BStructure Project 1 Report

Page 1

яА▒яАояА░яАаяБЙяБояБ┤яБ▓яБпяБдяБ╡яБгяБ┤яБйяБпяБояАа яБФяБияБеяАаяБпяБвяБкяБеяБгяБ┤яБйяБ╢яБеяАаяБпяБжяАаяБ┤яБияБйяБ│яАаяБ░яБ▓яБпяБкяБеяБгяБ┤яАаяБйяБ│яАаяБ┤яБпяАаяБдяБеяБ│яБйяБзяБояАаяБбяАаяБ░яБеяБ▓яБжяБеяБгяБ┤яАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБияБйяБгяБияАаяБияБбяБ│яАаяБвяБпяБ┤яБияАаяБияБйяБз яБияАаяБбяБеяБ│яБ┤яБияБеяБ┤яБйяБгяАаяБ╢яБбяБмяБ╡яБеяАаяБбяБояБдяАаяБняБйяБояБйяБняБбяБмяАаяБ╡яБ│яБбяБзяБеяАаяБпяБжяАаяБгяБпяБояБ│яБ┤яБ▓яБ╡яБгяБ┤яБйяБпяБояАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяАояАаяБФяБияБ▓яБпяБ╡яБзяБияАаяБбяБояБбяБмяБ╣яБ│яБйяБ│яАаяБпяБж яАаяБгяБбяБ│яБеяАаяБ│яБ┤яБ╡яБдяБйяБеяБ│яАаяБбяБояБдяАаяБ┤яБпяБ░яБйяБгяБ│яАаяБдяБйяБ│яБгяБ╡яБ│яБ│яБеяБдяАаяБдяБ╡яБ▓яБйяБояБзяАаяБмяБеяБгяБ┤яБ╡яБ▓яБеяБ│яАмяАаяБбяБояАаяБеяБжяБжяБеяБгяБ┤яБйяБ╢яБеяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБвяБ▓яБйяБдяБзяБеяАаяБйяБ│яАаяБ┤яБпяАаяБв яБеяАаяБдяБеяБ│яБйяБзяБояБеяБдяАояАаяБФяБияБеяАаяБняБбяБйяБояАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяАаяБ╡яБ│яБеяБдяАаяБйяБояАаяБ┤яБияБеяАаяБгяБпяБояБ│яБ┤яБ▓яБ╡яБгяБ┤яБйяБпяБояАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБйяБ│яАаяБжяБеяБ┤яБ┤яБ╡яБгяБгяБйяБояБйяАмяАа яБ╖яБйяБ┤яБияАаяБ┤яБияБеяАаяБбяБмяБмяБпяБ╖яБбяБояБгяБеяАаяБпяБжяАаяБ┤яБияБеяАаяБбяБ░яБ░яБмяБйяБгяБбяБ┤яБйяБпяБояАаяБпяБжяАаяБзяБмяБ╡яБеяАаяБжяБпяБ▓яАаяБгяБпяБояБояБеяБгяБ┤яБйяБпяБояАаяБбяБояБдяАаяБмяБбяБ╣яБеяБ▓яБйяБояБзяАаяБ░яБ╡яБ▓яБ░яБпяБ│яБе яБ│яАояАаяАа яБФяБияБеяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБйяБ│яАаяБбяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБгяБпяБняБ░яБпяБояБеяБояБ┤яАаяБгяБпяБояБ│яБйяБ│яБ┤яБйяБояБзяАаяБ┤яБияБ▓яБеяБеяАаяБпяБ▓яАаяБняБпяБ▓яБеяАаяБняБеяБняБвяБеяБ▓яБ│яАояАаяБФяБияБеяБ│яБеяАаяБгяБпяБняБ░яБп яБояБеяБояБ┤яБ│яАаяБбяБ▓яБеяАаяБбяБ▓яБ▓яБбяБояБзяБеяБдяАаяБбяБмяБпяБояБзяАаяБ┤яБияБеяАаяБ│яБ░яБбяБояАаяБпяБжяАаяБбяАаяБвяБ▓яБйяБдяБзяБеяАмяАаяБ╡яБ│яБйяБояБзяАаяБдяБеяБ│яБйяБзяБояБ│яАаяБ┤яБияБбяБ┤яАаяБвяБеяБ│яБ┤яАаяБ│яБ╡яБйяБ┤яАаяБ┤яБияБеяАаяБбяБн яБпяБ╡яБояБ┤яАаяБпяБжяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБмяБпяБбяБдяАаяБ┤яБияБбяБ┤яАаяБйяБ│яАаяБ┤яБпяАаяБвяБеяАаяБ│яБ╡яБ░яБ░яБпяБ▓яБ┤яБеяБдяАаяБпяБ▓яАаяБ╖яБйяБ┤яБияБ│яБ┤яБпяБпяБдяАояАаяБФяБияБеяАаяБмяБпяБбяБдяАаяБбяБ░яБ░яБмяБйяБеяБдяАаяБ┤яБпяАа яБ┤яБияБеяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБйяБ│яАаяБ┤яБ▓яБбяБояБ│яБняБйяБ┤яБ┤яБеяБдяАаяБ┤яБпяАаяБ┤яБияБеяАаяБкяБпяБйяБояБ┤яБ│яАаяБ│яБпяАаяБ┤яБияБбяБ┤яАаяБеяБбяБгяБияАаяБйяБояБдяБйяБ╢яБйяБдяБ╡яБбяБмяАаяБняБеяБняБвяБеяБ▓яАаяБйяБ│яАаяБеяБйяБ┤яБияБеяБ▓яАаяБйяБояАаяБ░ яБ╡яБ▓яБеяАаяБ┤яБеяБояБ│яБйяБпяБояАаяБпяБ▓яАаяБгяБпяБняБ░яБ▓яБеяБ│яБ│яБйяБпяБояАояАа яББяБояАаяБ╡яБояБдяБеяБ▓яБ│яБ┤яБбяБояБдяБйяБояБзяАаяБпяБжяАаяБ┤яБияБеяАаяБ╖яБбяБ╣яАаяБжяБпяБ▓яБгяБеяБ│яАаяБбяБ▓яБеяАаяБдяБйяБ│яБ┤яБ▓яБйяБвяБ╡яБ┤яБеяБдяАаяБйяБояАаяБбяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБ│яБ╣яБ│яБ┤яБеяБняАаяБйяБ│яАаяБйяБняБ░яБпяБ▓яБ┤яБбяБояБ┤яАа яБйяБояАаяБйяБдяБеяБояБ┤яБйяБжяБ╣яБйяБояБзяАаяБбяБояБдяАаяБ▓яБеяБгяБ┤яБйяБжяБ╣яБйяБояБзяАаяБжяБбяБйяБмяБ╡яБ▓яБеяБ│яАаяБ┤яБияБ▓яБпяБ╡яБзяБияБпяБ╡яБ┤яАаяБ┤яБияБеяАаяБдяБ╡яБ▓яБбяБ┤яБйяБпяБояАаяБпяБжяАаяБ┤яБияБеяАаяБ░яБ▓яБпяБкяБеяБгяБ┤яАояАаяБФяБияБеяАа яБ┤яБеяБ│яБ┤яБйяБояБзяАаяБ░яБияБбяБ│яБеяАаяБпяБжяАаяБ┤яБияБеяАаяБ░яБ▓яБпяБкяБеяБгяБ┤яАаяБйяБ│яАаяБ╖яБияБеяБояАаяБжяБбяБйяБмяБ╡яБ▓яБеяБ│яАаяБпяБгяБгяБ╡яБ▓яАмяАаяБеяБояБбяБвяБмяБйяБояБзяАаяБжяБ╡яБ▓яБ┤яБияБеяБ▓яАаяБйяБняБ░яБ▓яБпяБ╢яБеяБняБеяБояБ┤яБ│ яАаяБпяБояАаяБ┤яБияБеяАаяБдяБеяБ│яБйяБзяБояАаяБбяБояБдяАаяБняБеяБгяБияБбяБояБйяБгяБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАояАаяБЧяБияБйяБмяБеяАаяБбяБеяБ│яБ┤яБияБеяБ┤яБйяБгяАаяБ╢яБбяБмяБ╡яБеяАаяБйяБ│яАаяБйяБняБ░яБп яБ▓яБ┤яБбяБояБ┤яАаяБпяБояАаяБ┤яБпяБ░яАаяБпяБжяАаяБияБбяБ╢яБйяБояБзяАаяБбяАаяБзяБпяБпяБдяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБ▓яБбяБ┤яБйяБояБзяАмяАаяБйяБ┤яАаяБйяБ│яАаяБйяБняБ░яБпяБ▓яБ┤яБбяБояБ┤яАаяБ┤яБпяАаяБ▓яБеяБняБеяБняБвяБеяБ▓яАаяБ┤яБияБбяБ┤яАаяБ┤ яБияБеяАаяБбяБняБпяБ╡яБояБ┤яАаяБпяБжяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяАаяБ╡яБ│яБеяБдяАаяБ┤яБпяАаяБйяБояБгяБ▓яБеяБбяБ│яБеяАаяБбяБеяБ│яБ┤яБияБеяБ┤яБйяБгяАаяБ╢яБбяБмяБ╡яБеяАаяБняБ╡яБ│яБ┤яАаяБояБпяБ┤яАаяБвяБеяАаяБ░яБмяБбяБгяБеяБдяАаяБбяБ│яАаяБбяАаяБ░яБ▓ яБйяБпяБ▓яБйяБ┤яБ╣яАаяБпяБ╢яБеяБ▓яАаяБ┤яБияБеяАаяБбяБняБпяБ╡яБояБ┤яАаяБпяБжяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяБ│яАаяБ╡яБ│яБеяБдяАаяБ┤яБпяАаяБгяБпяБояБ│яБ┤яБ▓яБ╡яБгяБ┤яАаяБ┤яБияБеяАаяБняБбяБйяБояАаяБгяБпяБняБ░яБпяБояБеяБояБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБв яБ▓яБйяБдяБзяБеяАояАаяБФяБияБйяБ│яАаяБйяБ│яАаяБвяБеяБгяБбяБ╡яБ│яБеяАаяБйяБ┤яАаяБйяБ│яАаяБеяБ│яБ│яБеяБояБ┤яБйяБбяБмяАаяБйяБояАаяБдяБеяБ┤яБеяБ▓яБняБйяБояБйяБояБзяАаяБ┤яБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАм яАаяБ╖яБияБеяБ▓яБеяБвяБ╣яАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ│яБияБпяБ╡яБмяБдяАаяБвяБеяАаяБпяБжяАаяБияБйяБзяБияАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАмяАаяБ╡яБ│яБйяБояБзяАаяБ┤яБияБеяАаяБмяБеяБбяБ│яБ┤яАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяАаяБ┤яБпяАаяБ│яБ╡яБ│яБ┤яБб яБйяБояАаяБбяАаяБияБйяБзяБияБеяБ▓яАаяБмяБпяБбяБдяАояАаяБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБйяБ│яАаяБбяБ│яАаяБжяБпяБмяБмяБпяБ╖яБ│яА║яАа (ЁЭСАЁЭСОЁЭСеЁЭСЦЁЭСЪЁЭСвЁЭСЪ ЁЭР┐ЁЭСЬЁЭСОЁЭСС)┬▓

яАаяБЕяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАмяАаяБЕяАаяА╜яАа ЁЭСКЁЭСТЁЭСЦЁЭСФтДОЁЭСб ЁЭСЬЁЭСУ ЁЭСПЁЭСЯЁЭСЦЁЭССЁЭСФЁЭСТ яАа яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ░яБ▓яБйяБняБбяБ▓яБйяБмяБ╣яАаяБдяБеяБ░яБеяБояБдяБ│яАаяБпяБояАаяБжяБбяБгяБ┤яБпяБ▓яБ│яАаяБ│яБ╡яБгяБияАаяБбяБ│яАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБеяБояБзяБ┤яБияАаяБпяБжяАа яБ┤яБияБеяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяБ│яАаяБбяБояБдяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБбяБояБбяБмяБ╣яБ│яБйяБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБйяБняБ░яБмяБеяБняБеяБояБ┤яБеяБдяАаяБйяБояАаяБ┤яБияБеяАаяБдяБеяБ│яБйяБзяБояАаяБп яБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАояАаяБЛяБояБпяБ╖яБйяБояБзяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБеяБояБзяБ┤яБияБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБдяБйяБжяБжяБеяБ▓яБеяБояБ┤яАаяБ┤яБ╣яБ░яБеяБ│яАаяБпяБжяАаяБжяБеяБ┤яБ┤яБ╡яБгяБгяБйяБояБйяАаяБбяБ╢яБбяБйяБмяБбяБвяБмяБеяАа яБйяБ│яАаяБияБеяБмяБ░яБжяБ╡яБмяАаяБйяБояАаяБзяБбяБйяБояБйяБояБзяАаяБбяБояАаяБйяБдяБеяБбяАаяБпяБжяАаяБ┤яБияБеяАаяБняБеяБняБвяБеяБ▓яБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБ┤яБ▓яБ╡яБ│яБ│яАаяБ┤яБияБбяБ┤яАаяБияБбяБ╢яБеяАаяБ┤яБпяАаяБвяБеяАаяБ│яБ┤яБ▓яБеяБояБзяБ┤яБи яБеяБояБеяБдяАмяАаяБбяБояБдяАаяБияБпяБ╖яАаяБняБ╡яБгяБияАаяБ│яБпяАояАаяБФяБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБбяБояБбяБмяБ╣яБ│яБйяБ│яАаяБйяБ│яАаяБгяБ▓яБ╡яБгяБйяБбяБмяАаяБбяБ│яАаяБ┤яБияБ▓яБпяБ╡яБзяБияБпяБ╡яБ┤яАаяБ┤яБияБеяАаяБдяБ╡яБ▓яБбяБ┤ яБйяБпяБояАаяБпяБжяАаяБ┤яБияБеяАаяБ░яБ▓яБпяБкяБеяБгяБ┤яАаяБйяБояБгяБмяБ╡яБдяБйяБояБзяАаяБ┤яБияБеяАаяБ┤яБ▓яБйяБбяБмяАаяБ░яБияБбяБ│яБеяБ│яАмяАаяБ░яБбяБ▓яБ┤яБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБгяБбяБояАаяБвяБеяАаяБйяБдяБеяБояБ┤яБйяБжяБйяБеяБдяАа яБбяБ│яАаяБвяБеяБйяБояБзяАаяБгяБ▓яБйяБ┤яБйяБгяБбяБмяАмяАаяБбяБояБдяАаяБ╖яБияБеяБ▓яБеяАаяБояБеяБгяБеяБ│яБ│яБбяБ▓яБ╣яАмяАаяБ┤яБияБпяБ│яБеяАаяБгяБ▓яБйяБ┤яБйяБгяБбяБмяАаяБняБеяБняБвяБеяБ▓яБ│яАаяБгяБбяБояАаяБвяБеяАаяБжяБ╡яБ▓яБ┤яБияБеяБ▓яАаяБ│яБ┤яБ▓яБе яБояБзяБ┤яБияБеяБояБеяБдяАаяБйяБояАаяБбяБдяБдяБйяБ┤яБйяБпяБояАаяБ┤яБпяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБеяБояБзяБ┤яБияАаяБпяБжяАаяБ┤яБияБеяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяАаяБйяБ┤яБ│яБеяБмяБжяАояАаяАа

