CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI LỚP 8, 9 ĐỊNH LÝ TA-LÉT VÀ MỘT SỐ ỨNG DỤNG Họ và tên: Lê Huy Hoàng Chức vụ: Giáo viên Đơn vị: Trường THCS Vĩnh Tường Đối tượng học sinh bồi dưỡng: Lớp 8, 9 Số tiết: 6 tiết (2buổi)
1
BỒ
ID Ư
H Ơ
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
https://daykemquynhonofficial.wordpress.com/blog/
Ỡ N
G
TO
ÁN
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
PHẦN 1. PHẦN MỞ ĐẦU I - LÝ DO CHỌN CHUYÊN ĐỀ 1. Cơ sở lí luận: Định lý Ta-lét là một trong những định lý hình học cổ điển giữ vai trò quan trọng trong chương trình toán THCS. Định lý Ta-lét được sử dụng nhiều trong giải toán, đặc biệt là những bài toán có liên quan đến đoạn thẳng và tỉ số hai đoạn thẳng. Thông qua việc vận dụng định lý Ta-lét vào giải toán ta có thể ôn lại cho học sinh các tính chất về tỷ lệ thức các kỹ năng biến đổi đại số, chứng minh đẳng thức, giải phương trình, chứng minh đường thẳng song song, diện tích đa giác... Vận dụng định lý Ta-lét vào giải toán ngoài việc học sinh được rèn luyện các kỹ năng toán học, chủ yếu còn được nâng cao về mặt tư duy toán học. Các thao tác tư duy như: Phân tích, tổng hợp, so sánh, khái quát hoá, đặc biệt hoá, … thường xuyên được rèn luyện và phát triển. 2. Cơ sở thực tiễn. Qua thực tế giảng dạy tôi nhận thấy khả năng vận dụng định lý Ta-lét vào giải bài toán của học sinh còn hạn chế. Khi học về phần này, học sinh còn khó khăn: - Việc sử dụng các kỹ năng về biến đổi đại số vào hình còn lúng túng hay mắc sai lầm. - Kỹ năng phân tích giả thiết, kết luận của bài toán để vẽ thêm yếu tố phụ, tìm lời giải cho bài toán còn chậm và hạn chế. - Khả năng vận dụng bài toán này cho bài toán khác, kỹ năng chuyển đổi bài toán, khai thác bài toán theo hướng đặc biệt hoá, khái quát hoá chưa cao. - Học sinh chưa có thói quen tổng hợp và ghi nhớ những tri thức phương pháp qua từng bài toán, dạng toán. 3. Kết luận khái quát. Nhận thức rõ được vị trí và tầm quan trọng của định lý Ta-lét trong chương trình Toán THCS từ đó ý tưởng về chuyên: “Định lý Ta-lét và ứng dụng” ra đời. Thông qua thực tế giảng dạy kết hợp với bồi dưỡng học sinh giỏi và một số sách viết chuyên đề của các nhà giáo khác, tôi nghiên cứu và thực hiện đề tài này. Những năm gần đây, trong các kỳ thi giao lưu HSG lớp 8,9 cấp huyện, kì thi chọn HSG lớp 9 cấp tỉnh và các kỳ thi tuyển sinh vào các lớp chuyên Toán, chuyên Tin của các trường THPT chuyên thường xuất hiện các bài toán hình học có nội dung áp dụng định lý Ta-lét. Đây không phải là một kiến thức mới, tuy nhiên đòi hỏi học sinh phải có tư duy linh hoạt và cái nhìn nhạy bén thì mới áp dụng được nội dung định lý .
