700 mm 2 Part :
I x = I x + Ad 2 =
1 (10 mm )( 40 mm )3 + (10 mm )( 40 mm )( 25 mm )2 12
= 303.3 × 103 mm 4 1 ( 90 mm )(10 mm )3 = 7.50 × 103 mm 4 12
Part :
Ix = Ix =
Part :
(Same as Part ) I x = 303.3 × 103 mm 4
Thus for entire area:
I x = ( 303.3 + 7.50 + 303.3) × 103 = 614.2 × 103 mm 4
I x = 614 × 103 mm 4 k x2 =
Ix 614.2 × 103 mm 4 = = 361.27 mm 2 2 A 1700 mm k x = 19.01 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 32.
Have
A = A1 − A2 − A3
= (12 )( 8 ) − ( 5 )( 4 ) − ( 2 )( 6 ) in 2 = 64 in 2
Have
I x = ( I x )1 − ( I x )2 − ( I x )3
1 3 3 3 1 1 = (12 )( 8 ) − ( 5 )( 4 ) − ( 2 )( 6 ) in 4 12 12 12
= ( 512 − 26.667 − 36 ) in 4 = 449.33 in 4 I x = 449 in 4 And
kx =
=
Ix A
449.33 in 4 64 in 2
= 2.65 in. k x = 2.65 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 33.
Area:
A = 2 (10 mm )( 40 mm ) + ( 90 mm )(10 mm ) = 1700 mm 2
Part : I y = I y + Ad 2 =
1 ( 40 mm )(10 mm )3 + ( 40 mm )(10 mm )( 40 mm )2 12
= 643.3 × 103 mm 4 Part : I y = I y =
1 (10 mm )( 90 mm )3 = 607.5 × 103 mm 4 12
Part : (Same as Part ) I y = 643.3 × 103 mm 4 Thus for entire area:
I y = ( 643.3 + 607.5 + 643.3) × 103 mm 4
= 1.894 × 106 mm 4 k y2 =
Iy A
=
I y = 1.894 × 106 mm 4
1.894 × 106 mm 4 = 1114.2 mm 2 2 1700 mm
k y = 33.4 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 34.
Have
A = A1 − A2 − A3
= (12 )( 8 ) − ( 5 )( 4 ) − ( 2 )( 6 ) in 2 = 64 in 2 Have
( )1 − ( I y )2 − ( I y )3
Iy = Iy
2 1 1 3 3 3 2 1 1 = ( 8 )(12 ) − ( 4 )( 5 ) + 20 − ( 6 )( 2 ) + 12 ( 4 ) in 4 12 2 12 12
= (1152 ) − ( 41.667 + 5 ) − ( 4 + 192 ) in 4 = 909.33 in 4 And
ky =
=
I y = 909 in 4
Iy A
909.33 in 4 64 in 2 = 3.77 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k y = 3.77 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 35.
Have
I x = ( I x )1 + ( I x )2 + ( I x )3 3 3 1 1 = ( 2a )( 4a ) + ( a )( 3a ) 3 3 2 2 π π 4a π 4a + a 4 − a 2 + a 2 3a + 16 4 3π 4 3π
4 9π 4 4 128 4 27 4 π a + a + a = − + +2+ 3 3 16 9 π 4 9 π 161 37π 4 4 = + a = 60.9316a 16 3 or I x = 60.9a 4 Also
( )1 + ( I y )2 + ( I y )3
Iy = Iy
3 3 1 1 π = ( 4a )( 2a ) + ( 3a )( a ) + a 4 3 3 16
π 32 = + 1 + a 4 = 11.8630a 4 16 3 or I y = 11.86a 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 36.
Have
I x = ( I x )1 − ( I x )2 − ( I x )3 3 1 π π = ( 3a )( 2a ) − a 4 − a 4 12 8 8
π π π = 2 − − a4 = 2 − a4 8 8 4 or I x = 1.215a 4 Also
( )1 − ( I y )2 − ( I y )3
Iy = Iy
2 1 3 a = ( 2a )( 3a ) + ( 3a )( 2a ) 2 12 2 2 π π 4a π 4a − a 4 − a 2 + a 2 2a − 2 3π 2 3π 8
2 2 π π 4a π 4a − a4 − a2 + a2 a − 2 3π 2 3π 8
8 8 8 4 9 3 π = + a4 − − + 2π − + a 3 9π 2 2 8 9π 8 π 4 8 π − − + − + 2 3 9π 8 9π
11π 4 a = 10 − 4
4 a
= 1.3606a 4 or I y = 1.361a 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 37.
I AA′ = 2.2 × 106 mm 4 = I + A ( 25 mm ) I BB′ = 4 × 106 mm 4 = I + A ( 35 mm )
2
2
(
I BB′ − I AA′ = ( 4 − 2.2 ) × 106 = A 352 − 252
) 1.8 × 106 = A ( 600 )
Then
(
)
I AA′ = 2.2 × 106 mm 4 = I + 3000 mm 2 ( 25 mm )
A = 3000 mm 2
2
I = 325 × 103 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I = 325 × 103 mm 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 38. Given: A = 6000 mm 2
(
)
I AA′ = 18 × 106 mm 4 = I + 6000 mm 2 ( 50 mm )
2
I = 3 × 106 mm 4
(
)
I BB′ = I + Ad 2 = 3 × 106 mm 4 + 6000 mm 2 ( 60 mm )
2
= 24.6 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I BB′ = 24.6 × 106 mm 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 39. Have
J A = J C + Ad12
( = A ( 3a
d1 = 2a
J B = J C + A d 22 + a 2 Then
J A − JB
Substituting
2
)
− d 22
) (
)
2 256 in 4 − 190 in 4 = 24 in 2 3a 2 − ( 2 in.)
a = 1.500 in. And
(
)
2 256 in 4 = J C + 24 in 2 4 (1.500 in.)
J C = 40.0 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 40. J A = J C + Ad12
Have
(
J B = J C + A d 22 + a 2
)
J B = 3 J A; d1 = d 2 = 2.5 in.
(a) Then
(
)
a2 = 2
or
(
3 J C + Ad12 = J C + A d12 + a 2
)
JC + 2d12 A
52.5 in 4 2 = 2 + 2.5 in. ( ) 2 30 in
a = 4.00 in. (b)
Have
(
)
2 2 J B = 52.5 in 4 + 30 in 2 ( 2.5 in ) + ( 4.00 in.)
J B = 720 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 41. Determination of centroid: y = 0 by symmetry. Part 1 2 3
Σ x =
Area
( ) 2
3 ( 0.75 ) = 2.25
6 ( 0.75 ) = 4.50
3 ( 0.75 ) = 2.25 9.00
x ( in.) 1.5
( )
xA in 3 3.375
0.375
1.6875
1.5
3.375 8.4375
ΣxA 8.4375 in 3 = = 0.9375 in. ΣΑ 9.00 in 2
Determination of I x : Part : I x =
1 ( 3 in.)( 0.75 in.)3 + ( 3 in.)( 0.75 in.)( 3.375 in.)2 = 25.734 in 4 12 1 Part : I x = ( 0.75 in.)( 6 in.)3 = 13.50 in 4 12 Part : (Same as Part ) I x = 25.734 in 4
Entire Section: I x = ( 25.734 + 13.50 + 25.734 ) in 4
= 64.97 in 4
I x = 65.0 in 4
Determination of I y : Part : I y =
2 1 ( 0.75 in.)( 3 in.)3 + ( 0.75 in.)( 3 in.) (1.5 − 0.9375) in. 12
= 2.3994 in 4 Part : I y =
2 1 ( 6 in.)( 0.75 in.)3 + ( 6 in.)( 0.75 in.) ( 0.9375 − 0.375) in. 12
= 1.6348 in 4 Part : (Same as Part ) I y = 2.3994 in 4 Entire Section: I y = ( 2.3994 + 1.6348 + 2.3994 ) in 4
= 6.434 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I y = 6.43 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 42. Locate centroid
y1 = 52.5 mm A1 = ( 84 mm )(105 mm )
= 8820 mm 2 y2 = 90 mm A2 = −
1 ( 42 mm )( 45 mm ) 2
= − 945 mm 2 y =
Then
=
Σyi Ai ΣAi
( 52.5 mm ) (8820 mm 2 ) + ( 90 mm ) ( − 945 mm 2 ) 8820 mm 2 − 945 mm 2
= 48.0 mm I x = ( I x )1 − ( I x )2
Have
3 2 1 = ( 84 mm )(105 mm ) + 8820 mm 2 ( 52.5 mm − 48.0 mm ) 12
(
)
3 2 1 − ( 42 mm )( 45 mm ) + 945 mm 2 ( 90.0 mm − 48.0 mm ) 36
(
)
= ( 8103375 + 178605 ) − (106312.5 + 1666980 ) mm 4
I x = 6.51 × 106 mm 4
( )1 − ( I y )2
And I y = I y
3 3 1 1 = (105 mm )( 84 mm ) − 2 ( 45 mm )( 21 mm ) 12 12
= 5186160 − 2 ( 34728.75 ) mm 4 I y = 5.12 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 43. Locate centroid:
x1 = 8 in. y1 = 3 in. A1 = (16 )( 6 ) = 96 in 2 x2 = −1.5 in. y2 = 2 in. A2 = ( 3)( 4 ) = 12 in 2 x3 = 14 in. y3 = − 5.25 in. A3 = ( 4 )(10.5 ) = 42 in 2
x =
ΣxA ΣΑ
8 ( 96 ) − 1.5 (12 ) + 14 ( 42 ) in 3 = = 8.92 in. ( 96 + 12 + 42 ) in 2
y =
( ) ( ) ( )
ΣyA ΣA
3 ( 96 ) + 2 (12 ) − 5.25 ( 42 ) in 3 = = 0.610 in. ( 96 + 12 + 42 ) in 2
I x = I x1 + I x2 + I x3
3 2 3 2 1 1 = (16 )( 6 ) + ( 96 )( 3 − 0.610 ) in 4 + ( 3)( 4 ) + (12 )( 2 − 0.610 ) in 4 12 12 3 2 1 + ( 4 )(10.5 ) + ( 42 )( − 5.25 − 0.610 ) in 4 12
= ( 288 + 548.36 ) + (16 + 23.185 ) + ( 385.875 + 1442.26 ) in 4 = 2703.7 in 4
I x = 2700 in 4
( ) ( ) ( )
I y = I y1 + I y2 + I y3
3 2 3 2 1 1 = ( 6 )(16 ) + ( 96 )( 8 − 8.92 ) in 4 + ( 4 )( 3) + (12 )( −1.5 − 8.92 ) in 4 12 12 3 2 1 + (10.5 )( 4 ) + ( 42 )(14 − 8.92 ) in 4 12
= ( 2048 + 81.254 ) + ( 9 + 1302.92 ) + ( 56 + 1083.87 ) in 4 = 4581.0 in 4
I y = 4580 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 44. Locate centroid:
x1 = 20 mm y1 = 45 mm A1 = ( 40 mm )( 90 mm ) = 3600 mm 2
x2 = 50 mm y2 = 51 mm A2 =
1 ( 48 mm )( 30 mm ) 2
= 720 mm 2
Then
x = =
Σxi Ai ΣΑi
( 20 mm ) ( 3600 mm 2 ) + ( 50 mm ) ( 720 mm 2 ) 3600 mm 2 + 720 mm 2
= 25.0 mm And
y =
=
Σyi Ai ΣAi
( 45 mm ) ( 3600 mm 2 ) + ( 51 mm ) ( 720 mm 2 ) 3600 mm 2 + 720 mm 2
= 46.0 mm Now
I x = ( I x )1 + ( I x )2 3 2 1 = ( 40 mm )( 90 mm ) + 3600 mm 2 (1 mm ) 12
(
)
1 3 2 1 + ( 30 mm )( 24 mm ) + 720 mm 2 ( 59 mm − 46.0 mm ) 2 36
(
)
1 3 2 1 + ( 30 mm )( 24 mm ) + 720 mm 2 ( 46.0 mm − 43 mm ) 2 36
(
(
) (
)
) (
)
= 2.430 × 106 + 3600 + 11.520 × 103 + 60.840 × 103 + 11.520 × 103 + 3240 mm 4
I x = 2.52 × 106 mm 4 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
( )1 + ( I y )2
Iy = Iy
3 2 1 = ( 90 mm )( 40 mm ) + 3600 mm 2 ( 5 mm ) 12
(
)
3 2 1 + ( 48 mm )( 30 mm ) + 720 mm 2 ( 25 mm ) 36
(
(
) (
)
)
= 480 × 103 + 90 × 103 + 36 × 103 + 450 × 103 mm 4
I y = 1.056 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 45.
Dimensions in mm Determination of centroid, C: Par
Area mm 2
t
y mm
yA mm3 170.67 × 103
1
1 (160 )(80 ) = 6400 2
80 3
2
−
1 (80 )( 60 ) = − 24 2
20
Σ
ΣyA ΣΑ 122.67 × 103 mm 3 = 4000 mm 2 = 30.667 mm
y =
− 48.0 × 103
122.67 × 103
4000
(a) Polar moment of inertia with respect to point O, J O : Part :
Ix =
1 (160 mm )(80 mm )3 = 6.8267 × 106 mm 4 12
3 1 I y = 2 ( 80 mm )( 80 mm ) = 6.8267 × 106 mm 4 12
J O = I x + I y = ( 6.8267 + 6.8267 ) × 106 = 13.653 × 106 mm 4 Part :
Ix =
1 (80 mm )( 60 mm )3 = 1.440 × 106 mm 4 12
3 1 I y = 2 ( 60 mm )( 40 mm ) = 0.640 × 106 mm 4 12
J O = I x + I y = (1.440 + 0.640 ) × 106 = 2.080 × 106 mm 4
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Entire Section:
( ) ( )
J O = J O1 − J O2 = 13.653 × 106 − 2.080 × 106 mm 4 = 11.573 × 106 mm 4
J O = 11.57 × 106 mm 4
(b) Polar moment of inertia with respect to centroid, J C :
J O = J C + Ay 2
(
)
11.573 × 106 mm 4 = J C + 4000 mm 2 ( 30.667 mm )
2
J C = 7.8116 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
J C = 7.81 × 106 mm 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 46. Locate centroid: By symmetry, y = 0
A1 = π (100 mm )( 60 mm ) = 6000π mm 2
x1 = 0
x2 =
4 ( 45 mm ) 3π
A2 = − x3 =
All dimensions in mm
π 2
=
3π
π 2
π
mm
( 45mm )2 = −1012.5π
− 4 ( 30 mm )
A3 = −
60
=−
40
π
mm 2
mm
( 30 mm )2 = − 450π
mm 2
60 40 0 ( 6000π ) + ( −1012.5π ) − ( − 450π ) mm3 ΣxA π π x= = = − 2.9990 mm ΣA ( 6000π − 1012.5π − 450π ) mm 2 (a)
Have
J O = ( J O )1 − ( J O )2 − ( J O )3 4 4 1 1 1 = π (100 )( 60 ) 1002 + 602 mm 4 − π ( 45 ) mm 4 − π ( 30 ) mm 4 4 4 4
(
)
(
)
= π 20 400 000 − 1 025 156 − 202 500 mm 4 = 60232000 mm 4
(b)
Have With
or
J O = 60.2 × 106 mm 4
or
J C = 60.1 × 106 mm 4
J O = J C + Ax 2 A = ( 6000π − 1012.5π − 450π ) mm 2
= 4537.5π mm 2 Then
(
)
J C = 60 232 000 mm 4 − 4537.5π mm 2 ( − 2.9990 mm )
2
= 60 232 000 mm 4 − 128209 mm 4 = 60 104 000 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 47. Locate centroid:
(a)
Have
x1 = 4 in.
y1 = −1.15 in.
A1 = (16 )( 2.3) = 36.8 in 2
x2 = 4 in.
y2 = 3.2 in.
A2 =
x3 = 2 in.
y3 = 1.6 in.
1 (12 )( 9.6 ) = 57.6 in 2 2 1 A3 = ( 6 )( 4.8 ) = −14.4 in 2 2
x=
3 ΣxA 4 ( 36.8 ) + 4 ( 57.6 ) + 2 ( −14.4 ) in 348.8 in 3 = = − = 4.360 in. ΣA 80 in 2 ( 36.8 + 57.6 − 14.4 ) in 2
y=
3 ΣyA −1.15 ( 36.8 ) + 3.2 ( 57.6 ) + 1.6 ( −14.4 ) in 118.96 in 3 = =− = 1.487 in. 2 ΣA 80 in 80 in 2
I x = ( I x )1 + ( I x )2 − ( I x )3 =
1 1 1 (16 )( 2.3)3 in 4 + (12 )( 9.6 )3 in 4 − ( 6 )( 4.8)3 in 4 3 12 12
= 64.891 in 4 + 884.736 in 4 − 55.296 in 4 = 894.33 in 4
( )1 + ( I y )2 − ( I y )3
Iy = Iy
1 1 3 2 3 3 1 = ( 2.3)(16 ) + 2.3 (16 )( 4 ) in 4 + ( 9.6 )(12 ) in 4 − ( 4.8 )( 6 ) in 4 12 12 12 = 1373.87 in 4 + 1382.4 in 4 − 86.4 in 4 = 2669.9 in 4 Now
J O = I x + I y = 894.33 in 4 + 2669.9 in 4 = 3564.2 in 4
(b)
J O = 3560 in 4
Have
J O = J C + Ad 2
Then
2 2 J C = 3564.2 in 4 − 80 in 2 ( 4.360 in.) + (1.487 in.)
where
(
d2 = x2 + y2
)
= 3564.2 in 4 − 1697.66 in 4 = 1866.54 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
J C = 1867 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 48.
Locate centroid:
4 (12 in.)
y1 =
=
3π
16
A1 =
y2 = 4 in.
2
(12 in )2
= 72π in 2
in.
π
π
A2 = − (12 in.)( 8 in.) = − 96 in 2
Then
y =
Σ yi Ai ΣΑi
16 2 2 in. 72π in + ( 4 in.) − 96 in π = 72π in 2 − 96 in 2
(
)
(
)
= 5.8989 in. (a)
Have
JO = I x + I y
Where
I x = ( I x )1 − ( I x )2
1 4 3 π = (12 in.) − (12 in.)( 8 in.) 3 8 = 6095.0 in 4 And
( )1 − ( I y )2
Iy = Iy
1 4 3 π = (12 in.) − ( 8 in.)(12 in.) 12 8 = 6991.0 in 4
Then
J O = ( 6095.0 + 6991.0 ) in 4
= 13086.0 in 4 (b)
Have
J O = 13.09 × 103 in 4
J O = J C + Ay 2 2 13086.0 in 4 = J C + ( 72π − 96 ) in 2 ( 5.8989 in.)
J C = 8.555 × 103 in 4 J C = 8.56 × 103 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 49. From Fig. 9.13A
Area = A = 4.75 in 2 I x′ = 17.4 in 4 I y′ = 6.27 in 4
(
)
2 I x = 2 I x′ + Ad 2 = 2 17.4 in 4 + 4.75 in 2 ( 3.00 − 1.990 ) in 2
= 2 17.4 in 4 + 4.8455 in 4 = 44.491 in 4
I x = 44.5 in 4 k x2 =
Ix 44.491 in 4 = = 4.683 in 2 A 2 4.75 in 2
(
k x = 2.16 in.
)
(
)
2 I y = 2 I y′ + Ad 2 = 2 6.27 in 4 + 4.75 in 2 ( 2.25 − 0.987 ) in 2
= 2 6.27 in 4 + 7.5771 in 4 = 27.694 in 4
I y = 27.7 in 4 k y2 =
Iy A
=
27.694 in 4
(
2 4.75 in 2
)
= 2.9152 in 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k y = 1.707 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 50.
Data for C 250 × 30:
A = 3780 mm 2 I x = 32.6 × 106 mm 4 I y = 1.14 × 106 mm 4
Dimensions in mm
A = 2 3780 mm 2 + (10 mm )( 375 mm ) = 15.06 × 103 mm 2
Total Area,
3 2 1 I x = 2 32.6 × 106 mm 4 + 2 ( 375 mm )(10 mm ) + ( 375 mm )(10 mm )(132 mm ) 12
= 65.2 × 106 mm 4 + 130.74 × 106 mm 4 = 195.94 × 106 mm 4 k x2 =
I x 195.94 × 106 mm 4 = = 13.01 × 103 mm 2 3 2 A 15.06 × 10 mm
or
I x = 195.9 × 106 mm 4
or
k x = 114.0 mm
2 3 1 I y = 2 1.14 × 106 mm 4 + 3780 mm 2 (115.3 mm ) + 2 (10 mm )( 375 mm ) 12
(
)
= 102.783 × 106 mm 4 + 87.891 × 106 mm 4 = 190.674 × 106 mm 4
k y2 =
Iy A
=
190.674 × 106 mm 4 = 12.661 × 103 mm 2 15.06 × 103 mm 2
or
I y = 190.7 × 106 mm 4
or
k y = 112.5 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 51.
Shape Data:
Fig. 9.13A
A = 10.3 in 2
S10 × 35:
A = 5.88 in 2
C10 × 20:
I x = 147 in 4
I x = 78.9 in 4
I y = 8.36 in 4
I y = 2.81 in 4
Combined section:
(
)
A = AS + 2 AC = 10.3 in 2 + 2 5.88 in 2 = 22.06 in 2
(
)
I x = ( I x )S + 2 ( I x )C = 147 in 4 + 2 78.9 in 4 = 304.8 in 4 or
I x = 305 in 4
( )S + 2 ( I y )C + ACd 2
Iy = Iy
2 4 2 4.944 = 8.36 in + 2 2.81 in + 5.88 in in. + 2.739 in. − 0.606 in. 2
(
4
)
= ( 8.36 + 5.62 + 249.38 ) in 4 = 263.36 in 4
kx = ky =
or
I y = 263 in 4
Ix = A
304.8 in 4 22.06 in 2
or
k x = 3.72 in.
Iy
263.36 in 4 22.06 in 2
or
k y = 3.46 in.
A
=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 52.
A = 3780 mm 2
Channel:
I x = 32.6 × 106 mm 4 I y = 1.14 × 106 mm 4
( )C + ( I x )plate
Ix = 2 Ix
Now
(
)
= 2 32.6 × 106 mm 4 +
(
d ( 300 mm )3 12
)
= 65.2 × 106 + 2.25d × 106 mm 4 And
( )channel + ( I y )plate
Iy = 2 Iy
2 3 d ( 300 mm ) d = 2 1.14 × 106 mm 4 + 3780 mm 2 + 15.3 mm + 12 2
(
)
(
)
= 2.28 × 106 + 1890d 2 + 115.668 × 103 d + 1.7697 × 106 + 25d 3 mm 4
(
)
= 25d 3 + 1890d 2 + 115.67 × 103 d + 4.0497 × 106 mm 4 I x = 16I y
Given Then
65.2 × 106 + 2.25d × 106
(
= 16 25d 3 + 1890d 2 + 115.67 × 103 d + 4.0497 × 106 or Solving numerically
)
25d 3 + 1890d 2 − 24955d − 25300 = 0
d = 12.2935 mm or d = 12.29 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 53.
Locate centroid:
x1 = 15.3 mm y1 = 127 mm
A1 = 3780 mm 2
x2 = − 21.4 mm y2 = 76 mm − 21.4 mm
A2 = 932 mm 2
= 54.6 mm x3 = − 21.4 mm y3 = 76 mm + 21.4 mm
A3 = 932 mm 2
= 97.4 mm Then
x =
=
Σxi Ai ΣΑi
(15.3 mm ) ( 3780 mm 2 ) + 2 ( − 21.4 mm ) ( 932 mm 2 )
(
3780 mm 2 + 2 932 mm 2
)
= 3.1794 mm And
y=
=
Σyi Ai ΣΑi
(127 mm ) ( 3780 mm 2 ) + ( 76 mm ) ( 2 × 932 mm 2 )
(
3780 mm 2 + 2 932 mm 2
)
= 110.157 mm Now
I x = ( I x )1 + ( I x )2 + ( I x )3
(
)
2 = 32.6 × 106 mm 4 + 3780 mm 2 (127 mm − 110.157 mm )
( ) + ( 932 mm ) (110.157 mm − 97.4 mm )
2 + 0.517 × 106 mm 4 + 932 mm 2 (110.157 mm − 54.6 mm )
+ 0.517 × 106 mm 4
2
2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(
) ( + 0.151675 × 10 ) mm
= 32.6 × 106 + 1.07234 × 106 + 0.517 × 106 + 2.8767 × 106
(
+ 0.517 × 106
6
)
4
I x = 37.7 × 106 mm 4 And
( )1 + ( I y )2 + ( I y )3
Iy = Iy
(
)
2 = 1.14 × 106 mm 4 + 3780 mm 2 (15.3 mm − 3.1794 mm )
(
)
2 + 2 0.517 × 106 mm 4 + 932 mm 4 ( 3.1794 mm + 21.4 mm )
(
) (
)
= 1.14 × 106 + 0.55532 × 106 + 2 0.517 × 106 + 0.56306 × 106 mm 4
I y = 3.86 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 54.
Angle:
L3 × 3 ×
1 : 4
A = 1.44 in 2 L6 × 4 ×
1 : 2
A = 4.75 in 2 Plate:
I x = I y = 1.24 in 4
I x = 6.27 in 4
I y = 17.4 in 4
A = ( 27 in.)( 0.8 in.) = 21.6 in 2
Ix =
1 ( 0.8 in.)( 27 in.)3 = 1312.2 in 4 12
Iy =
1 ( 27 in.)( 0.8 in.)3 = 1.152 in 4 12 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
X =0
Centroid:
Y =
or
(
(
)
(
)
2 1.44 in 2 ( 27 in. − 0.84 in.) + 2 4.75 in 2 ( 0.987 in.) + 21.6 in 2 (13.5 in.) Y = 2 1.44 in 2 + 4.75 in 2 + 21.6 in 2
= Now
)
ΣAy ΣA
(
)
376.31 in 3 = 11.0745 in. 33.98 in 2
I x = 2 ( I x )1 + 2 ( I x )3 + ( I x )2 2 2 = 2 6.27 + 4.75 (11.075 − 0.987 ) in 4 + 2 1.24 + 1.44 ( 27 − 0.842 − 11.075 ) in 4 2 + 1312.2 + 21.6 (13.5 − 11.075 ) in 4
= 2 ( 489.67 ) in 4 + 2 ( 328.84 ) in 4 + 1439.22 in 4 = 3076.24 in 4
or I x = 3076 in 4 Also
( I y ) = 2 ( I y )1 + 2 ( I y )3 + ( I y )2 2 2 = 2 17.4 + 4.75 ( 0.4 + 1.99 ) in 4 + 2 1.24 + 1.44 ( 0.4 + 0.842 ) in 4 + 1.152 in 4
= 2 ( 44.532 ) in 4 + 2 ( 3.4613) in 4 + 1.152 in 4 = 97.139 in 4 or I y = 97.1 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 55.
A = 2420 mm 2
Angle:
I x = 3.93 × 106 mm 4
I y = 1.06 × 106 mm 4 A = ( 200 mm )(10 mm ) = 2000 mm 2
Plate:
Ix =
1 ( 200 mm )(10 mm )3 = 0.01667 × 106 mm 4 12
Iy =
1 (10 mm )( 200 mm )3 = 6.6667 × 106 mm 4 12
X =0
Centroid
Y = or
Y =
(
)
ΣAy ΣA
2 2420 mm 2 ( 44.4 mm ) + 2000 mm 2 ( −5 mm ) 2 ( 2420 ) + 2000 mm 2
=
204896 mm 3 6840 mm 2
= 29.9556 mm Now
I x = 2 ( I x )angle + ( I x )plate 2 = 2 3.93 × 106 + ( 2420 )( 44.4 − 29.9556 ) mm 4 2 + 0.01667 × 106 + ( 2000 )( 29.9556 + 5 ) mm 4
(
)
= 2 4.4349 × 106 mm 4 + 2.4605 × 106 mm 4 = 11.3303 × 106 mm 4 or I x = 11.33 × 106 mm 4
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Also Where
( )angle + ( I y )plate
Iy = 2 Iy
( I y )angle = 1.06 × 106 mm 4 + ( 2420 mm 2 ) ( b − 19.0 mm )2
(
)
= 1.06 × 106 + ( 2420 ) b 2 − 38b + 361 mm 4
= 2420b 2 − 91960b + 1.93362 × 106 mm 4 and Now Then or
( I y )plate = 6.6667 × 106 mm 4 ( )
I y = 3 Ix
(
)
2 2420b 2 − 91960b + 1.93362 × 106 mm 4 + 6.6667 × 106 mm 4 = 3 11.33 × 106 mm 4 2420b 2 − 91960b + 1.93362 × 106 − 13.662 × 106 = 0 b 2 − 38.0b − 4846.5 = 0
b = 91.16 mm or b = 91.2 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 56.
(a)
Using shape data from Fig. 9.13A
xA = 1.78 in.
AA = 8.44 in 2
xC = − 0.499 in.
AC = 3.09 in 2
a xP = 6 − in. 2
AP = ( 0.75a ) in 2
x=
From the condition
ΣxA =0 ΣΑ
or
ΣxA = 0
(1.78 in.) (8.44 in 2 ) − ( 0.499 in.) ( 3.09 in 2 ) + 6 −
or
a 2 − 12a − 35.950 = 0
a 2 in. 0.75a in = 0 2
(
)
a = 14.4823 in. a = 14.48 in.
or and (b)
AP = ( 0.75 in.)(14.4823 in.) = 10.8617 in 2
Locate centroid
y=
ΣyA = ΣΑ
6 in. 3.09 in 2 − ( 0.375 in.) 10.8617 in 2 2 (8.44 + 3.09 + 10.8617 ) in 2
(1.78 in.) (8.44 in 2 ) +
(
)
(
)
= 0.90302 in.
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I x = ( I x ) A + ( I x )C + ( I x ) P
Now
(
)
2 = 28.2 in 4 + 8.44 in 2 (1.78 in. − 0.90302 in.)
(
)
2 + 15.2 in 4 + 3.09 in 2 ( 3.0 in. − 0.90302 in.)
3 2 1 + (14.4823 in.)( 0.75 in.) + 10.8617 in 2 ( 0.375 in. + 0.90302 in.) 12
(
)
= ( 28.2 + 6.4912 ) + (15.2 + 13.5877 ) + ( 0.5091 + 17.7408 ) in 4
= 81.729 in 4 I x = 81.7 in 4
or and
( ) A + ( I y )C + ( I y ) P
Iy = Iy
(
)
(
)
2 2 = 28.2 in 4 + 8.44 in 2 (1.78 in.) + 0.866 in 4 + 3.09 in 2 ( 0.499 in.) 2 1 14.4823 in. 3 + ( 0.75 in.)(14.4823 in.) + 10.8617 in 2 6 in. − 2 12
(
)
= ( 28.2 + 26.741) + ( 0.866 + 0.7694 ) + (189.842 + 16.7319 ) in 4 = 263.15 in 4 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I y = 263 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 57.
R = γ ∫ ydA
From Sec. 9.2:
M AA′ = γ ∫ y 2dA Let yP = Distance of center of pressure from AA′. We must have
RyP = M AA ' :
yP =
2 M AA′ γ ∫ y dA I AA′ = = γ ∫ ydA R yA
For a triangular panel:
I AA′ =
Thus
1 3 ah 12
y=
1 h 3
A=
1 ah 2
1 3 ah 1 12 yP = = h 1 1 2 h ah 3 2 yP =
1 h 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 58.
From Sec. 9.2:
R = γ ∫ ydA M AA′ = γ ∫ y 2dA
Let yP = Distance of center of pressure from AA′. We must have RyP = M AA ' :
For a semiellipse
yP = I AA′ = y =
2 M AA′ γ ∫ y dA I AA′ = = R yA γ ∫ ydA
π 8
ab3
4b π , A = ab 3π 2
π Then
yP =
ab3
8 4b π ab 3π 2 or yP =
3π b 16
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 59.