яАа яАа яАа яАа яАа 1|P a ge


 

            

 2|P a ge


     

    

 

3|P a ge


 

 

 

4|P a ge


  

      

     5|P a ge


                  

                 6|P a ge


                                                 7|P a ge


                                        

   8|P a ge


               

   

 







 

 

              9|P a ge


  

    

        10 | P a g e


  

   

11 | P a g e


                    12 | P a g e


                 

   

 

   

    

          13 | P a g e


     

                  

14 | P a g e


 

   

15 | P a g e


                    16 | P a g e


   

           

   

 









 

            17 | P a g e




     

  

18 | P a g e


                    

19 | P a g e


    

 

          

 

 

   

  

             20 | P a g e




           

         21 | P a g e


                              

22 | P a g e


          

                     23 | P a g e


   

        













 

   

            24 | P a g e




        

   25 | P a g e


   

     26 | P a g e


яА╡яАояА░яАаяБГяБпяБояБгяБмяБ╡яБ│яБйяБпяБояАа яБФяБпяАаяБдяБеяБ┤яБеяБ▓яБняБйяБояБеяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБжяБеяБбяБ│яБйяБвяБйяБмяБйяБ┤яБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБдяБйяБжяБжяБеяБ▓яБеяБояБ┤яАаяБвяБ▓яБйяБдяБзяБеяБ│яАмяАаяБбяБояАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБжяБпяБ▓ яБняБ╡яБмяБбяАаяБ╖яБбяБ│яАаяБ┤яБпяАаяБвяБеяАаяБбяБ░яБ░яБмяБйяБеяБдяАаяБ┤яБпяАаяБ┤яБияБеяАаяБ▓яБеяБ│яБ╡яБмяБ┤яБ│яАаяБпяБвяБ┤яБбяБйяБояБеяБдяАаяБжяБ▓яБпяБняАаяБ┤яБияБеяАаяБгяБпяБояБдяБ╡яБгяБ┤яБеяБдяАаяБбяБояБбяБмяБ╣яБ│яБеяБ│яАояАаяБФяБияБеяАаяБж яБпяБ▓яБняБ╡яБмяБбяАаяБжяБпяБ▓яАаяБгяБбяБмяБгяБ╡яБмяБбяБ┤яБйяБояБзяАаяБ┤яБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБ▓яБбяБ┤яБйяБпяАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБйяБ│яАаяБбяБ│яАаяБ│яБ╡яБгяБи: (ЁЭСАЁЭСОЁЭСеЁЭСЦЁЭСЪЁЭСвЁЭСЪ ЁЭР┐ЁЭСЬЁЭСОЁЭСС)┬▓

Efficiency, E = ЁЭСКЁЭСТЁЭСЦЁЭСФтДОЁЭСб ЁЭСЬЁЭСУ ЁЭСПЁЭСЯЁЭСЦЁЭССЁЭСФЁЭСТ

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБ▓яБбяБ┤яБйяБпяАаяБпяБвяБ┤яБбяБйяБояБеяБдяАаяБжяБ▓яБпяБняАаяБ┤яБияБеяАаяБ┤яБеяБ│яБ┤яБйяБояБзяАаяБпяБжяАаяБеяБбяБгяБияАаяБ░яБ▓яБеяБгяБеяБдяБйяБояБзяАаяБвяБ▓яБйяБдяБзяБеяАаяБеяБояБбяБвяБмяБеяБ│яАаяБйяБняБ░ яБ▓яБпяБ╢яБеяБняБеяБояБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБбяБмяАаяБдяБеяБ│яБйяБзяБояАаяБжяБпяБ▓яАаяБ┤яБияБеяАаяБояБеяБ╕яБ┤яАаяБвяБ▓яБйяБдяБзяБеяБ│яАмяАаяБбяБмяБмяБпяБ╖яБйяБояБзяАаяБ┤яБияБеяАаяБ░яБ▓яБпяБдяБ╡яБгяБ┤яБйяБпяБояАаяБпяБж яАаяБбяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБйяБ┤яБияАаяБбяАаяБдяБеяБ│яБйяБзяБояАаяБ┤яБияБбяБ┤яАаяБ░яБ▓яБпяБдяБ╡яБгяБеяБ│яАаяБбяАаяБияБйяБзяБияАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАояАа яАа яБФяБеяБ│яБ┤яАаяБПяБояБеяАа ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

(1.094ЁЭСШЁЭСФ)┬▓ 145ЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

1.197ЁЭСШЁЭСФ 0.145ЁЭСШЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭЯЦ. ЁЭЯРЁЭЯФ