N
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
N
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
2
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
H Ơ
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
https://daykemquynhonofficial.wordpress.com/blog/
BỒ
ID Ư
Ỡ N
G
TO
ÁN
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
II . MỤC ĐÍCH NGHIÊN CỨU. Từ thực tế giảng dạy môn Toán cho đối tượng học sinh khá, giỏi tôi đã rút ra được một số kinh nghiệm khi giảng dạy chuyên đề: “Định lý Ta-lét và một số ứng dụng” với mục đích áp dụng kinh nghiệm này trong giảng dạy để giúp học sinh : - Nắm vứng nội dụng định lý Ta-lét trong tam giác và định lý Ta-lét tổng quát. - Trang bị cho học sinh một cách có hệ thống các dạng bài tập và phương pháp giải. Qua đó rèn luyện cho học sinh các kỹ năng tính toán, vẽ hình, phân tích, suy luận, tổng hợp,… - Rèn luyện và phát triển cho học sinh các phẩm chất trí tuệ, các thao tác tư duy: So sánh, phân tích, tổng hợp, đặc biệt hóa, khái quát hoá,…
N
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
N
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
3
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
PHẦN 2: NỘI DUNG
BỒ
ID Ư
N
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
https://daykemquynhonofficial.wordpress.com/blog/
Ỡ N
G
TO
ÁN
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
Thalès de Milet hay theo phiên âm tiếng Việt là Ta-lét (tiếng Hy Lạp: ΘαλῆςὁΜιλήσιος; khoảng 624 TCN – khoảng 546 TCN), là một triết gia, một nhà toán học người Hy Lạp sống trước Socrates, người đứng đầu trong bảy nhà hiền triết của Hy Lạp. Ông cũng được xem là một nhà triết gia đầu tiên trong nền triết học Hy Lạp cổ đại, là "cha đẻ của khoa học". Tên của ông được dùng để đặt cho một định lý toán học do ông phát hiện ra. Ta-lét sống trong khoảng thời gian từ năm 624 TCN– 546 TCN, ông sinh ra ở thành phố Miletos, một thành phố cổ trên bờ biển gần cửa sông Maeander (của Thổ Nhĩ Kỳ).Tuổi thọ của ông không được biết một cách chính xác. Có hai nguồn: một nguồn cho là ông sống khoảng 90 tuổi, còn một nguồn khác cho là ông sống khoảng 80 tuổi. Trước Ta-lét, người Hy Lạp giải thích nguồn gốc tự nhiên của thế giới, vạn vật qua các câu truyện thần thoại của chúa trời, của các vị thần và các anh hùng. Các hiện tượng như sấm, sét hay động đất được cho là do các vị thần trong tự nhiên.Ông quan niệm toàn bộ thế giới của chúng ta được khởi nguồn từ nước. Nước là bản chất chung của tất cả mọi vật, mọi hiện tượng trong thế giới. Mọi cái trên thế gian đều khởi nguồn từ nước và khi bị phân hủy lại biến thành nước. Với quan niệm nước là khởi nguyên của thế giới, của mọi sự vật, hiện tượng. Ông đã đưa yếu tố duy vật vào trong quan niệm triết học giải thích về thế giới. Thế giới được hình thành từ một dạng vật chất cụ thể là nước chứ không phải do chúa trời hay các vị thần. Định lý Ta-lét: - Hai đường thẳng song song định ra trên hai đường thẳng giao nhau những đoạn thẳng tỷ lệ - Góc chắn nửa đường tròn thì bằng một vuông - Đường kính chia đôi đường tròn thành hai phần bằng nhau - Hai góc đáy của tam giác cân thì bằng nhau - Hai tam giác nếu có hai cặp góc đối và cặp cạnh tương ứng bằng nhau thì bằng nhau - Hai góc đối đỉnh thì bằng nhau
H Ơ
N
I – GIỚI THIỆU VỀ TA- LÉT
4
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
H Ơ
ẠO
2+
3
AB A'B' = ⇔ AB.C 'D' = A ' B '.CD CD C'D'
ẤP
*2. Có thể hoán vị các trung, ngoại tỉ:
-L
Í-
H
Ó
A
C
AB CD A'B' = C'D' AB A'B' CD C'D' = ⇔ = CD C'D' AB A'B' A'B' C'D' AB = CD
Ỡ N
G
TO
ÁN
*3. Các tính chất của dãy tỉ số bằng nhau: AB A'B' AB ± A'B' (CD ≠ CD ') = = CD C'D' CD ± C'D' AB A'B' AB ± CD A'B' ± C'D' = ⇔ = CD C'D' CD C'D'
2. Định lý Ta-lét trong tam giác. 2.1.Định lý thuận: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ. △ABC, B 'C ' BC(B' ∈ AB, C' ∈ AC) GT
https://daykemquynhonofficial.wordpress.com/blog/
Đ
G
Ư N
H
TR ẦN
10
00
- Tỉ lệ thức giữa các đoạn thẳng có các tính chất như của tỉ lệ thức giữa các số. *1. Tích các trung tỉ bằng tích các ngoại tỉ.