R = γ ∫ ydA
From Sec. 9.2:
M AA′ = γ ∫ y 2dA Let yP = Distance of center of pressure from AA′ : We must have RyP = M AA ' :
yP =
2 M AA′ γ ∫ y dA I AA′ = = R yA γ ∫ ydA
Divide Trapezoid as shown:
I AA′ =
1 1 1 1 ( a − b ) h3 + bh3 = ah3 + bh3 12 3 12 4
yA = y1 A1 + y2 A2 =
1 1 1 1 1 h ( a − b ) h + h ( bh ) = ah 2 + bh 2 3 2 6 3 2
1 3 1 3 I AA′ 12 ah + 4 bh yP = = 1 2 1 2 yA ah + bh 6 3
yP =
a + 3b h 2a + 4b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 60.
From Sec. 9.2:
R = γ ∫ ydA M AA′ = γ ∫ y 2dA
Let yP = Distance of center of pressure from AA′. We must have
RyP = M AA ' : where
yP =
2 M AA′ γ ∫ y dA I AA′ = = R yA γ ∫ ydA
I AA′ = ( I AA′ )1 + ( I AA′ )2 2 2 π π 4r π 2 4r 3 1 r r = ( 2r )( r ) + r 4 − r 2 + + 2 3π 2 3π 3 8
= And
2 4 π 8 π 4 9 r + − + + + 3 2 3 8π 8 9π
5π 4 4 r = 2 + r 8
4r π 2 r YA = ΣyA = ( 2r × r ) + r + r 3π 2 2
π 2 5 π = 1 + + r 3 = + r 3 2 3 3 2
Then
5π 4 2 + r 8 yP = = 1.2242r 5 π 3 + r 3 2
or yP = 1.224r
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 61.
Using equation developed on page 491 of text:
yP =
R = 920
Then
Ix I = AA′ yA yA
R = γ yA = ρ gyA
kg m × 9.81 2 × 3 m × ( 0.55 × 0.25 ) m 2 3 m s
= 3722.9 N I AA′ =
and
1 ( 0.55 m )( 0.25 m )3 + ( 0.55 m )( 0.25 m )( 3 m )2 12
= 1.238216 m 4
FBD Cover:
and
yA = ( 3 m )( 0.55 m )( 0.25 m ) = 0.4125 m 3
Then
yP =
Symmetry implies
1.238216 m 4 = 3.001736 m 0.4125 m 3 FA = FB
and
FC = FD .
Equilibrium:
ΣM CD = 0:
− ( 0.125 − 0.001736 ) m × ( 3722.9 N ) + ( 0.25 m )( 2FA ) = 0 FA = 917.80 N
ΣFx = 0:
or FA = FB = 918 N
− 2 ( 917.80 N ) + 3722.9 N − 2 FC = 0 FC = 943.65 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or FC = FD = 944 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 62. Using equations developed on page 491 of text: yP =
Now
Ix I = ss′ yA yA
R = γ yA
yA = Σ yA 1 = ( h + 17 in.) × 120 in. × 51 in. 2 1 + ( h + 34 in.) × 84 in. × 51 in. 2
d = ( h + 79 in.)
= ( 5202h + 124848 ) in 3 = ( 36.125h + 72.25 ) ft 3 Then,
(
)
R = γ yA = 62.4 lb/ft 3 ( 36.125h + 72.75 ) ft 3
= 2254.2 ( h + 2 ) lb Also,
I ss′ = ( I ss′ )1 + ( I ss′ )2 2 1 120 51 3 1 120 51 17 2 = ft ft + ft ft h + ft 12 2 12 12 36 12 12 2 1 84 51 3 1 84 51 34 2 + ft ft + ft ft h + ft 12 2 12 12 36 12 12
34 289 1156 4 2 68 h+ h+ = 21.324 + 21.25 h 2 + + 14.9266 + 14.875 h + ft 12 144 12 144
(
)
= 36.125h 2 + 144.5h + 198.311 ft 4
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(
Then
= FBD of Gate:
)
36.125h 2 + 144.5h + 198.311 ft 4 I ss′ yP = = yA ( 36.125h + 72.25 ) ft 3
h 2 + 4h + 5.4896 ft h+2
For gate to open:
ΣM AB = 0: − M open + ( yP − h ) R = 0
h 2 + 4h + 5.4896 2 ( 8000 lb ⋅ ft ) − − h ft 2254.2 ( h + 2 ) lb = 0 h+2 or Thus
2h − 1.60826 = 0
d =h+
h = 0.80413 ft
79 79 ft = 0.80413 + ft 12 12
= 7.3875 ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or d = 7.39 ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 63.
x dV x = ∫ EL ∫ dV
Have
dV = ydA
where
and
xEL = x
60 1 x= x 300 5
Now
y =
Then
1 x = 1 ∫ 5 x dA
∫ x 5 x dA
=
∫ x dA = ( I z ) A ∫ xdA ( xA) A 2
where ( I z ) A is the moment of inertia of the area with respect to the z axis, and x is analogous to y p Now
( Iz )A
=
1 1 ( 240 mm )( 300 mm )3 + ( 240 mm )( 300 mm ) ( 200 mm )2 36 2
= 1.620 × 109 mm 4 and
Then
1 xA = ( 200 mm ) ( 240 mm )( 300 mm ) = 7.20 × 106 mm 3 2 x =
1.620 × 109 mm 4 7.20 × 106 mm 3 or x = 225 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 64.
xv of the volume is defined by
xvV = ∫ xEL dV
Selecting the element of volume shown
dV = ydA = kxdA V = k ∫ xdA = kx A A Where x A = coordinate of the centroid of area A
xvV = ∫ xEL dV = ∫ x ( kx dA ) = k ∫ x 2dA = kI z Where
I z = moment of inertia of area with respect to z-axis.
Thus
xv =
kI z I = z which is the same as for center of pressure. kx A A xA A
For circular area:
I z = I z′ + Aa 2 =
1 4 5 π a + π a2 a2 = π a4 4 4
( )
xA = a A = π a2
Thus
5 4 πa Iz = 4 2 xv = xA A a π a
( )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
xv =
5 a 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 65. The pressure p at an arbitrary depth ( y sin θ ) is
p = γ ( y sin θ ) so that the hydrostatic force dF exerted on an infinitesimal area dA is
dF = (γ y sin θ ) dA Equivalence of the force P and the system of infinitesimal forces dF requires
ΣF: P = ∫ dF = ∫ γ y sin θ dA = γ sin θ ∫ ydA or P = γ Ay sin θ Equivalence of the force and couple
( P, M x′ + M y′ ) and
the system of infinitesimal hydrostatic forces
requires ΣM x: − yP − M x′ = Now
∫ ( − ydF )
−∫ ydF = −∫ y (γ y sin θ ) dA = − γ sin θ ∫ y 2dA = − (γ sin θ ) I x
Then or
− yP − M x′ = − (γ sin θ ) I x
M x′ = (γ sin θ ) I x − y (γ Ay sin θ )
(
= γ sin θ I x − Ay 2
) or M x′ = γ I x′ sin θ
ΣM y : xP + M y′ = ∫ xdF Now
∫ xdF = ∫ x (γ y sin θ ) dA = γ sin θ ∫ xydA = (γ sin θ ) I xy ( Equation 9.12 ) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then or
xP + M y′ = (γ sin θ ) I xy M y′ = (γ sin θ ) I xy − x (γ Ay sin θ )
(
= γ sin θ I xy − Ax y
)
or, using Equation 9.13,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
M y′ = γ I x′y′ sin θ
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 66. The pressure p at an arbitrary depth ( y sin θ ) is
p = γ ( y sin θ ) so that the hydrostatic force dP exerted on an infinitesimal area dA is
dP = (γ y sin θ ) dA The magnitude P of the resultant force acting on the plane area is then
P = ∫ dP = ∫ γ y sin θ dA = γ sin θ ∫ ydA = γ sin θ ( yA) Now
p = γ y sin θ
∴ P = pA
Next observe that the resultant P is equivalent to the system of infinitesimal forces dP. Equivalence then requires
ΣM x: − yP P = −∫ ydP Now
2 ∫ ydP = ∫ y (γ y sin θ ) dA = γ sin θ ∫ y dA
= ( γ sin θ ) I x Then or
yP P = (γ sin θ ) I x yP =
(γ sin θ ) I x γ sin θ ( yA ) or yP =
ΣM y : xP P = ∫ xdP Now
Ix Ay
∫ xdP = ∫ x (γ y sin θ ) dA = γ sin θ ∫ xydA = (γ sin θ ) I xy ( Equation 9.12 )
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then
xP P = (γ sin θ ) I xy
or
xP =
(γ sin θ ) I xy γ sin θ ( yA ) or xP =
Now
I x = I x′ + Ay 2
From above
I x = ( Ay ) yP
By definition
I x′ = k x2′ A
Substituting
( Ay ) yP
I xy Ay
= k x2′ A + Ay 2 yP − y =
Rearranging yields
k x2′ y
Although k x′ is not a function of the depth of the area (it depends only on the shape of A), y is dependent on the depth.
∴ ( yP − y ) = f ( depth )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 67.
y = a 1−
First note
=
1 4a 2 − x 2 2
dI xy = dI x′y′ + xEL yEL dA
Have
dI x′y′ = 0
where
yEL =
( symmetry )
xEL = x
1 1 y = 4a 2 − x 2 2 4
dA = ydx = Then
x2 4a 2
1 4a 2 − x 2 dx 2
2a 1 1 4a 2 − x 2 4a 2 − x 2 dx I xy = ∫ dI xy = ∫ 0 x 4 2 2a
1 2a 1 1 = ∫ 0 4a 2 x − x3 dx = 2a 2 x 2 − x 4 8 8 4 0
(
=
a4 8
)
1 2 4 2 ( 2 ) − 4 ( 2 ) or I xy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 4 a 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 68. First note:
At x = a : or k =
Now
b = ka3
b b ; y = 3 x3 3 a a
I xy = ∫ xydA a b b 3 x a3
= ∫0 ∫
=
xydydx
1 a 2 b2 6 ∫ x b − a 6 x dx 2 0 a
b2 1 2 1 8 = x − 6x 2 2 8a 0 =
3 2 2 ab 16
I xy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
3 2 2 ab 16
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 69.
Have
I xy = ∫ xydA =
0
0
∫ − b ∫ h x xydydx b
=
1 0 h2 2 ∫ x − x dx 2 − b b 2 0
=− =
1 h2 4 x 8 b 2 −b
1 2 2 b h 8 I xy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 2 2 b h 8
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 70. a
At x = a : b = ke a
First note:
or k = Now
b b x ; y = ea e e
I xy = ∫ xydA b ax a ee 0 0
=∫ ∫ =
xydydx
1 b 2 a 2ax ∫ xe dx 2 e2 0 a
2x 2 a 1b e 2 = x − 1 2 e2 2 2 a 0 a =
1 b2 a 2 2 e (1) − (1)( −1) 2 e2 4
=
a 2b 2 2 e +1 8e 2
(
) I xy = 0.1419a 2b 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 71.
I xy = I xy
Where
( I xy )1 = 0
and Now
x2 = −15 mm
( )1 − ( I xy )2 − ( I xy )3
Have
y2 = 10 mm
0
I xy = I x′y′ + A x y for areas and A2 = ( 50 mm )( 20 mm ) = 1000 mm 2
x3 = 15 mm
y3 = −10 mm A3 = ( 50 mm )( 20 mm ) = 1000 mm 2
Then
(
)
I xy = − 1000 mm 2 ( −15 mm )(10 mm )
− (1000 mm )(15 mm )( −10 mm ) = 300 × 103 mm 4 I xy = 300 × 103 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 72.
Note: Orientation of A3 corresponding to a 180° rotation of the axes. Equation 9.20 then yields
I x′y′ = I xy •
Symmetry implies Using Sample Problem 9.6 and Similarly, and
( I xy )1 = 0 ( I x′y′ )2 = − 721 ( 9 in.)2 ( 4.5 in.)2 = − 22.78125 in 4
X 2 = 9 in.
Y2 = 1.5 in.
A2 =
1 ( 9 in.)( 4.5 in.) = 20.25 in 2 2
( I x′y′ )3 = − 721 ( 9 in.)2 ( 4.5 in.)2 = − 22.78125 in 4 X 3 = − 9 in.
Y2 = −1.5 in.
0
A3 =
( )1 + ( I xy )2 + ( I xy )3
1 ( 9 in.)( 4.5 in.) = 20.25 in 2 2
Then
I xy = I xy
and
I xy = I x′y′ + x y A
Therefore,
I xy = 2 − 22.78125 + ( 9 )(1.5 )( 20.25 ) in 4
with
( I xy )2 = ( I xy )3
= 501.1875 in 4
or I xy = 501 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 73.
( )1 + ( I xy )2
Have
I xy = I xy
For each semicircle
I xy = I x′y′ + x y A
Thus
I xy = Σx y A
A, mm 2 1
2
π 2
π 2
x , mm
(120 )2
= 7200π
− 60
(120 )2
= 7200π
60
I x′y′ = 0 (symmetry)
and
y , mm
−
160
π
160
π
Σ
Ax y , mm 4 69.12 × 106
69.12 × 106 138.24 × 106
or I xy = 138.2 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 74.
( )1 + ( I xy )2
Have
I xy = I xy
For each rectangle
I xy = I x′y′ + Ax y
Thus
I xy = Σ x y A
and
I x′y′ = 0 (symmetry)
A, mm 2
x , mm
y , mm
Ax y , mm 4
1
76 ( 6.4 ) = 486.4
−12.9
9.4
− 58 980.86
2
44.6 ( 6.4 ) = 285.44
21.9
−16.1
−100 643.29
Σ
−159 624.15 or I xy = − 0.1596 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 75.
Have Now symmetry implies
( )1 + ( I xy )2 + ( I xy )3
I xy = I xy
( I xy )1 = 0
and for the other rectangles
I xy = I x′y′ + x y A
Thus
I xy = ( x y A )2 + ( x y A)3
where
I x′y′ = 0 (symmetry)
= ( − 69 mm )( − 25 mm ) (12 mm )( 38 mm ) + ( 69 mm )( 25 mm ) (12 mm )( 38 mm ) = ( 786 600 + 786 600 ) mm 4 = 1 573 200 mm 4
or I xy = 1.573 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 76.
( I xy )1 = 0
Symmetry implies
Using Sample Problem 9.6 and Equation 9.20, note that the orientation of A2 corresponds to a 1 2 2 90° rotation of the axes; thus I x′y′ = b h 2 72
( )
( I x′y′ )3 = 721 b2h2
Also, the orientation of A3 corresponds to a 270° rotation of the axes; thus
( I x′y′ )2 = 721 ( 9 in.)2 ( 6 in.)2 = 40.5 in 4
Then and
x2 = − 6 in.,
y2 = 2 in.,
x3 = 6 in.,
and
Then
1 ( 9 in.)( 6 in.) = 27 in 2 2
( I x′y′ )3 = ( I x′y′ )2 = 40.5 in 4
Also
Now
A2 =
0
y3 = − 2 in.,
( )1 − ( I xy )2 − ( I xy )3
I xy = I xy
and
A3 = A2 = 27 in 2 I xy = I x′y′ + x y A
(
( I xy )2 = ( I xy )3
)
I xy = −2 40.5 in 4 + ( 6 in.)( −2 in.) 27 in 2
= −2 ( 40.5 − 324 ) in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or I xy = 567 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 77.
Have
I xy = I x′y′ + x yA
Where
I x′y′ = 0 for each rectangle
Then
I xy = I xy
Section :
( )1 + ( I xy )2 + ( I xy )3 = Σ x yA x1 = − ( 8.92 in. − 8 in.) = − 0.92 in. y1 = 3 in. − 0.61 in. = 2.39 in.
A1 = (16 in.)( 6 in.) = 96 in 2 Section :
x2 = ( − 8.92 in. − 1.5 in.) = −10.42 in. y2 = 2 in. − 0.61 in. = 1.39 in.
A2 = ( 3 in.)( 4 in.) = 12 in 2 Section :
x3 = (16 in. − 8.92 in.) − 2 in. = 5.08 in. y3 = − ( 0.61 in. + 5.25 in.) = − 5.86 in. A3 = ( 4 in.)(10.5 in.) = 42 in 2
Then
(
)
(
)
I xy = ( − 0.92 in.)( 2.39 in.) 96 in 2 + ( −10.42in.)(1.39 in.) 12 in 2
(
)
+ ( 5.08 in.)( − 5.86 in.) 42 in 2
= − ( 211.08 + 173.806 + 1250.29 ) in 4 = −1635.18 in 4
I xy = −1635 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 78.
( )1 + ( I xy )2
I xy = I xy
Have For each rectangle
I xy = I x′y′ + x yA Then
and
I x′y′ = 0 (symmetry)
I xy = Σ x yA = ( −0.75 in.)( −1.5 in.) ( 3 in.)( 0.5 in.) + ( 0.5 in.)(1.00 in.) ( 4.5 in.)( 0.5 in.) = (1.6875 + 1.125 ) in 4 = 2.8125 in 4
or I xy = 2.81 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 79.
π
Ix =
From Figure 9.12:
( 2a )( a )3
16
π
=
8
a4
π
Iy =
16
=
π 2
( 2a )3 ( a )
a4
I xy =
From Problem 9.67:
1 4 a 2
1 1 π π 5 I x + I y = a4 + a4 = π a4 2 2 8 2 16
(
First note
)
1 1π π 3 I x − I y = a4 − a4 = − π a4 2 2 8 2 16
(
)
Now use Equations (9.18), (9.19), and (9.20). Equation (9.18):
I x′ = =
Equation (9.19):
I y′ =
= Equation (9.20):
I x′y′ =
1 1 Ix + I y + I x − I y cos 2θ − I xy sin 2θ 2 2
(
)
(
)
5 3 1 π a 4 − π a 4 cos 2θ − a 4 sin 2θ 16 16 2 1 1 Ix + I y − I x − I y cos 2θ + I xy sin 2θ 2 2
(
)
(
)
5 3 1 π a 4 + π a 4 cos 2θ + a 4 sin 2θ 16 16 2 1 I x − I y sin 2θ + I xy cos 2θ 2
=−
(
)
3 1 π a 4 sin 2θ + a 4 cos 2θ 16 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 80.
From the solution to Problem 9.72
I xy = 501.1875 in 4
A2 = A3 = 20.25 in 2 First compute the moment of inertia
I x = ( I x )1 + ( I x )2 + ( I x )3
( I x )2 = ( I x )3
with
3 3 1 1 = (12 in.)( 9 in.) + 2 ( 9 in.)( 4.5 in.) 12 12
= ( 729 + 136.6875 ) in 4 = 865.6875 in 4 and
( )1 + ( I y )2 + ( I y )3
Iy = Iy
with
( I y ) 2 = ( I y )3
3 3 2 1 1 = ( 9 in.)(12 in.) + 2 ( 4.5 in.)( 9 in.) + 20.25 in 2 ( 9 in.) 12 36
(
)
= (1296 + 182.25 + 3280.5 ) in 4 = 4758.75 in 4 From Equation 9.18
I x′ = =
Ix + I y 2
+
Ix − I y 2
cos 2θ − I xy sin 2θ
865.6875 in 4 + 4758.75 in 4 865.6875 in 4 − 4758.75 in 4 + cos 2 ( −45° ) 2 2 −501.1875 in 4 sin 2 ( −45° )
= ( 2812.21875 + 501.1875 ) in 4 = 3313.4063 in 4
or I x′ = 3.31 × 103 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Similarly
I y′ =
Ix + I y 2
−
Ix − I y 2
cos 2θ + I xy sin 2θ
= ( 2812.21875 − 501.1875 ) in 4 = 2311.0313 in 4
or I y′ = 2.31 × 103 in 4 and
I x′y′ = =
Ix − I y 2
sin 2θ + I xy cos 2θ
865.6875 in 4 − 4758.75 in 4 sin 2 ( −45° ) 2 + 501.1875cos 2 ( −45° )
= ( −1946.53125 )( −1) in 4 = 1946.53125 in 4
or I x′y′ = 1.947 × 103 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 81.
From Problem 9.73,
I xy = 138.24 × 106 mm 4 I x = ( I x )1 + ( I x )2
( I x )1 = ( I x )2
4 π = 2 (120 mm ) 8
= 51.84π × 106 mm 4
( )1 + ( I y )2
( I y )1 = ( I y )2
Iy = Iy
π 4 2 2 π = 2 (120 mm ) + (120 mm ) ( 60 mm ) 2 8 = 103.68π × 106 mm 4
( ) = 2 ( 51.84π × 10 ) = 103.68π × 10
Have
I x = 2 25.92π × 106 = 51.84π × 106 mm 4
and
Iy
Then
1 I x + I y = 77.76π × 106 mm 4 2
and
6
(
6
mm 4
)
1 I x − I y = −25.92π × 106 mm 4 2
(
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now, from Equations 9.18, 9.19, and 9.20 Equation 9.18:
I x′ =
1 1 Ix + I y + I x − I y cos 2θ − I xy sin 2θ 2 2
(
)
(
)
= 77.76π × 106 − 25.92π × 106 cos ( −60° ) − 138.24 × 106 sin ( −60° ) mm 4 = 323.29 × 106 mm 4
or I x = 323 × 106 mm 4 Equation 9.19:
I y′ =
1 1 Ix + I y − I x − I y cos 2θ + I xy sin 2θ 2 2
(
)
(
)
= 77.76π × 106 + 25.92π × 106 cos ( −60° ) + 138.24 × 106 sin ( −60° ) mm 4 = 165.29 × 106 mm 4
or I y′ = 165.29 × 106 mm 4 Equation 9.20:
I x′y′ =
1 I x − I y sin 2θ + I xy cos 2θ 2
(
)
= −25.92π × 106 sin ( −60° ) + 138.24 × 106 cos ( −60° ) mm 4 = 139.64 × 106 mm 4
or I x′y′ = 139.6 × 104 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 82.
From Problem 9.75
I xy = 1.5732 × 106 mm 4
Now
I x = ( I x )1 + ( I x )2 + ( I x )3
( I x )1 =
where and
( I x )2 = ( I x )3
1 (150 mm )(12 mm )3 = 21 600 mm 4 12
1 (12 mm )( 38 mm )3 + (12 mm )( 38 mm ) ( 25 mm )2 12
=
= 339 872 mm 4 Then
I x = 21 600 + 2 ( 339 872 ) mm 4 = 701 344 mm 4 = 0.70134 × 106 mm 4
( )1 + ( I y )2 + ( I y )3
Iy = Iy
Also where and
( I y )1 = 121 (12 mm )(150 mm )3 = 3.375 × 106 mm 4 ( I y )2 = ( I y )3 = 121 ( 38 mm )(12 mm )3 + (12 mm )( 38 mm ) ( 69 mm )2 = 2.1765 × 106 mm 4
Then
I y = ( 3.375 + 2 ( 2.1765 ) × 106 mm 4 = 7.728 × 106 mm 4
Now
1 I x + I y = 4.2146 × 106 mm 4 2
and
1 I x − I y = −3.5133 × 106 mm 4 2
( (
)
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Using Equations 9.18, 9.19, and 9.20 From Equation 9.18:
I x′ =
Ix + I y 2
Ix − I y
+
2
cos 2θ − I xy sin 2θ
(
)
= 4.2147 × 106 + −3.5133 × 106 cos (120° ) − 1.5732 × 106 sin (120° ) mm 4 = 4.6089 × 106 mm 4
or I x′ = 4.61 × 106 mm 4 From Equation 9.19:
I y′ =
Ix + I y 2
−
Ix − I y 2
cos 2θ + I xy sin 2θ
(
)
= 4.2147 × 106 − −3.5133 × 106 cos (120° ) + 1.5732 × 106 sin (120° ) mm 4 = 3.8205 × 106 mm 4 or I y′ = 3.82 × 106 mm 4 From Equation 9.20:
I x′y′ =
Ix − I y 2
sin 2θ + I xy cos 2θ
= −3.5133 × 106 sin (120° ) + 1.5732 × 106 cos (120° ) mm 4 = −3.8292 × 106 mm 4
or I x′y′ = −3.83 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 83.
From Problem 9.74
I xy = −0.1596 × 106 mm 4 From Figure 9.13
I x = 0.166 × 106 mm 4 I y = 0.453 × 106 mm 4 1 I x + I y = 0.3095 × 106 mm 4 2
(
Now
)
1 I x − I y = −0.1435 × 106 mm 4 2
(
)
Using Equations (9.18), (9.19), and (9.20) Equation (9.18):
I x′ =
Ix + I y 2
+
Ix − I y 2
(
cos 2θ − I xy sin 2θ
)
(
)
= 0.3095 × 106 + −0.1435 × 106 cos ( −90° ) − −0.1596 × 106 sin ( −90° ) mm 4 = 0.1499 × 106 mm 4 or I x′ = 0.1499 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equation (9.19):
I y′ =
Ix + I y 2
−
Ix − I y
cos 2θ + I xy sin 2θ
2
(
)
(
)
= 0.3095 × 106 − −0.1435 × 106 cos ( −90° ) + −0.1596 × 106 sin ( −90° ) mm 4
= 0.4691 × 106 mm 4
or I y′ = 0.469 × 106 mm 4 Equation (9.20):
I x′y′ =
Ix − I y 2
sin 2θ + I xy cos 2θ
= −0.1435 × 106 sin ( −90° ) + 0.1596 × 106 cos ( −90° ) mm 4 = 0.1435 × 106 mm 4
or I x′y′ = 0.1435 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 84.
From Problem 9.78
I xy = 2.8125 in 4 From Figure 9.13
I x = 9.45 in 4 ,
I y = 2.58 in 4
1 I x + I y = 6.015 in 4 2
(
Now
)
1 I x − I y = 3.435 in 4 2
(
)
Using Equations (9.18), (9.19), and (9.20) Equation (9.18):
Ix + I y
I x′ =
+
2
Ix − I y 2
cos 2θ − I xy sin 2θ
= 6.015 + 3.435cos ( 60° ) − 2.8125sin ( 60° ) in 4 = 5.2968 in 4 or I x′ = 5.30 in 4 Equation (9.19):
I y′ =
Ix + I y 2
−
Ix − I y 2
cos 2θ + I xy sin 2θ
= 6.015 − 3.435cos ( 60° ) + 2.8125sin ( 60° ) in 4 = 6.7332 in 4 or I y′ = 6.73 in 4 Equation (9.20):
I x′y′ =
Ix − I y 2
sin 2θ + I xy cos 2θ
= 3.435sin ( 60° ) + 2.8125cos ( 60° ) in 4 = 4.3810 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or I x′y′ = 4.38 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 85.
From Problem 9.79:
π
Ix =
8
tan 2θ m = −
= Then
Iy =
I xy =
Problem 9.67:
Now, Equation (9.25):
a4
π 2
a4
1 4 a 2
2I xy Ix − I y
=−
π 8
1 2 a4 2 a4 −
π
2
a4
8 = 0.84883 3π
2θ m = 40.326°
and
220.326°
or θ m = 20.2° and 110.2°
Also, Equation (9.27):
I max, min =
=
Ix + I y 2
2
Ix − I y 2 ± + I xy 2
1π 4 π 4 a + a 2 8 2 2
±
1 π 4 π 4 1 4 a − a + a 2 2 2 8
2
= ( 0.981748 ± 0.772644 ) a 4
or I max = 1.754a 4 and I min = 0.209a 4 By inspection, the a axis corresponds to Imin and the b axis corresponds to Imax.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 86. From the solutions to Problem 9.72 and 9.80
1 I x + I y = 2812.21875 in 4 2
(
I xy = 501.1875 in 4
)
1 I x − I y = −1946.53125 in 4 2
(
Then Equation (9.25): or
)
tan 2θ m = −
2I xy Ix − I y
2θ m = 14.4387°
=−
501.1875 = 0.257477 −1946.53125 194.4387°
and
or θ m = 7.22° and 97.2° Equation (9.27):
I max, min =
Ix + I y 2
2
Ix − I y ± + I xy2 2
= 2812.21875 ±
( −1946.53125 )2 + ( 501.1875 )2
= ( 2812.21875 ± 2010.0181) in 4
or I max = 4.82 × 103 in 4 and I min = 802 in 4
By inspection, the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 87. From Problems 9.73 and 9.81 I x = 51.84π × 106 mm 4 I y = 103.68π × 106 mm 4 I xy = 138.24 × 106 mm 4
tan 2θ m = −
Equation (9.25):
2 I xy Ix − I y
=−
(
2 138.24 × 106 6
)
51.84π × 10 − 103.68π × 106
= 1.69765
2θ m = 59.500°
and
239.500° or θ m = 29.7° and 119.7° !
Then
I max, min
2
Ix − I y 1 2 = Ix + I y ± + I xy 2 2
(
=
)
( 51.84 + 103.68)π × 106 2
2
±
( 51.84 − 103.68 ) π × 106 6 + 138.24 × 10 2
(
)
2
= ( 244.29 ± 160.44 ) × 106 mm 4 or I max = 405 × 106 mm 4 ! and I min = 83.9 × 106 mm 4 !
Note: By inspection the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 88. From Problems 9.75 and 9.82
I x = 0.70134 × 106 mm 4 I y = 7.728 × 106 mm 4
I xy = 1.5732 × 106 mm 4 Then
1 I x + I y = 4.2147 × 106 mm 4 2
(
)
1 I x − I y = −3.5133 × 106 mm 4 2
(
Equation (9.25):
)
tan 2θ = −
2I xy Ix − I y
=−
(
2 1.5732 × 106 6
)
0.70134 × 10 − 7.728 × 106
= 0.44778
Then
2θ m = 24.12°
204.12°
and
or θ m = 12.06° and 102.1° Also, Equation (9.27):
I max, min =
Ix + I y 2
2
Ix − I y 2 I ± 2 xy
= 4.2147 × 106 ±
( −3.5133 × 10 ) + (1.5732 × 10 ) 6
2
6
2
= ( 4.2147 ± 3.8494 ) × 106 mm 4
or I max = 8.06 × 106 mm 4 and I min = 0.365 × 106 mm 4
By inspection, the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 89. From Problems 9.74 and 9.83 I x = 0.166 × 106 mm 4 I y = 0.453 × 106 mm 4 I xy = −0.1596 × 106 mm 4
1 I x + I y = 0.3095 × 106 mm 4 2
(
Then
)
1 I x − I y = −0.1435 × 106 mm 4 2
(
Equation (9.25):
)
tan 2θ m = −
2 I xy Ix − I y
=−
)
( 0.166 − 0.453) × 106
2θ m = −48.041°
Then
(
2 −0.1596 × 106
and
= −1.1122
131.96°
θ m = −24.0° and 66.0° !
or Also, Equation (9.27):
I max, min
( Ix + I y ) ± = 2
2
Ix − I y 2 + I xy 2
= 0.3095 × 106 ±
( −0.1435 × 10 ) + ( −0.1596 × 10 ) 6
2
6
2
= ( 0.3095 ± 0.21463) × 106 mm 4 or
I max = 0.524 × 106 mm 4 ! I min = 0.0949 × 106 mm 4 !
By inspection, the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 90. From Problems 9.78 and 9.84 I xy = 2.81 in 4
I x = 9.45 in 4 I y = 2.58 in 4
1 I x + I y = 6.015 in 4 2
(
Then
)
1 I x − I y = 3.435 in 4 2
(
Equation (9.25):
)
tan 2θ m = −
2 I xy Ix − I y
2θ m = −39.2849°
Then
=−
and
2 ( 2.81) 9.45 − 2.58
= −0.8180
140.7151° or θ m = −19.64° and 70.36° !