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБжяБпяБ▓яАаяБ┤яБияБеяАаяБжяБйяБ▓яБ│яБ┤яАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяА╕яАояА▓яА╢яАояАаяБЙяБ┤яАаяБйяБ│яАаяБ┤яБияБеяАаяБмяБпяБ╖яБеяБ│яБ┤яАаяБ▓яБбяБояБляБйяБояБзяАаяБйяБояАаяБ┤яБияБеяАаяБ│яБеяБ▓яБйяБеяБ│яАа яБпяБжяАаяБ┤яБеяБ│яБ┤яБ│яАояАаяБРяБпяБпяБ▓яАаяБ╖яБпяБ▓яБляБняБбяБояБ│яБияБйяБ░яАаяБ▓яБеяБ│яБ╡яБмяБ┤яБеяБдяАаяБйяБояАаяБ┤яБияБеяАаяБгяБ╡яБ▓яБ╢яБбяБ┤яБ╡яБ▓яБеяАаяБпяБжяАаяБ┤яБияБеяАаяБвяБбяБ│яБеяАаяБпяБжяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБе яАмяАаяБгяБбяБ╡яБ│яБйяБояБзяАаяБйяБ┤яАаяБ┤яБпяАаяБ┤яБпяБ░яБ░яБмяБеяАаяБпяБ╢яБеяБ▓яАояАаяБФяБияБеяАаяБ╖яБеяБбяБляБеяБояБйяБояБзяАаяБпяБжяАаяБ┤яБияБеяАаяБжяБеяБ┤яБ┤яБ╡яБгяБгяБйяБояБйяАаяБдяБ╡яБеяАаяБ┤яБпяАаяБпяБ╕яБйяБдяБбяБ┤яБйяБпяБояАаяБбяБмяБ│яБпяАаяБг яБпяБояБ┤яБ▓яБйяБвяБ╡яБ┤яБеяБдяАаяБ┤яБпяАаяБ┤яБияБеяАаяБ╖яБеяБбяБляБояБеяБ│яБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАаяБбяБ│яАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБмяБеяБжяБ┤яАаяБеяБ╕яБ░яБпяБ│яБеяБдяАаяБпяБ╢яБеяБ▓яБояБй яБзяБияБ┤яАаяБбяБояБдяАаяБвяБеяБгяБбяБняБеяАаяБвяБ▓яБйяБ┤яБ┤яБмяБеяАояАаяБФяБияБйяБ│яАаяБ╖яБбяБ│яАаяБояБпяБ┤яБеяБдяАаяБдяБ╡яБ▓яБйяБояБзяАаяБ┤яБияБеяАаяБгяБпяБояБ│яБ┤яБ▓яБ╡яБгяБ┤яБйяБпяБояАаяБбяБояБдяАаяБ┤яБеяБ│яБ┤яБйяБояБзяАаяБпяБжяАаяБ┤яБияБеяАа яБ│яБеяБгяБпяБояБдяАаяБвяБ▓яБйяБдяБзяБеяАояАаяБФяБияБеяАаяБбяБйяБняАаяБйяБояАаяБ┤яБияБеяАаяБ│яБеяБгяБпяБояБдяАаяБдяБеяБ│яБйяБзяБояАаяБ╖яБбяБ│яАаяБ┤яБпяАаяБгяБ▓яБеяБбяБ┤яБеяАаяБбяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАаяБ╖яБйяБ┤яБияАаяБвяБеяБ┤яБ┤яБеяБ▓яАа яБ╖яБпяБ▓яБляБняБбяБояБ│яБияБйяБ░яАаяБбяБ│яАаяБ╖яБеяБмяБмяАаяБбяБ│яАаяБ▓яБеяБдяБ╡яБгяБеяАаяБ┤яБияБеяАаяБпяБгяБгяБ╡яБ▓яБ▓яБеяБояБгяБеяАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБпяБ╕яБйяБдяБйяБ║яБйяБояБзяАаяБвяБ╣яАаяБ┤яБеяБ│яБ┤яБйяБояБзяАаяБйяБ┤яАа яБ│яБпяБпяБояБеяБ▓яАояАаяАа

яБФяБеяБ│яБ┤яАаяБФяБ╖яБпяАа ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

(1.468ЁЭСШЁЭСФ)┬▓ 210ЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

2.155ЁЭСШЁЭСФ 0.21ЁЭСШЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭЯПЁЭЯО. ЁЭЯРЁЭЯФ

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБ│яБеяБгяБпяБояБдяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБ│яБмяБйяБзяБияБ┤яБмяБ╣яАаяБияБйяБзяБияБеяБ▓яАмяАаяБбяБ┤яАаяА▒яА░яАояА▓яА╢яАояАаяБФяБияБеяАаяБ╖яБпяБ▓яБляБняБбяБояБ│яБияБйяБ░яАа яБ╖яБбяБ│яАаяБйяБняБ░яБ▓яБпяБ╢яБеяБдяАаяБбяБояБдяАаяБ┤яБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБ▓яБеяБдяБ╡яБгяБеяБдяАаяБ┤яБпяАаяА▒яА░яА░яБняБняАаяБжяБ▓яБпяБняАаяА▒яА╡яА░яБняБняАаяБ┤яБпяАаяБйяБояБгяБ▓ яБеяБбяБ│яБеяАаяБ┤яБияБеяАаяБ│яБ┤яБбяБвяБйяБмяБйяБ┤яБ╣яАояАаяБФяБияБеяАаяБ╖яБйяБдяБ┤яБияАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБйяБояБгяБ▓яБеяБбяБ│яБеяБдяАояАаяБДяБйяБбяБзяБпяБояБбяБмяАаяБвяБ▓яБбяБгяБйяБояБзяБ│яАаяБ╖яБеяБ▓яБеяАа яБбяБдяБдяБеяБдяАаяБ┤яБпяАаяБйяБояБгяБ▓яБеяБбяБ│яБеяАаяБ┤яБияБеяАаяБдяБйяБ│яБ┤яБ▓яБйяБвяБ╡яБ┤яБйяБпяБояАаяБпяБжяАаяБмяБпяБбяБдяАояАаяБФяБияБеяАаяБбяБдяБкяБ╡яБ│яБ┤яБняБеяБояБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБбяБ▓ яБгяБияАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБгяБпяБояБ┤яБ▓яБйяБвяБ╡яБ┤яБеяБдяАаяБ┤яБпяАаяБ┤яБияБеяАаяБ╡яБояБеяБ╢яБеяБояАаяБ│яБ░яБ▓яБеяБбяБдяАаяБпяБжяАаяБ┤яБеяБояБ│яБйяБпяБояАаяБжяБпяБ▓яБгяБеяБ│яАояАаяБФяБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБе 27 | P a g e


яБвяБ╡яБгяБляБмяБеяБдяАаяБйяБояАаяБ┤яБияБеяАаяБгяБеяБояБ┤яБеяБ▓яАаяБдяБ╡яБеяАаяБ┤яБпяАаяБзяБ▓яБеяБбяБ┤яАаяБ┤яБеяБояБ│яБйяБпяБояАояАаяБФяБияБеяАаяБбяБйяБняАаяБжяБпяБ▓яАаяБ┤яБияБеяАаяБояБеяБ╕яБ┤яАаяБвяБ▓яБйяБдяБзяБеяАаяБдяБеяБ│яБйяБзяБояАаяБ╖яБбяБ│ яАаяБ┤яБпяАаяБйяБояБгяБ▓яБеяБбяБ│яБеяАаяБ┤яБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБбяБ▓яБгяБияАаяБпяБояБгяБеяАаяБняБпяБ▓яБеяАаяБ│яБпяАаяБ┤яБияБбяБ┤яАаяБ┤яБияБеяАаяБгяБ╡яБ▓яБ╢яБбяБ┤яБ╡яБ▓яБеяАаяБйяБ│яАаяБ│яБ╡яБжяБжяБйяБгяБйяБеяБояБ┤яАаяБж яБпяБ▓яАаяБеяБ╢яБеяБояАаяБдяБйяБ│яБ┤яБ▓яБйяБвяБ╡яБ┤яБйяБпяБояАаяБпяБжяАаяБ┤яБеяБояБ│яБйяБпяБояАаяБжяБпяБ▓яБгяБеяБ│яАояАа яАа