ID Ư
BỒ
AB A'B' AB CD hay = = CD C'D' A'B' C'D'
B
nếu ta có tỉ lệ thức thức:
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
II - KIẾN THỨC CƠ BẢN. 1. Đoạn thẳng tỉ lệ. 1.1.Tỉ số hai đoạn thẳng. - Tỉ số hai đoạn thẳng là tỉ số các độ dài của chúng với cùng một đơn vị đo. Như vậy tỉ số hai đoạn thẳng không phụ thuộc vào đơn vị mà ta chọn. 1.2. Đoạn thẳng tỉ lệ: - Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A’B’ và C’D’
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
Ta-lét là người đầu tiên nghiên cứu về thiên văn học, hiểu biết về hiện tượng nhật thực diễn ra do mặt trăng che khuất mặt trời. Ông cũng nghĩ ra phương pháp đo chiều cao của các kim tự tháp Ai Cập căn cứ vào bóng của chúng. Ta-lét được coi là người đầu tiên đặt vấn đề nghiên cứu về Sự sống ngoài Trái Đất. Ta-lét chết lúc già một cách đột ngột khi đang xem một thế vận hội. Trên mộ ông khắc dòng chữ: “Nấm mồ này nhỏ bé làm sao! Nhưng vinh quang của con người này, ông vua của các nhà thiên văn, mới vĩ đại làm sao”.
N
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
N
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
A
B'
C'
5
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
B C www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
KL
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
AB ' AC ' AB ' AC ' BB ' C 'C = ; = ; = AB AC B ' B C 'C AB AC
N H Ơ
B'
B
C
ẠO
△ABC, B 'C ' BC(B' ∈ AB, C' ∈ AC)
B'
C'
B
AB ' AC ' B 'C ' = = AB AC BC
00
Chú ý: Định lý Ta-lét thuận, đảo và hệ quả vẫn đúng trong trường hợp đường thẳng a song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại:
B
2+
3
10
C
B'
B
A
C
H
Ó
A
C'
B'
C'
A
C
ẤP
A
Í-
B
-L
C
B'
C'
B
Ỡ N
G
TO
ÁN
3. Định lý Ta-lét tổng quát: 3.1. Định lý thuận: Nhiều đường thẳng song song định ra trên hai cát tuyến bất kỳ nhữngđoạn thẳng tương ứng tỷ lệ. GT Cho a//b//c; d cắt a, b, c lần lượt tại A, B, C; d’ cắt a, b, c lần lượt tại A’, B’,C’. AB A ' B ' KL =
C
BC
d A
a
b
c C
d'
B
A'
https://daykemquynhonofficial.wordpress.com/blog/
Đ
G
Ư N
H
TR ẦN
GT KL
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TP .Q
U
Y
N
C'
KL 2.3. Hệ quả: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có 3 cạnh tương ứng A tỉ lệ với 3 cạnh của tam giác đã cho.