Also, Equation (9.27):
I max, min
( Ix + I y ) ± = 2
2
Ix − I y 2 + I xy 2
= 6.015 ± 3.4352 − 2.812 = ( 6.015 ± 4.438 ) in 4 or I max = 10.45 in 4 ! and I min = 1.577 in 4 !
Note: By inspection, the a axis corresponds to I max and the b axis corresponds to I min .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 91. π
Ix =
From Problem 9.79:
8
π
Iy =
2
a4
1 4 a 2
I xy =
Problem 9.67:
a4
The Mohr’s circle is defined by the diameter XY, where
1 π X a4, a4 8 2 Now
I ave =
1 1π π 5 I x + I y = a 4 + a 4 = π a 4 = 0.98175a 4 2 2 8 2 16
(
)
2
and
R=
1 π Y a4 , − a4 2 2
and
Ix − I y 2 + I xy = 2
2
1 π 4 π 4 1 4 a − a + a 2 2 2 8
= 0.77264a 4 The Mohr’s circle is then drawn as shown.
tan 2θ m = −
=−
2I xy Ix − I y
π 8
1 2 a4 2 a4 −
π
2
a4
= 0.84883
or
2θ m = 40.326°
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2
COSMOS: Complete Online Solutions Manual Organization System
Then
α = 90° − 40.326° = 49.674°
β = 180° − ( 40.326° + 60° ) = 79.674°
(a)
I x′ = I ave − R cos α = 0.98175a 4 − 0.77264a 4 cos 49.674° or I x′ = 0.482a 4 I y′ = I ave + R cos α = 0.98175a 4 + 0.77264a 4 cos 49.674°
or I y′ = 1.482a 4 I x′y′ = − R sin α = −0.77264a 4 sin 49.674° or I x′y′ = −0.589a 4 (b)
I x′ = I ave + R cos β = 0.98175a 4 + 0.77264a 4 cos 79.674° or I x′ = 1.120a 4 I y′ = I ave − R cos β = 0.98175a 4 − 0.77264a 4 cos 79.674°
or I y′ = 0.843a 4 I x′y′ = R sin β = 0.77264a 4 sin 79.674° or I x′y′ = 0.760a 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 92.
From the solution to Problem 9.72:
I xy = 501.1875 in 4
Problem 9.80:
I x = 865.6875 in 4 I y = 4758.75 in 4
1 I x + I y = 2812.21875 in 4 2
(
Now
)
1 I x − I y = −1946.53125 in 4 2
(
)
The Mohr’s circle is defined by the points X and Y where
( I x , I xy )
X:
I ave =
Now
R=
( I y , −I xy )
1 I x + I y = 2812.2 in 4 2
(
2
and
Y:
Ix − I y 2 + I xy = 2
)
( −1946.53125)2 + 501.18752
in 4
= 2010.0 in 4 Also,
tan 2θ m =
I xy Ix − I y
=
501.1875 = 0.2575 1946.53125
2 or
2θ m = 14.4387°
Then
α = 180° − (14.4387° + 90° ) = 75.561°
Then
I x′ , I y′ = I ave ± R cos α = 2812.2 ± 2010.0cos 75.561°
or I x′ = 3.31 × 103 in 4 and I y′ = 2.31 × 103 in 4 and
I x′y′ = R sin α = 2010.0sin 75.561°
or I x′y′ = 1.947 × 103 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 93.
From Problems 9.73 and 9.81
I xy = 138.24 × 106 mm 4 I x = 51.84π × 106 mm 4 = 162.86 × 106 mm 4
I y = 103.68π × 106 mm 4 = 325.72 × 106 mm 4
I ave =
Now
1 Ix + I y 2
(
)
= 244.29 × 106 mm 4 2
R=
Ix − I y 2 + I xy 2
= 160.4405 × 106 mm 4 2θ m = 59.5°
From Problem 9.87 Then Then
α = 180 − 60° − 2θ m = 60.5° I x′ = I ave + R cos α = ( 244.29 + 160.4405cos 60.5° ) × 106 = 323.29 × 106 mm 4
or I x′ = 323 × 106 mm 4 I y′ = I ave − R cos α = ( 244.24 − 160.4405cos 60.5° ) × 106 = 165.29 × 106 mm 4
or I y′ = 165.3 × 106 mm 4 I x′y′ = R sin α = 160.44 × 106 sin 60.5° = 139.6 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 94.
From Problems 9.75 and 9.82
I x = 0.70134 × 106 mm 4 I y = 7.728 × 106 mm 4 I xy = 1.5732 × 106 mm 4 Now
I ave =
1 I x + I y = 4.2147 × 106 mm 4 2
(
)
2
and
Then and Then
R=
Ix − I y 2 6 4 + I xy = 3.8494 × 10 mm 2
−2 (1.5732 ) 2θ m = tan −1 = 24.12° 0.70134 − 7.728
α = 120° − 24.12° − 90° = 5.88° I x′ = I ave + R sin α = ( 4.2147 + 3.8494sin 5.88° ) × 106 mm 4 = 4.6091 × 106 mm 4 or I x′ = 4.61 × 106 mm 4
I y′ = I ave − R sin α = ( 4.2147 − 3.8494sin 5.88° ) × 106 mm 4 = 3.8203 × 106 mm 4
or I y′ = 3.82 × 106 mm 4
I x′y′ = − R cos α = −3.8494cos 5.88° = −3.8291 × 106 mm 4 or I x′y′ = −3.83 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 95.
From Problems 9.74 and 9.83
I x = 0.166 × 106 mm 4 I y = 0.453 × 106 mm 4 I xy = −0.1596 × 106 mm 4 Now
I ave =
1 I x + I y = 0.3095 × 106 mm 4 2
(
)
2
and
R=
Ix − I y 2 + I xy 2
= 0.21463 × 106 mm 4 Then and
−2 ( −0.1596 ) 2θ m = tan −1 = −48.04° 0.166 − 0.453
α + 90° − 2θ = 90°; α = 2θ m
Then
I x′ = I ave − R sin α = ( 0.3095 − 0.21463sin 48.04° ) × 106 mm 4 = 0.14989 × 106 mm 4
or I x′ = 0.1499 × 106 mm 4 and
I y′ = I ave + R sin α = ( 0.3095 + 0.21463sin 48.04° ) × 106 mm 4 = 0.46910 × 106 mm 4
or I y′ = 0.4690 × 106 mm 4 and
I x′y′ = R cos α = 0.21463cos 48.04° = 0.1435 × 106 mm 4 or I x′y′ = 0.1435 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 96. I x = 9.45 in 4
Have
I y = 2.58 in 4 I xy = 2.8125 in 4
From Problem 9.78
I ave =
Now 2
R=
and
Ix − I y + I xy 2
( )
Ix + I y 2
= 6.015 in 4
2
= 4.43952 in 4 Then
−2 ( 2.8125 ) 2θ m = tan −1 = −39.31° 9.45 − 2.58 2θ m + 60° + α = 180°,
Then
α = 80.69°
I x′ = I ave − R cos α = 6.015 in 4 − ( 4.43952 in 4 ) cos80.69° = 5.29679 in 4
or I x′ = 5.30 in 4 I y′ = I ave + R cos α = 6.015 in 4 + ( 4.43952 in 4 ) cos80.69°
= 6.73321 in 4
or I y′ = 6.73 in 4 I x′y′ = R sin α = ( 4.43952 in 4 ) sin 80.69° = 4.38104 in 4
or I x′y′ = 4.38 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 97.
From Problem 9.79:
Ix =
Problem 9.67:
I xy =
π 8
a4
Iy =
π 2
a4
1 4 a 2
The Mohr’s circle is defined by the diameter XY, where
1 π X a4, a4 2 8
I ave =
Now
1 π Y a4 , − a4 2 2
and
1 1π π I x + I y = a 4 + a 4 = 0.98175a 4 2 2 8 2
(
)
and
R=
2
1 2 2 I x − I y + I xy =
(
)
2
1 π 4 π 4 1 4 a − a + a 2 2 2 8
2
= 0.77264a 4 The Mohr’s circle is then drawn as shown.
tan 2θ m = −
=−
2I xy Ix − I y
π 8
1 2 a4 2 a4 −
π
2
a4
= 0.84883
2θ m = 40.326°
or
θ m = 20.2°
and
∴ The principal axes are obtained by rotating the xy axes through 20.2° counterclockwise Now
I max, min = I ave ± R = 0.98175a 4 ± 0.77264a 4
or I max = 1.754a 4 and I min = 0.209a 4 From the Mohr’s circle it is seen that the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 98.
From the solution to Problem 9.72:
I xy = 501.1875 in 4 From the solution to Problem 9.80:
I x = 865.6875 in 4 I y = 4758.75 in 4 1 I x + I y = 2812.21875 in 4 2
(
)
1 I x − I y = −1946.53125 in 4 2
(
)
X:
The Mohr’s circle is defined by the point
I ave =
Now 2
and
R=
Ix − I y 2 + I xy = 2
( I x , I xy ) ,
Y:
( I y,
− I xy
)
1 I x + I y = 2812.2 in 4 2
(
)
( −1946.53125 )2 + 501.18752
= 2010.0 in 4
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
tan 2θ m = −
I xy Ix − I y 2
=−
501.1875 = 0.2575, −1946.53125
2θ m = 14.4387°
or θ m = 7.22° counterclockwise
Then
I max, min = I ave ± R = ( 2812.2 ± 2010.0 ) in 4 or I max = 4.82 × 103 in 4 and I min = 802 in 4
Note: From the Mohr’s circle it is seen that the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 99.
I xy = 567 in 4
From the solution to Problem 9.76 Now
I x = ( I x )1 − ( I x )2 − ( I x )3 , where
=
π 4
( I x ) 2 = ( I x )3
1 12
(15 in.)4 − 2 ( 9 in.)( 6 in.)3 = ( 39761 − 324 ) in 4
= 39, 437 in 4
( )1 − ( I y )2 − ( I y )3 ,
Iy = Iy
and
=
π 4
where
( I y )2 = ( I y )3
1 36
1 2
(15 in.)4 − 2 ( 6 in.)( 9 in.)3 + ( 9 in.)( 6 in.)( 6 in.)2
= ( 39, 761 − 243 − 1944 ) in 4 = 37,574 in 4 The Mohr’s circle is defined by the point (X, Y) where X:
I ave =
Now
( I x , I xy )
R=
( I y , −I xy )
1 1 I x + I y = ( 39, 437 + 37,574 ) in 4 = 38,506 in 4 2 2
(
)
2
and
Y:
Ix − I y 2 + I xy = 2
2
1 2 4 2 ( 39, 437 − 37,574 ) + 567 = 1090.5 in continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
tan 2θ m =
− I xy Ix − I y 2
=
−567 = −0.6087 1 ( 39, 437 − 37,574 ) 2 or θ m = −15.66° clockwise
Then
I max, min = I ave ± R = ( 38,506 ± 1090.50 ) in 4
or I max = 39.6 × 103 in 4 and I min = 37.4 × 103 in 4
Note: From the Mohr’s circle it is seen that the a axis corresponds to the I max and the b axis corresponds to
I min .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 100.
I x = 162.86 × 106 mm 4
From Problems 9.73 and 9.81
I y = 325.72 × 106 mm 4 I xy = 138.24 × 106 mm 4 X (162.86,138.24 ) × 106 mm 4
Define points
I ave =
Now
Y ( 325.72, − 138.24 ) × 106 mm 4
1 1 I x + I y = (162.86 + 325.72 ) × 106 mm 4 2 2
(
)
= 244.29 × 106 mm 4 2
and
R=
Ix − I y 2 + I xy = 2
2
(162.86 − 325.72 ) × 106 + 138.24 × 106 2
(
)
2
= 160.44 × 106 mm 4 and
−2 (138.24 ) × 106 2θ m = tan −1 = 59.4999° 6 (162.86 − 325.72 ) × 10 or θ m = 29.7° counterclockwise
Then
(
)
I max, min = I ave ± R = 244.29 × 106 ± 160.44 × 106 mm 4
or I max = 405 × 106 mm 4 and I min = 83.9 × 106 mm 4 Note: From the Mohr’s circle it is seen that the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 101.
From Problems 9.74 and 9.83
I x = 0.166 × 106 mm 4 ,
I y = 0.453 × 106 mm 4 ,
X ( 0.166, −0.1596 ) × 106 mm 4
Define points
I ave =
Now
and
I xy = −0.1596 × 106 mm 4 Y ( 0.453, 0.1596 ) × 106 mm 4
1 1 I x + I y = ( 0.166 + 0.453) × 106 mm 4 2 2
(
)
= 0.3095 × 106 mm 4 2
and
R=
Ix − I y 2 + I xy = 2
2
( 0.166 − 0.453) × 106 6 + −0.1596 × 10 2
(
)
2
= 0.21463 × 106 mm 4 Also
−2I xy 2θ m = tan −1 Ix − I y
−2 ( −0.1596 ) = tan −1 = −48.04° 0.166 − 0.453
θ m = −24.02° or θ = −24.0° clockwise
Then
I max,
min
= I ave ± R = ( 0.3095 ± 0.21463) × 106 mm 4
or I max = 0.524 × 106 mm 4 and I min = 0.0949 × 106 mm 4 Note: From the Mohr’s circle it is seen that the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 102.
From Problems 9.75 and 9.82
I x = 0.70134 × 106 mm 4 , Now
I ave =
I y = 7.728 × 106 mm 4 ,
1 1 I x + I y = ( 0.70134 + 7.728 ) × 106 mm 4 = 4.2147 × 106 mm 4 2 2
(
)
2
and
R=
I xy = 1.5732 × 106 mm 4
Ix − I y 2 + I xy = 2
2
( 0.70134 − 7.728 ) × 106 6 + 1.5732 × 10 2
(
)
2
= 3.8495 × 106 mm 4
Define points
X ( 0.70134, 15732 ) × 106 mm Y ( 7.728, − 1.5732 ) × 106 mm
Also
−2 (1.5732 ) 2θ m = tan −1 = 24.122°, θ m = 12.06° 0.70134 − 7.728
or θ m = 12.06° counterclockwise Then
I max,
min
= I ave ± R = ( 4.2147 ± 3.8495 ) × 106 mm 4
or I max = 8.06 × 106 mm 4 and I min = 0.365 × 106 mm 4 Note: From the Mohr’s circle it is seen that the a axis corresponds to I min and the b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 103. From the solution to Problem 9.71
I xy = 300 × 103 mm 4 Now
I x = ( I x )1 − ( I x )2 − ( I x )3 3 3 2 1 1 = (120 mm )( 80 mm ) − 2 ( 50 mm )( 20 mm ) + 1000 mm 2 (10 mm ) 12 12
(
(
)
)
= 5.120 × 106 − 2 33.333 × 103 + 100 × 103 mm 4 = 4.8533 × 106 mm 4 and
( )1 − ( I y )2 − ( I y )3
Iy = Iy
3 3 2 1 1 = ( 80 mm )(120 mm ) − 2 ( 20 mm )( 50 mm ) + 1000 mm 2 (15 mm ) 12 12
(
(
)
)
= 11.520 × 106 − 2 208.33 × 103 + 225 × 103 mm 4 = 10.6533 × 106 mm 4
(
x I x , I xy
)
(
y I y , − I xy
Center:
)
1 Ix + I y 2 1 = ( 4.8533 + 10.6533) × 106 mm 4 2
I ave =
(
)
= 7.7533 × 106 mm 4 2
Radius:
Ix − I y R= + I xy2 2 2
2 1 = 106 ( 4.8533 − 10.6533) + ( 0.300 ) mm 2
= 2.9155 × 106 mm continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 104.
From Prob. 9.43 and 9.77
I y = 4581.0 in 4
I x = 2703.7 in 4 Define Points:
x ( 2703.7, −1635.18 ) in 4 y ( 4581.0, 1635.18 ) in 4
Then
I ave =
I xy = −1635.18 in 4
1 1 I x + I y = ( 2703.7 + 4581.0 ) in 4 = 3642.4 in 4 2 2
(
)
2
2 Ix − I y 2 2703.7 − 4581.0 4 + I xy2 = R= + ( −1635.18 ) = 1885.44 in 2 2
tan 2θ m = −
2I xy Ix − I y
=−
2 ( −1635.18 ) = −1.74206 2703.7 − 4581.0
θ m = − 30.1° I max,min = I ave ± R = ( 3642.4 ± 1885.44 ) in 4
I max = 5530 in 4 I min = 1757 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 105.
I x = 0.166 × 106 mm 4 , I y = 0.453 × 106 mm 4 and I xy < 0
Given:
Note: A review of a table of rolled-steel shapes reveals that the given values of I x and I y are obtained when the 102 mm leg of the angle is parallel to the x axis. For I xy < 0 the angle must be oriented as shown. (a) Now
I ave =
1 1 I x + I y = ( 0.166 + 0.453) × 106 mm 4 2 2
(
)
= 0.3095 × 106 mm 4
I min = I ave − R
Now
R = I ave − I min
or
R = ( 0.3095 − 0.051) × 106 mm 4
Then
= 0.2585 × 106 mm 4 2
Ix − I y R = + I xy 2 2
From
I xy =
( )
2
2 2 0.166 − 0.453 6 4 ( 0.2585 ) − × 10 mm 2
I xy = ±0.21501 × 106 mm 4 Since (b)
I xy < 0,
I xy = −0.21501 × 106 mm 4
or I xy = −0.215 × 106 mm 4
−2 ( −0.21501) 2θ m = tan −1 = −56.28° 0.166 − 0.453
or θ m = −28.1° clockwise (c)
I max = I ave + R = ( 0.3095 + 0.2585 ) × 106 mm 4
or I max = 0.568 × 106 mm 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 106. I x = 9.45 in 4
From Figure 9.13
I y = 2.58 in 4 I xy = − 2.81 in 4
From Problem 9.78
The Mohr’s circle is defined by the diameter XY where
X ( 9.45, − 2.81) in 4 Y ( 2.58, 2.81) in 4 Now
I ave =
1 1 Ix + I y = 9.45 in 4 + 2.58 in 4 2 2
(
(
)
)
= 6.015 in 4
and
R= =
(
)
2
1 4 4 4 2 9.45 in − 2.58 in + 2.81 in
(
)
= 4.438 in 4
tan 2θ m =
2
1 2 2 I x − I y + I xy
−2I xy
Ix − I y
=
(
−2 −2.81 in 4 4
)
(
9.45 in − 2.58 in 4
)
2
= 0.81805
2θ m = 32.285°
or
or θ m = 19.64° counterclockwise Now
I max, min = I ave ± R = ( 6.015 ± 4.438 ) in 4
or I max = 10.45 in 4 and I min = 1.577 in 4 From the Mohr’s circle it is seen that the a axis corresponds to I max and the b axis corresponds to I min .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 107.
I x = 7.20 × 106 mm 4 ,
From Figure 9.13B:
( )1 + ( I xy )2 ,
I xy = I xy
Have
x1 =
Now
where
102 − 25.3 = 25.7 mm, 2
I y = 2.64 × 106 mm 4 I xy = I x′y′ + x yA
y1 = 50.3 −
and
I x′y′ = 0
12.7 = 43.95 mm 2
A1 = 102 × 12.7 = 1295.4 mm 2 x2 = −25.3 +
12.7 = −18.95 mm 2
1 y2 = − (152 − 12.7 ) − ( 50.3 − 12.7 ) = − 32.05 mm 2
A2 = (12.7 )(152 − 12.7 ) = 1769.11 mm 2 Then
{
(
)
(
)}
I xy = ( 25.7 mm )( 43.95 mm ) 1295.4 mm 2 + ( −18.95 mm )( −32.05 mm ) 1769.11 mm 2 × 106 = (1.46317 + 1.07446 ) × 106 mm 4 = 2.5376 × 106 mm 4
The Mohr’s circle is defined by points X and Y, where
(
) (
X I x , I xy , Y I y , − I xy Now
I ave =
)
1 1 I x + I y = ( 7.20 + 2.64 ) × 106 mm 4 = 4.92 × 106 mm 4 2 2
(
)
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
and
R=
2 2 Ix − I y 1 2 2 6 4 + I xy = ( 7.20 − 2.64 ) + 2.5376 × 10 mm 2 2
= 3.4114 × 106 mm 4
tan θ m = −
2I xy Ix − I y
=−
2 ( 2.5376 ) = −1.11298, ( 7.20 − 2.64 )
2θ = −48.0607°
θ = −24.0° clockwise
or Now
I max, min = I ave ± R = ( 4.92 ± 3.4114 ) × 106 mm 4
or and
I max = 8.33 × 106 mm 4 I min = 1.509 × 106 mm 4
Note: From the Mohr’s circle it is seen that the a axis corresponds to I max and the b axis corresponds to I min .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 108. I ave =
Have
1 1 Ix + I y = 640 in 4 + 280 in 4 = 460 in 4 2 2
(
(
)
)
1 1 Ix − I y = 640 in 4 − 280 in 4 = 180 in 4 2 2
(
)
I x′y′ = −180 in 4 ,
Also have Letting the points
(
)
( I x , I xy ) and ( I x′, I x′y′ )
2θ = −120°,
Ix > I y
be denoted by X an X ′, respectively, three possible Mohr’s
circles can be constructed
Assume the first case applies Then Also
Ix − I y 2
= R cos 2θ m
I x′y′ = R cos α
R cos 2θ m = 180 in 4
or or
R cos α = 180 in 4
∴ α = ±2θ m
120° = 2θ m + ( 90° − α )
Also have
∴ α = −2θ m Note
and
2 ( 2θ m ) = 30°
2θ m − α = 30°
or or
2θ m = α = 15°
2θ m > 0 implies case 2 applies α < 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(a) Therefore,
(b)
Have Then
θ m = 7.5° clockwise
R cos15° = 180
or
R = 186.35 in 4
I max, min = I ave ± R = 460 ± 186.350 or
I max = 646 in 4
and
I min = 274 in 4
Note: From the Mohr’s circle it is seen that the a axis corresponds to I max and the b axis corresponds to I min .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 109.
First assume
Ix > I y
( )max is
(Note: Assuming I x < I y is not consistent with the requirement that the axis corresponding to the I xy obtained by rotating the x axis through 67.5° counterclockwise)
2θ m = 2 ( 67.5° ) − 90° = 45°
From Mohr’s circle have (a)
tan 2θ m =
From
Have I x = I y + 2
I xy tan 2θ m
= 300 in 4 + 2
2 I xy Ix − I y
125 in 4 = 550 in 4 tan 45°
or I x = 550 in 4 (b) Now
and
Then
I ave = R=
1 550 + 300 4 Ix + I y = in = 425 in 4 2 2
(
I xy sin 2θ m
)
=
125 in 4 = 176.78 in 4 sin 45°
I max, min = I ave ± R = ( 425 ± 176.76 ) in 4 = ( 601.78, 248.22 ) in 4
or I max = 602 in 4 and I min = 248 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 110.
Consider the regular pentagon shown, with centroidal axes x and y. Because the y axis is an axis of symmetry, it follows that I xy = 0. Since
I xy = 0,
the x and y axes must be principal axes. Assuming
I x = I max and I y = I min , the Mohr’s circle is then drawn as shown. Now rotate the coordinate axes through an angle α as shown; the resulting moments of inertia, I x′ and I y′ , and product of inertia, I x′y′ , are indicated on the Mohr’s circle. However, the x′ axis is an axis of symmetry, which implies I x′y′ = 0. For this to be possible on the Mohr’s circle, the radius R must be equal to zero (thus, the circle degenerates into a point). With R = 0, it immediately follows that (a)
I x = I y = I x′ = I y′ = I ave (for all moments of inertia with respect to an axis through C)
(b)
I xy = I x′y′ = 0 (for all products of inertia with respect to all pairs of rectangular axes with origin at C)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 111.
First observe that for a given area A and origin O of a rectangular coordinate system, the values of I ave and R are the same for all orientations of the coordinate axes. Shown below is a Mohr’s circle, with the moments of inertia, I x′ and I y′ , and the product of inertia. I x′y′ , having been computed for an arbitrary orientation of the x′y′ axes. From the Mohr’s circle
I x′ = I ave + R cos 2θ
I y′ = I ave − R cos 2θ I x′y′ = R sin 2θ I x′ I y′ − I x2′y′
Then, forming the expression
I x′ I y′ − I x2′y′ = ( I ave + R cos 2θ )( I ave − R cos 2θ ) − ( R sin 2θ )
(
) (
2 = I ave − R 2 cos 2 2θ − R 2 sin 2 2θ
2
)
2 = I ave − R 2 which is a constant
∴ I x′ I y′ − I x2′y′ is independent of the orientation of the coordinate axes Q.E.D. Shown is a Mohr’s circle, with line OA, of length L, the required tangent. Noting that
OAC is a right angle, it follows that 2 L2 = I ave − R2
or L2 = I x′ I y′ − I x2′y′
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Q.E.D.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 112.
From Problem 9.111 have, I x′ I y′ − I x′y′ = constant Now consider the following two cases Case 1:
I x′ = I x ,
I y′ = I y ,
Case 2:
I x′ = I max ,
I x′y′ = I xy
I y′ = I min ,
2 I x I y − I xy = I max I min
Then
I xy = ± I x I y − I max I min
or From Figure 9.13B: Now
I x = 453 × 103 mm 4 I ave =
Finally
I y = 166 × 103 mm 4
1 1 Ix + I y = I max + I min 2 2
(
)
(
)
I max = 524 × 103 mm 4
With then
I x′y′ = 0
I min = ( 453 + 166 − 524 ) × 103 mm 4 = 95.0 × 103 mm 4 I xy = ±
( 453)(166 ) − ( 524 )( 95.0 ) × 103 mm 4
= ±159.43 × 103 mm 4 The two roots corresponding to the following orientations of the cross section:
(a)
(a) I xy = −159.4 × 103 mm 4 (b) I xy = 159.4 × 103 mm 4
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 113.
Mass = m = ρ tA
I mass = ρ tI area = Area = A =
m I area A
1 2 πa 2
I AA′, area = I DD′, area = I AA′, mass = I DD′, mass =
(a)
2
I BB′ = I DD′ − m ( AC ) =
1π 4 1 4 a = πa 2 4 8 m m 1 4 1 2 I AA′, area = π a = ma 1 2 8 A 4 πa 2
1 2 4a ma − m 4 3π
2
= ( 0.25 − 0.1801) ma 2
I BB′ = 0.0699 ma 2
(b) Eq. ( 9.38 ) :
I CC ′ = I AA′ + I BB′
=
1 2 ma + 0.0699ma 2 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I CC ′ = 0.320 ma 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 114. Mass = m = ρV = ρ tA
I mass = ρ tI area =
m I area A
(
Area = A = π r22 − π r12 = π r22 − r12
I AA′, area =
(a) I AA′, mass =
π 4
r24 −
π 4
r14 =
π
m m π 4 1 I AA′, area = r − r14 = m r22 + r12 2 2 4 2 4 A π r2 − r1
(b) By Symmetry: Eq. ( 9.38 ) :
(
)
(
)
(
4
(r
4 2
)
− r14
)
) I AA′ =
1 m r22 + r12 4
I CC ′ =
1 m r22 + r12 2
(
)
I BB′ = I AA′ I CC ′ = I AA′ + I BB′ = 2 I AA′
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 115.
mass = m = ρV = ρ tA
First note
= ρt
π 4
(r
2 2
− r12
)
I mass = ρ tI area
Also
=
π 4
I AA′, area =
(a) Using Figure 9.12, Then
I AA′, mass =
π
×
)
=
m 2 r2 + r12 4
)
=
m 2 1 r2 + r2 4 2
r22
−
(
(r 16 π
r12
4
(
m
π
16
4 2
(r
4 2
(
− r14
− r14
m r22 − r12
)
)
2
m5 = r22 44
or I AA′ = (b) Symmetry implies Then,
5 mr22 16
I BB′, mass = I AA′, mass I OO′ = I AA′ + I BB′
5 = 2 mr22 16
=
5 2 mr2 8 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
I area
COSMOS: Complete Online Solutions Manual Organization System
Now locate centroid C.
X ΣA = ΣxA or
π 4r π 4r π π X r22 − r12 = 2 r22 − 1 r12 4 3π 4 3π 4 4
or
X =
Now
4 r23 − r13 3π r22 − r12 r = X 2 3
1 r3 − r 4 2 2 2 2 14 2 = = r2 2 3π 2 1 9 π r2 − r2 2 Finally or
I OO′ = I CC′ + mr 2 14 2 5 2 mr2 = I CC ′ + m r2 8 9 π
2
or ICC ′ = 0.1347mr22
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 116. Locate centroid:
y1 =
b 2
A1 = 3ab
y2 =
3 b 2
A2 = ab
y =
Then
Σyi Ai ΣΑi
b 3 ( 3ab ) + b ( ab ) 2 = 2 3ab + ab
Uniform thickness:
m is proportional to A
(a)
I AA′ = ( I AA′ )1 + ( I AA′ )2
=
3 b 4
∴ m1 =
3 m 4
m2 =
1 m 4
1 3 2 3 b 2 1 1 2 1 3 2 = m b + m + m b + m b 4 2 12 4 4 2 12 4
3 1 9 3 = mb 2 + + + 48 16 48 16 I AA′ = (b)
Have or
5 2 mb 6
I AA′ = I x + my 2
Ix = =
5 2 3 mb − m b 6 4
2
13 2 mb 48 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 117. Mass = m = ρV = ρ tA m I mass = ρ tI area = I area A 1 A = bh 2
(a)
Axis AA′:
Axis BB′:
1 b 3 1 3 I AA′, area = 2 h = hb 12 2 48 m m 1 3 1 I AA′, mass = I AA′, area = ⋅ hb = mb 2 1 A 48 24 bh 2
1 mb 2 24
I BB′ =
1 mh 2 18
1 3 bh 36 m m 1 3 1 = I BB′, area = ⋅ bh = mh 2 1 A 36 18 bh 2
I BB′, area =
I BB′, mass
(b)
I AA′ =
Axis CC′: Eq. (9.38):
I CC ′ = I AA′ + I BB′ 1 1 = mb 2 + mh 2 24 18
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I CC ′ =
m 3b 2 + 4h 2 72
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 118. From Prob. 9.117: 1 I AA′ = mb 2 24 1 I BB′ = mh 2 18
Note that AA′ and BB′ are centroidal axes. 1 mb 2 + md 2 Hence I DD′ = I AA′ + md 2 = 24
I EE ′ = I BB′ + md 2 =
)
(
)
m 2 b + 24d 2 24
I EE ′ =
m 2 h + 18d 2 18
1 mh 2 + md 2 18
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(
I DD′ =
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 119. mass = m = ρV = ρ tA
First note
1 = ρ t ( 2a )( a ) + ( 2a )( a ) 2
= 3ρ ta 2 I mass = ρ tI area
Also
=
m I area 3a 2
I x, area = ( I x )1, area + ( I x )2, area
(a) Now
=
1 1 ( 2a )( a )3 + ( 2a )( a )3 3 12
=
5 4 a 6
I x, mass =
Then
m 5 × a4 2 6 3a or I x, mass =
5 ma 2 18
(b) Have
I z, area = ( I z )1, area + ( I z )2, area 2 1 1 1 3 3 1 = ( a )( 2a ) + ( a )( 2a ) + ( 2a )( a ) 2a + × 2a 2 3 3 36
= 10a 4 Then
I z, mass =
= Finally,
m × 10a 4 3a 2 10 2 ma 3
I y, mass = I x, mass + I z, mass
=
5 10 2 ma 2 + ma 18 3
=
65 2 ma 18
or I y, mass = 3.61ma 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 120. First locate the centroid C
1 X 2a 2 + a 2 = a 2a 2 + 2a + × 2a a 2 3
(
X ΣA = ΣxA:
)
( )
X =
or
Z ΣA = ΣzA:
14 a 9
1 1 Z 2a 2 + a 2 = a 2a 2 + a a 2 2 3
(
)
( )
Z =
or (a) Have
( )
( )
4 a 9
(
I y, mass = I CC ′, mass + m X 2 + Z 2
)
From the solution to Problem 9.119
I y, mass =
Then
I cc′, mass =
65 2 ma 18
14 2 4 2 65 2 ma − m a + a 18 9 9
or I cc′ = 0.994 ma 2 (b) Have and Then
( )
I x, mass = I BB′, mass + m Z
2
I AA′, mass = I BB′, mass + m (1.5a )
I AA′, mass = I x, mass
2
2 2 4 + m (1.5a ) − a 9
From the solution to Problem 9.119
I x, mass =
Then
I AA′, mass =
5 ma 2 18 2 5 2 4 ma 2 + m (1.5a ) − a 18 9
or I AA′ = 2.33ma 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 121.
b = ka 2
x = a, y = b:
At
y =
Then
or
k =
b 2 x a2
b a2
( )
dm = ρ π r 2 dx
Now
2
b = πρ 2 x 2 dx a Then
m = πρ
b2 a 4 ∫ x dx a4 0 a
1 b2 = πρ 4 x5 5 a 0 =
Now
1 πρ ab 2 5
or
πρ =
5m ab 2
2 2 1 b 1 b d I x = r 2 dm = 2 x 2 πρ 2 x 2 dx 2 a 2 a
=
5m 1 b 2 4 b 2 4 5 b2 8 × x × x dx = m x dx 2 a9 ab 2 2 a 4 a4 a
Then..