яБФяБеяБ│яБ┤яАаяБФяБияБ▓яБеяБеяАа ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

(2.92ЁЭСШЁЭСФ)┬▓ 254ЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

8.5264ЁЭСШЁЭСФ 0.254ЁЭСШЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭЯСЁЭЯС. ЁЭЯУЁЭЯХ

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБ┤яБияБйяБ▓яБдяАаяБвяБ▓яБйяБдяБзяБеяАаяБйяБояБгяБ▓яБеяБбяБ│яБеяБдяАмяАаяБбяБ┤яАаяА│яА│яАояА╡яА╖яАояАаяБФяБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБ╖яБбяБ│яАаяБйяБояБгяБ▓яБеяБбяБ│яБеяБдяАаяБ┤яБп яА▓яА░яА░яБняБняАаяБжяБ▓яБпяБняАаяА▒яА░яА░яБняБняАояАаяБФяБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАаяБ╖яБйяБ┤яБияБ│яБ┤яБпяБпяБдяАаяБняБпяБ▓яБеяАаяБмяБпяБбяБдяАаяБ┤яБияБбяБояАаяБ┤яБияБеяАаяБ│яБеяБгяБпяБояБдяАаяБвяБ▓яБйяБдяБзяБеяАояАаяБИяБпяБ╖ яБеяБ╢яБеяБ▓яАмяАаяБ┤яБияБеяАаяБняБбяБ╕яБйяБняБ╡яБняАаяБбяБняБпяБ╡яБояБ┤яАаяБпяБжяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяБ│яАаяБ╡яБ│яБеяБдяАаяБ╖яБбяБ│яАаяБеяБ╕яБгяБеяБеяБдяБеяБдяАояАаяБФяБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАаяБбяБзяБбяБйяБояАаяБжяБбяБйяБм яБеяБдяАаяБбяБ┤яАаяБ┤яБияБеяАаяБгяБеяБояБ┤яБеяБ▓яАаяБ╖яБияБеяБ▓яБеяАаяБ┤яБияБеяАаяБмяБпяБбяБдяАаяБ╖яБбяБ│яАаяБияБ╡яБояБзяАояАаяБФяБияБеяАаяБбяБйяБняАаяБпяБжяАаяБ┤яБияБеяАаяБояБеяБ╕яБ┤яАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБ┤яБпяАаяБ▓яБеяБдяБ╡ яБгяБеяАаяБ┤яБияБеяАаяБбяБняБпяБ╡яБояБ┤яАаяБпяБжяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяБ│яАаяБ╡яБ│яБеяБдяАаяБбяБ│яАаяБ╖яБеяБмяБмяАаяБбяБ│яАаяБ┤яБпяАаяБ▓яБеяБдяБ╡яБгяБеяАаяБ┤яБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ░яБ▓яБп яБ░яБпяБ▓яБ┤яБйяБпяБояБбяБ┤яБеяАаяБ┤яБпяАаяБ┤яБияБеяАаяБ▓яБеяБдяБ╡яБгяБ┤яБйяБпяБояАаяБпяБжяАаяБняБбяБ┤яБеяБ▓яБйяБбяБмяБ│яАаяБбяБояБдяАаяБ┤яБпяАаяБйяБняБ░яБ▓яБпяБ╢яБеяАаяБ┤яБияБеяАаяБкяБпяБйяБояБ┤яБ│яАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБбяБгяБйяБояБзяАояАа

яБФяБеяБ│яБ┤яАаяБЖяБпяБ╡яБ▓яАа ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

(3.725ЁЭСШЁЭСФ)┬▓ 200ЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

13.8756ЁЭСШЁЭСФ 0.2ЁЭСШЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭЯФЁЭЯЧ. ЁЭЯСЁЭЯЦ

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБжяБпяБ╡яБ▓яБ┤яБияАаяБвяБ▓яБйяБдяБзяБеяАаяБбяБзяБбяБйяБояАаяБйяБояБгяБ▓яБеяБбяБ│яБеяБдяАмяАаяБ┤яБпяАаяА╢яА╣яАояА│яА╕яАояАаяБФяБияБеяАаяБияБеяБйяБзяБияБ┤яАаяБ╖яБбяБ│яАаяБ▓яБеяБдяБ╡ яБгяБеяБдяАаяБвяБбяБгяБляАаяБ┤яБпяАаяБ┤яБияБеяАаяБйяБояБйяБ┤яБйяБбяБмяАаяБияБеяБйяБзяБияБ┤яАаяБпяБжяАаяА▒яА╡яА░яБняБняАояАаяБФяБияБеяАаяБбяБняБпяБ╡яБояБ┤яАаяБпяБжяАаяБвяБеяБбяБняБ│яАаяБгяБпяБояБояБеяБгяБ┤яБйяБояБзяАаяБ┤яБияБеяАаяБбяБ▓яБгяБияБе яБ│яАаяБ╖яБбяБ│яАаяБ▓яБеяБдяБ╡яБгяБеяБдяАаяБбяБ│яАаяБ│яБпяБняБеяАаяБпяБжяАаяБ┤яБияБеяАаяБняБеяБняБвяБеяБ▓яБ│яАаяБ╖яБеяБ▓яБеяАаяБгяБпяБояБ│яБйяБдяБеяБ▓яБеяБдяАаяБ▓яБеяБдяБ╡яБояБдяБбяБояБ┤яАмяАаяБвяБ╡яБ┤яАаяБйяБояБгяБ▓яБеяБбяБ│яБеяБдяАаяБ┤яБпяАа яБ┤яБ╖яБпяАаяБмяБбяБ╣яБеяБ▓яБ│яАаяБеяБбяБгяБияАояАаяБФяБияБеяАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАаяБжяБбяБйяБмяБеяБдяАаяБ╖яБияБеяБояАаяБ┤яБияБеяАаяБняБеяБняБвяБеяБ▓яАаяБ┤яБияБбяБ┤яАаяБгяБбяБ▓яБ▓яБйяБеяБдяАаяБ┤яБияБеяАаяБмяБпяБбяБдяАаяБдяБеяБ┤яБб яБгяБияБеяБдяАаяБжяБ▓яБпяБняАаяБ┤яБияБеяАаяБняБбяБйяБояАаяБ│яБ┤яБ▓яБ╡яБгяБ┤яБ╡яБ▓яБеяАояАаяБФяБияБеяАаяБбяБйяБняАаяБжяБпяБ▓яАаяБ┤яБияБеяАаяБжяБйяБояБбяБмяАаяБвяБ▓яБйяБдяБзяБеяАаяБ┤яБеяБ│яБ┤яАаяБ╖яБбяБ│яАаяБ┤яБпяАаяБ▓яБеяБ┤яБбяБйяБояАаяБ┤яБияБеяАа яБдяБеяБ│яБйяБзяБояАаяБбяБояБдяАаяБеяБмяБйяБняБйяБояБбяБ┤яБеяАаяБ▓яБеяБдяБ╡яБояБдяБбяБояБ┤яАаяБняБеяБняБвяБеяБ▓яБ│яАаяБ┤яБпяАаяБ▓яБеяБдяБ╡яБгяБеяАаяБ╖яБеяБйяБзяБияБ┤яАояАаяАа