ID Ư
BỒ
A
AB ' AC ' = B ' B C 'C B 'C ' BC
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
2.2 Định lý đảo. Nếu một đường thẳng cắt hai cạnh của tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. △ABC, B' ∈ AB, C' ∈ AC GT
B'
B''
C''
C'
B 'C '
Hướng chứng minh: 6
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Ta có thể chứng minh định lý này bằng cách qua A kẻ một đường thẳng song song với d’. Đường thẳng này cắt b, c theo thứ tự tại B '', C '' . Dễ dàng chứng minh được AB '' = A ' B ', B ''C '' = B 'C ' . Sau đó áp dụng định lý Ta-lét trong tam giác
H Ơ Y
a
A
B
C
a
B
C
O
10
A
00
B
O
B'
b
2+
A'
3
b
B'
C'
C'
A'
Ó
A
C
ẤP
Hướng chứng minh: Ta có thể chứng minh hệ quả này bằng cách xét các tam giác AOB và AOC có AB//A’B’ và AC//A’C’. Theo hệ quả định lý Ta-lét trong tam giác ta có:
Í-
H
AB OA AC OA AB AC và từ đó suy ra: (đpcm) = = = A ' B ' OA ' A 'C ' OA ' A 'B' A 'C '
TO
ÁN
-L
Hệ quả 2: Nếu nhiều đường thẳng không song song định ra trên hai đường thẳng song song các đoạn thẳng tương ứng tỉ lệ thì chúng đồng quy tại một điểm . a
A
B
C
BỒ
ID Ư
Ỡ N
G
O
https://daykemquynhonofficial.wordpress.com/blog/
TR ẦN
H
Ư N
G
Đ
C' b, c là song song với nhau thì 3 đường thẳng a, b, c c C song song với nhau. 3.3 Hệ quả(các đường thẳng đồng quy cắt hai đường thẳng song song) Hệ quả 1: Nhiều đường thẳng đồng quy định ra trên hai đường thẳng song song những đoạn thẳng tương ứng tỉ lệ.
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U B'
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
A'
B
b
AB A ' B ' mà 2 trong 3 đường thẳng a, = BC B ' C '
d'
A
a
N
d
3.2 . Định lý đảo. Cho 3 đường thẳng a, b, c cắt hai cát tuyến d, d’ tại các điểm theo thứ tự; A, B, C và A’, B’, C’ thoả mãn tỉ lệ thức:
N
AB AB'' AB A'B' từ đây suy ra kết luận. = = BC B"C'' BC B'C'
TP .Q
vào △ACC'' để có:
a
A
B
O
C
b
C'' A'
B'
d1
b
C'' d3 C'
C'
d2
B' d2
A'
d1
d3
Hướng chứng minh: 7
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Gọi d1, d2, d3 là ba đường thẳng không song song cắt hai đường thẳng song song a và b lần lượt tại A, B, C và A’, B’, C’ thỏa mãn:
Y
AB AC AB AC mà theo giả thiết ta có : . = = A 'B' A 'C '' A 'B' A 'C '
ẠO
vì AC//A’C’ nên hệ quả 1 ta có:
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
H
Ư N
III – CÁC DẠNG BÀI TẬP ỨNG DỤNG ĐỊNH LÝ TA-LÉT.
ÁN
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
Định lý Ta-lét có nhiều ứng dụng trong giải toán hình học như: Các bài toán liên quan đến tỉ số các đoạn thẳng; các bài toán chứng minh hệ thức đoạn thẳng; các bài toán chứng minh nhiều điểm thẳng hàng, nhiều đường thẳng song song, nhiều đường thẳng đồng quy; các bài toán về diện tích, vận dụng để chứng minh định lý ... Tuy nhiên trong khuân khổ của chuyên đề, tôi chọn hai ứng dụng chính để trình bày là: Chứng minh hệ thức đoạn thẳng; chứng minh nhiều đường thẳng đồng quy và nhiều điểm thẳng hàng Dạng 1 CHỨNG MINH HỆ THỨC ĐOẠN THẲNG. Dạng bài tập chứng minh hệ thức đoạn thẳng là dạng bài tập hay và khó. Nếu như ở lớp 7, các hệ thức về đoạn thẳng còn đơn giản: Chứng minh đoạn thẳng bằng nhau, chứng minh đoạn thẳng này bằng tổng hai đoạn thẳng khác,… thì lên lớp 8, 9 học sinh sau khi học xong về diện tích đa giác, định lý Ta-lét, tam giác đồng dạng, hệ thức giữa cạnh và đường cao trong tam giác vuông và các kiến thức về đường tròn thì lớp bài tập về chứng minh hệ thức đoạn thẳng trở lên đa dạng và phong phú. Đối với các bài toán lớp 8, 9 thì định lý Ta-lét và các trường hợp đồng dạng của tam giác là những công cụ để giải toán. Ví dụ 1(lớp 8). Một đường thẳng đi qua A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng:
BỒ
ID Ư
Ỡ N
G
https://daykemquynhonofficial.wordpress.com/blog/
G
Đ
Từ đó suy ra C' ≡ C'' . Hay d3 đi qua O hay ba đường thẳng d1, d2, d3 đồng quy.