5 b2 a 5 b2 1 I x = m 9 ∫0 x8dx = m 9 × x9 2 a 2 a 9 0
or I x =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5 mb 2 18
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 122. ∴a = L
r1 = 2 r2
Now
m = ρV
or Now
Have Where
dm = ρ dV
(
= ρ π r 2dx ∴
π 2 2 π = ρ ( 2L )( 2r2 ) − ( L )( r2 ) 3 3 7π = ρ Lr22 3 3 m πρ = 7 Lr22 r −r r = 2 1 x + r1 L x = r2 2 − L dI z = dI z′ + x 2dm 1 = ( dm ) r 2 + x 2dm 4
)
1 dI z = πρ r 4 + r 2 x 2 dx 4 4 2 1 x x = πρ r2 2 − + x 2 r2 2 − L L 4
Then
Iz =
4 3 m 2 L1 2 x x x2 2 2 4 4 r r − + x − + dx 2 ∫0 2 7 Lr22 L L L2 4
( )
L
5 3 m 1 2 1 x 4 x 4 1 x5 = + r2 ( − L ) 2 − + x3 − 7 L 4 5 L 3 L 5 L2 0
Iz =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
m 93r22 + 32L2 140
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 123. 3
2a = k ( 2a )
x = 2a
At
y=
Then
k =
1 3 x 4a 2
(
dm = ρ π r 2dx
Now
or
1 4a 2
) 2
πρ 6 1 = πρ 2 x3 dx = x dx 16a 4 4a πρ
m=
Then
16a 4
=
or πρ =
2a 6 ∫a x dx
πρ 1 4
16a 7
x
7
2a
= a
πρ 127 πρ a3 ( 2a )7 − ( a )7 = 4 112 112a
112m 127a3 2
(a) Now
1 1 1 πρ 6 d I x = r 2 dm = 2 x3 x dx 4 2 2 4 a 16a =
1 6 112m 7m x6 x dx = x12dx × × 4 3 4 11 32a 127a 16a 4064a
Then
Ix = =
2a
7m 7m 1 13 2a 12 ∫ x dx = 4064a11 13 x 4064a11 a a
7m 57337 2 ma = 1.0853ma 2 ( 2a )13 − ( a )13 = 52832 52832a11
or I x = 1.085ma 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) Have
2 1 1 πρ 6 1 dI y = r 2 + x 2 dm = 2 x3 + x 2 x dx 4 4 16a 4 4a
=
1 112m 1 12 x + x8 dx × 4 16a 127a3 64a 4 2a
7m 2a 1 12 7m 1 1 x + x8 dx = x13 + x9 Then I y = 7 ∫a 4 7 4 9 a 127a 127a 832a 64a =
7m 1 1 1 1 9 13 9 13 2a ) + ( 2a ) − a − (a) 7 4( 4( ) 9 9 127a 832a 832a
=
7m 8191 9 511 9 a + a = 3.67211ma 2 7 832 9 127a
or I y = 3.67 ma 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 124.
For the element shown:
ab y y dm = ρ dV = ρ a b dy = ρ 2 y 2dy h h h
dIx′ =
2
1 y 1 b 2 2 ab 2 1 ab3 4 y ρ 2 y dy = y dy ρ b dm = 2 12 h 12 h 12 h 4 h
Parallel-axis theorem
dI x = dI x′ + d 2dm =
1 y where d 2 = y 2 + b 2 h
2
1 ab3 4 1 y 2 ab ρ 4 y dy + y 2 + b 2 2 ρ 2 y 2dy 12 h 4 h h
ρ ab3 ab = + ρ 2 y 4dy 4 h 3 h ρ ab3 ab h ρ ab3h ρ abh3 I x = ∫ dI x = + ρ 2 ∫ 0 y 4dy = + 4 15 5 h 3 h
1 ρ abh 3
For pyramid,
m = ρv =
Thus
1 b 2 3h 2 I x = ρ abh + 5 3 5
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Ix =
1 m b 2 + 3h 2 5
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 125.
For the element shown:
ab y y dm = ρ b a dy = ρ 2 y 2dy h h h For thin plate:
dI y = dI x′′ + dI z′′ 2
1 y 1 y 1 2 2 2 b dm + a dm = 2 b + a y dm 3 h 3 h 3h
=
1 ab ρ ab 2 a 2 + b 2 y 2 ρ 2 y 2dy = a + b 2 y 4dy 2 4 3h h 3h
(
m = ρV =
(
)
I y = ∫ dI y = For pyramid,
2
=
ρ ab 3h
4
(a
)
(
2
+ b2
)∫
h 0
y 4dy =
ρ ab 15
(a
)
2
)
+ b2 h
1 ρ abh 3
1 1 I y = ρ abh a 2 + b 2 3 5
(
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Iy =
1 m a 2 + b2 5
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 126. r 2 = y 2 + z 2 = kx : x = h,
At
Thus, r 2 =
r = a;
= Now
So
dI y = dI y′ + x 2dm =
h
a2
a2 xdx h h
∫ 0 dm = ρπ h ∫ 0 xdx
1 ρπ a 2h 2
1 a2 1 2 r dm + x 2dm = x + x 2 dm 4 4 h
= ρπ
a2 h 1 a2 2 x + x3 dx ∫ 0 h 4 h
= ρπ
a 2 1 a 2 h3 h 4 + h 4 h 3 4
1 ρπ a 2h a 2 + 3h 2 12 1 m = ρπ a 2h 2
(
)
1 1 I y = ρπ a 2h a 2 + 3h 2 2 6
(
And
a2 h
2 a2 h h 1 a I y = ∫ 0 dI y = ∫ 0 x + x 2 ρπ xdx h 4 h
=
Recall:
k=
a2 x h
Have dm = ρπ r 2dx = ρπ Then m =
a 2 = kh;
k y2 =
Iy m
(
= a 2 + 3h 2
)
6
)
or
I y = m a 2 + 3h 2
)
6
or
ky =
(a
)
6
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(
2
+ 3h 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 127.
dy = dx
First note
dy 1+ dx
Then
2
1
2 2 2 −x a 3 − x 3 2 2 2 − = 1 + x 3 a3 − x3 −
1 3
2
a 3 = x
2
dy dm = m′dL = m′ 1 + dx dx
For the element shown
1
a 3 = m′ dx x 1
Then
Now
a
1 2 3 3 m = ∫ dm = m′ 1 dx = m′a 3 x 3 = m′a 2 2 0 x3 1 3 2 2 3 a a 2 3 3 I x = ∫ y dm = ∫ 0 a − x m′ 1 dx x3
∫ 0a
a3
2 1 4 1 2 5 a = m′a 3 ∫ 0a 1 − 3a 3 x 3 + 3a 3 x − x 3 dx 3 x =
1 m′a 3
a
2 4 4 2 8 3 9 3 3 3 3 2 3 3 2 3 a x − a x + a x − x 4 2 8 2 0
3 9 3 3 3 = m′a3 − + − = m′a3 2 4 2 8 8 1 2 ma 4 1 I y = ma 2 4
or I x = Symmetry implies
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Alternative Solution
2
I y = ∫ x dm =
=
= Also
1 m′a 3
∫ 0a
1
1 5 a 3 3 ′ ′ x m 1 dx = m a ∫ 0 x dx x3 2
a3
a
8 3 3 × x 3 = m′a3 8 8 0
1 2 ma 4
(
)
I z = ∫ x 2 + y 2 dm = I y + I x
or I z =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 2 ma 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 128.
ζ =−
For line BC
=
h x+h a 2
h ( a − 2x ) a
1 m = ρV = ρ t ah 2
Also
=
1 ρ tah 2 2
(a) Have
dI x = =
1 2 ζ dm′ 3
dm′ = ρ tζ dx
where Then
1 2 ζ ζ dm′ + dm′ 12 2
a 1 I x = ∫ dI x = 2 ∫ 02 ζ 2 ( ρ tζ dx ) 3
3
=
a h 2 ρ t ∫ 02 ( a − 2 x ) dx 3 a
a
2 h3 1 1 4 = ρ t 3 × − ( a − 2 x ) 2 0 3 a 4 2 =− =
1 h3 4 4 ρ t 3 ( a − a ) − ( a ) 12 a
1 ρ tah3 12
or I x = continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 2 mh 6
COSMOS: Complete Online Solutions Manual Organization System
Iζ = ∫ x 2dm
Now and
a
Iζ = ∫ x 2dm′ = 2 ∫ 02 x 2 ( ρ tζ dx ) a h = 2 ρ t ∫ 02 x 2 ( a − 2 x ) dx a
a
h a 1 2 = 2 ρ t x3 − x 4 a 3 4 0 3
h a a 1a = 2ρ t − a 3 2 4 2
= (b) Have
4
1 1 ρ ta3h = ma 2 48 24
2 I y = ∫ ry2dm = ∫ x 2 + (ζ sin θ ) dm
= ∫ x 2dm + sin 2 θ ∫ ζ 2dm Now
I x = ∫ ζ 2dm ⇒ I y = Iζ + I x sin 2 θ
=
1 1 ma 2 + mh 2 sin 2 θ 24 6
or I y = (c) Have
(
m 2 a + 4h 2 sin 2 θ 24
(
)
)
I z = ∫ rz2dm = ∫ x 2 + y 2 dm 2 = ∫ x 2 + (ζ cosθ ) dm
= ∫ x 2dm + cos 2 θ ∫ ζ 2dm = Iζ + I x cos 2 θ =
1 1 ma 2 + mh 2 cos 2 θ 24 6 or I z =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
m 2 a + 4h 2 cos 2 θ 24
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 129. Mass of cylindrical ring: m = ρV = =
γ π
π 2 2 d 2 − d1 t g4 4
π γ 4 g
(d
2 2
)
− d12 t
Now treat the wheel as a series of 4 concentric rings. (Note - the steel is treated as a large ring minus two smaller rings.) mwheel = ∑ mring =
π 0.310 lb/in 3 4 32.2 ft/s +
π 0.284 lb/in 3 4 32.2 ft/s 2
−2 × +
(
)
× 1.5 in. × 0.7 2 − 0.52 in 2
2
(
π 0.284 lb/in 3 4 32.2 ft/s 2
π 0.043 lb/in 3 4 32.2 ft/s 2
)
× 1.5 in. × 4.42 − 0.7 2 in 2 ×
1.1 in. × 42 − 1.22 in 2 2
(
(
)
)
× 1.5 in. × 52 − 4.42 in 2
(
mwheel = 2.7221 × 10−3 + 196.072 × 10−3 − 110.945 × 10−3 + 8.8730 × 10−3 = 96.722 × 10−3
) lbft⋅s
2
lb ⋅ s 2 ft continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
For a cylindrical ring:
( I AA′ )ring =
2
1 d2 1 d m2 − m1 1 2 2 2 2
2
1π γt 2 2 1π γt 2 2 d2 d2 − d1 d1 8 4 g 8 4 g π γt 4 d 2 − d14 = 32 g =
(
= =
π γt 32 g
)
(d
2 2
)(
− d12 d 22 + d12
1 mring d 22 + d12 8
(
)
)
Then: I AA′ = ∑ ( I AA′ )ring
1ft 1 lb ⋅ s 2 2 2 2 = 2.7221 × 10−3 0.7 + 0.5 in × 8 ft 12 in.
(
)
2
1 ft 1 lb ⋅ s 2 2 2 2 + 196.072 × 10−3 4.4 + 0.7 in × 8 ft 12 in.
(
−
)
2 1 ft 1 2 2 2 −3 lb ⋅ s × 110.945 10 4 + 1.2 in × 8 ft 12 in.
(
)
1 ft 1 lb ⋅ s 2 2 2 2 + 8.8730 × 10−3 5 + 4.4 in × 8 ft 12 in.
(
)
2
2
2
(
)
= 1.74857 × 10−6 + 3.3785 × 10−3 − 1.67958 × 10−3 + 341.67 × 10−6 lb ⋅ ft ⋅ s 2 = 2.0423 × 10−3 lb ⋅ ft ⋅ s 2
I AA′ = 2.04 × 10−3 lb ⋅ ft ⋅ s 2 And
k AA′ =
=
I AA′ m
2.04 × 10−3 lb ⋅ ft ⋅ s 2 96.722 × 10−3 lb ⋅ s 2/ft
= 0.145311 ft k AA′ = 1.744 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 130.
First note for the cylindrical ring shown that
m = ρV = ρ t ×
π
(d 4
2 2
)
− d12 =
π 4
(
ρ t d 22 − d12
)
and, using Figure 9.28, that 2
I AA′
1 d 1 d = m2 2 − m1 1 2 2 2 2
2
=
1 π 2 2 π 2 2 ρ t × d 2 d 2 − ρ t × d1 d1 8 4 4
=
1π 4 4 ρ t d 2 − d1 8 4
=
1π 2 2 2 2 ρ t d 2 − d1 d 2 + d1 8 4
=
1 m d12 + d 22 8
(
(
(
)
)(
)
)
Now treat the roller as three concentric rings and, working from the bronze outward, have Have
m=
π 4
{(8580 kg/m ) ( 0.0195 m ) ( 0.009 m ) 3
(
)
(
)
2
2 − ( 0.006 m )
2 2 + 2770 kg/m 3 ( 0.0165 m ) ( 0.012 m ) − ( 0.009 m )
}
2 2 + 1250 kg/m 3 ( 0.0165 m ) ( 0.027 m ) − ( 0.012 m )
π
[7.52895 + 2.87942 + 12.06563] × 10−3 kg 4 = 5.9132 × 10−3 kg + 2.26149 × 10 −3 kg =
+ 9.47632 × 10−3 kg = 17.6510 × 10−3 kg continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
I AA′ =
{(
)
(
)
(
)
1 2 2 5.9132 × 10−3 kg ( 0.006 ) + ( 0.009 ) m 2 8 2 2 + 2.26149 × 10−3 kg ( 0.009 ) + ( 0.012 ) m 2
2 2 + 9.47632 × 10−3 kg ( 0.012 ) + ( 0.027 ) m 2
=
}
1 ( 691.844 + 508.835 + 8272.827 )10−9 kg ⋅ m 2 8
= 1.18419 × 10−6 kg ⋅ m 2
or I AA′ = 1.184 × 10−6 kg ⋅ m 2 Now
2 k AA ′ =
I AA′ 1.18419 × 10−6 kg m 2 = m 17.6510 × 10−3 kg
= 67.08902 × 10−6 m 2
k AA′ = 8.19079 × 10−3 m or k AA′ = 8.19 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 131. Consider shell to be formed by removing hemisphere of radius r hemisphere of radius r + t. For hemisphere:
from
I =
2 2 mr 5
m = ρV =
Area =
1 4π r 2 = 2π r 2 2
(
)
1 4 3 2 ρ π r = ρπ r 3 2 3 3 I =
Thus
2 2 4 3 2 ρπ r 5 ρπ r r = 53 15
For hemispherical shell: I =
4 4 5 ρπ ( r + t ) − r 5 = ρπ r 5 + 5r 4t + 10r 3t 2 + ... − r 5 15 15
Neglect terms with powers of t > 1, I =
4 ρπ r 4t 3
Mass of shell:
(
I = 2 ρπ r 2t
(
)
m = ρV = ρ tA = ρ t 2π r 2 = 2 ρπ r 2t
) 23 r
2
=
2 2 mr 3
I =
2 2 mr 3
Radius of gyration: k2 =
I 2 = r2 m 3
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k = 0.816r
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 132. For solid cylinder: I =
∴I =
1 2 ma 2
m = ρV = ρπ a 2h
1 ρπ a 4h 2
For ring: I AA′ =
1 1 1 ρπ a24h − ρπ a14h = ρπ h a24 − a14 2 2 2
(
(
m = ρπ h a22 − a12
)
)
(a) By parallel-axis theorem I BB′ = I AA′ + ma12 =
1 ρπ h a24 − a14 + ρπ h a22 − a12 a12 2
(
)
(
)
I BB′ =
1 ρπ h a24 + 2a22a12 − 3a14 2
(
)
(b) For Maximum I BB′ : dI BB′ 1 = ρπ h 4a22a1 − 12a13 = 0 da1 2
(
a1 = 0;
)
(
)
4 a22 − 3a12 = 0
a12 =
1 2 a2 3
a1 =
1 a2 3
(c) Maximum I BB′ : I BB′ =
2 4 1 a a ρπ h a24 + 2a22 2 − 3 2 2 3 3
=
1 2 1 ρπ h a24 + a24 − a24 2 3 3
=
1 4 ρπ h a24 2 3
I BB′ =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 ρπ ha24 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 133.
First note and Now
L L − 240 = 120 80
or
L = 720 mm
m = ρ stV 2 1 π m1 = ρ st π a12h1 = × 7850 kg/m 3 × ( 0.120 m ) ( 0.720 m ) 3 3
= 85.230 kg 3 2 2 m2 = ρ st π a23 = π × 7850 kg/m 3 × ( 0.090 m ) = 11.9855 kg 3 3 2 1 π m3 = ρ st π a32h3 = × 7850 kg/m 3 × ( 0.080 m ) ( 0.720 − 0.240 ) m 3 3
= 25.253 kg Now
( )1 − ( I y )2 − ( I y )3
Iy = Iy
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( IGG′ )cup ( I AA′ )cup
(b) Have
or
= 0.01
5 5 mcup a 2 = 0.01mcup a 2 + 2la + l 2 12 3
Now let ζ =
( From Part a )
a l
Then
5 5ζ 2 = 0.12 ζ 2 + 2ζ + 1 3
or
40ζ 2 − 2ζ − 1 = 0
Then or
ζ =
2±
ζ = 0.1851
( −2 )2 − 4 ( 40 )( −1) 2 ( 40 ) and
ζ = − 0.1351 ∴
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
a = 0.1851 l
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 134.
Have
dB =
(a) and
4 − d A = ( 0.33333 − d A ) ft 12
I AA′ = I GG′ + md A2 I BB′ = I GG′ + md B2
Then
(
I BB′ − I AA′ = m d B2 − d A2
)
2 = m ( 0.33333 − d A ) − d A2
= m ( 0.11111 − 0.66666d A ) Then
(1.26 − 0.6 ) × 10−3 lb ⋅ ft ⋅ s 2 =
or
0.40 lb ( 0.11111 − 0.66666d A ) ft 2 32.2 ft/s 2
d A = 0.08697 ft d A = 1.044 in.
or
I AA′ = I GG′ + md A2
(b) or
I GG′ = 0.6 × 10−3 lb ⋅ ft ⋅ s 2 −
0.4 lb 2 0.08697 ft ) 2( 32.2 ft /s
= 0.50604 × 10−3 lb ⋅ ft ⋅ s 2 Then
2 kGG ′ =
I GG′ 0.50604 × 10−3 lb ⋅ ft ⋅ s 2 = 0.4 lb m 32.2 ft/s 2
= 0.04074 ft 2 kGG′ = 0.20183 ft = 2.4219 in. or kGG′ = 2.42 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 135.
marm = ρVarm = ρ ×
(a) First note
π 4
d 2l
dmcup = ρ dVcup
and
= ρ ( 2π a cosθ )( t )( adθ ) π
mcup = ∫ dmcup = ∫ 02 2πρ a 2t cosθ dθ
Then
π
= 2πρ a 2t [sin θ ]02 = 2πρ a 2t
( I AA′ )anem. = ( I AA′ )cups + ( I AA′ )arms
Now
Using the parallel-axis theorem and assuming the arms are slender rods, have
( I AA′ )anem.
2 = 3 ( I GG′ )cup + mcup d AG
2 + 3 I arm + marm d AG arm 2 5 2 a = 3 mcup a 2 + mcup ( l + a ) + 2 12
2 1 l +3 marml 2 + marm 2 2
5 = 3mcup a 2 + 2la + l 2 + marml 2 3
5 π = 3 2πρ a 2t a 2 + 2la + l 2 + ρ d 2l l 2 3 4
(
or
( I AA′ )anem
)
( )
5 a2 d 2l a = πρ l 2 6a 2t 2 + 2 + 1 + l 4 3 l continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 136.
First note
m1 = ρV1 = ρ b 2 L
And
m2 = ρV2 = ρ a 2 L
(a) Using Figure 9.28 and the parallel-axis theorem, have
I AA′ = ( I AA′ )1 − ( I AA′ )2 2 1 a 2 2 = m1 b + b + m1 2 12
(
)
2 1 a − m2 a 2 + a 2 + m2 2 12
(
)
1 1 5 = ρ b2 L b2 + a 2 − ρ a 2 L a 2 4 6 12
(
=
)
ρL
( 2b 12
(
4
+ 3b 2a 2 − 5a 4
)
)
dI AA′ ρL = 6b 2a − 20a3 = 0 12 da
(
Then
a=0
or
)
3 10
a=b
and
d 2 I AA′ ρL 1 6b 2 − 60a 2 = ρ L b 2 − 10a 2 = 2 12 2 da
Also
(
)
(
)
and for
a=b
3 d 2 I AA′ , <0 10 da 2
a=b
3 10
Now, for
a = 0, ∴
d 2 I AA′ >0 da 2
( I AA′ )max
occurs when
a = 84
3 = 46.009 mm 10
or
a = 46.0 mm continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) From part (a)
( I AA′ )mass
2 4 3 3 2b + 3b b = − 5 b 10 10 12
ρ L
=
2
4
49 49 4 ρ Lb 4 = 2800 kg/m 3 ( 0.3 m )( 0.084 m ) 240 240
(
)
= 8.5385 × 10−3 kg ⋅ m 2
or
( I AA′ )mass
2 k AA ′ =
and
= 8.54 × 10−3 kg ⋅ m 2
( I AA′ )mass m
where
(
2
m = m1 − m2 = ρ L b − a
2
)
2 3 7 2 = ρ L b − b ρ Lb 2 = 10 10
Then 2 k AA ′
49 ρ Lb 4 7 2 7 240 b = = = (84 mm )2 = 2058 mm 2 7 24 24 2 ρ Lb 10
k AA′ = 45.3652 mm or k AA′ = 45.4 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 137. m = ρV =
m1 =
Then:
γ g
tA
1 ft 490 lb/ft 3 × 0.08 in. × ( 3.6 in.)(1.2 in.) × 2 32.2 ft/s 12 in.
3
lb ⋅ s 2 ft
= 3.0435 × 10−3
1 ft 490 lb/ft 3 1 m2 = × 0.08 in. × (1.8 in.)(1.2 in.) × 2 2 32.2 ft/s 12 in. lb ⋅ s 2 ft
= 760.87 × 10−6
1 ft 490 lb/ft 3 π 2 × 0.08 in. × (1.8 in.) × m3 = 2 2 32.2 ft/s 12 in. = 3.5855 × 10−3
3
3
lb ⋅ s 2 ft
I x = ( I x )1 + ( I x )2 + ( I x )3
Now
2 2 1 2 1 ft −3 lb ⋅ s I x = 3.0435 × 10 (1.2 in.) ft 3 12 in. 2 2 2 1 −6 lb ⋅ s −6 lb ⋅ s 2 2 2 2 2 2 1 ft + 760.87 × 10 1.8 + 1.2 in + 760.87 × 10 0.6 + 0.4 in ft ft 18 12 in.
(
)
(
)
2 2 2 1 ft −3 lb ⋅ s 1 + 3.5855 × 10 (1.8 in.) ft 4 12 in.
(
) (
) (
)
= 10.1450 × 10−6 + 1.37379 × 10−6 + 2.7476 × 10−6 + 20.168 × 10−6 lb ⋅ ft ⋅ s 2
= 34.435 × 10−6 lb ⋅ ft ⋅ s 2
I x = 34.4 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( )1 + ( I y )2 + ( I y )3
Iy = Iy
2 1 lb ⋅ s 2 2 1 ft = 3.0435 × 10−3 3.6 in. ) ( ft 3 12 in. 2 2 1 lb ⋅ s 2 2 −6 lb ⋅ s 2 2 2 1 ft + 760.87 × 10−6 + × + 1.8 in. 760.87 10 1.8 0.6 in ) ( ft ft 18 12 in.
(
)
2 2 2 2 1 ft 2 16 2 2 −3 lb ⋅ s 1 −3 lb ⋅ s 4 × 1.8 + 3.5855 × 10 − (1.8 in.) + 3.5855 × 10 + 1.8 in ft 2 9π 2 ft 3π 12 in.
(
) (
) (
)
= 91.305 × 10−6 + 0.95109 × 10−6 + 19.0218 × 10−6 + 25.805 × 10 −6 + 92.205 × 10−6 lb ⋅ ft ⋅ s 2 = 232 × 10−6 lb ⋅ ft ⋅ s 2
I y = 232 × 10−6 lb ⋅ ft ⋅ s 2 I z = ( I z )1 + ( I z )2 + ( I z )3 2 1 lb ⋅ s 2 2 2 2 1 ft = 3.0435 × 10−3 + 3.6 1.2 in ft 3 12 in.
(
)
2 2 1 lb ⋅ s 2 2 −6 lb ⋅ s 2 2 2 1 ft + 760.87 × 10−6 + × + 1.2 in. 760.87 10 1.8 0.4 in ) ( ft ft 18 12 in.
(
)
2 2 1 lb ⋅ s 2 2 2 1 ft −3 lb ⋅ s 1.8 in. 3.5855 10 1.8 in. + 3.5855 × 10−3 + × ) ) ( ( ft ft 4 12 in.
(
) (
) (
)
= 101.45 × 10−6 + 0.42271 × 10−6 + 17.9650 × 10−6 + 100.842 × 10−6 lb ⋅ ft ⋅ s 2
= 221 × 10−6 lb ⋅ ft ⋅ s 2
I z = 221 × 10−6 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
To the Instructor: The following formulas for the mass moment of inertia of thin plates and a half cylindrical shell are derived at this time for use in the solutions of Problems 9.137–9.142. Thin rectangular plate
( I x )m
( )m + md 2
= I x′ =
b 2 h 2 1 m b 2 + h 2 + m + 12 2 2
=
1 m b2 + h2 3
(
)
(
)
( I y )m = ( I y′ )m + md 2 =
1 b mb 2 + m 12 2
=
1 2 mb 3
2
( )m + md 2
I z = I z′
1 h = mh 2 + m 12 2 =
2
1 2 mh 3
Thin triangular plate Have
1 m = ρV = ρ bht 2 1 3 bh 36
and
I z, area =
Then
I z, mass = ρ tI z, area
= ρt × =
1 3 bh 36
1 mh 2 18 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I y, mass =
Similarly, Now
1 mb 2 18
1 m b2 + h2 18
(
I x, mass = I y, mass + I z, mass =
)
Thin semicircular plate Have
π m = ρV = ρ a 2t 2
And
I y, area = I z, area =
Then
π 8
a4
I y, mass = I z , mass = ρ tI y, area
= ρt ×
π 8
a4
1 2 ma 4
=
I x, mass = I y, mass + I z, mass =
Now
1 2 ma 2
Also
I x, mass = I x′, mass + my 2
or
1 I x′, mass = m 2
And
I z, mass = I z′, mass + my 2
or
1 I z′, mass = m 4
Thin quarter-circular plate
y = z =
Have
π m = ρV = ρ a 2t 4
and
I y, area = I z, area =
Then
I y, mass = I z, mass = ρ tI y, area
π 16
a4
= ρt × =
4a 3π
π 16
a4
1 2 ma 4 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
1 2 ma 2
Now
I x, mass = I y, mass + I z, mass =
Also
I x, mass = I x′, mass + m y 2 + z 2
(
or
32 2 1 I x′, mass = m − a 2 2 9π
and
I y, mass = I y′, mass + mz 2
or
16 2 1 I y′, mass = m − a 2 4 9π
)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 138.
First compute the mass of each component. Have m = ρ stV = ρ st tA
(
)
m1 = 7850 kg/m 3 ( 0.003 m )( 0.70 m )( 0.780 m ) = 12.858 kg π 2 m2 = 7850 kg/m 3 ( 0.003 m ) ( 0.39 m ) = 5.6265 kg 2
(
)
1 m3 = 7850 kg/m 3 ( 0.003 m ) ( 0.780 m )( 0.3 m ) = 2.7554 kg 2
(
)
Using Fig. 9.28 for component and the equations derived above for components and have I x = ( I x )1 + ( I x )2 + ( I x )3 2 1 2 0.78 2 = (12.858 kg ) ( 0.78 ) + m 2 12 2 1 16 2 4 × 0.39 2 2 0.39 + ( 5.6265 kg ) − + ) + ( 0.39 ) m 2 ( 3π 2 9π
0.78 2 0.30 2 2 2 2 1 + ( 2.7554 kg ) ( 0.78 ) + ( 0.30 ) + + m 3 18 3
= ( 2.6076 + 1.2836 + 0.3207 ) kg ⋅ m 2 = 4.2119 kg ⋅ m 2 or I x = 4.21 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
( )1 + ( I y )2 + ( I y )3
Iy = Iy
1 2 2 2 2 1 = (12.858 kg ) ( 0.7 ) + ( 0.78 ) + ( 0.7 ) + ( 0.78) m 2 4 12 2 2 1 + ( 5.6265 kg ) ( 0.39 ) + ( 0.39 ) m 2 4 2 1 2 2 0.78 4 + ( 2.7554 kg ) ( 0.78 ) + ( 0.7 ) + m 18 3
= ( 4.7077 + 1.0697 + 1.6295 ) kg ⋅ m 2 = 7.4069 kg ⋅ m 2 or I y = 7.41 kg ⋅ m 2 And
I z = ( I z )1 + ( I z )2 + ( I z )3
1 2 1 = (12.858 kg ) ( 0.7 ) + m 2 12 4 2 1 + ( 5.6265 kg ) ( 0.39 ) m 2 4 2 1 2 2 0.30 2 + ( 2.7554 kg ) ( 0.3) + ( 0.70 ) + m 18 3
= ( 2.1001 + 0.21395 + 1.39145 ) kg ⋅ m 2 = 3.7055 kg ⋅ m 2
or I z = 3.71 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 139. t = 2 mm
ρ = 7850 kg/m3
Part :
(
)
m1 = ρV = 7850 kg/m 3 ( 0.08 m )( 0.1 m )( 0.002 m ) = 0.1256 kg
I x = I x + md 2 =
1 ( 0.1256 kg )( 0.08 m )2 + ( 0.1256 kg ) ( 0.1 m )2 + ( 0.04 m )2 12
(
)
= 66.99 × 10−6 + 1.457 × 10−3 kg ⋅ m 2 = 1.524 × 10 −3 kg ⋅ m 2
I y = I y + md 2 =
1 ( 0.1256 kg )( 0.1 m )2 + ( 0.1256 kg ) ( 0.05 m )2 + ( 0.1 m )2 12
(
)
= 0.1047 × 10−3 + 1.57 × 10−3 kg ⋅ m 2 = 1.675 × 10−3 kg ⋅ m 2 I z = I z + md 2 =
1 ( 0.1256 kg ) ( 0.1 m )2 + ( 0.08 m )2 + ( 0.1256 kg ) ( 0.05 m )2 + ( 0.04 m )2 12
( ) = ρV = ( 7850 kg/m ) ( 0.2 m )( 0.2 m )( 0.002 m ) = 0.628 kg
= 0.1717 × 10−3 + 0.515 × 10−3 kg ⋅ m 2 = 0.687 × 10−3 kg ⋅ m 2
Part :
Ix =
m2
3
1 1 ma 2 = ( 0.628 kg )( 0.2 m )2 = 2.093 × 10−3 kg ⋅ m 2 12 12 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Iy =
1 1 m a2 + b2 = ( 0.628 kg ) ( 0.2 m )2 + ( 0.2 m )2 = 4.187 × 10−3 kg ⋅ m 2 12 12
Iz =
1 1 mb 2 = ( 0.628 kg )( 0.2 m )2 = 2.093 × 10−3 kg ⋅ m 2 12 12
(
)
Part : Same values as Part Total mass moment of inertia:
(
)
(
)
(
)
I x = 2 1.524 × 10−3 kg ⋅ m 2 + 2.093 × 10−3 kg ⋅ m 2
I y = 2 1.675 × 10−3 kg ⋅ m 2 + 4.187 × 10−3 kg ⋅ m 2 I z = 2 0.687 × 10−3 kg ⋅ m 2 + 2.093 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I x = 5.14 × 10−3 kg ⋅ m 2 I y = 7.54 × 10−3 kg ⋅ m 2
I z = 3.47 × 10−3 kg ⋅ m 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 140.