яАа яАа яАа яАа яАа 28 | P a g e


яБЖяБйяБояБбяБмяАаяБФяБеяБ│яБ┤яАа ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ =

(3.785ЁЭСШЁЭСФ)┬▓ 200ЁЭСФ 14.326ЁЭСШЁЭСФ 0.2ЁЭСШЁЭСФ

ЁЭР╕ЁЭСУЁЭСУЁЭСЦЁЭСРЁЭСЦЁЭСТЁЭСЫЁЭСРЁЭСж, ЁЭР╕ = ЁЭЯХЁЭЯП. ЁЭЯФЁЭЯС

яБФяБияБеяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАаяБпяБжяАаяБ┤яБияБеяАаяБжяБйяБояБбяБмяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБбяБ│яАаяБ┤яБияБеяАаяБияБйяБзяБияБеяБ│яБ┤яАаяБпяБжяАаяБбяБмяБмяАмяАаяБбяБ┤яАаяА╖яА▒яАояА╢яА│яАояАаяБФяБияБеяАаяБдяБеяБ│яБйяБзяБояАаяБ╖яБбяБ│ яАаяБ▓яБеяБ┤яБбяБйяБояБеяБдяАаяБбяБояБдяАаяБ▓яБеяБдяБ╡яБояБдяБбяБояБ┤яАаяБняБеяБняБвяБеяБ▓яБ│яАаяБ╖яБеяБ▓яБеяАаяБеяБмяБйяБняБйяБояБбяБ┤яБеяБдяАаяБ┤яБпяАаяБ▓яБеяБдяБ╡яБгяБеяАаяБ╖яБеяБйяБзяБияБ┤яАояАаяБФяБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ╖яБпяБ╡яБм яБдяАаяБияБбяБ╢яБеяАаяБвяБеяБеяБояАаяБняБ╡яБгяБияАаяБ│яБ┤яБ▓яБпяБояБзяБеяБ▓яАаяБияБбяБдяАаяБйяБ┤яАаяБвяБеяБеяБояАаяБ┤яБеяБ│яБ┤яБеяБдяАаяБ│яБпяБпяБояБеяБ▓яАояАаяБДяБ╡яБеяАаяБ┤яБпяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБвяБеяБйяБояБзяАаяБмяБеяБжяБ┤яАа яБпяБ╢яБеяБ▓яБояБйяБзяБияБ┤яАмяАаяБ┤яБияБеяАаяБбяБдяБияБеяБ│яБйяБ╢яБеяАаяБпяБжяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБияБбяБ│яАаяБбяБмяБ▓яБеяБбяБдяБ╣яАаяБпяБ╕яБйяБдяБйяБ║яБеяБдяАояАаяБФяБияБйяБ│яАаяБгяБбяБ╡яБ│яБеяБдяАаяБ┤яБияБеяАаяБвяБ▓яБйяБдяБзяБеяАаяБ┤ яБпяАаяБвяБеяБгяБпяБняБеяАаяБвяБ▓яБйяБ┤яБ┤яБмяБеяАаяБбяБояБдяАаяБояБпяБ┤яАаяБбяБ┤яАаяБпяБ░яБ┤яБйяБняБ╡яБняАаяБмяБпяБбяБдяАаяБ╖яБйяБ┤яБияБ│яБ┤яБбяБояБдяБйяБояБзяАаяБгяБбяБ░яБбяБгяБйяБ┤яБ╣яАмяАаяБйяБояАаяБпяБ┤яБияБеяБ▓яАаяБ┤яБеяБ▓яБняБ│яАмяАаяБояБп яБ┤яАаяБбяБ┤яАаяБжяБ╡яБмяБмяАаяБеяБжяБжяБйяБгяБйяБеяБояБгяБ╣яАояАаяАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа яАа

яАа яАа 29 | P a g e


 

 30 | P a g e


  31 | P a g e


 32 | P a g e


                             33 | P a g e


 

 34 | P a g e


 35 | P a g e


  36 | P a g e


   37 | P a g e




By Pythagoras theorem, a 2 + b 2 = c2 Let a = 4, b = 3 42 + 32 = 52 ------- Therefore, c = 5 At point G, c = 100kN a 2 + b 2 = c2 a2 + b2 = 1002------ Compare  and  42 + 3 2 = 52 a2 + b2 = 1002 100 ÷ 5 = 20 Therefore, a = 4 x 20 = 80kN Therefore, force going → at Point G. b = 3 x 20 = 60kN Therefore, force going ↓ at Point G. By Newton’s Law of Equilibrium, ΣFx=0 80kN + 50kN + 20kN = FJX + FAX FJX + FAX = 150kN ------ ΣFy = 0 100kN + 50kN + 60kN = 150kN + FJY 210kN = 150kN + FJY FJY = 60kN Therefore, FJY going ↑ at Point J. 38 | P a g e


Take moment at Point J, Moment = 0 (150 x 2) = (100 x 2) + (50 x 8) + (60 x 6) + (20 x 2.5) + (FAX x 3.5) 300 = 200 + 400 + 360 + 50 + 3.5FAX 300 = 1010 + 3.5FAX FAX = -710/3.5 = -202.857kN Therefore, FAX going ← at Point A. Sub FAX into equation ③, FJX + FAX = 150kN FJX = 150kN - 202.857kN = -52.857kN Therefore, FJX going → at Point J. At point A, ΣFx=0 FAX + FAB = 0 FAB = 202.857kN Therefore, FAB going → at Point A. Because roller is at point A, Therefore, FAJ = 0 At point J, ΣFy = 0 FJY = FJA + FJB sin θ Length of JH = 2, HB = 3.5 tan θ = 3.5/2 θ = tan-1 3.5/2 = 60.26⁰ FJY = FJA + FJB sin θ 60kN = 0kN + FJB sin 60.26⁰ FJB = 69.102kN ΣFx = 0 FJX = FJH + FJB cos 60.26⁰ 52.857kN = FJH + 69.102 cos 60.26⁰ 52.857kN = FJH + 34.279kN FJH = 52.857 – 34.279 = 23.578kN Therefore, FJH going → at Point J.