TO
http://daykemquynhon.ucoz.com
Gọi C” là giao điểm của OC và đường thẳng b. Ta chưng minh C' ≡ C'' . Thật vậy,
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TP .Q
U
Ta có thể chứng minh định lý bằng cách gọi giao điểm của hai đường thẳng d1, d2 là O. Ta chứng minh d3 cũng đi qua O.
N
H Ơ
N
AB AC = A 'B' A 'C ' ⇒ d1, d2, d3 đồng quy tại O. AB ≠1 A 'B'
a) AE 2 = EK .EG 1 1 1 b) = + AE AK AG
G
c) Khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không đổi. 8
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
K
B
C E
A
D
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Hướng dẫn tìm lời giải: AE EG AE .Vậy cần tìm mối liên hệ giữa các tỉ số = EK AE EK
EG BE với . AE ED 1 1 1 AE AE b) Từ = + ⇔ + =1 AE AK AG AK AG
H Ơ N Y TP .Q
U
AE AE DE BE với các tỉ số và ; AK AG DB BD
BK BE AB = = . AD ED DG
H TR ẦN
EK EB AE = = ⇒ AE 2 = EK .EG (đpcm) AE ED EG 1 1 1 AE AE b/ Từ suy ra: + =1 = + AE AK AG AK AG
Ư N
G
Lời giải tóm tắt: a/ Vì BK//AD và AB//DG nên theo hệ quảđịnh lý Ta-lét ta có:
00
B
Vì BK//AD và AB//DG nên theo định lý Ta-lét ta có :
10
AE DE AE BE AE AE DE BE BD nên + = + = = 1 (đpcm) = , = AK DB AG BD AK AG DB DB BD BK AB = KC CG KC CG = AD DG
2+
3
c/ Vì BK//AD và KC//AD nên theo định lý Ta-lét ta có
C
Ó
A
(2)
ẤP
(1)
BK AB = ⇒ BK .DG = AB. AD (không đổi) AD DG
Í-
H
Nhân vế với vế của (1) và (2) ta được:
D
AK BE CF a) + + =1 AB BC CA
b)
F
H O
DE FH MK + + =2 AB BC CA
B
E
I
M
C
BỒ
ID Ư
Ỡ N
G
TO
ÁN
-L
Ví dụ 2 (lớp 8): ∆ ABC, O là một điểm thuộc miền trong tam giác, qua O kẻ HF//BC, DE//AB, MK//AC với H, K ∈ AB; A E, M ∈ BC; D, F ∈ AC. K Chứng minh rằng:
https://daykemquynhonofficial.wordpress.com/blog/
Đ
hành BK.DG = AB.AD ⇔
ẠO
c) Vì giả thiết chỉ cho hình bình hành có các cạnh không đổi nên ta biểu diễn mối BK.DG với các cạnh của hình bình quan hệ của tích
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
Từ đó tìm mối liên hệ của các tỉ số
N
và
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
a) Từ AE 2 = EK .EG ⇔
9
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
* Hướng dẫn tìm lời giải:Giả thiết đã cho các đường thẳng song song, ta cố định một trong 3 tỉ số trong hệ thức cần chứng minh chẳng hạn:
H Ơ
N
AK CF về các tỉ số có cùng mẫu là BC. , AB CA
N
CF CI EM = = CA CB BC AK BE CF MC BE EM BC vậy suy ra: + + = + + = =1 AB BC CA BC BC BC BC AK BE CF Vậy + + = 1 (Đpcm) AB BC CA FH AH b) FH//BC => = BC AB KM BK KM//AC => = AC AB FH MK DE AH BK AK + BH AH + HB AK + KB + + = + + = + =2 BC AC AB AB AB AB AB AB
ẠO Đ
00
B
TR ẦN
H
Ư N
G
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
2+
3
10