First compute the mass of each component
m = ρV = ρ At
Have Now
( ) = ( 7530 kg/m ) ( 0.002 m )( 0.045 m )( 0.020 m ) = 0.013554 kg
m1 = 7530 kg/m 3 ( 0.002 m )( 0.045 m )( 0.070 m ) = 0.047439 kg m2
3
(
)
m3 = 7530 kg/m 3 ( 0.002 m ) ×
1 ( 0.04 m )( 0.095 m ) = 0.028614 kg 2
Using Fig. 9.28 for components and and the equations derived above for components , have I x = ( I x )1 + ( I x )2 + ( I x )3 2 2 2 2 1 1 = ( 0.047439 kg ) ( 0.07 ) m 2 + ( 0.013554 kg ) ( 0.020 ) + ( 0.07 ) + ( 0.01) m 2 3 12
1 2 2 2 2 1 + ( 0.028614 kg ) ( 0.095 ) + ( 0.04 ) + ( 2 × 0.095) + ( 0.040 ) m 2 9 18
= ( 0.077484 + 0.068222 + 0.136751) × 10−3 kg ⋅ m 2 = 0.282457 × 10−3 kg ⋅ m 2 or I x = 0.2825 × 10−3 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
continued
( )1 + ( I y )2 + ( I y )3
Iy = Iy
2 2 2 1 1 = ( 0.047439 kg ) ( 0.045 ) m 2 + ( 0.013554 kg ) ( 0.045 ) + ( 0.02 ) m 2 3 3
1 2 2 2 1 + ( 0.028614 kg ) ( 0.04 ) + ( 0.045 ) + ( 0.04 ) m 2 9 18
= ( 0.03202 + 0.010956 + 0.065574 ) × 10−3 kg ⋅ m 2 = 0.10855 × 10−3 kg ⋅ m 2 or I y = 0.1086 × 10−3 kg ⋅ m 2 I z = ( I z )1 + ( I z )2 + ( I z )3
2 2 1 21 2 = ( 0.047439 kg ) ( 0.045 ) + ( 0.070 ) m 2 + ( 0.013554 kg ) ( 0.045 ) + ( 0.070 ) m 2 3 3 2 1 2 2 + ( 0.028614 kg ) ( 0.095 ) + 0.0452 + 0.095 m 2 3 18
= ( 0.0109505 + 0.075564 + 0.187064 ) × 10−3 kg ⋅ m 3 = 0.37213 × 10−3 kg ⋅ m 2 or I z = 0.372 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 141. t = 0.1 in.
γ st = 490 lb/ft 3 Have m = ρstV =
m=
γ st g
tA
490 lb/ft 3 0.1 × ft × A 32.2 ft/s 2 12
lb ⋅ s 2 2 = 0.126812 ⋅ ft A ft lb ⋅ s 2 2 16 12 2 lb ⋅ s 2 m1 = 0.126812 ⋅ ft × ft = 0.169083 ft ft 12 12
Then
lb ⋅ s 2 2 16 9 2 lb ⋅ s 2 m2 = 0.126812 ⋅ ft × ft = 0.126812 ft ft 12 12 lb ⋅ s 2 2 1 12 9 2 lb ⋅ s 2 m3 = 0.126812 ⋅ ft × × ft = 0.047555 ft ft 2 12 12 2 lb ⋅ s 2 2 π 5 2 lb ⋅ s 2 m4 = 0.126812 ⋅ ft ft = 0.034583 ft ft 2 12
Using Fig. 9.28 for components and and the equations derived previously for components and , have I x = ( I x )1 + ( I x )2 + ( I x )3 − ( I x )4
Where
2
( I x )1
1 lb ⋅ s 2 12 2 = 0.169083 ft = 0.056361 lb ⋅ ft ⋅ s 3 ft 12
( I x )2
=
( I x )3
2 2 2 2 lb ⋅ s 2 1 12 9 4 3 2 = 0.047555 + + + ft ft 18 12 12 12 12
2
1 lb ⋅ s 2 9 0.126812 ft = 0.023777 lb ⋅ ft ⋅ s 2 3 ft 12
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
= 0.0123841 lb ⋅ ft ⋅ s 2
( I x )4
2
1 lb ⋅ s 2 5 ft = 0.00150100 lb ⋅ ft ⋅ s 2 0.034583 4 ft 12
=
Then I x = ( 0.056361 + 0.023777 + 0.0123841 − 0.00150100 ) lb ⋅ ft ⋅ s 2
I x = 91.0 × 10−3 lb ⋅ ft ⋅ s 2
( )1 + ( I y )2 + ( I y )3 − ( I y )4
Iy = Iy Where
2 2 1 lb ⋅ s 2 16 12 2 2 0.169083 + ft = 0.156558 lb ⋅ ft ⋅ s 3 ft 12 12
( )1
=
( I y )2
1 lb ⋅ s 2 16 2 = 0.126812 ft = 0.075148 lb ⋅ ft ⋅ s 3 ft 12
Iy
2
( I y )3 = 0.047555 lbft⋅ s
2
1 12 2 4 2 2 2 + ft = 0.0079258 lb ⋅ ft ⋅ s 18 12 12
2
2 2 8 2 4 1 16 5 5 2 + + × ft − ft 2 3π 12 12 2 9π 12
( I y )4 = 0.034583 lbft⋅ s
= 0.0183722 lb ⋅ ft ⋅ s 2 Then I y = ( 0.156558 + 0.075148 + 0.0079258 − 0.0183722 ) lb ⋅ ft ⋅ s 2
I y = 221 × 10−3 lb ⋅ ft ⋅ s 2 I z = ( I z )1 + ( I z )2 + ( I z )3 − ( I z )4 Where
2
( I z )1 =
1 lb ⋅ s 2 16 2 0.169083 ft = 0.100197 lb ⋅ ft ⋅ s 3 ft 12
( I z )2
2 2 1 lb ⋅ s 2 16 9 2 2 0.126812 + ft = 0.098925 lb ⋅ ft ⋅ s 3 ft 12 12
=
2 2 lb ⋅ s 2 1 9 3 2 2 0.047555 I = + ( z )3 ft = 0.0044583 lb ⋅ ft ⋅ s ft 18 12 12
( I z )4
2 2 lb ⋅ s 2 1 5 8 2 = 0.034583 ft + ft = 0.0168712 lb ⋅ ft ⋅ s ft 4 12 12
Then I z = ( 0.100197 + 0.098925 + 0.0044583 − 0.0168712 ) lb ⋅ ft ⋅ s 2
I z = 186.7 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 142.
Have Then
m = ρcuV = ρcu tA
(
)
m1 = m2 = 8940 kg/m 3 ( 0.0008 m )(1.2 m )( 0.15 m ) = 1.28736 kg
Using Fig. 9.28 for components and , have
I x = ( I x )1 + ( I x )2 and ( I x )1 = ( I x )2 Then
2 1 I x = 2 (1.28736 kg )( 0.15 m ) = 0.0193104 kg ⋅ m 2 3
I x = 19.31 × 10−3 kg ⋅ m 2
( )1 + ( I y )2
Also
Iy = Iy
Where
( I y )1 = 13 (1.28736 kg ) (1.2 m )2 + ( 0.15 m )2 = 0.62759 kg ⋅ m 2
and
( I y )2 = ∫ ry2 dm ry2 = x 2 + z 2 = x 2 + (ζ cos 30° )
2
dm = ρ dV = ρ cu tdζ dx
Then
( I y )2 = ρcu t ∫ 0L ∫ 0a ( x2 + ζ 2 cos2 30°) dζ dx continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
1 L = ρcu t ∫ 0 ax 2 + a3 cos 2 30° dx 3
Thus
=
1 ρcu t aL3 + a3L cos2 30° 3
=
1 m2 L2 + a 2 cos 2 30° 3
=
1 (1.28736 kg ) (1.2 m )2 + ( 0.15 m )2 cos2 30° = 0.62517 kg ⋅ m 2 3
(
(
)
where V = aLt
)
I y = ( 0.62759 + 0.62517 ) kg ⋅ m 2 I y = 1.253 kg ⋅ m 2
Also
I z = ( I z )1 + ( I z )2
Where
( I z )1 = (1.28736 kg )(1.2 m )2
and
( I z )2
1 3
= 0.61793 kg ⋅ m 2
= ∫ rz2dm
rz2 = x 2 + y 2 = x 2 + (ζ sin 30° )
2
dm = ρ dV = ρ cu tdζ dx
Then
( I z )2
L
a
(
)
= ρcu t ∫ 0 ∫ 0 x 2 + ζ 2 sin 2 30° dζ dx 1 L = ρcu t ∫ 0 ax 2 + a3 sin 2 30° dx 3
=
1 ρcu t aL3 + a3 L sin 2 30° 3
=
1 m2 L2 + a 2 sin 2 30° 3
=
1 (1.28736 kg ) (1.2 m )2 + ( 0.15 m )2 sin 2 30° 3
(
(
)
where V = aLt
)
= 0.62035 kg ⋅ m 2 Thus
I z = ( 0.61793 + 0.62035 ) kg ⋅ m 2
I z = 1.238 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 143.
m = ρV =
Have
γ g
V =
0.284 lb/in 3 ×V 32.2 ft/s 2
(
)
= 0.0088199 lb ⋅ s 2/ft ⋅ in 3 V
(
)
(
)
(
)
2 Then m1 = 0.0088199 lb ⋅ s 2 /ft ⋅ in 3 π ( 4 ) ( 2 ) in 3 = 0.88667 lb ⋅ s 2 /ft 2 m2 = 0.0088199 lb ⋅ s 2/ft ⋅ in 3 π (1) ( 3) in 3 = 0.083126 lb ⋅ s 2/ft 2 m3 = 0.0088199 lb ⋅ s 2 /ft ⋅ in 3 π (1) ( 2 ) in 3 = 0.055417 lb ⋅ s 2/ft
Using Fig. 9-28 and the parallel theorem, have (a)
I x = ( I x )1 + ( I x )2 − ( I x )3 2 2 2 1 1 ft = 0.88667 lb ⋅ s 2 /ft 3 ( 4 ) + ( 2 ) + (1) in 2 × 12 12 in.
(
)
2
2 2 2 1 1 ft + 0.083126 lb ⋅ s 2 /ft 3 (1) + ( 3) + (1.5 ) in 2 × 12 12 in.
(
)
2 2 2 1 1 ft − 0.055417 lb ⋅ s 2 /ft 3 (1) + ( 2 ) + (1) in. × 12 12 in.
(
)
2
2
= 0.034106 lb ⋅ ft ⋅ s 2 or I x = 0.0341 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( )1 + ( I y )2 − ( I y )3
Iy = Iy
(b)
2 1 1 ft = 0.88667 lb ⋅ s 2 /ft ( 4 ) in 2 × 2 12 in.
(
)
2
2 1 2 1 ft + 0.083126 lb ⋅ s 2 /ft (1) + ( 2 ) in 2 × 2 12 in.
(
)
2
2 1 2 1 ft − 0.055417 lb ⋅ s 2 /ft (1) + ( 2 ) in 2 × 2 12 in.
(
)
2
= 5.0125 × 10−2 lb ⋅ ft ⋅ s 2 or I y = 0.0501 lb ⋅ ft ⋅ s 2 (c)
I z = ( I z )1 + ( I z )2 − ( I z )3 2 2 2 1 1 ft = 0.88667 lb ⋅ s 2 /ft 3 ( 4 ) + ( 2 ) + (1) in 2 × 12 12 in.
(
)
2
2 2 2 2 1 1 ft + 0.083126 lb ⋅ s 2 /ft 3 (1) + ( 3) + ( 2 ) + (1.5 ) in 2 × 12 12 in.
(
)
2 2 2 2 1 1 ft − 0.055417 lb ⋅ s 2 /ft 3 (1) + ( 2 ) + ( 2 ) + (1) in 2 × 12 12 in.
(
)
2
2
= 0.034876 lb ⋅ ft ⋅ s 2 or I z = 0.0349 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 144. m = ρsteel V
Have
m1 = 7850 kg/m 3 ( 0.200 × 0.120 × 0.600 ) m 3
Then
= 113.040 kg m2 = 7850 kg/m 3 × ( 0.200 × 0.080 × 0.360 ) m 3
= 45.216 kg 2 π m3 = 7850 kg/m 3 × ( 0.100 ) ( 0.120 ) m 3 2
= 14.7969 kg 2 m4 = 7850 kg/m 3 × π ( 0.050 ) ( 0.120 ) m 3
= 7.3985 kg Using Figure 9.28 for components and and the equations derived above for components and , have
( )1 + ( I y )2 + ( I y )3
Iy = Iy
Now
where
( )1 Iy
1 0.600 2 0.200 2 2 2 2 = (113.040 kg ) ( 0.600 ) + ( 0.200 ) + + m 2 2 12
= 15.0720 kg ⋅ m 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( )2 Iy
1 0.360 2 0.200 2 2 2 2 = ( 45.216 kg ) ( 0.360 ) + ( 0.200 ) + + m 2 2 12
= 2.5562 kg ⋅ m 2
( )3 Iy
2 1 16 4 × 0.100 2 2 2 = (14.7969 kg ) − + + + 0.100 0.100 0.600 ( ) ( ) m 2 3π 2 9π
= 6.3024 kg ⋅ m 2
( I y )4 = ( 7.3985 kg ) 12 ( 0.050 )2 + ( 0.100)2 + ( 0.600 )2 m 2
= 2.7467 kg ⋅ m 2 Then
I y = (15.0720 + 2.5562 + 6.3024 − 2.7467 ) kg ⋅ m 2
= 21.1839 kg ⋅ m 2 or I y = 21.2 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
To the Instructor: The following formulas for the mass moment of inertia of a semicylinder are derived at this time for use in the solutions of Problems 9.144–9.147. From Figure 9.28
( I x ) cyl
Cylinder:
=
1 mcyla 2 2
( I y )cyl = ( I z )cyl = 121 mcyl (3a2 + L2 )
(
Symmetry and the definition of the mass moment of inertia I = ∫ r 2dm imply
( I )semicylinder ∴
and
( I x )sc
=
=
1 (I ) 2 cylinder
11 2 mcyla 2 2
( I y )sc = ( I z )sc = 12 121 mcyl ( 3a2 + L2 )
However,
msc =
1 mcyl 2
Thus,
( I x )sc
=
and
1 msca 2 2
( I y )sc = ( I z )sc = 121 msc ( 3a2 + L2 )
Also, using the parallel axis theorem find
16 2 1 I x′ = msc − a 2 9 π2 1 16 2 1 2 I z′ = msc − a + L 2 12 4 9π
where x′ and z′ are centroidal axes.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 145. See machine elements shown in Problem 9.144
m1 = 113.040 kg
Also note
m2 = 45.216 kg m3 = 14.7969 kg m4 = 7.3985 kg
Using Fig. 9.28 for components and and the equations derived above for components and , have
I z = ( I z )1 + ( I z )2 + ( I z )3 − ( I z )4
Now
where
2 2 1 ( 0.200 )2 + ( 0.120 )2 + 0.200 + 0.120 m 2 2 12 2
( I z )1 = (113.040 kg ) = 2.0498 kg ⋅ m 2
( I z )2
2 2 2 2 1 = ( 45.216 kg ) ( 0.200 ) + ( 0.080 ) + ( 0.100 ) + ( 0.160 ) m 2 12
= 1.78453 kg ⋅ m 2 1 2 2 2 2 3 ( 0.100 ) + ( 0.120 ) + ( 0.100 ) + ( 0.060 ) m 2 12
( I z )3 = (14.7969 kg ) = 0.25599 kg ⋅ m 2
( I z )4
2 2 2 2 1 = ( 7.3985 kg ) 3 ( 0.050 ) + ( 0.120 ) + ( 0.100 ) + ( 0.060 ) m 2 12
= 0.114122 kg ⋅ m 2 Then
I z = ( 2.0498 + 1.78453 + 0.25599 − 0.114122 ) kg ⋅ m 2
= 3.97629 kg ⋅ m 2 or I z = 3.98 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 146. m = ρV
= m1 =
γ g
V
0.100 lb/in 3 ( 4 in.)(1 in.)( 3 in.) 32.2 ft/s 2
= 37.267 × 10−3 m2 =
0.100 lb/in 3 ( 2 in.)(1.2 in.)( 3 in.) 32.2 ft/s 2
= 22.360 × 10−3 m3 =
lb ⋅ s 2 ft
0.100 lb/in 3 π 2 × ( 0.9 in.) ( 2 in.) 2 2 32.2 ft/s
= 7.9028 × 10−3 m4 =
lb ⋅ s 2 ft
lb ⋅ s 2 ft
0.100 lb/in 3 π 2 × ( 0.5 in.) ( 3 in.) 2 2 32.2 ft/s
= 3.6587 × 10−3
lb ⋅ s 2 ft
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Have
I z = ( I z )1 + ( I z )2 + ( I z )3 + ( I z )4 2 2 2 1 2 2 2 2 1 ft −3 lb ⋅ s 2 −3 lb ⋅ s 2 = 37.267 × 10 4 + 1 in + 37.267 × 10 2 + 0.5 in ft ft 12 12 in.
(
)
(
)
2 2 1 lb ⋅ s 2 2 −3 lb ⋅ s 2 2 2 2 2 1 ft + 22.360 × 10−3 + + × + 2 1.2 in 22.360 10 1 1.6 in ft ft 12 12 in.
(
)
(
)
lb ⋅ s 2 1 16 1 2 2 0.9 in.) + ( 2 in.) + 7.9028 × 10−3 − 2 ( ft 4 9π 12 2 2 2 4 × 0.9 2 1 ft 2 −3 lb ⋅ s + 7.9028 × 10 (1 in.) + 2.2 + in ft 3π 12 in.
lb ⋅ s 2 1 16 2 0.5 in.) + 3.6587 × 10−3 − 2 ( ft 2 9π 2 2 2 4 × 0.5 2 1 ft 2 −3 lb ⋅ s + 3.6587 × 10 ( 3.5 in.) + 1 + in ft 3π 12 in.
(
) (
= 1.46653 × 10−3 + 70.393 × 10−6 + 552.79 × 10−6
(
)
) (
)
+ 21.400 × 10−6 + 420.75 × 10−6 + 2.0318 × 10−6 + 348.58 × 10−6 lb ⋅ ft ⋅ s 2 = 2.88 × 10−3 lb ⋅ ft ⋅ s 2 I z = 2.88 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 147. Have
m = ρst V =
Then
m1 =
δ st g
V
1 ft 490 lb/ft 3 × ( 3 × 1 × 4 ) in 3 × 2 32.2 ft/s 12 in.
3
= 105.676 × 10−3 lb ⋅ s 2 /ft 3
1 ft 490 lb/ft 3 2 −3 m2 = × (1.5 × 1 × 2 ) in 3 × = 26.419 × 10 lb ⋅ s /ft 2 12 in. 32.2 ft/s 3
m3 =
490 lb/ft 3 π 2 1 ft 2 −3 × ( 0.5 ) × 1.5 in 3 × = 5.1874 × 10 lb ⋅ s /ft 2 32.2 ft/s 2 12 in.
1 ft 490 lb/ft 3 π 2 m4 = × (1.4 ) × 0.4 in 3 × 2 32.2 ft/s 2 12 in.
3
= 10.8491 × 10−3 lb ⋅ s 2/ft (a)
Using Fig. 9.28 for components and and the equations derived above for components and , have
I x = ( I x )1 + ( I x )2 + ( I x )3 − ( I x )4 where
( I x )1 = (105.676 × 10
−3
1 1 2 4 2 2 1 ft 2 2 2 lb ⋅ s /ft (1) + ( 4 ) + + in × 2 12 2 12 in.
)
2
= 4.1585 × 10−3 lb ⋅ ft ⋅ s 2
( I x )2
1 ft 2 2 2 2 1 = 26.419 × 10−3 lb ⋅ s 2 /ft (1) + ( 2 ) + ( 0.5) + ( 5) in 2 × 12 12 in.
(
)
= 4.7089 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2
COSMOS: Complete Online Solutions Manual Organization System
( I x )3
(
= 5.1874 × 10
2 2 1 16 4 × 0.5 2 1 ft 2 2 lb ⋅ s /ft − ( 0.5 ) + ( 0.5 ) + 6 + in × 2 9π 2 3π 12 in.
−3
2
)
= 1.40209 × 10−3 lb ⋅ ft ⋅ s 2
( I x )4
1 ft 2 2 1 = 10.8451 × 10−3 lb ⋅ s 2 /ft 3 (1.4 ) + ( 0.4 ) + 22 + 0.82 in 2 × 12 12 in.
(
)
(
)
2
= 0.38736 × 10−3 lb ⋅ ft ⋅ s 2 I x = ( 4.1585 + 4.7089 + 1.40209 − 0.38736 ) × 10−3 lb ⋅ ft ⋅ s 2
Then
= 9.8821 × 10−3 lb ⋅ ft ⋅ s 2 or I x = 9.88 × 10−3 lb ⋅ ft ⋅ s 2 (b) Have
( )1 + ( I y )2 + ( I y )3 − ( I y )4
Iy = Iy
where 2 1 3 2 4 2 1 ft 2 2 = 105.676 × 10−3 lb ⋅ s 2 /ft ( 3) + ( 4 ) + + in 2 × 2 2 12 in. 12
( )1 ( Iy
)
= 6.1155 × 10−3 lb ⋅ ft ⋅ s 2
( I y )2 = ( 26.419 × 10
1 ft 2 2 2 2 1 lb ⋅ s /ft (1.5 ) + ( 2 ) + ( 0.75 ) + ( 5 ) in 2 × 12 12 in.
−3
)
2
2
= 4.7854 × 10−3 lb ⋅ ft ⋅ s 2
( I y )3 = (5.1874 × 10
−3
2 2 1 16 1 4 × 0.5 2 1 ft 2 2 2 lb ⋅ s /ft − ( 0.5 ) + (1.5 ) + ( 0.75 ) + 6 + in × 4 9π 2 12 3π 12 in.
)
2
= 1.41785 × 10−3 lb ⋅ ft ⋅ s 2
( I y )4 = (10.8451 × 10
−3
2 2 1 1 ft 16 4 × 1.4 2 2 2 lb ⋅ s /ft − (1.4 ) + 3 − + ( 2 ) in × 2 9π 2 3π 12 in. 2
)
= 0.78438 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I y = ( 6.1155 + 4.7854 + 1.41785 − 0.78438 ) × 10−3 lb ⋅ ft ⋅ s 2
Then
= 11.5344 × 10−3 lb ⋅ ft ⋅ s 2 or I y = 11.53 × 10−3 lb ⋅ ft ⋅ s 2
I z = ( I z )1 + ( I z )2 + ( I z )3 − ( I z )4
(c) Have where
( I z )1 = (105.676 × 10
−3
1 3 2 1 2 2 1 ft 2 2 2 lb ⋅ s /ft ( 3) + (1) + + in × 2 12 2 12 in.
)
2
= 2.4462 × 10−3 lb ⋅ ft ⋅ s 2 1 1.5 2 1 2 2 1 ft 2 2 2 −3 2 I = × ⋅ + + 26.419 10 lb s /ft 1.5 1 ( z )2 ( ) + in × ( ) 2 2 12 in. 12
(
)
= 0.198754 × 10−3 lb ⋅ ft ⋅ s 2
( I z )3
(
= 5.1874 × 10
−3
1 ft 2 2 2 2 1 lb ⋅ s /ft 3 ( 0.5 ) + (1.5) + ( 0.75) + ( 0.5 ) in 2 × 12 12 in. 2
)
2
= 0.038275 × 10−3 lb ⋅ ft ⋅ s 2
( I z )4
(
= 10.8451 × 10
−3
2 2 1 1 ft 16 1 4 × 1.4 2 2 2 2 lb ⋅ s /ft − (1.4 ) + ( 0.4 ) + 3 − + ( 0.8 ) in × 4 9π 2 12 3π 12 in. 2
)
= 0.49543 × 10−3 lb ⋅ ft ⋅ s 2 Then
I z = ( 2.4462 + 0.198754 + 0.038275 − 0.49543) × 10 −3 lb ⋅ ft ⋅ s 2
= 2.1878 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or I z = 2.19 × 10−3 lb ⋅ ft ⋅ s 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 148.
First compute the mass of each component.
m = ρL
Have Then
m1 = ( 0.049 kg/m ) 2π ( 0.32 m )
= 0.09852 kg m2 = m3 = m4 = m5
= ( 0.049 kg/m )( 0.160 m ) = 0.00784 kg Using the equation given above and the parallel axis theorem, have
I x = ( I x )1 + ( I x )2 + ( I x )3 + ( I x )4 + ( I x )5 1 1 2 2 = ( 0.09852 kg ) ( 0.32 m ) + ( 0.00784 kg ) ( 0.160 m ) 2 3 2 + ( 0.00784 kg ) 0 + ( 0.160 m )
1 2 2 2 + ( 0.00784 kg ) ( 0.16 m ) + ( 0.08 m ) + ( 0.32 m ) 12 2 2 2 1 + ( 0.00784 kg ) ( 0.16 m ) + ( 0.16 m ) + ( 0.32 m − 0.08 m ) 12
= ( 5.0442 + 0.06690 + 0.2007 + 0.86972 + 0.66901) × 10−3 kg ⋅ m 2 = 6.8505 × 10−3 kg ⋅ m 2
or I x = 6.85 × 10−3 kg ⋅ m 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Iy = (Iy ) + (Iy ) + (Iy ) + (Iy ) + (Iy )
Have
1
(I ) = (I )
where Then
y 2
y 4
2
3
and
4
5
(I ) = (I ) y 3
y 5
2 2 I y = ( 0.09852 kg ) ( 0.32 m ) + 2 ( 0.00784 kg ) 0 + ( 0.32 m )
2 2 1 + 2 ( 0.00784 kg ) ( 0.16 m ) + ( 0.24 m ) 12
= 10.088 + 2 ( 0.80282 ) + 2 ( 0.46831) × 10−3 kg ⋅ m 2 = 12.6303 × 10−3 kg ⋅ m 2 or I y = 12.63 × 10−3 kg ⋅ m 2 By symmetry
Iz = Ix
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or I z = 6.85 × 10−3 kg ⋅ m 2
COSMOS: Complete Online Solutions Manual Organization System
To the Instructor: The following formulas for the mass moment of inertia of wires are derived or summarized at this time for use in the solutions of Problems 9.148–9.150. Slender Rod
Ix = 0
I y′ = I z′ =
1 mL2 (Fig. 9.28) 12
1 2 mL (Sample Problem 9.9) 3
I y = Iz = Circle Have
I y = ∫ r 2dm = ma 2
Now
Iy = Ix + Iz Ix = Iz
And symmetry implies
∴ Ix = Iz =
1 2 ma 2
Semicircle Following the above arguments for a circle, have
I x = Iz =
1 2 ma 2
I y = ma 2
Using the parallel-axis theorem
I z = I z′ + mx 2 or
x=
2a
π
4 1 I z′ = m − 2 a 2 2 π
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 149.
m = ρV = ρ AL
Have Then
(
)
2 m1 = m2 = 7850 kg/m 3 π ( 0.0015 m ) × (π × 0.36 m )
m2 = m1 = 0.062756 kg
(
)
2 m3 = m4 = 7850 kg/m 3 π ( 0.0015 m ) × ( 0.36 m )
= 0.019976 kg Using the equations given above and the parallel axis theorem, have
I x = ( I x )1 + ( I x )2 + ( I x )3 + ( I x )4 where
( I x )3 = ( I x ) 4
Then 2 2 2 1 1 I x = ( 0.062756 kg ) ( 0.36 m ) + ( 0.062756 ) ( 0.36 m ) + ( 0.36 m ) 2 2
2 2 2 1 + 2 ( 0.019976 kg ) ( 0.36 m ) + ( 0.18 m ) + ( 0.36 m ) 12
= 4.06659 + 12.19977 + 2 ( 3.45185 ) × 10−3 kg ⋅ m 2 = 23.1701 × 10−3 kg ⋅ m 2 or I x = 23.2 × 10−3 kg ⋅ m 2
Have where
( )1 + ( I y )2 + ( I y )3 + ( I y )4
Iy = Iy
( I y )1 = ( I y )2
and
( I y )3 = ( I y )4 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
`
Then 2 2 I y = 2 ( 0.062756 kg ) ( 0.36 m ) + 2 ( 0.019976 kg ) 0 + ( 0.36 m )
(
) (
= 2 8.13318 × 10−3 kg ⋅ m 2 + 2 2.58889 × 10−3 kg ⋅ m 2
)
= 21.44414 × 10−3 kg ⋅ m 2 or I y = 21.4 × 10−3 kg ⋅ m 2 Have
I z = ( I z )1 + ( I z )2 + ( I z )3 + ( I z )4 where
( I z )3 = ( I z )4
Then 2 1 I z = ( 0.062756 kg ) ( 0.36 m ) 2 2 1 4 2 2 × 0.36 m 2 0.36 m + ( 0.062756 kg ) − 2 ( 0.36 m ) + + ( ) π 2 π
2 1 + 2 ( 0.019976 kg ) ( 0.36 m ) 3
= 4.06659 + 12.1998 + 2 ( 0.86296 ) 10−3 kg ⋅ m 2 = 17.9923 × 10−3 kg ⋅ m 2 or I z = 17.99 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 150.