39 | P a g e


At point H, ΣFx=0 FJH = FHG FHG = 23.578kN Therefore, FHG going → at point H. ΣFy = 0 FHB + 150 = 0 FHB = -150kN Therefore, FHB going ↑ at Point H.

At point B, ΣFx=0 FAB + FJB cos 60.26⁰ = FBC + FBG cos θ 202.857 + 69.102 cos 60.26⁰ = FBC + FBG cos θ FBC + FBG cos θ = 237.136kN ------------④ ΣFy = 0 100 + FBH + FJB sin 60.26⁰ + FBG sin θ = 0 100 + 150 + 69.102 sin 60.26⁰ + FBG sin θ = 0 FBG sin θ = -410kN ------------⑤ Length of BC = 4, CG = 3.5 tan θ = 3.5/4 θ = tan-1 3.5/4 = 41.18⁰ Sub θ into ⑤, FBG cos 41.18⁰ = -410 FBG = -544.746 kN Sub θ and FBG into ④, FBC + (-544.746) cos 41.18⁰ = 237.136 FBC = 237.136 + 410 = 647.136kN Therefore, FBC going → at Point B.

40 | P a g e


At point C, ΣFx=0 FBC = FCD cos θ1 + FCF cos θ2 X-axis of CD = 2, Y-axis = 1 tan θ1 = 1/2 θ1 = tan-1 1/2 = 26.57⁰

X-axis of CF = 2, Y-axis = 3.5 tan θ2 = 3.5/2 θ2 = tan-1 3.5/2 = 60.26⁰

Sub θ1 and θ2 FBC = FCD cos 26.57⁰ + FCF cos 60.26⁰ ------------⑥ ΣFy=0 FCG + FCF sin 60.26⁰ + FCD sin 26.57⁰ = 0 ------------⑦

At point G, ΣFx=0 FHG + FBG cos 41.18⁰ = 80 + FGF 23.578 + (-544.746) cos 41.18⁰ = 80 + FGF FGF = 353.579 kN Therefore, FGF going → at Point G. ΣFy=0 FCG + FBG sin 41.18⁰ = 60 FCG = 60 – (577.746) sin 41.18⁰ = 60 – 380 = -320 kN Therefore, FCG going ↓ at Point G. Sub FCG into ⑦, -320 + FCF sin 60.26⁰ + FCD sin 26.57⁰ = 0 ------------⑧

At point F, ΣFx=0 FGF + FCF cos θ = FFE 353.579 + FCF cos 60.26⁰ = FFE ------------⑨ ΣFy=0 FDF + FCF sin 60.26⁰ = 0 ------------⑩

41 | P a g e


At point D, ΣFx=0 FDE cos θ + 20 = 0 Length of X-axis of DE = 2.5, Y-axis = 2.5 tan θ = 2.5/2.5 θ = tan-1 2.5/2.5 = 45⁰ Sub θ, FDE cos 45⁰ + 20 = 0 FDE cos 45⁰ = -20 FDE = -28.289 kN ΣFy=0 50 + FDE sin 45⁰ + FDF = 0 FDF = 28.289 sin 45⁰ – 50 FDF = -30 kN Therefore, FDF going ↓ at Point D. Sub FDF into ⑩, FDF + FCF sin 60.26⁰ = 0 FCF sin 60.26⁰ = 30 FCF = 34.551 kN Sub FCF into ⑨, 353.579 + (34.551) cos 60.26⁰ = FFE FFE = 353.579 + 17.140 = 370.719 kN Therefore FFE going → at Point F. Sub FCF into ⑧, (34.551) sin 60.26⁰ + FCD sin 26.57⁰ = 320 FCD sin 26.57⁰ = 320 – 30 = 290 FCD = 648.348 kN

42 | P a g e


Conclusion

          43 | P a g e




 

44 | P a g e


 45 | P a g e


 46 | P a g e


 47 | P a g e


 48 | P a g e


 49 | P a g e


 

By Pythagorean theorem, A2 + B2 = C2 Let A = 4, B = 3 42 + 32 = 52 ------- Therefore, C = 5 At point G, C = 100kN a2 + b2 = c2 a2 + b2 = 1002------ Compare  and  42 + 32 = 52 a2 + b2 = 1002 100 ÷ 5 = 20 Therefore, a = 4 x 20 = 80kN (force going → at force G) b = 3 x 20 = 60kN (force going ↓ at force G) By Newton’s Law of Equilibrium, ΣFx=0, ΣFy=0 80kN + 50kN + 20kN = FJX + FAX FJX + FAX = 150kN ------ ΣFY = 0 100kN + 50kN + 60kN = 150kN + FJY 210kN = 150kN + FJY Therefore, FJY = 60kN

50 | P a g e


Take moment at J, Moment = 0 (150 x 2) = (100 x 2) + (50 x 8) + (60 x 6) + (20 x 2.5) + (FAX x 3.5) 300 = 200 + 400 + 360 + 50 + 3.5FAX 300 = 1010 + 3.5FAX FAX = -710/3.5 = -202.857kN Therefore, FAX going  at force A. From equation, FJX + FAX = 150kN FAX = 202.857kN FJX = 150kN - 202.857kN = -52.857kN Therefore, FJX going → at force J. At joint A, FAX + FAB = 0 FAB = 202.857kN Because roller is at point A, Therefore, FAJ = 0 At joint J, ΣFy = 0 FJY = FJA + FJB sin Length of JH = 2, HB = 3.5 tan θ = 3.5/2 θ = tan-1 3.5/2 = 60.26⁰

FJY = FJA + FJB sin θ 60kN = 0kN + FJB sin 60.26⁰ Therefore, FJB = 69.102kN ΣFx = 0 FJX = FJH + FJB cos 60.26⁰ 52.857kN = FJH + 69.102 cos 60.26⁰ 52.857kN = FJH + 34.279kN FJH = 52.857 – 34.279 = 23.578kN

51 | P a g e


At joint B, By Newton’s Law of Equilibrium, ΣFx = 0 FAB + FJB cos 60.26⁰ = FBC 202.857kN + 69.102 cos 60.26⁰ = FBC FBC = 237.136kN ΣFy = 0 FBH + 100kN = 69.102 sin 60.26⁰ + 150kN FBH + 100kN = 180.29 Therefore, FBH = 80.29kN At joint H, ΣFx = 0 FJH = FHG + FCG cos θ When length of HG is 4, CG is 3.5, Θ = tan-1 3.5/4 = 41.186⁰ FJH = FHG + FCG cos θ 23.578kN = FHG + FCH cos 41.186⁰------

ΣFy = 0 FHB + 150kN + FCH sin 41.186⁰ = 100kN 80.29kN + 150kN + FCH sin 41.186⁰ = 100kN 230.29kN + FCH sin 41.186⁰ = 100kN FCH sin 41.186⁰ = 100kN - 230.29kN FCH sin 41.186⁰ = - 130.29kN Therefore, FCH = -197.857kN From equation, 23.578kN = FHG + FCH cos 41.186⁰ 23.578kN = FHG + 197.857 cos 41.186⁰ Therefore, FHG = -125.324kN

