Polar Derivatives

Page 1

Polar Derivatives


Let đ?‘&#x; = 3 + 3cos (θ).

,-

To find , we take the derivative of đ?‘&#x; just ,. like it is: đ?‘‘đ?‘&#x; = −3sin (đ?œƒ) đ?‘‘đ?œƒ


,4 ,6

,6

To find , , or , we need to convert our ,. ,. ,4 polar equation into equivalent equations for x and y: đ?‘Ľ = đ?‘&#x;cos(đ?œƒ) đ?‘Ľ = 3 + 3 cos đ?œƒ cos (đ?œƒ) đ?‘Ś = đ?‘&#x;sin(đ?œƒ) đ?‘Ś = 3 + 3 cos đ?œƒ sin (đ?œƒ)


,4

First, let’s find . To do this, we will need ,. to use the product rule: đ?‘‘đ?‘Ľ = 3 + 3 cos đ?œƒ − sin đ?œƒ đ?‘‘đ?œƒ + cos (đ?œƒ)(−3 sin đ?œƒ ) đ?‘‘đ?‘Ľ = −3 sin đ?œƒ − 3 sin đ?œƒ cos đ?œƒ đ?‘‘đ?œƒ − 3sin (đ?œƒ)cos (đ?œƒ)


,6

Next, let’s find . To do this, we will need ,. to use the product rule: đ?‘‘đ?‘Ś = 3 + 3 cos đ?œƒ cos (đ?œƒ) đ?‘‘đ?œƒ + sin (đ?œƒ)(−3 sin đ?œƒ ) đ?‘‘đ?‘Ś = 3 cos đ?œƒ + 3cos 9 (đ?œƒ) − 3sin9 (đ?œƒ)cos (đ?œƒ) đ?‘‘đ?œƒ


This is all we need for đ?‘‘đ?‘Ś đ?‘‘đ?‘Ľ

,6 ,4

, because

,6 ,4

=

:; :< := :<

!

3 cos đ?œƒ + 3cos 9 (đ?œƒ) − 3sin9 (đ?œƒ)cos (đ?œƒ) = −3 sin đ?œƒ − 3 sin đ?œƒ cos đ?œƒ − 3sin (đ?œƒ)cos (đ?œƒ)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.