First compute the mass of each component. Mass of each component is indentical
m=
Have
=
( m/L ) L g
( 0.041 lb/ft )(1.5 ft ) 32.2 ft/s 2
= 0.00190994 lb ⋅ s 2 /ft Using the equations given above and the parallel axis theorem, have
( I x )1 = ( I x )3 = ( I x )4 = ( I x )6
and
( I x ) 2 = ( I x )5
I x = 4 ( I x )1 + 2 ( I x )2
Then
2 1 I x = 4 0.00190994 lb ⋅ s 2 /ft (1.5 ft ) 3
(
(
)
)
2 + 2 0.00190994 lb ⋅ s 2/ft 0 + (1.5 ft )
= 0.0143246 lb ⋅ ft ⋅ s 2 or I x = 14.32 × 10−3 lb ⋅ ft ⋅ s 2 Now
( I y )1 = 0 ( I y )2 = ( I y )6
( I y )4 = ( I y )5 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then
( )2 + ( I y )3 + 2 ( I y )4
Iy = 2 Iy
1 2 2 = 0.0019094 lb ⋅ s 2 /ft 2 (1.5 ft ) + 0 + (1.5 ft ) 3
(
)
2 2 2 1 + 2 (1.5 ft ) + (1.5 ft ) + ( 0.75 ft ) 12
= 0.0019094 (1.5 + 2.25 + 6 ) lb ⋅ ft ⋅ s 2 = 0.0186219 lb ⋅ ft ⋅ s 2 I y = 18.62 × 10−3 lb ⋅ ft ⋅ s 2 By symmetry
Iz = I y I z = 18.62 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 151. From the solution to Problem 9.147
m1 = 105.676 × 10−3 lb ⋅ s 2 /ft
m3 = 5.1874 × 10 −3 lb ⋅ s 2/ft
m2 = 26.419 × 10−3 lb ⋅ s 2/ft
m4 = 10.8451 × 10 −3 lb ⋅ s 2/ft
First note that symmetry implies I x′y′ = I y′z ′ = I z ′x′ = 0 for each component
0
I uv = I u′v′ + mu v = mu v
Now
( Iuv )body
so that
Then
= Σmu v
1.5 0.5 0.75 0.5 I xy = Σmx y = 105.676 × 10−3 lb ⋅ s 2 /ft ft ft + 26.419 × 10−3 lb ⋅ s 2 /ft ft ft 12 12 12 12
(
)
(
(
)
)
0.75 0.5 + 5.1874 × 10 −3 lb ⋅ s 2 /ft ft ft 12 12 4 × 1.4 in. 1 ft 0.8 − 10.8451 × 10−3 lb ⋅ s 2 /ft 3 in. − ft 3π 12 in. 12
(
)
= ( 550.40 + 68.799 + 13.5089 − 144.952 ) × 10−6 lb ⋅ ft ⋅ s 2 = 487.76 × 10−6 lb ⋅ ft ⋅ s 2 or I xy = 0.488 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 152. From the solution to Problem 9.146
m1 = 37.267 × 10−3
lb ⋅ s 2 ft
m2 = 22.360 × 10−3
lb ⋅ s 2 ft
m3 = 7.9028 × 10−3
lb ⋅ s 2 ft
m4 = 3.6587 × 10−3
lb ⋅ s 2 ft
I uv = I u′v′ + mu v
Have Symmetry implies
I x′y′ = I y′z ′ = I z ′x′ = 0
for each element.
∴
I uv = ∑ miui v i
Then:
I xy
1 ft lb ⋅ s 2 = 37.267 × 10−3 ( 2 in.)( 0.5 in.) ft 12 in. 1 ft lb ⋅ s 2 + 22.360 × 10−3 (1 in.)(1.6 in.) ft 12 in.
2
2
1 ft lb ⋅ s 2 4 × 0.9 + 7.9028 × 10−3 (1 in.) 2.2 + in. × π ft 3 12 in. 1 ft lb ⋅ s 2 4 × 0.5 + 3.6587 × 10−3 ( 3.5 in.) 1 + in. × ft 3π 12 in.
2
2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(
)
= 258.80 × 10−6 + 248.44 × 10−6 + 141.700 × 10−6 + 107.80 × 10−6 lb ⋅ ft ⋅ s 2 = 757 × 10−6 lb ⋅ ft ⋅ s 2
I xy = 757 × 10−6 lb ⋅ ft ⋅ s 2 1 ft lb ⋅ s 2 I yz = 37.267 × 10−3 ( 0.5 in.)(1.5 in.) ft 12 in.
2
1 ft lb ⋅ s 2 + 22.360 × 10−3 (1.6 in.)(1.5 in.) ft 12 in.
2
1 ft lb ⋅ s 2 4 × 0.9 + 7.9028 × 10−3 2.2 + in. × (1.5 in.) ft 3π 12 in.
2
1 ft lb ⋅ s 2 4 × 0.5 + 3.6587 × 10−3 1 + in. × (1.5 in.) × ft 3π 12 in.
2
(
)
= 194.099 × 10−6 + 372.67 × 10−6 + 212.55 × 10−6 + 46.199 × 10 −6 lb ⋅ ft ⋅ s 2 = 826 × 10
−6
lb ⋅ ft ⋅ s
2
I yz = 826 × 10−6 lb ⋅ ft ⋅ s 2
I zx
1 ft lb ⋅ s 2 = 37.267 × 10−3 (1.5 in.)( 2 in.) ft 12 in.
2
1 ft lb ⋅ s 2 + 22.360 × 10−3 (1.5 in.)(1 in.) ft 12 in.
2
1 ft lb ⋅ s 2 + 7.9028 × 10−3 (1.5 in.)(1 in.) ft 12 in.
2
1 ft lb ⋅ s 2 + 3.6587 × 10−3 (1.5 in.)( 3.5 in.) ft 12 in.
2
(
)
= 776.40 × 10−6 + 232.92 × 10−6 + 82.321 × 10−6 + 133.390 × 10−6 lb ⋅ ft ⋅ s 2 = 1.225 × 10−3 lb ⋅ ft ⋅ s 2
I zx = 1.225 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 153. Have
m = ρalV
Then
kg m1 = 2700 3 ( 0.350 × 0.100 × 0.030 ) m 3 m = 2.8350 kg
kg m2 = 2700 3 ( 0.200 × 0.100 × 0.050 ) m 3 m = 2.7000 kg
kg 2 m3 = 2700 3 π ( 0.025 ) × 0.100 m3 m = 0.53014 kg First note that symmetry implies I x′y′ = I y′z ′ = I z ′x′ = 0 for each component Now
I uv = I u ′v′ + mu v
where
I u′v′ = 0
I xy = Σmx y = ( 2.8350 kg )( 0.175m )( 0.050 m ) + ( 2.7000 kg )( 0.100 m )( 0.050 m ) − ( 0.53014 kg )( 0.080 m )( 0.050 m ) = ( 24.806 + 13.500 − 2.1206 ) × 10 −3 kg ⋅ m 2 = 36.1854 × 10 −3 kg m 2 or I xy = 36.2 × 10−3 kg ⋅ m 2
I yz = Σmy z = ( 2.8350 kg )( 0.050 m )( 0.015m ) + ( 2.7000 kg )( 0.050 m )( 0.055m ) − ( 0.53014 kg )( 0.050 m )( 0.040 m ) = ( 2.1263 + 7.4250 − 1.06028 ) × 10−3 kg ⋅ m 2 = 8.49102 × 10 −3 kg ⋅ m 2 or I yz = 8.49 × 10−3 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I zx = Σmz x = ( 2.8350 kg )( 0.015m )( 0.175m ) + ( 2.7000 kg )( 0.055m )( 0.100 m ) − ( 0.53014 kg )( 0.040 m )( 0.080 m ) = ( 7.4419 + 14.850 − 1.69645 )10−3 kg ⋅ m 2 = 20.59545 × 10 −3 kg ⋅ m 2 or I zx = 20.6 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 154.
m = ρV
Have
(
)
m1 = 2700 kg/m 3 ( 0.118 × 0.036 × 0.044 ) m 3 = 0.50466 kg
Then
2 π m2 = 2700 kg/m 3 ( 0.022 ) × 0.036 m 3 = 0.07389 kg 2
(
)
(
)
m3 = 2700 kg/m 3 ( 0.028 × 0.022 × 0.024 ) m 3 = 0.03992 kg Now observe that I x′y′ , I y′z ′ and I z′x′ are zero because of symmetry
4 × 0.022 x2 = − 0.118 + m = −0.12734 m 3π
Now
0.022 y3 = 0.036 − m = 0.025 m 2
m, kg
x, m
y, m
z, m
mx y kg ⋅ m 2
my z kg ⋅ m 2
mz x kg ⋅ m 2
1
0.50466
−0.059
0.018
0.022
−0.53595 × 10−3
0.19985 × 10 −3
−0.65505 × 10−3
2
0.07389
−0.12734
0.018
0.022
−0.16932 × 10−3
0.02926 × 10 −3
−0.20695 × 10 −3
3
0.03992
− 0.014
0.025
0.026
−0.01397 × 10−3
0.02594 × 10 −3
−0.01453 × 10 −3
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
And
(
0
I xy = Σ I x′y′ + mx y
(
0
I yz = Σ I y′z′ + my z
0
) )
I zx = Σ ( I z′x′ + mx z ) Finally
( )1 + ( I xy )2 − ( I xy )3 = −0.6913 × 10−3 kg ⋅ m 2
I xy = I xy
or I xy = −0.691 × 10−3 kg ⋅ m 2
( )1 + ( I yz )2 − ( I yz )3 = 0.20317 × 10−3 kg ⋅ m 2
I yz = I yz
or I yz = 0.203 × 10−3 kg ⋅ m 2
I zx = ( I zx )1 + ( I zx )2 − ( I zx )3 = −0.84747 × 10−3 kg ⋅ m 2 or I zx = −0.848 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 155. m = ρV
Have
= ρ tA
kg m1 = 7860 3 ( 0.003 m )( 0.2 × 0.090 ) m 2 m
Then
= 424.44 × 10−3 kg
kg π 2 m2 = 7860 3 ( 0.003 m ) × ( 0.045 m ) 2 m = 75.005 × 10−3 kg
I uv = I u′v′ + m u v
Now
I x′y′ = I y′z ′ = I z ′x′ = 0
Symmetry implies
∴ Then
for both elements.
Iuv = ∑ miui v i
(
)
(
)
I xy = 424.44 × 10−3 kg ( 0.050 m )( 0.045 m ) + 75.005 × 10 −3 kg ( − 0.050 m )( 0.045 m )
(
)
= 954.99 × 10−6 − 168.761 × 10−6 kg ⋅ m 2 = 786 × 10−6 kg ⋅ m 2
I xy = 786 × 10−6 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
4 × 0.045 I yz = 424.44 × 10−3 kg ( 0.045 m )( 0 ) + 75.005 × 10−3 kg ( 0.045 m ) m 3π
(
)
(
)
= 64.5 × 10−6 kg ⋅ m 2
I yz = 64.5 × 10−6 kg ⋅ m 2 4 × 0.045 I zx = 424.44 × 10−3 kg ( 0 )( 0.050 m ) + 75.005 × 10−3 kg m ( − 0.050 m ) 3π
(
)
(
)
= − 71.6 × 10−6 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I zx = − 71.6 × 10−6 kg ⋅ m 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 156.
First compute the mass of each component
m = ρstV = ρst tA
Have Then
m1 = ( 7860 kg/m 3 ) ( 0.003)( 0.08 )( 0.09 ) m 3 = 0.169776 kg 1 m2 = 7860 kg/m 3 ( 0.003) × 0.09 × 0.036 m 3 2
= 0.03820 kg Now observe that
(I ) = (I ) = (I ) x′y ′
y ′z ′
1
(I ) = (I ) y ′z ′
2
z ′x′
(I )
Also
x1 = y1 = z2 = 0
x′y ′ 2
( )
= ρ sT t I x′y′
2
1
=0
=0
( I x′y′ )2,area = − 721 b22 h22
From Sample Problem 9.6 Then
z ′x′
1
2,area
1 1 = ρst t − b22 h22 = − m2 b2 h2 36 72
0.09 x2 = −0.045 + m = −0.015 m 3 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Finally
1 I xy = Σ I xy + mx y = ( 0 + 0 ) + − ( 0.03820 kg )( 0.09 m )( 0.036 m ) 36
(
)
0.036 m + ( 0.03820 kg )( −0.015 m ) 3
(
)
= −3.4379 × 10−6 − 6.876 × 10−6 kg ⋅ m 2 = −10.3139 × 10−6 kg ⋅ m 2 or I xy = −10.31 × 10−6 kg ⋅ m 2 And
(
)
I yz = Σ I y′z ′ + m y z = ( 0 + 0 ) + ( 0 + 0 ) = 0
or I yz = 0
I zx = Σ ( I z ′x′ + m z x ) = ( 0 + 0 ) + ( 0 + 0 ) = 0
or I zx = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 157.
First compute the mass of each component Have
m = ρstV = ρst tA
Then
m1 = ( 7860 kg/m3 ) ( 0.003)( 0.7 )( 0.78 ) m 3 = 12.875 kg π m2 = ( 7860 kg/m 3 ) ( 0.003) × 0.392 m 3 = 5.6337 kg 2 1 m3 = ( 7860 kg/m 3 ) ( 0.003) × 0.78 × 0.3 m 3 = 2.7589 kg 2
Now observe that because of symmetry the centroidal products of inertia
( )3 = ( I z′x′ )3 = 0 ( I y′z′ )3,mass = ρstt ( I y′z′ )3,area
of components and are zero and I x′y′ Also
Using the results of Sample Problem 9.6 and noting that the orientation of the axes corresponds to a 90° rotation, have
( I y′z′ )3,area = 721 b32h32 Then
( I y′z′ )3 = ρstt 721 b32h32 = 361 m3b3h3 Also Finally
y1 = x2 = 0
(
y2 =
4 × 0.39 m = 0.16552 m 3π
)
I xy = Σ I x′y′ + mx y = ( 0 + 0 ) + ( 0 + 0 )
− 0.3m 2 + 0 + ( 2.7589 kg ) ( 0.7 m ) = −0.19312 kg ⋅ m 3 or I xy = −0.1931 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(
I yz = Σ I y′z′ + my z
)
= ( 0 + 0 ) + 0 + ( 5.6337 kg ) ( 0.16552 m )( 0.39 m )
1 −0.3 m 0.78 m + ( 2.7589 kg ) ( 0.78 m )( 0.3 m ) + 3 3 36 = ( 0.36367 + 0.017933 − 0.07173) kg ⋅ m 2 = 0.30987 kg ⋅ m 2
or I yz = 0.310 kg ⋅ m 2
(
)
I zx = Σ I z ′x′ + mz x = 0 + (12.875 kg ) ( 0.35 m )( 0.39 m )
0.78 m + ( 0 + 0 ) + 0 + ( 2.7589 kg ) ( 0.7 m ) 3 = (1.75744 + 0.50212 ) kg ⋅ m 2 = 2.25956 kg ⋅ m 2 or I zx = 2.26 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 158. γ st
First note
m = ρstV =
Then
490 lb/ft 3 1ft m1 = 0.08 in.) ( 6 × 3.6 ) in 2 2 ( 12in. 32.2 ft/s
g
tA 3
= 15.2174 × 10−3 lb ⋅ s 2 /ft 490 lb/ft 3 2 1 ft π m2 = 0.08 in.) (1.8 in.) 2 ( 2 12 in. 32.2 ft/s
3
= 3.5855 × 10−3 lb ⋅ s 2 /ft 490 lb/ft 3 2 1 ft π m3 = 0.08 in.) ( 3.6 in.) 2 ( 4 12 in. 32.2 ft/s
3
= 7.1710 × 10−3 lb ⋅ s 2 /ft Note that symmetry implies
( I x′y′ )1,2 = ( I y′z′ )1,2 = ( I z′x′ )1,2 = 0
(I ′ ′ ) = (I ′ ′ ) xy
Now
3
yz
3
=0
I uv = I u′v′ + mu v continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Thus
I xy = Σmx y
= m1x1 y1 − m2 x2 y2 + m3 x3 y3
0
0.6 1.8 = (15.2174 × 10−3 lb ⋅ s 2 /ft ) − ft ft 12 12 4 × 1.8 1 ft 1.8 ft − ( 3.5855 × 10−3 lb ⋅ s 2/ft ) 2.4 − in. × 3π 12 in. 12
= ( −114.131 − 73.326 ) × 10−6 lb ⋅ ft ⋅ s 2
0
or I xy = −187.5 × 10−6 lb ⋅ ft ⋅ s 2
0
I yz = Σmy z = m1 y1 z1 − m2 y2 z2 + m3 y3 z3
Now
0
or
I yz = 0
I zx = ( I zx )1 − ( I zx )2 + ( I zx )3
Also
0
0
= m1 z1x1 − m2 z2x2 + ( I zx )3 Now determine ( I zx )3
0
( dI zx )3 = ( dI z′x′ )3 + z x dm
Have
x γ = ( z ) − st t x dz 2 g
=−
γ st
or
g
( I zx )3
Therefore,
=−
I zx = −
t a32 g 4
t =
4m3 π a32
(
a
)
1 m3a32 2π
1 3.6 7.1710 × 10−3 lb ⋅ s 2 /ft ft 2π 12
(
)
2m3 a 2 2m 1 1 a3 z − z 3 dz = − 23 a32 z 2 − z 4 2 ∫0 4 0 π a3 π a3 2
=−
Finally
(
γ st π
m3 =
Now
1 γ st tz a32 − z 2 dz 2 g
)
2
or I zx = −102.7 × 10−6 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 159. Have
m=
wL g
Then
m1 =
w 3 π × a g 2
=
3π wa 2 g
m2 =
w ( 2a ) g
=2 m3 =
w (π × a ) g
=π
wa g
I uv = I u′v′ + mu v
Now
I x′y′ = I y′z ′ = I z ′x′ = 0
Symmetry implies
∴ Then
wa g
for each element.
Iuv = ∑ miui v i 3π wa 3 2 3 wa 2 I xy = a × a + π ( 3a ) × a π 2 g 2 π 2 g 3 wa 27 = + 6 g 4
I xy = 12.75
w 3 a g
I yz = 7
wa3 g
3π wa 2 3 wa 2 × a I yz = × a ( 2a ) + π (− a) 2 g π 2 g π
=
wa3 (9 − 2) g
3π wa wa 3 wa I zx = ( 2a ) a + 2 ( a )( 3a ) + π ( − a )( 3a ) 2 g 2 g g
=
wa3 9π + 6 − 3π g 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
I zx = 1.5
w 3 a (π + 4 ) g
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 160.
First compute the mass of each component. Have
Then
m=
W 1 = wL g g
m1 =
w w ( 2π × a ) = 2π a g g
m2 =
w w (a) = a g g
m3 =
w w ( 2a ) = 2 a g g
m4 =
w 3 w 2π × a = 3π a g 2 g
Now observe that the centroidal products of inertia, I x′y′ , I y′z ′ , and I z′x′ , of each component are zero because of symmetry. continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
m
1
2
2π
w a g
w a g
z
x
y
2a
a
2a
1 a 2 0
3
2
w a g
2a
4
3π
w a g
2a
mx y
−a 0
3 − a 2
2a
0
0
0
−9π
w 3 a g
w (1 − 5π ) a3 g
(
0
I xy = Σ I x′y′ + mx y I yz = Σ I y′z0′ + my z
)
(
)
I zx = Σ I z′x0′ + mz x
4
w 3 a g
−11π
w 3 a g
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
−4π
w 3 a g 0
−9π
)
(
mz x
w 3 a g
−2π
w 3 a g
a
Σ
Then
w 3 a g
4π
my z
w 3 a g
12π 4
w 3 a g
w (1 + 2π ) a3 g
or I xy =
w 3 a (1 − 5π ) g
or I yz = −11π or I zx = 4
w 3 a g
w 3 a (1 + 2π ) g
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 161.
First note
m = ρV =
γ g
V =
γ g
AL
Specific weight of aluminium = 0.10 lb/in 3 = 172.8 lb/ft 3 Then
m=
2 172.8 lb/ft 3 π 0.075 ft L 32.2 ft/s 2 4 12
(
)
= 0.16464 × 10−3 L lb ⋅ s 2/ft 2 Now
L1 = L4 = 12.5 in. = 1.04167 ft
m1 = m4 = 0.17150 × 10−3 lb ⋅ s 2 /ft L2 = L5 = 9 in. = 0.75 ft
m2 = m5 = 0.12348 × 10−3 lb ⋅ s 2 /ft L3 = L6 = 15 in. = 1.25 ft
m3 = m6 = 0.20580 × 10−3 lb ⋅ s 2 /ft and
I x′y′ = I y′z ′ = I z ′x′ = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
m, lb ⋅ s 2 /ft
x , ft
y , ft
z , ft
mx y, lb⋅ft ⋅s2
my z , lb ⋅ ft ⋅ s 2
m z x , lb ⋅ ft ⋅ s 2
1
0.17150 × 10−3
0.75
0.5208
0
0.06699 × 10−3
0
0
2
0.12348 × 10−3
0.375
1.04167
0
0.04823 × 10−3
0
0
3
0.20580 × 10−3
0
1.04167
0.625
0
0.13398 × 10−3
0
4
0.17150 × 10−3
0
0.5208
1.25
0
0.111646 × 10−3
0
5
0.12348 × 10−3
0.375
0
1.25
0
0
0.05788 × 10−3
6
0.20580 × 10−3
0.75
0
0.625
0
0
0.09647 × 10−3
Σ
0.11522 × 10−3
0.24563 × 10−3
0.15435 × 10−3
0
I xy = Σ ( I x′y′ + mx y ) = 0.115222 × 10−3 lb ⋅ ft ⋅ s 2
I xy = 0.1152 × 10−3 lb ⋅ ft ⋅ s 2
or
0 my z = 0.24563 × 10−3 lb ⋅ ft ⋅ s2 I yz = Σ ( I y′z ′ + ) or I yz = 0.246 × 10−3 lb ⋅ ft ⋅ s 2 I zx = Σ ( I z ′x′ +0 mz x ) = 0.15435 × 10−3 lb ⋅ ft ⋅ s 2
or
I zx = 0.1543 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 162. mring = 2π ( 0.5 m )(1.8 kg/m ) = 5.655 kg
mrod = ( 0.8 m )(1.8 kg/m ) = 1.44 kg
For each ring x = z = 0 and I x′y′ = I y′z′ = I z′x′ = 0, thus the mass product of inertia of the rings is zero with respect to each pair of coordinate axes. For each rod: Since each rod lies in the x-y plane, I yz = I zx = 0 I yz = I zx = 0
Thus for entire wire figure
(
I xy = ∑ I x′y′ + m x y
Hence
)
where I x′y′ = 0
I xy = ∑ mx y = (1.44 kg )( − 0.5 m )( 0.4 m ) + (1.44 kg )( 0.5 m )( − 0.4 m ) = − 0.576 kg ⋅ m 2
I xy = − 0.576 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 163. Have and Consider
I xy = ∫ xydm x = x′ + x
I yz = ∫ yzdm y = y′ + y
I zx = ∫ zxdm z = z′ + z
(9.45) (9.31)
I xy = ∫ xydm
Substituting for x and for y
I xy = ∫ ( x′ + x )( y′ + y ) dm
= ∫ x′y′dm + y ∫ x′dm + x ∫ y′dm + x y ∫ dm By definition and
I x′y′ = ∫ x′y′dm
∫ x′dm = mx ′ ∫ y′dm = my ′
However, the origin of the primed coordinate system coincides with the mass center G, so that
x ′= y ′= 0 ∴ I xy = I x′y′ + mx y Q.E.D. The expressions for I yz and I zx are obtained in a similar manner.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 164. (a) First divide the tetrahedron into a series of thin vertical slices of thickness dz as shown.
a z z + a = a 1 − c c
Now
x=−
and
b z y = − z + b = b 1 − c c
The mass dm of the slab is 2
z 1 1 dm = ρ dV = ρ xydz = ρ ab 1 − dz c 2 2 c
2 3 c 1 z 1 z m = ∫ dm = ∫ ρ ab 1 − dz = ρ ab − 1 − c 2 c 02 3 0 c
Then
=
1 ρ abc 6
dI zx = dI z′x′ + z EL xEL dm
Now
dI z′x′ = 0
where
z EL = z
and
Then
xEL =
( symmetry ) 1 1 z x = a 1 − 3 3 c
2 c 1 z 1 z I zx = ∫ dI zx = ∫ z a 1 − ρ ab 1 − dz c 2 c 0 3
=
1 2 c z2 z3 z 4 ρ a b∫ 0 z − 3 + 3 2 − 3 dz 6 c c c c
m 1 z3 3 z 4 1 z5 = a z2 − + − c 2 c 4 c 2 5 c3 0 or I zx =
1 mac 20
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) Because of the symmetry of the body, I xy and I yz can be deduced by considering the circular permutation of ( x, y, z ) and ( a, b, c ) . Thus 1 I xy = mab 20
I yz =
1 mbc 20
Alternative solution for part a First divide the tetrahedron into a series of thin horizontal slices of thickness dy as shown. Now
x=−
a y y + a = a 1 − b b
and
z =−
c y y + c = c 1 − b b
The mass dm of the slab is 2
y 1 1 dm = ρ dV = ρ xzdy = ρ ac 1 − dy b 2 2 Now
dI zx = ρ tdI zx, Area
where
t = dy
and dI zx, Area = Then
1 2 2 x z from the results of Sample Problem 9.6 24
2 2 1 y y dIzx = ρ ( dy ) a 1 − c 1 − b b 24 4
4
1 y 1m y = ρ a 2c 2 1 − dy = ac 1 − dy 24 b 4 b b
Finally
I zx = ∫ dI zx
4
1m y =∫ ac 1 − dy 4b b b 0
b
5 1 m b y ac − 1 − = 4 b 5 b 0
or I zx =
1 mac 20
continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Alternative solution for part a The equation of the included face of the tetrahedron is
x y z + + =1 a b c x z y = b 1 − − a c
so that
For an infinitesimal element of sides dx, dy, and dz
dm = ρ dV = ρ dydxdz z x = a 1 − c
From part a Now I zx = ∫ zxdm = ∫ 0 ∫ 0 ( c
= ρ∫0 ∫0 ( c
a 1− cz
= ρ b∫
c 1 z 0
a 1− cz
) b(1− ax − cz ) zx ( ρ dydxdz ) ∫0
) zx b (1 −
x a
−
z c
) dxdz (
a 1− cz
1 x3 1 z 2 x − x − 3 a 2 c 0 2 2
) dz
2 3 2 z 1 3 z 1 z 2 z c 1 a 1 − − a 1 − dz = ρ b∫ 0 z a 2 1 − − c 3a c 2c c 2
c
= ρ b∫ 0 =
3
1 2 z a z 1 − dz 6 c
1 2 c z2 z3 z 4 ρ a b∫ 0 z − 3 + 3 2 − 3 dz 6 c c c c
m 1 z3 3 z 4 1 z5 = a z2 − + − c 2 c 4 c 2 5 c3 0 or I zx =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 mac 20
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 165.
Iy =
From Figure 9.28
1 2 ma 2
and using the parallel-axis theorem
Ix = Iz =
2
1 1 h m 3a 2 + h 2 + m = m 3a 2 + 4h 2 12 12 2
(
)
(
)
I xy = I yz = I zx = 0
Symmetry implies
For convenience, let point A lie in the yz plane. Then
1
λOA =
2
h + a2
( hj + a k )
With the mass products of inertia equal to zero, Equation (9.46) reduces to
0
I OA = I xλx2 + I yλ y2 + I z λz2 1 h = ma 2 2 2 2 h +a
2
1 m 3a 2 + 4h 2 + 12
(
)
a 2 2 h +a
or I OA =
2
1 10h 2 + 3a 2 ma 2 2 12 h + a2
Note: For point A located at an arbitrary point on the perimeter of the top surface, λOA is given by
λOA =
1 h2 + a 2
( a cos φ i + hj + a sin φ k )
which results in the same expression for I OA
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 166. 2
dOA =
First note that
λ OA =
Then
9 2 2 3 a + ( −3a ) + ( 3a ) = a 2 2
1 3 1 ai − 3aj + 3ak = ( i − 2 j + 2k ) 9 2 3 a 2
For a rectangular coordinate system with origin at point A and axes aligned with the given x, y, z axes, have (using Figure 9.28)
Ix = Iz = =
3 1 2 2 m a + ( 3a ) 5 4
Iy =
3 ma 2 10
111 2 ma 20
I xy = I yz = I zx = 0
Also, symmetry implies
With the mass products of inertia equal to zero, Equation (9.46) reduces to
I OA = I xλx2 + I yλ y2 + I z λz2 2
2
=
111 2 1 3 111 2 2 2 ma + ma 2 − + ma 20 3 10 3 20 3
=
193 2 ma 60
2
or I OA = 3.22ma 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 167.