At joint C, ΣFx = 0 FCB + FCH cos 41.186⁰ = FCD cos θ X-axis of CD = 2, y-axis of CD = 1 Therefore, θ = tan-1 ½ =26.57⁰ FCB + FCH cos 41.186⁰ + FCD cos θ 237.136 + 197.857cos 41.186⁰ = FCD cos 26.57⁰ 385.354 = FCD cos 26.57⁰ Therefore, FCD = 430.857kN

52 | P a g e


At joint G, ΣFx = 0 FGH = FGD cos θ + FGF Length GF = 2, DF = 2.5 Therefore, θ = tan-1 2.5/2 = 51.34⁰ FGH = FGD cos θ + FGF 125.324kN = FGD cos 51.34⁰ + 80 45.324kN = FGD cos 51.34⁰ Therefore, FGD = 72.55kN At point F, ΣFx = 0 FFG = FFE Therefore, FFE = 80kN ΣFy = 0 FFD = 50kN

At joint D, ΣFx = 0 FDE cos 21.80⁰ + 20 = 0 FDE sin 21.80⁰ = -20 Therefore, FDE = -53.855kN

Conclusion

53 | P a g e




Due to the equal side of our bridge, we are able to divide the bridge into 2 parts and only calculate one part.

By Newton’s Law of Equilibrium, ΣFX = 0 FAX + FIX = 0 ------ ΣFY = 0 18.925kN + FIY = 37.85kN FIY = 8.925kN Take moment at joint I, Moment = 0 (18.925 x 0.443) = FAX FAX = 8.384kN Therefore, FAX going  at force A. According to equation FAX + FIX = 0 FIX = - 8.384kN Therefore, FIX going → at force I.

At joint E, ΣFY = 0 FED sin θ = 18.925kN

When horizontal length ED = 0.18/2, vertical length ED = 0.038 Θ = tan-1 0.038/0.09 = 22.89⁰ FED sin θ = 18.925kN FED sin 22.89⁰ = 18.925kN Therefore, FED = 48.655kN

ΣFX = 0 FEF = FED cos 22.89⁰ FEF = 48.655 cos 22.89⁰ Therefore, FEF = 44.824kN

54 | P a g e


At joint D, ΣFX = 0 FED cos 22.89⁰ = FDC cos Θ + FDF cos Θ When horizontal length DC = 0.177, vertical length DC = 0.05 Θ = tan-1 0.05/0.177 = 15.77⁰ When horizontal length DF = 0.09, vertical length DF = 0.038 Θ = tan-1 0.038/0.09 = 22.89⁰ When FEF = 44.824kN, FDF = 44.824/2 = 22.412kN FED cos 22.89⁰ = FDC cos Θ + FDF cos Θ 48.655 cos 22.89⁰ = FDC cos 15.77⁰ + 22.412 cos 22.89⁰ 44.823kN = FDC cos 15.77⁰ + 2.222kN FDC cos 15.77⁰ = 42.601kN Therefore, FDC = 44.267kN At joint F, ΣFY = 0 When vertical length FC = 0.088, horizontal length FC = 0.087 Θ = tan-1 0.088/0.087 = 45.33⁰ FDF sin Θ = FFC sin Θ 22.412 sin 22.89⁰ = FFC sin 45.33⁰ Therefore, FFC = 12.258kN

ΣFX = 0 FFE + FDF cos Θ = FFG + FFC cos Θ 44.824kN + 22.412 cos 22.89⁰ = FFG + 12.258 cos 45.33⁰ 65.471kN = FFG + 8.618kN Therefore, FFG = 56.853kN At joint G, ΣFX = 0 FGF = FGH Therefore, FGH = 56.853kN

At joint C, ΣFX = 0 When horizontal length CB = 0.089, vertical length CB =0.012 Θ = tan-1 0.089/0.012 = 82.32⁰ When horizontal length CH = 0.089, vertical length CH = 0.088 Θ = tan-1 0.089/0.088 = 45.324⁰ 44.267 cos 15.77⁰ + 12.258 cos 45.33⁰ = FCB cos 82.32⁰ + FCH cos 45.324⁰ 42.6kN + 8.618kN = FCB cos 82.32⁰ + FCH cos 45.324⁰ 51.218kN = 0.134FCB + 0.703 FCH ------ ΣFY = 0 12.258 sin 45.33⁰ + 4.267 sin 15.77⁰ + 0 = FCH sin 45.324⁰ + FCB sin 82.32⁰ 8.713kN + 1.16kN = FCH sin 45.324⁰ + FCB sin 82.32⁰ 9.873kN = 0.711FCH + 0.991FCB (9.873 – 0.711FCH)/0.991 = FCB ------- Put equation into equation 51.218kN = 0.134FCB + 0.703 FCH 51.218kN = 0.134[(9.873 – 0.711FCH)/0.991] + 0.703 FCH 51.218 = (1.323 – 0.095 FCH)/0.911 + 0.703 FCH 0.911(51.218 + 0.703 FCH) = 1.323 – 0.095 FCH 46.66 + 0.640 FCH = 1.323 – 0.095 FCH 0.640 FCH + 0.095 FCH = -45.337 0.735 FCH = -45.337 FCH = -61.683kN

When FCH = -61.683kN, 51.218kN = 0.134FCB + 0.703 FCH 51.218kN = 0.134FCB + 0.703 (-61.683) 51.218 = 0.134FCB + 43.36 0.134FCB = 7.858kN Therefore, FCB = 58.64kN

ΣFY = 0 FCG = 0 (redundant)

55 | P a g e


At joint B, ΣFX = 0 When horizontal length AB = 0.087, vertical length AB = 0.004 Θ = tan-1 0.087/0.004 = 87.368⁰ FCB cos 82.32⁰ = FBA cos 87.368⁰ 58.64 cos 82.32⁰ = FBA cos 87.368⁰ 7.837 = FBA cos 87.368⁰ Therefore, FBA = 170.66kN

At joint H, When horizontal length HA = 0.087, vertical length HA = 0.104 Θ = tan-1 0.087/0.104 = 39.91⁰ ΣFY = 0 FHB + FCH sin Θ = FHA sin Θ 112.366 + 61.683 sin 45.324⁰ = FHA sin 39.91⁰ 156.23 = FHA sin 39.91⁰ Therefore, FHA = 243.51kN

ΣFY = 0 FBH + FCB sin 82.32⁰ = FBA sin 87.368⁰ FBH + 58.64 sin 82.32⁰ = 170.66 sin 87.368⁰ FBH + 58.114 = 170.48 Therefore, FBH = 112.366kN

ΣFX = 0 FHG =F HI + FHA cos Θ + FCH cos Θ 56.853 = FHI + 61.683 cos 45.324⁰ 56.853 = FHI + 43.37 Therefore, FHI = 13.483kN

Conclusion,

  56 | P a g e


     

 

57 | P a g e


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.