RESOLVA 1) Um corpo em MHS desloca-se entre as posições – 50 cm e + 50 cm de sua trajetória, gastando 10 s para ir de uma à outra. Considerando que, no instante inicial, o móvel estava na posição de equilíbrio, determine: a) a amplitude do movimento b) o período c) a freqüência d) a pulsação 2) Um sistema oscilatório realiza MHS, dado pela equação horária గ
= ݔ10. ܿ ݏቀ ݐ+ ߨቁ no CGS. Segundo essa equação, determine a amplitude, a ସ
freqüência e a pulsação, no MKS. 3) Uma partícula executa um MHS cuja função horária da velocidade é ߨ ߨ = ݒ− . ݊݁ݏቀ . ݐቁ 4 2 a) Calcule a amplitude e a pulsação do movimento. b) Determine as funções horárias da elongação e da aceleração do movimento. 4) Um corpo oscila com movimento harmônico simples de acordo com a equação: = ݔ6݉ . ܿ ݏቀ3ߨ
ௗ ௦
. ݐ+
గ ଷ
݀ܽݎቁ.
Em t = 2 s, quais são: (a) o deslocamento; (b) a velocidade; (c) a aceleração e (d) a fase do movimento? Também, quais são (e) a freqüência e (f) o período do movimento?
RESOLVA Resoluções: 1) a) A = 50 cm b) T = 20 s c) f = 0,05 Hz d) 0,3 rad/s 2) A = 10 cm -> A = 0,1 m f = 0,125 Hz ω=
గ ସ
rad/s గ
3) a) A = ½ m e ω = rad/s ଵ
గ
ଶ
b) = ݔ. ܿ ݏቀ . ݐቁ ଶ
4) a) 3m d) ߮ = π rad
ଶ
ܽ=−
௫మ ଼
గ
. ܿ ݏቀ . ݐቁ ଶ
b) v = 9π m/s
c) 27 π2 m/s2
e) f = 3/2 Hz
g) T = 2/3 s