First compute the mass of each component
m = ρstV =
Have
0.284 lb/in 3 V = 0.008819 lb ⋅ s 2 /ft ⋅ in 3 V 2 32.2 ft/s
(
)
Then 2 m1 = 0.008819 lb ⋅ s 2 /ft ⋅ in 3 π ( 4 in.) ( 2 in.) = 0.88667 lb ⋅ s 2 /ft 2 m2 = 0.008819 lb ⋅ s 2 /ft ⋅ in 3 π (1 in.) ( 3 in.) = 0.083125 lb ⋅ s 2 /ft
m3 = 0.008819 lb ⋅ s 2 /ft ⋅ in 3 π (1 in.) ( 2 in.) = 0.055417 lb ⋅ s 2 /ft 2
I yz = I zx = 0
Symmetry implies
( I xy )1 = 0
( I x′y′ )2 = ( I x′y′ )3 = 0
and Now
(
)
I xy = Σ I x′y′ + mx y = m2 x2 y2 − m3 x3 y3
1 ft 2 = ( 0.083125 lb ⋅ s 2 /ft ) ( 2 in.)(1.5 in.) × 2 144 in 1 ft 2 − ( 0.055417 lb ⋅ s 2 /ft ) ( −2 in.)( −1 in.) × 2 144 in = 0.96209 × 10−3 lb ⋅ ft ⋅ s 2 From the solution to Problem 9.143:
I x = 34.106 × 10−3 lb ⋅ ft ⋅ s 2 I y = 50.125 × 10−3 lb ⋅ ft ⋅ s 2
I z = 34.876 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
1 ( 2i + 3j) 13
λ OA =
By observation Then
0
0
0
I OA = I xλx2 + I y λ y2 + I z λz2 − 2I xy λxλ y − 2I yz λ y λz − 2I zxλz λx 2 = 34.106 × 10−3 lb ⋅ ft ⋅ s 2 13
(
)
2
3 + 50.125 × 10−3 lb ⋅ ft ⋅ s 2 13
(
)
2
2 3 − 2 0.96209 × 10−3 lb ⋅ ft ⋅ s 2 13 13
(
)
= (10.4942 + 34.7019 − 0.8881) × 10−3 lb ⋅ ft ⋅ s 2 = 44.308 × 10−3 lb ⋅ ft ⋅ s 2 or I OA = 44.3 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 168. I x = 9.8821 × 10−3 lb ⋅ ft ⋅ s 2
From Problem 9.147:
I y = 11.5344 × 10−3 lb ⋅ ft ⋅ s 2
I z = 2.1878 × 10−3 lb ⋅ ft ⋅ s 2 I xy = 0.48776 × 10−3 lb ⋅ ft ⋅ s 2
Problem 9.151:
I yz = 1.18391 × 10−3 lb ⋅ ft ⋅ s 2
I zx = 2.6951 × 10−3 lb ⋅ ft ⋅ s 2 Now
λ x = λ y = λz
and
λx2 + λ y2 + λz2 = 1 3λx2 = 1
Therefore,
λx = λ y = λz =
or
1 3
Equation 9.46
I OL = I xλx2 + I y λ y2 + I z λz2 − 2 I xy λxλ y − 2I yz λ y λz − 2I zxλz λx 2 2 2 1 1 1 1 1 = 9.8821 + 11.5344 + 2.1878 − 2 ( 0.48776 ) 3 3 3 3 3
1 1 1 1 −3 2 − 2 ( 2.6951) × 10 lb ⋅ ft ⋅ s 3 3 3 3
− 2 (1.18391)
= 4.95692 × 10−3 lb ⋅ ft ⋅ s 2 or I OL = 4.96 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 169.
m1 = m2 =
First note that
λ OA =
And that
1W 2 g
1 (i + j + k ) 3
Using Figure 9.28 and the parallel-axis theorem have
I x = ( I x )1 + ( I x )2
1 1W = 12 2 g
2 1W a + 2 g
a 2
2
1W 1 1 W 2 2 + a +a + 2 g 12 2 g
(
=
)
a 2 a 2 + 2 2
1 W 1 1 1 1 1W 2 + a2 + + a2 = a 2 g 12 4 6 2 2 g
( )1 + ( I y )2
Iy = Iy
1 1 W 1W 2 2 = a +a + 12 2 g 2 g
(
1 1 W + 12 2 g
=
)
a 2 a 2 + 2 2
2 2 1 W 2 a a a + + ( ) 2 g 2
1 W 1 1 2 1 5 W 2 a + a2 = + a + 2 g 6 2 g 12 4 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I z = ( I z )1 + ( I z )2
1 1W = 12 2 g
2 1W a + 2 g
1 1 W + 12 2 g
=
a 2
2 1W a + 2 g
2
2 a 2 ( a ) + 2
1 W 1 1 5 5W 2 1 a + a2 + + a2 = 2 g 12 4 12 4 6 g
Now observe that the centroidal products of inertia, I x′y′ , I y′z ′ , and I z′x′ , of both components are zero because of symmetry. Also, y1 = 0
(
0
)
I xy = Σ I x′y′ + mx y = m2 x2 y2 =
Then
1W a 1W 2 a ( a ) = 2 g 2 4 g
1W I yz = Σ I y′z′ +0my z = m2 y2z2 = 2 g
(
)
(
0
a a 1 W 2 a = 2 2 8 g
)
I zx = Σ I z ′x′ + mz x = m1z1x1 + m2 z2 x2
=
1W 2 g
a a 1 W + 2 2 2 g
3W 2 a a (a) = 8 g 2
Substituting into Equation (9.46)
I OA = I xλx2 + I y λ y2 + I z λz2 − 2I xy λxλ y − 2I yz λ y λz − 2I zxλz λx Noting that
λx2 = λ y2 = λz2 = λxλ y = λ yλz = λz λx =
1 3
Have
I OA =
1 1 W 2 W 2 5 W 2 a + a + a 3 2 g 6 g g 1 W 2 1 W 2 3 W 2 a + a + a − 2 8 g 8 g 4 g
=
1 14 3 W 2 − 2 a 3 6 4 g or I OA =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5 W 2 a 18 g
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 170.
m = ρV = ρ tA
Have
m1 = ρ ta 2
Then
m2 =
1 ρ ta 2 2
Compute moments and moments of inertia with respect to point A Now
I x′′ = ( I x′′ )1 + ( I x′′ )2
1 = ρ ta a 2 + 12 2
=
1 a 2 2 2 2 2 1 2 + ( a ) + ρ ta a + a 18 3 2 2
19 ρ ta 4 12
( )1 + ( I y′′ )2
I y′′ = I y′′
1 a 2 2 = ρ ta 2 a 2 + + ( a ) 12 2 a 2 2a 2 1 2 1 2 2 + ρ ta a + a + + 2 18 3 3 =
5 ρ ta 4 3
I z ′′ = ( I z ′′ )1 + ( I z′′ )2
1 1 1 = ρ ta 2 a 2 + a 2 + ρ ta 2 a 2 3 2 6
(
=
)
3 ρ ta 4 4
Now note symmetry implies
( I x′y′ )1 = ( I y′z′ )1 = ( I z′x′ )1 = 0 ( I x′y′ )2 = ( I y′z′ )2 = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I uv = I u′v′ + mu v
Now
0 a a 1 I x′′y′′ = m1x1′′ y1′′ + m2 x2′′ y2′′ = ρ ta 2 = ρ ta 4 2 2 4
Therefore
0 1 a I y′′z′′ = m1 y ″1 z ″1 + m2 y2′′ z′′2 = ρ ta 2 ( −a ) = − ρ ta 4 2 2
( )2 + m2 z ″2 x ″2
I z′′x′′ = m1z ″1 x ″1 + I z ′x′
1 ( I z′x′ ) = − a4 2 area 72
From Sample Problem 9.6 Then
( I z′′x′′ )2 = ρ t ( I z′x′ )2 area
Then
a I z′′x′′ = ρ ta 2 ( − a ) 2
=−
1 ρ ta 4 72
1 1 2 1 + − ρ ta 4 + ρ ta 2 − a a 2 72 3 3
5 = − ρ ta 4 8 By observation
λ AB =
1 (i + j − k ) 3
Now, Equation 9.46
I AB = I x′′λx2′′ + I y′′λ y2′′ + I z′′λz2′′ − 2I x′′y′′λx′′y′′ − 2I y′′z′′λ y′′λz′′ − 2I z′′x′′λz′′λx′′ 19 1 2 5 1 2 3 1 2 = ρ ta + + − 3 3 4 3 12 3 4
1 1 1 1 1 1 − 2 − 2 − − 4 3 3 3 2 3
5 1 1 − 2 − − 3 3 8 or I AB =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5 ρ ta 4 12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 171. I x = 4.212 kg ⋅ m 2
From Problem 9.138:
I y = 7.407 kg ⋅ m 2
I z = 3.7055 kg ⋅ m 2 I xy = −0.19312 kg ⋅ m 2
From Problem 9.157:
I yz = 0.30987 kg ⋅ m 2
I zx = 2.25956 kg ⋅ m 2 Now Eq. (9.46):
λ OL =
1 ( −4i + 8j + k ) 9
I OL = I xλx2 + I y λ y2 + I z λz2 − 2 I xy λxλ y − 2I yz λ y λz − 2I zxλz λx 2 2 2 4 8 1 = 4.212 − + 7.407 + 3.7055 9 9 9
4 8 8 1 − 2 ( −0.19312 ) − − 2 ( 0.3098 ) 9 9 9 9 1 4 − 2 ( 2.25956 ) − kg ⋅ m 2 9 9 = ( 0.832 + 5.85244 + 0.04575 − 0.15259 − 0.061195 + 0.22317 ) kg ⋅ m 2
= 6.73957 kg ⋅ m 2 I OL = 6.74 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 172.
Mass of each leg is identical:
W /L m= L g
=
0.041 lb/ft (1.5 ft ) 32.2 ft/s
2
= 0.00190994 lb ⋅ s 2 /ft
Also, I x′y′ = I y′z′ = I z′x′ = 0 for each leg, and
x1 = x6 = 0
Now
I xy = Σ I x′y′ + mx y = m2 x2 y2 + m3x3 y3
(
0
y4 = y5 = y6 = 0
z1 = z2 = z3 = 0
)
(
)
= 0.00190994 lb ⋅ s 2 /ft ( 0.75 )(1.5 ) + (1.5 )( 0.75 ) ft 2 = 0.0042974 lb ⋅ ft ⋅ s 2 = 4.2974 × 10−3 lb ⋅ ft ⋅ s 2 I yz = 0 I zx = Σ ( I z′x′ + mz x ) = m4z4 x4 + m5z5 x5
(
)
= 0.00190994 lb ⋅ s 2 /ft ( 0.75 )(1.5 ) + (1.5 )( 0.75 ) ft 2 = 0.0042974 lb ⋅ ft ⋅ s 2 = 4.2974 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
I x = 14.32 × 10−3 lb ⋅ ft ⋅ s 2
From Problem 9.150
I y = I z = 18.62 × 10−3 lb ⋅ ft ⋅ s 2
λ OL =
Now
1 ( −3i − 6 j + 2k ) and then 7
0
Eq. ( 9.46 )
I OL = I xλx2 + I y λ y2 + I z λz2 − 2I xy λxλ y − 2I yz λ y λz − 2I zxλz λx 2 3 = 14.32 × 10−3 − + 18.62 × 10−3 7
(
)
(
)
−6 2 2 2 + − 2 4.2974 × 10−3 7 7
(
) − 73 −76
2 −3 − 2 4.2974 × 10−3 lb ⋅ ft ⋅ s 2 7 7
(
)
(
)
= 2.6302 × 10−3 + 15.20 × 10−3 − 3.1573 × 10−3 + 1.05242 × 10−3 lb ⋅ ft ⋅ s 2 = 15.725 × 10−3 lb ⋅ ft ⋅ s 2 or I OL = 15.73 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 173.
First compute the mass of each component
m = ρ stV = mAL
Have
(
)
2 = 7850 kg/m 3 π ( 0.0015 m ) L
= ( 0.055488L ) kg/m m1 = m2 = 0.055488 kg/m (π × 0.36 m )
Then
= 0.062756 kg m3 = m4 = 0.055488 kg/m ( 0.36 m )
= 0.019976 kg Now observe that the centroidal products of inertia I x′y′ = I y′z ′
= I z′x′ = 0 for each component. x3 = x4 = 0,
Also
y1 = 0,
z1 = z2 = 0
Then
(
0
)
I xy = Σ I x′y′ + mx y = m2x2 y2
2 × 0.36 m −3 2 = ( 0.062756 kg ) − ( 0.36 m ) = −5.1777 × 10 kg ⋅ m π
(
0
)
I yz = Σ I y′z ′ + my z = m3 y3 z3 + m4 y4 z4 where
m3 = m4 ,
y3 = y4 , z4 = − z3 ,
so that
I yz = 0
I zx = Σ ( I z′x′ + mz x ) = m1z1x1 + m2 z2 x2 = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
From the solution to Problem 9.149
I x = 23.170 × 10−3 kg ⋅ m 2 I y = 21.444 × 10−3 kg ⋅ m 2
I z = 17.992 × 10−3 kg ⋅ m 2
λ OL =
Now
1 ( −3i − 6 j + 2k ) 7
Have
0
0
I OL = I xλx2 + I yλ y2 + I z λz2 − 2I xy λxλ y − 2I yz λ yλz − 2I zxλz λx Eq. ( 9.46 ) 2 2 2 3 6 2 = 23.170 − + 21.444 − + 17.992 7 7 7
3 6 − 2 ( −5.1777 ) − − × 10−3 kg ⋅ m 2 7 7
= ( 4.2557 + 15.755 + 1.4687 + 3.8040 ) × 10−3 kg ⋅ m = 25.283 × 10−3 kg ⋅ m 2 or I OL = 25.3 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 174.
First compute the mass of each component.
m = ( m/L ) L
Have
= ( 0.049 kg/m ) L m1 = ( 0.049 kg/m )( 2π × 0.32 m )
Then
= 0.09852 kg m2 = m3 = m4 = m5 = ( 0.049 kg )( 0.160 m )
= 0.00784 kg I x′y′ = I y′z′ = I z′x′ = 0 for each component.
Now observe that
x1 = x4 = x5 = 0,
Also,
y1 = 0,
z1 = z2 = z3 = 0
Then
(
0
)
I xy = Σ I x′y′ + mx y = m2 x2 y2 + m3x3 y3
= ( 0.00784 kg ) ( 0.32 m )( 0.08 m ) + ( 0.24 m )( 0.16 m ) = 0.50176 × 10−3 kg ⋅ m 2 By symmetry Now
I yz = I xy = 0.50176 × 10−3 kg ⋅ m 2
I zx = Σ ( I z′x′ + mz x ) = 0
From the solution to Problem 9.148
I x = I z = 6.8505 × 10−3 kg ⋅ m 2 I y = 12.630 × 10−3 kg ⋅ m 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
λ OL =
Now
1 ( −3i − 6 j + 2k ) 7
Have
0
I OL = I xλx2 + I y λ y2 + I z λz2 − 2 I xy λxλ y − 2I yz λ y λz − 2I zxλz λx Eq. ( 9.46 ) 3 2 2 2 = ( 6.8505 ) − + × 10−3 kg ⋅ m 2 7 7 2 6 + (12.63) − × 10−3 kg ⋅ m 2 7
3 6 6 2 −2 ( 0.50176 ) − − + − × 10−3 kg ⋅ m 2 7 7 7 7
= (1.8175 + 9.2792 − 0.12288 ) × 10−3 kg ⋅ m 2 = 10.9738 × 10−3 kg ⋅ m 2 or I OL = 10.97 × 10−3 kg ⋅ m 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 175.
(a) Using Figure 9.28 and the parallel-axis theorem have at point A.
I x′ =
I y′
1 m b2 + c2 12
(
) 2
1 1 a = m a2 + c2 + m = m 4a 2 + c 2 12 12 2
(
I z′ =
)
(
2
1 1 a m a2 + b2 + m = m 4a 2 + b 2 12 12 2
(
)
(
) )
Now observe that symmetry implies
I x′y′ = I y′z′ = I z′x′ = 0 Using Equation (9.48), the equation of the ellipsoid of inertia is then
I x′ x 2 + I y ′ y 2 + I z ′ z 2 = 1 or
1 1 1 m b2 + c 2 x2 + m 4a 2 + c 2 y 2 + m 4a 2 + b 2 z 2 = 1 12 12 12
(
)
(
)
(
)
For the ellipsoid to be a sphere, the coefficients must be equal. Therefore,
1 1 1 m b2 + c 2 = m 4a 2 + c 2 = m 4a 2 + b 2 12 12 12
(
)
(
)
(
b 2 + c 2 = 4a 2 + c 2
Then
b 2 + c 2 = 4a 2 + b 2
and
)
or
b = 2 a
or
c = 2 a
(b) Using Figure 9.28 and the parallel-axis theorem, we have at point B
I x′′ =
I y′′
2
1 1 c m b2 + c 2 + m = m b 2 + 4c 2 12 2 12
(
)
2
(
1 1 c = m a2 + c2 + m = m a 2 + 4c 2 12 12 2
I z′′ =
(
1 m a 2 + b2 12
(
)
(
)
)
) continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now observe that symmetry implies
I x′′y′′ = I y′′z′′ = I z′′x′′ = 0 From part a it then immediately follows that
1 1 1 m b 2 + 4c 2 = m a 2 + 4c 2 = m a 2 + b2 12 12 12
(
)
(
)
(
)
Then
b 2 + 4c 2 = a 2 + 4c 2
or
b = 1 a
and
b 2 + 4c 2 = a 2 + b 2
or
c 1 = a 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 176.
(a) From sample Problem 9.11, we have at the apex A
Ix =
3 ma 2 10
I y = Iz =
3 1 2 m a + h2 5 4
Now observe that symmetry implies I xy = I yz = I zx = 0 Using Equation (9.48), the equation of the ellipsoid of inertia is then
I x x2 + I y y 2 + I z z 2 = 1 or
3 3 1 3 1 ma 2 x 2 + m a 2 + h 2 y 2 + m a 2 + h 2 z 2 = 1 10 5 4 5 4
For the ellipsoid to be a sphere, the coefficients must be equal. Therefore,
3 3 1 ma 2 = m a 2 + h 2 10 5 4
or
a = 2 h
(b) From Sample Problem 9.11, we have
I x′ =
I y′′ =
and at the centroid C
Then
I y′
3 ma 2 10
3 2 1 2 m a + h 20 4
3 2 1 2 h m a + h + m = I z′ = 20 4 4 =
1 m 3a 2 + 2h 2 20
(
2
)
Now observe that symmetry implies
I x′y′ = I y′z′ = I z′x′ = 0 From part a it then immediately follows that
3 1 ma 2 = m 3a 2 + 2h 2 10 20
(
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
or
a = h
2 3
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 177. (a) From Figure 9.28
Ix =
1 2 ma 2
I y = Iz =
1 m 3a 2 + L2 12
(
)
Now observe that symmetry implies
I xy = I yz = I zx = 0 Using Equation (9.48), the equation of the ellipsoid of inertia is then
I x x 2 + I y y 2 + I z z 2 = 1:
1 2 2 1 1 ma x + m 3a 2 + L2 y 2 + m 3a 2 + L2 = 1 2 12 12
(
)
(
)
For the ellipsoid to be a sphere, the coefficients must be equal. Therefore,
1 2 1 ma = m 3a 2 + L2 2 12
(
)
or
a L
=
1 3
(b) Using Fig. 9.28 and the parallel-axis theorem Have I x′ =
1 2 ma 2
I y′ = I z′ =
2
1 7 2 L 1 m 3a 2 + L2 + m = m a 2 + L 12 4 4 48
(
)
Now observe that symmetry implies
I x′y′ = I y′z′ = I z′x′ = 0 From Part a it then immediately follows that
1 2 7 2 1 ma = m a 2 + L 2 4 48
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or
a L
=
7 12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 178. I y + Iz ≥ Ix
(i) To prove By
(
2
2
)
I y = ∫ z + x dm Then
(
)
(
2
2
)
I z = ∫ x + y dm
(
)
I y + I z = ∫ z 2 + x 2 dm + ∫ x 2 + y 2 dm
(
)
= ∫ y 2 + z 2 dm + 2∫ x 2dm Now..
2 2 ∫ ( y + z ) dm = I x
and
∴ I y + Iz ≥ Ix
Q.E.D.
2 ∫ x dm ≥ 0
The proofs of the other two inequalities follow similar steps. (ii) If the x axis is the axis of revolution, then
I y = Iz and from part (i) I y + I z ≥ I x or 2I y ≥ I x or I y ≥
1 Ix 2
Q.E.D.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
definition
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 179.
(a) At the center of the cube have (using Figure 9.28)
Ix = I y = Iz =
1 1 m a 2 + a 2 = ma 2 12 6
(
Now observe that symmetry implies
)
I xy = I yz = I zx = 0
Using Equation (9.48), the equation of the ellipsoid of inertia is
1 2 2 1 2 2 1 2 2 ma x + ma y + ma z = 1 6 6 6 or
x2 + y 2 + z 2 =
6 = R2 ma 2
(
)
which is the equation of a sphere. Since the ellipsoid of inertia is a sphere, the moment of inertia with respect to any axis OL through the center O of the cube must always 1 be the same R = . I OL
∴ I OL =
1 2 ma 6
(b) The above sketch of the cube is the view seen if the line of sight is along the diagonal that passes through corner A. For a rectangular coordinate system at A and with one of the coordinate axes aligned with the diagonal, an ellipsoid of inertia at A could be constructed. If the cube is then rotated 120° about the diagonal, the mass distribution will remain unchanged. Thus, the ellipsoid will also remain unchanged after it is rotated. As noted at the end of section 9.17, this is possible only if the ellipsoid is an ellipsoid of revolution, where the diagonal is both the axis of revolution and a principal axis. It then follows that
I x′ = I OL =
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 2 ma 6
COSMOS: Complete Online Solutions Manual Organization System
In addition, for an ellipsoid of revolution, the two transverse principal moments of inertia are equal and any axis perpendicular to the axis of revolution is a principal axis. Then, applying the parallelaxis theorem between the center of the cube and corner A for any perpendicular axis
I y′ = I z ′ =
3 1 2 ma + m a 6 2
2
or I y′ = I z′ =
11 2 ma 12
Note: Part b can also be solved using the method of Section 9.18. First note that at corner A
Ix = I y = Iz =
2 2 ma 3
I xy = I yz = I zx =
1 2 ma 4
Substituting into Equation (9.56) yields
k 3 − 2ma 2k 2 +
55 2 6 121 3 9 m a k− ma =0 48 864
For which the roots are
k1 =
1 2 ma 6
k2 = k3 =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
11 2 ma 12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 180.
(i) Using Equation (9.30), we have
(
)
(
)
(
)
I x + I y + I z = ∫ y 2 + z 2 dm + ∫ z 2 + x 2 dm + ∫ x 2 + y 2 dm
(
)
= 2∫ x 2 + y 2 + z 2 dm = 2∫ r 2dm where r is the distance from the origin O to the element of mass dm. Now assume that the given body can be formed by adding and subtracting appropriate volumes V1 and V2 from a sphere of mass m and radius a which is centered at O; it then follows that m1 = m2 mbody = msphere = m .
(
)
Then
( I x + I y + I z )body = ( I x + I y + I z )sphere + ( I x + I y + I z )V
1
(
− Ix + I y + Iz
)V
2
or
( I x + I y + I z )body = ( I x + I y + I z )sphere + 2∫ m r 2dm − 2∫ m r 2dm 1
2
Now, m1 = m2 and r1 ≥ r2 for all elements of mass dm in volumes 1 and 2.
∴ ∫ m r 2dm − ∫ m r 2dm ≥ 0 1 2 so that
( I x + I y + I z )body ≥ ( I x + I y + I z )sphere
Q.E.D.
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(ii) First note from Figure 9.28 that for a sphere
Ix = I y = Iz = Thus,
2 2 ma 5
( I x + I y + I z )sphere = 65 ma2
For a solid of revolution, where the x axis is the axis of revolution, have
I y = Iz Then, using the results of part i
( I x + 2I y )body ≥ 65 ma2 Iy ≥
From Problem 9.178 have or
1 Ix 2
( 2I y − I x )body ≥ 0
Adding the last two inequalities yields
( 4I y )body ≥ 65 ma2 or
( I y )body ≥ 103 ma2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Q.E.D.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 181.
(a) First compute the moments of inertia using Figure 9.28 and the parallel-axis theorem.
a 2 a 2 13 1 2 2 2 Ix = Iz = m 3a + a + m + 2 = 12 ma 12 2 1 3 2 I y = ma 2 + m ( a ) = ma 2 2 2
(
)
Next observe that the centroidal products of inertia are zero because of symmetry. Then
0 1 a a I xy = I x′y′ + mx y = m ma 2 − 2 = − 2 2 2 0 1 a a I yz = I y′z ′ + my z = m − ma 2 =− 2 2 2 2 0
a a 1 2 I zx = I z′x′ + mz x = m = ma 2 2 2 Substituting into Equation (9.56)
13 3 13 2 2 K3 − + + ma K 12 2 12 2 2 2 13 3 3 13 13 13 1 1 1 2 + × + × + × − − − − − ma 12 2 2 12 12 12 2 2 2 2 2
(
2
2
2
)
2
K
3 13 3 13 13 1 3 1 13 1 1 1 1 2 − × × − − − − − − 2− − ma = 0 2 2 2 2 2 12 2 12 12 2 2 2 2 12 2 2
(
Simplifying and letting K = ma 2ζ yields
ζ3 −
11 2 565 95 ζ + ζ − =0 3 144 96 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
COSMOS: Complete Online Solutions Manual Organization System
Solving yields
ζ 1 = 0.363383
ζ2 =
19 12
ζ 3 = 1.71995
The principal moments of inertia are then
K1 = 0.363ma 2 K 2 = 1.583ma 2 K3 = 1.720ma 2 (b) To determine the direction cosines λx , λ y , λz of each principal axis, we use two of the equations of Equations (9.54) and Equation (9.57). Thus (9.54a) ( I x − K ) λx − I xyλ y − I zxλz = 0
− I zxλx − I yz λ y + ( I z − K ) λz = 0
(9.54c)
λx2 + λ y2 + λz2 = 1
(9.57)
Note: Since I xy = I yz , Equations (9.54a) and (9.54c) were chosen to simplify the “elimination” of λ y during the solution process. Substituting for the moments and products of inertia in Equations (9.54a) and (9.54c)
1 13 2 1 ma 2 λ y − ma 2 λz = 0 ma − K λx − − 12 2 2 2 1 1 13 − ma 2 λx − − ma 2 λ y + ma 2 − K λz = 0 2 12 2 2 or and
1 1 13 − ζ λx + λ y − λz = 0 2 2 2 12
(i)
1 1 13 − λx + λ y + − ζ λz = 0 2 12 2 2
(ii)
Observe that these equations will be identical, so that one will need to be replaced, if
13 1 19 −ζ = − ζ = or 12 2 12 Thus, a third independent equation will be needed when the direction cosines associated with K 2 are determined. Then for K1 and K 3 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
13 1 13 1 − ζ λz = 0 Eq.(i) – Eq.(ii) − ζ − − λx + − − 2 12 2 12
λz = λx
or
1 1 13 − ζ λx + λ y − λx = 0 2 2 2 12
Substituting into Eq.(i)
7
λ y = 2 2 ζ − λx 12
or
Substituting into Equation (9.57)
λx2
or
2
7 2 + 2 2 ζ − λx + ( λx ) = 1 12 2 7 2 + 8 ζ − λx2 = 1 12
(iii)
K1 : Substituting the value of ζ 1 into Eq.(iii) 2 7 2 2 + 8 0.363383 − ( λx )1 = 1 12
or and then
( λx )1 = ( λz )1 = 0.647249
( λ y )1 = 2
7 2 0.363383 − ( 0.647249 ) 12
= −0.402662
∴
(θ x )1 = (θ z )1 = 49.7°
(θ y )1 = 113.7°
K 3 : Substituting the value of ζ 3 into Eq.(iii) 2 7 2 2 + 8 1.71995 − ( λx )3 = 1 12
or
( λx )3 = ( λz )3
and then
( λ y )3 = 2
= 0.284726
7 2 1.71995 − ( 0.284726 ) 12
= 0.915348
∴
(θ x )3 = (θ z )3
= 73.5°
(θ y )3 = 23.7° continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
K 2 : For this case, the set of equations to be solved consists of Equations (9.54a), (9.54b), and (9.57). Now
(
)
− I xy λx + I y − K λ y − I yz λz = 0
(9.54b)
Substituting for the moments and products of inertia.
1 1 3 − − ma 2 λx + ma 2 − K λ y − − ma 2 λz = 0 2 2 2 2 2 or
1
3
1
λx + − ζ λ y + λz = 0 2 2 2 2 2
(iv)
Substituting the value of ζ 2 into Eqs.(i) and (iv)
1 13 19 − ( λx )2 + λy 12 12 2 2
( )2 − 12 ( λz )2 = 0
1 2 2
3 19 − λy 2 12
( )2 + 2 1 2 ( λz )2 = 0
( λx )2 +
or
− ( λx )2 +
1 λy 2
( λx )2 −
2 λy 6
and
( )2 − ( λz )2 = 0 ( )2 + ( λz ) 2 = 0
Adding yields
( λ y )2 = 0
and then
( λz )2
= − ( λx )2
Substituting into Equation (9.57)
0
( λx )22 + ( λ y )2 + ( −λx )22 2
or
( λx )2 ∴
=
1 2
(θ x )2
and
=1
( λz )2
=−
1 2
( )2 = 90.0° (θ z )2 = 135.0°
= 45.0° θ y
(c) Principal axes 1 and 3 lie in the vertical plane of symmetry passing through points O and B. Principal axis 2 lies in the xz plane.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 182. From the solution to Problem 9.143 and 9.167
I x = 34.106 × 10−3 lb ⋅ ft ⋅ s 2 I y = 50.125 × 10−3 lb ⋅ ft ⋅ s 2 I z = 34.876 × 10−3 lb ⋅ ft ⋅ s 2 I xy = 0.96211 × 10−3 lb ⋅ ft ⋅ s 2 I yz = I zx = 0 (a) From Equation 9.55
Ix − K I xy 0 0 I xy Iy − K =0 0 0 Iz − K
( Ix − K )( I y
) ( I z − K ) − ( I z − K ) I xy2 = 0 ( I z − K ) ( I x − K ) ( I y − K ) − I xy2 = 0 2 I z − K = 0 and I x I y − ( I x + I y ) K + K 2 − I xy =0
or or Then
−K
K1 = I z = 34.876 × 10−3 lb ⋅ ft ⋅ s 2
Now
or K1 = 34.9 × 10−3 lb ⋅ ft ⋅ s 2 and
( 34.106 × 10 )(50.125 × 10 ) − (34.106 × 10 + K − ( 0.96211 × 10 ) = 0 −3
2
or Solving yields
−3
−3
−3
)
+ 50.125 × 10 −3 K
2
1.70864 × 10−3 − 84.231 × 10−3 K + K 2 = 0
K 2 = 34.0486 × 10−3 K3 = 50.1824 × 103 or K 2 = 34.0 × 10−3 lb ⋅ ft ⋅s 2 and K3 = 50.2 × 10−3 lb ⋅ ft ⋅ s 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) To determine the directions cosines λx , λ y and λz of each principal axis use two of the Equations 9.54 and Equation 9.57
K1 : Using Equation 9.54(a) and Equation 9.54(b) with I yz = I zx = 0 , we have
( I x − K1 )( λx )1 − I xy ( λ y )1 = 0
(
)( )1 = 0
− I xy ( λx )1 + I y − K1 λ y Substituting
( 34.106 × 10
−3
)
( )1 = 0
− 34.876 × 10−3 ( λx )1 − 0.96211 × 10−3 λ y
(
)( )
− 0.96211 × 10−3 ( λx )1 + 50.125 × 10−3 − 34.876 × 10−3 λ y
1
=0
or
( )1 = 0
− 0.770 × 10−3 ( λx )1 − 0.96211 × 10−3 λ y
( )1 = 0
− 0.96211 × 10−3 ( λx )1 + 15.249 × 10−3 λ y Solving yields
0
From Equation 9.57 and
( λx )1 = ( λ y )1 = 0 02
( λx )12 + ( λ y )1 + ( λz )12
(θ x )1 = 90.0°,
= 1 or
(θ y )1 = 90.0°,
( λz )1 = 1 (θ z )1 = 0°
K 2 : Using Equation 9.54(b) and Equation 9.54(c) with I yz = I zx = 0
(
)( )2 = 0
− I xz ( λx )2 + I y − K 2 λ y
( Iz Now
− K 2 )( λz )2 = 0
I z ≠ K 2 ⇒ ( λz )2 = 0
Substituting
(
)( )
− 0.96211 × 10−3 ( λx )2 + 50.125 × 10−3 − 34.0486 × 10−3 λ y or
( λ y )2 = 0.05985 ( λx )2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2
=0
COSMOS: Complete Online Solutions Manual Organization System
( λx )22 + 0.05985 ( λx )2
Then
( λx )2
2
+ ( λz )2 = 1
= 0.99821
( λ y )2 = 0.05974 (θ x )2
and
= 3.43°,
(θ y )2 = 86.6°, (θ z )2 = 90.0°
(
)( )3 = 0
− I xy ( λx )3 + I y − K3 λ y
K3 :
( Iz
− K3 ) ( λz )3 = 0
I z ≠ K3 ⇒ ( λz )3 = 0
Now Substituting
(
)( )
− 0.96211 × 10−3 ( λx )3 + 50.125 × 10−3 − 50.1824 × 10−3 λ y
3
=0
( )3 = 0
− 0.96211 × 10−3 ( λx )3 − 0.0574 × 10−3 λ y
( λ y )3 = −16.7615 ( λx )3
or Have yields and
( λx )32 + −16.7615 ( λx )3 ( λ x )3
= − 0.059555
(θ x )3
= 93.4°,
2
and
0 2
+ ( λz )3 = 1
( λ y )3 = 0.998231
(θ y )3 = 3.41°,
θ z = 90.0°
(c) Principal axis 1 coincides with the z axis, while the principal axes 2 and 3 lie in the xy plane
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 183. I x = 9.8821 × 10−3 lb ⋅ ft ⋅s 2
From Problem 9.147:
I y = 11.5344 × 10−3 lb ⋅ ft ⋅ s 2
I z = 2.1878 × 10−3 lb ⋅ ft ⋅ s 2 I xy = 0.48776 × 10−3 lb ⋅ ft ⋅ s 2
From Problem 9.151:
I yz = 1.18391 × 10−3 lb ⋅ ft ⋅ s 2
I zx = 2.6951 × 10−3 lb ⋅ ft ⋅ s 2 (a)
From Equation 9.56
(
(
)
)
2 2 2 K 3 − I x + I y + I z K 2 + I x I y + I y I z + I z I x − I xy − I yz − I zx K
(
)
2 2 2 − I x I y I z − I x I yz − I y I zx − I z I xy − 2I xy I yz I zx = 0
Substituting
{
K 3 − ( 9.8821 + 11.5344 + 2.1878 ) × 10−3 K 2 + ( 9.8821)(11.5344 ) + (11.5344 )( 2.1878 )
}
2 2 2 + ( 2.1878 )( 9.8821) − ( 0.48776 ) − (1.18391) − ( 2.6951) × 10 −6 K 2 2 − ( 9.8821)(11.5344 )( 2.1878 ) − ( 9.8821)(1.18391) − (11.5344 )( 2.6951) 2 − ( 2.1878 )( 0.48776 ) − 2 ( 0.48776 )(1.18391)( 2.6951) × 10 −9 = 0
or
(
)
(
)
K 3 − 23.6043 × 10−3 K 2 + 151.9360 × 10−6 K − 148.1092 × 10−9 = 0
Solving numerically
K1 = 1.180481 × 10−3 lb ⋅ ft ⋅s 2
or
K1 = 1.180 × 10 −3 lb ⋅ ft ⋅s 2
K 2 = 10.72017 × 10−3 lb ⋅ ft ⋅ s 2
or
K 2 = 10.72 × 10 −3 lb ⋅ ft ⋅s 2
K3 = 11.70365 × 10−3 lb ⋅ ft ⋅ s 2
or
K3 = 11.70 × 10 −3 lb ⋅ ft ⋅s 2
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b)
From Equations 9.54(a) and 9.54(b)
( I x − K )( λx ) − I xy ( λ y ) − I zx ( λz ) = 0
(
)( )
− I xy ( λx ) + I y − K1 λ y − I yz ( λz ) = 0
( )1 and ( λz )1 .
K1: Substitute K1 and solve for λ to get ( λx )1 , λ y
( )1 − 2.6951( λz )1 × 10−3 = 0
( 9.8821 − 1.180481) ( λ ) − 0.48776 λ x 1 y
( )1 − 1.18391( λz )1 × 10−3 = 0
− 0.48776 ( λ ) + (11.5344 − 1.180481) λ x 1 y
or
( )1 − 5.52546 ( λz )1 = 0
17.83996 ( λx )1 − λ y
( )1 − 0.11434 ( λz )1 = 0
− 0.0471( λx )1 + λ y Then
( λz )1 = 3.1549 ( λx )1
and
( λ y )1 = 0.40769 ( λx )1 ( λx )12 + ( λ y )1 + ( λz )12 2
Equation 9.57: Substituting
( λx )12 + 0.40769 ( λx )1
2
=1 2
+ 3.1549 ( λx )1 = 1
or
( λx )1 = 0.29989
then
(θ x )1 = 72.5°
and
( λy )1 = 0.122262
then
(θ y )1 = 83.0°
( λz )1 = 0.94612
then
(θ z )1 = 18.89°
K 2: Substitute K 2 and solve for λ .
( )2 − 2.6951( λz )2 × 10−3 = 0
( 9.8821 − 10.72017 ) ( λ ) − 0.48776 λ x 2 y
( )2 − 1.18391( λz )2 × 10−3 = 0
− 0.48776 ( λ ) + (11.5344 − 10.72017 ) λ x 2 y
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( )2 − 5.52546 ( λz )2 = 0
−1.718202 ( λx )2 − λ y
or
( )2 − 1.45402 ( λz )2 = 0
− 0.599045 ( λx )2 + λ y
= −0.33201( λx )2
Then
( λz )2
and
( λ y )2 = 0.116306 ( λx )2 ( λx )22 + 0.116306 ( λx )2
Then
or
( λx )2
= 0.94333
(θ x )2
then
And
( λ y )2 = 0.109715
( λz )2
= −0.31320
then
2
2
+ −0.33201( λx )2 = 1
= 19.38°
(θ y )2 = 83.7°
then
(θ z )2
= 108.3°
K 3: Substitute K 3 and solve for λ .
( )3 − 2.6951( λz )3 × 10−3 = 0
( 9.8821 − 11.70365 ) ( λ ) − 0.48776 λ x 3 y
( )3 − 1.18391( λz )3 × 10−3 = 0
− 0.48776 ( λ ) + (11.5344 − 11.70365 ) λ x 3 y
( )3 − 5.52546 ( λz )3 = 0
−3.73452 ( λx )3 − λ y
or
( )3 + 6.99504 ( λz )3 = 0
2.88189 ( λx )3 + λ y
= 0.58019 ( λx )3
Then
( λz )3
and
( λ y )3 = −6.9403 ( λx )3 2
2
2 Then ( λx )3 + − 6.9403 ( λx )3 + 0.58019 ( λx )3 =
or
( λx )3
= − 0.142128*
( λ y )3 = 0.98641 ( λz )3 *
= − 0.082461
then
(θ x )3
then
(θ y )3 = 9.46°
then
Note: the negative root of ( λx )3 is taken so that axes 1, 2, 3 form a right-handed set.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(θ z )3
= 98.2°
= 94.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 184. (a) From the solution of Problem 9.169 have
Ix =
1W 2 a 2 g
I xy =
1W 2 a 4 g
Iy =
W 2 a g
I yz =
1W 2 a 8 g
Iz =
5W 2 a 6 g
I zx =
3W 2 a 8 g
Substituting into Equation (9.56) 2 2 2 2 1 5 W 2 2 1 5 5 1 1 1 3 W 2 K − + 1 + a K + (1) + (1) + − − − a K 6 g 6 6 2 4 8 8 g 2 2 3
3 2 2 1 5 1 1 2 3 5 1 1 1 3 W 2 − (1) − − (1) − − 2 a = 0 8 6 4 4 8 8 g 2 6 2 8
Simplifying and letting K =
W 2 a ζ yields g
ζ 3 − 2.33333ζ 2 + 1.53125ζ − 0.192708 = 0 Solving yields
ζ 1 = 0.163917
ζ 2 = 1.05402
ζ 3 = 1.11539
The principal moments of inertia are then K1 = 0.1639
W 2 a g
K 2 = 1.054
W 2 a g
K 3 = 1.115
W 2 a g
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) To determine the direction cosines λx , λ y , λz of each principal axis, use two of the equations of Equations (9.54) and (9.57). Then
K1 : Begin with Equations (9.54a) and (9.54b).
( I x − K1 )( λx )1 − I xy ( λ y )1 − I zx ( λz )1 = 0
(
)( )1 − I yz ( λz )1 = 0
− I xy ( λx )1 + I y − K 2 λ y Substituting
1 1W 2 W 2 a λy − 0.163917 a ( λx )1 − g 4 g 2
1W 2 W − a ( λx )1 + (1 − 0.163917 ) a 2 λ y 4 g g
( )1 − 83 Wg a2 ( λz )1 = 0
( )1 − 18 Wg a2 ( λz )1 = 0
Simplifying yields
( )1 − 1.5 ( λz )1 = 0
1.34433 ( λx )1 − λ y
( )1 − 0.149507 ( λz )1 = 0
− 0.299013 ( λx )1 + λ y Adding and solving for ( λz )1
( λz )1 = 0.633715 ( λx )1
( λ y )1 = 1.34433 − 1.5 ( 0.633715) ( λx )1
and then
= 0.393758 ( λx )1 Now substitute into Equation (9.57)
( λx )12 + 0.393758 ( λx )1
2
+ 0.633715 ( λx )1 = 1
( λx )1 = 0.801504
or
( λ y )1 = 0.315599
and
∴
2
(θ x )1 = 36.7°
(θ y )1 = 71.6°
(θ z )1 = 59.5°
( λz )1 = 0.507925
K 2 : Begin with Equations (9.54a) and (9.54b).
( I x − K 2 )( λx )2 − I xy ( λ y )2 − I zx ( λz )2
(
=0
)( )2 − I yz ( λz )2 = 0
− I xy ( λx )2 + I y − K 2 λ y
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Substituting 1 1W 2 W 2 a λy − 1.05402 a ( λx )2 − 2 g 4 g
1W 2 W − a ( λx )2 + (1 − 1.05402 ) a 2 λ y 4 g g
( )2 − 83 Wg a2 ( λz )2 = 0
( )2 − 18 Wg a 2 ( λz )2 = 0
Simplifying yields
( )2 − 1.5 ( λz )2 = 0
− 2.21608 ( λx )2 − λ y
( )2 + 2.31396 ( λz )2 = 0
4.62792 ( λx )2 + λ y Adding and solving for ( λz )2
( λz )2
= − 2.96309 ( λx )2
( λ y )2 = − 2.21608 − 1.5 ( − 2.96309 ) ( λx )2
and then
= 2.22856 ( λx )2 Now substitute into Equation (9.57)
( λx )22 + 2.22856 ( λx )2
2
+ − 2.96309 ( λx )2 = 1
( λx )2
or and
2
= 0.260410
( λ y )2 = 0.580339 ∴
(θ x )2
( λz )2
= − 0.771618
(θ y )2 = 54.5°
= 74.9°
(θ z )2
= 140.5°
K 3 : Begin with Equations (9.54a) and (9.54b).
( I x − K3 )( λx )3 − I xy ( λ y )3 − I zx ( λz )3
(
=0
)( )3 − I yz ( λz )3 = 0
− I xy ( λx )3 + I y − K 3 λ y Substituting
1 1W 2 W 2 a λy − 1.11539 a ( λx )3 − g 4 g 2
1W 2 W a ( λx )3 + (1 − 1.11539 ) a 2 λ y − 4 g g
( )3 − 83 Wg a2 ( λz )3 = 0
( )3 − 81 Wg a2 ( λz )3 = 0
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Simplifying yields
( )3 − 1.5 ( λz )3 = 0
− 2.46156 ( λx )3 − λ y
( )3 + 1.08328 ( λz )3 = 0
2.16657 ( λx )3 + λ y Adding and solving for ( λz )3
( λz )3
= − 0.707885 ( λx )3
( λ y )3 = − 2.46156 − 1.5 ( − 0.707885) ( λx )3
and then
= −1.39973 ( λx )3 Now substitute into Equation (9.57)
( λx )32 + −1.39973 ( λx )3
2
2
+ − 0.707885 ( λx )3 = 1
( λ x )3
or and
(i)
= 0.537577
( λ y )3 = − 0.752463 ∴
(θ x )3
( λz )3 = 57.5°
= − 0.380543
(θ y )3 = 138.8°
(θ z )3
= 112.4°
(c) Note: Principal axis 3 has been labeled so that the principal axes form a right-handed set. To obtain the direction cosines corresponding to the labeled axis, the negative root of Equation (i) must be chosen; that is, ( λx )3 = − 0.537577 Then (θ x )3 = 122.5°
(θ y )3 = 41.2°
(θ z )3
= 67.6°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 185.
m1 = ρ ta 2
From Problem 9.170
Now
I x = ( I x )1 + ( I x )2 =
m2 =
1 ρ ta 2 2
1 11 5 ρ ta 2 a 2 + ρ ta 2 a 2 = ρ ta 4 3 6 2 12
(
)
( )1 + ( I y )2 = 13 ( ρta2 ) a2 + 16 12 ρta2 ( a2 + a2 ) = 12 ρta4
Iy = Iy
I z = ( I z )1 + ( I z )2 = Now note that symmetry implies
1 11 3 ρ ta 2 a 2 + a 2 + ρ ta 2 a 2 = ρ ta 4 3 6 2 4
(
)(
)
( I x′y′ )1 = ( I y′z′ )1 = ( I z′x′ )1 = 0 ( I x′y′ )2 = ( I y′z′ )2 = 0
Have
I uv = I u′v′ + mu v continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
a a 1 I xy = m1x1 y1 + m2 x2 y2 = ρ ta 2 = ρ ta 4 2 2 4
Then
I yx = m1 y1z1 +0 m2 y2 z02
0
( )2 + m2 z2 x2
I zx = m1z1x1 + I z ′x′
( I z′x′ )2 = − 721 ρ ta 4
From Problem 9.170
I zx = −
Then
1 1 1 1 1 ρ ta 4 + ρ ta 2 a a = ρ ta 4 72 2 3 3 24
(a) Equation 9.56
(
)
(
)
)
2 2 2 K 3 − I x + I y + I z K 2 + I x I y + I y I z + I z I x − I xy − I yz − I zx K
(
2 2 2 − I x I y I z − I x I yz − I y I zx − I z I xy − 2I xy I yz I zx = 0
Substituting 2 5 1 1 3 3 5 1 2 5 1 3 1 + + ρ ta 4 K 2 + + + − − 0 − ρ ta 4 K 3 − 24 12 2 4 12 2 2 4 4 12 4
(
2 2 5 1 3 1 1 3 1 − − 0 − − − 0 ρ ta 4 12 2 4 2 24 4 4
(
Solving numerically...
3
) = 0
K = ρ ta 4ζ
Simplifying and letting yields
2
) K
5 3
ζ3 − ζ2 + ζ 1 = 0.203032
479 125 ζ − =0 576 1152
or
K1 = 0.203ρ ta 4
ζ 2 = 0.698281
or
K 2 = 0.698ρ ta 4
ζ 3 = 0.765354
or
K3 = 0.765ρ ta 4
(b) Equations 9.54a and 9.54b
( I x − K )( λx ) − I xy ( λ y ) − I zx ( λz ) = 0
(
)( )
− I xy ( λx ) + I y − K λ y − I yz ( λz ) = 0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Substituting K1
5 1 12 − 0.203032 ( λx )1 − 4 λ y
( )1 − 241 ( λz )1 ρta4 = 0
1 1 − ( λx )1 + − 0.203032 λ y 4 2
( )1 − 0 ρ ta4 = 0
or
( λ y )1 = 0.841842 ( λx )1
and
( λz )1 = 0.0761800 ( λx )1
Equation 9.57 Substituting
( λx )12 + ( λ y )1 + ( λz )12 2
( λx )12 + 0.841842 ( λx )1 or
2
=1 2
+ 0.0761800 ( λx )1 = 1
( λx )1 = 0.763715
then
(θ x )1 = 40.2°
( λ y )1 = 0.642927
then
(θ y )1 = 50.0°
( λz )1 = 0.0581798
then
(θ z )1 = 86.7°
Substituting K 2 5 1 12 − 0.698281 ( λx )2 − 4 λ y
( )2 − 241 ( λz )2 ρta4 = 0
1 1 − ( λx )2 + − 0.698281 λ y 2 4
( )2 − 0 ρ ta4 = 0
or and Then
( λ y )2 = −1.260837 ( λx )2 ( λz )2
= 0.806278 ( λx )2
( λx )22 + −1.260837 ( λx )2 or
2
2
+ 0.806278 ( λx )2 = 1
( λx )2
= 0.555573
( λ y )2 = − 0.700487 ( λz )2
= 0.447946
then then
then
(θ x )2
= 56.2°
(θ y )2 = 134.5° (θ z )2
= 63.4°
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Substituting K 3
5 1 12 − 0.765354 ( λx )3 − 4 λ y
( )3 − 241 ( λz )3 ρta4 = 0
1 1 − ( λx )3 + − 0.765354 λ y 2 4
( )3 − 0 ρ ta4 = 0
or
( λ y )3 = − 0.942138 ( λx )3
And Then
( λz )3
= − 2.71567 ( λx )3
( λx )32 + − 0.942138 ( λx )3 or
2
2
+ − 2.71567 ( λx )3 = 1
( λx )3
= 0.328576
then
(θ x )3
= 70.8°
( λ y )3 = − 0.309564
then
(θ y )3 = 108.0°
( λz )3
then
(θ z )3
= − 0.892304
(c)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
= 153.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 186. (a) From the solutions to Problem 9.150
I x = 14.32 × 10−3 lb ⋅ ft ⋅ s 2 I y = I z = 18.62 × 10−3 lb ⋅ ft ⋅ s 2 I xy = I zx = 4.297 × 10−3 lb ⋅ ft ⋅ s 2 , I yz = 0
From Problem 9.172
I y = Iz,
I xy = I zx ,
I yz = 0
(
)
( ) ( ) K − (14.32 × 10 )(18.62 × 10 )
) (
Substituting into Eq. (9.56) and using
(
)
( )
( )
2 2 K 3 − I x + 2I y K 2 + I x 2I y + I y2 − 2 I xy K − I x I y2 − 2I y I xy =0
) (
K 3 − 14.32 × 10−3 + 2 18.62 × 10−2 K 2 + 14.32 × 10 −3 ( 2 ) 18.62 × 10−3 + 18.62 × 10 −3
(
− 2 4.297 × 10−3 or
2
−3
−3
2
(
)(
2
)
2 − 2 18.62 × 10 −3 4.297 × 10 −3 = 0
K 3 − 51.56 × 10−3 K 2 + 0.84305 × 10−3 K − 0.004277 × 10−3 = 0 Solving:
K1 = 0.010022 lb ⋅ ft ⋅ s 2
or K1 = 10.02 × 10−3 lb ⋅ ft ⋅ s 2
K 2 = 0.018624 lb ⋅ ft ⋅ s 2
or K 2 = 18.62 × 10−3 lb ⋅ ft ⋅ s 2
K3 = 0.022914 lb ⋅ ft ⋅ s 2
or K3 = 22.9 × 10−3 lb ⋅ ft ⋅ s 2
(b) To determine the direction cosines λx , λ y , λz of each principal axis, use two of the equations of Equations (9.54) and Equation (9.57). Then
K1 : Begin with Equations (9.54b) and (9.54c):
0
− I xy (λx )1 + ( I y − K1)(λ y )1 − I yz (λz )1 = 0 − I zx (λx )1 − I yz (λ y )1 + ( I z − K1) (λz )1 = 0 or
)
( + (18.62 × 10
) ) (λ )
− 4.297 × 10−3 (λx )1 + 18.62 × 10−3 − 10.02 × 10−3 (λ y )1 = 0 − 4.297 × 10−3 (λx )1
−3
− 10.02 × 10−3
z 1
=0 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
( λ y )1 = ( λz )1 = 0.49965 ( λx )1 ( λx )12 + 2 0.49965 ( λx )1
2
=1
( λx )1 = 0.81669
( λ y )1 = ( λz )1 = 0.40806 (θ x )1 = 35.2°;
(θ y )1 = (θ z )1 = 65.9°
K2: Begin with Equations (9.54a) and (9.54b): ( I x − K 2 )( λx )2 − I xy (λ y )2 − I zx (λz )2 = 0
(
)( )2 − I yz (0λz )2 = 0
− I xy ( λx )2 + I y − K 2 λ y
Substituting:
(14.32 × 10
−3
)
− 18.62 × 10−3 ( λx )2 − 4.297 × 10−3 (λ y ) 2 − (λz ) 2 = 0
(
)( )
−4.297 × 10−3 ( λx )2 + 18.62 × 10−3 − 18.62 × 10−3 λ y
( λx )2
From (ii)
2
=0
(i) (ii)
=0
( λ y )2 = − ( λz )2
From (i) Substituting:
( λx )22 + ( λ y )2 + − ( λz )2 2
( λ y )2 =
2
=1
1 2
(θ x )2
( )2 = 45.0°, (θ z )2 = 135.0°
= 90.0°, θ y
K3: Begin with Equations (9.54b) and (9.54c) − I xy ( λx )3 + I y − K3 λ y
(
)( )3 + I yz ( λz )3 = 0 − I zx ( λx )3 − I yz 0( λ y ) + ( I z − K 3 ) ( λz )3 = 0
Substituting:
( + (18.62 × 10
) )(λ )
− 4.297 × 10−3 ( λx )3 + 18.62 × 10−3 − 22.9 × 10−3 ( λz )3 = 0 − 4.297 × 10−3 ( λx )3
−3
− 22.9 × 10−3
( λ y )3 = ( λ z ) 3 = − ( λ x )3
Simplifying:
( λx )23
2
+ 2 − ( λx )3 = 1 ⇒ ( λx )3 =
1 3
and
z 3
=0
( λ y )3 = ( λz )3 = − (θ x )3
1 3
( )3 = (θ z )3 = 125.3°
= 54.7°, θ y
continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Note: Principal axis 3 has been labeled so that the principal axes form a right-handed set to obtain the direction cosines corresponding to the labeled axis, the negative root of Equation (i) must be chosen; that is:
( λ x )3 Then:
=−
1 3
(θ x )3
= 125.3°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(θ y )3 = (θ z )3 = 54.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 187.
At
x = 0, y = 0: 0 = ka 2 + c or k = −
x = a,
y = b:
∴k = − y =−
=− Now
c a2
b=c
b a2
b 2 x − a) + b 2( a b 2 x − 2ax + a 2 + b a2
(
)
dI y = x 2dA = x 2 ( y2 − y1 ) dx b 2b = x2 b + 2 x2 − x + b − b dx a a 2b 3 b = 2 x4 − x + bx 2 dx a a 2b 3 a b I y = ∫0 2 x 4 − x + bx 2 dx a a a
b 4 b 3 1 b 5 = x − x + x 2 2a 3 0 5 a 1 1 1 = a3b − + 5 2 3
=
1 3 ab 30 Iy =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 3 ab 30
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 188.
At
x = 0, y = 0: 0 = ka 2 + c
k =−
c a2
x = a, y = b : k =−
Now
dI x = y 2dA = y 2 ( xdy )
( x − a )2
From above
a2 (b − y ) b
x = a 1−
and
and
=
x − a = a 1−
Then
Then
b a2
b 2 x − a) 2( a
y =b−
Then
b=c
y b
y +a b
y dI x = ay 2 1 + 1 − dy b y b I x = ∫ dI x = a ∫0 y 2 1 + 1 − dy b
y3 =a 3
b
0
y b + a ∫0 y 2 1 − dy b continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 189.
First note that
A = A1 − A2 − A3
= (100 mm )(120 mm ) − ( 80 mm )( 40 mm ) − ( 80 mm )( 20 mm ) = (12 000 − 3200 − 1600 ) mm 2 = 7200 mm 2 I x = ( I x )1 − ( I x )2 − ( I x )3
Now where
Then
( I x )1 =
1 (100 mm )(120 mm )3 = 14.4 × 106 mm 4 12
( I x )2
=
1 (80 mm )( 40 mm )3 + 3200 mm 2 ( 40 mm )2 = 5.5467 × 106 mm4 12
( I x )3
=
1 (80 mm )( 20 mm )2 + 1600 mm 2 ( 30 mm )2 = 1.4933 × 106 mm 4 12
(
(
)
)
I x = (14.4 − 5.5467 − 1.4933) × 106 mm 4 = 7.36 × 106 mm 4 or I x = 7.36 × 106 mm 4
and
k x2 =
Ix 7.36 × 106 = = 1022.2 mm 2 A 7200 or k x = 32.0 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 190.
First note that
A = A1 − A2 − A3
= (100 mm )(120 mm ) − ( 80 mm )( 40 mm ) − ( 80 mm )( 20 mm ) = (12 000 − 3200 − 1600)mm 2 = 7200 mm 2
( )1 − ( I y )2 − ( I y )3
Iy = Iy
Now
where
( I y )1 = 121 (120 mm )(100 mm )3 = 10 × 106 mm 4 ( I y )2 = 121 ( 40 mm )(80 mm )3 = 1.7067 × 106 mm 4 ( I y )3 = 121 ( 20 mm )(80 mm )3 = 0.8533 × 106 mm 4
Then
I y = (10 − 1.7067 − 0.8533) × 106 mm 4 = 7.44 × 106 mm 4 or I y = 7.44 × 106 mm 4
And
k y2 =
Iy A
=
7.44 × 106 mm 4 = 1033.33 mm 2 7200 mm 2
k = 32.14550 mm or k y = 32.1 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 191.
y , mm
yA, mm3
50.9296
1.1520 × 106
30
− 0.324 × 106
A, mm 2
π
1
2 Σ
Now
2
−
(120 )2
= 22 619.5
1 ( 240 )( 90 ) = −10 800 2 11 819.5
Y =
0.828 × 106
0.828 × 106 mm3 ΣAY = = 70.054 mm ΣA 11819.5 mm 2
J O = ( J O )1 − ( J O )2
(a) where
and
( J O )1 =
π 4
(120 mm ) = 162.86 × 10
( J O ) 2 = ( I x′ ) 2 + ( I y ′ ) 2
4
=
6
mm 4
1 1 ( 240 mm )( 90 mm )3 + 2 ( 90 mm )(120 mm )3 12 12
= 40.5 × 106 mm 4 Then
J O = (162.86 − 40.5 ) × 106 mm 4 = 122.36 × 106 mm 4 or J O = 122.4 × 106 mm 4 ! J O = J C + Ay 2
(b) or
(
)
J C = 122.36 × 106 mm 4 − 11 819.5 mm 2 ( 70.054 mm )
2
= (122.36 − 58.005 )106 mm 4 or J C = 64.4 × 106 mm 4 !
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 192.
W section (fig. 9.13A):
A = 7.08 in 2 I x = 18.3 in 4 I y = 82.8 in 4
A = 2 AW + 2 Aplate = 2 7.08 in 2 + ( 7.93 in.)( 0.3 in.) = 18.918 in 2 Now
( )W + 2 ( I x )plate
Ix = 2 Ix
2 4 2 6.495 in. = 2 18.3 in + 7.08 in 2
(
)
( 7.93 in.)( 0.3 in.)3 2 +2 + ( 7.93 in.)( 0.3 in.) ( 6.495 in. + 0.15 in.) 12 = 2 92.967 in 4 + 2 105.07 in 4 = 396.07 in 4
I x = 396 in 4
or and
k x2 =
Ix 396.07 in 4 = = 20.936 in 2 A 18.918 in 2
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
k x = 4.58 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 193.
Angle:
A = 1.44 in 2
I x = I y = 1.24 in 4
A = 5.88 in 2
Channel:
I x = 2.81 in 4
I y = 78.9 in 4
Locate the centroid
X =0
(
)
(
)
2 1.44 in 2 ( 0.842 in.) + 5.88 in 2 ( − 0.606 in.) ΣAy = Y = ΣA 2 1.44 in 2 + 5.88 in 2
= Now
(
( 2.42496 − 3.5638) in 3 8.765 in 4
)
= − 0.12995 in.
( I x ) = 2 ( I x )L + ( I x )C = 2 1.24 in 4 + (1.44 in 2 ) ( 0.842 in. + 0.12995 in.)2
(
)
2 + 2.81 in 4 + 5.88 in 2 ( 0.606 in. − 0.12995 in.)
= 2 ( 2.6003) in 4 + 4.1425 in 4 = 9.3431 in 4 or I x = 9.34 in 4 Also
( I y ) = 2 ( I y )L + ( I y )C = 2 1.24 in 4 + 1.44 in 2 (5 in. − 0.842 in.)2 + 7.89 in 4 = 2 ( 26.136 ) in 4 + 78.9 in 4 = 131.17 in 4 or I y = 131.2 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 194. (a) Have
I AA′ = I GG′ + mra2
ra + rb = 290 mm = 0.29 m
and
I BB′ = I GG′ + mrb2
(
I BB′ − I AA′ = m rb2 − ra2
Subtracting
( 41 − 78) g ⋅ m 2
)
= (2000 g) ( rb + ra )( rb − ra )
or
− 37 = (2000) (0.29) ( rb − ra )
or
ra − rb = 63.793 × 10−3 m
now
ra + rb = 0.29 m
so that
2ra = 0.35379 m ra = 0.17689 m or ra = 176.9 mm
I AA′ = I GG′ + mra2
(b) Have Then
I GG′ = 78 g ⋅ m 2 − (2000 g) (0.17689 m) 2
= 15.420 g ⋅ m 2 Finally,
2 kGG ′ =
I GG′ 15.420 g ⋅ m 2 = = 0.007710 m 2 m 2000 g
kGG′ = 0.08781 m kGG′ = 87.8 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 195.
( )1 + ( I xy )2 + ( I xy )3
Have
I xy = I xy
Symmetry implies
( I xy )2 = 0 I xy = I x′y′ + x yA
For the other rectangles
I x′y′ = 0
Where symmetry implies
A in 2
x , in.
y , in.
Ax y in 4
1
4 ( 0.5 ) = 2
− 2.75
1.0
− 5.5
3
4 ( 0.5 ) = 2
2.75
−1.0
− 5.5
Σ
−11.00 or I xy = −11.00 in 4
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 196.
I xy = −11.0 in 4
From Problem 9.195 Compute I x and I y for area of Problem 9.195 3
Ix =
5 in. × ( 0.5 in.) 12
( 0.5 in.)( 4 in.)3 2 +2 + ( 4 in. × 0.5 in.)(1.0 in.) 12
= 9.38542 in 4 ( 0.5 in.)3 ( 4 in.) 0.5 in. × ( 5 in.)3 2 Iy = 2 + ( 4 in. × 0.5 in.)( 2.75 in.) + 12 12
= 35.54167 in 4 X ( 9.38542, −11) ,
Define points Now
I ave =
Ix + I y 2
=
R=
Y ( 35.54167, 11)
9.38542 in 4 + 35.54167 in 4 = 22.46354 in 4 2 2
and
and
Ix − I y + I xy 2
( )
2
2
=
2 9.38542 − 35.54167 + (11.0 ) 2
= 17.08910 in 4 Also Then
− 2 ( −11.0 ) 2θ m = tan −1 = − 40.067 9.38542 − 35.54167
or θ m = − 20.0° clockwise
I max, min = I ave ± R = 22.46354 ± 17.08910 = 39.55264, 5.37444
Note: The a axis corresponds to I min and b axis corresponds to I max .
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or I max = 39.6 in 4 I min = 5.37 in 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 197.
m = ρV = ρπ a 2 L
For the cylinder
dm = ρπ a 2dx
For the element shown
= dI z = dI z + x 2dm
and
=
Then
m dx L
1 2 a dm + x 2dm 4 L
1 2 1 m m 1 I z = ∫ dI z = ∫ a + x 2 dx = a 2 x + x3 3 0 4 L L 4 L 0
=
m1 2 1 3 a L+ L L4 3 or I z =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 m 3a 2 + 4L2 12
(
)
COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 198.
m=
First compute the mass of each component
Then
γ g
V
m1 =
0.284 lb/in 3 ( 5 in. × 4.5 in. × 0.9 in.) = 0.1786 lb ⋅ s2/ft 32.2 ft/s 2
m2 =
0.284 lb/in 3 ( 3 in. × 2.5 in. × 0.8 in.) = 0.05292 lb ⋅ s 2/ft 32.2 ft/s 2
m3 =
0.284 lb/in 3 2 π ( 0.6 in.) × 0.5 in. = 0.0049875 lb ⋅ s 2 /ft 2 32.2 ft/s
Now observe that the centroidal products of inertia, I x′y′ , I y′z ′ , and I z′x′ , of each component are zero because
0
of symmetry. Now I uv = I u′v′ + muv so that ( Iuv )body = Σmu v .
m, lb ⋅ s 2 /ft
x , ft
y , ft
z , ft
mx y
my z
mz x
lb ⋅ ft ⋅ s 2
lb ⋅ ft ⋅ s 2
lb ⋅ ft ⋅ s 2
1
0.1786
0.2083 3
0.037 5
0.187 5
1.39531 × 10−3
1.25578 × 10−3
6.97656 × 10−3
2
0.05292
0.3833 3
0.20
0.187 5
4.0572 × 10−3
1.98451 × 10−3
3.80362 × 10−3
3
0.0049875
0.4375
0.225
0.187 5
0.49095 × 10−3
0.21041 × 10−3
0.40913 × 10−3
3.45069 × 10−3
11.18909 × 10−3
Σ
Then
5.94347 × 10−3
or I xy = 5.94 × 10−3 lb ⋅ ft ⋅ s 2 or I yz = 3.45 × 10−3 lb ⋅ ft ⋅ s 2 or I zx = 11.19 × 10−3 lb ⋅ ft ⋅ s 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.