nên ta được: (Đpcm) Ví dụ 3 (lớp 8). Cho hình thang ABCD có AB = a, CD = b. Qua giao điểm O của hai đường chéo, kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E A
A
* Hướng dẫn tìm lời giải:
ẤP
1 1 1 1 = = + OE OG a b
C
và G. Chứng minh rằng:
a
E
Ó
1 1 1 1 1 OE OE = + ⇔ OE( + ) = 1 ⇔ + =1 OE a b a b AB CD
B G
H
O
Í-
Từ
ÁN
-L
Từ đó dựa vào hệ quả của định lý Ta-lét ta tìm mối quan hệ giữa các tỉ số. * Lời gải tóm tắt:
D
b
OE DE OE DE (1) = ⇔ = AB DA a DA OE AE OE AE Vì OE//CD nên theo hệ quả định lý Ta-lét ta có: (2) = ⇔ = DC DA b DA OE OE DE AE Cộng vế với vế của (1) và (2) ta được: + = + =1. a b DA DA 1 1 1 1 1 1 1 1 Do đó: OE( + ) = 1 hay = + . Chứng minh tương tự ta có = + a b OE a b OG a b
TO
http://daykemquynhon.ucoz.com
Qua F kẻ FI//AB, I ∈ BC:
BỒ
ID Ư
Ỡ N
G
Vì OE//AB nên theo hệ quả định lý Ta-lét ta có:
C
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U
AK MC = AB BC
TP .Q
a) KM//AC ⇒
Y
Lời giải (tóm tắt)
https://daykemquynhonofficial.wordpress.com/blog/
chuyển các tỉ số
BE . Hãy tìm cách BC
10
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
2+
3
10
00
B
ax GE = a + x ax 2ax 2ax Từ đó suy ra suy ra GE + GF = 2 ⇔ EF= ⇔b= a+x a+x a+x GF = ax a+x ab ab hay BC = Từ đó tìm ra x = 2a − b 2a − b
Í-
H
Ó
A
C
ẤP
*Nhận xét: Định lý Ta-lét ngoài việc ứng dụng cho chứng minh đẳng thức hình học còn được vận dụng để chứng minh bất đẳng thức hình học. Sau đây ta có thể xét một ví dụ về việc vận dụng định lý Ta-lét để chứng minh bất đẳng thức. Ví dụ 5 (lớp 8) Cho ∆ ABC, phân giác trong AD. chứng minh rằng: = 1200 thì 1 = 1 + 1 a) Nếu A
> 1200 thì 1 > 1 + 1 c) Nếu A AD
Ỡ N
G
TO
ÁN
-L
AD AB AC <1200 thì 1 < 1 + 1 b) Nếu A AD AB AC
AB
H Ơ
AC
ID Ư
Hướng dẫn tìm lời giải:
BỒ
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TR ẦN
H
Ư N
1 1 1 GE = a + x Áp dụng kết quả ví dụ 4 ta có: 1 =1+1 GF a x
https://daykemquynhonofficial.wordpress.com/blog/
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
Nhận xét:Nếu thay đổi dữ kiện của bài toán ta có bài toán sau. Ví dụ 4 (lớp 8). (Trích đề thi HOMC 2006) A Cho tam giác ABC, PQ//BC với P, Q là các điểm tương ứng thuộc AB và AC. Đường thẳng PC và QB Q P cắt nhau tại G. Đường thẳng đi qua G và song song với E F G BC cắt AB tại E và AC tại F. Biết PQ = a và EF = b. Tính độ dài của BC. C B Hướng dẫn tìm lời giải: Sau khi vẽ hình ta thấy tứ giác BPQC là hình thang có các yếu tố thỏa mãn ví dụ 3. Từ đó ta có thể vận dụng kết quả của ví dụ 3 vào giải bài toán. Lời giải tóm tắt: Đặt BC = x
N
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
N
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
F
1 1 1 Hệ thức cần chứng minh có dạng = + có thể a b c
A
chuyển về hệ thức ở dạng tỉ số đoạn thẳng: Dạng 1:
1 1 1 a a = + <=> + = 1 a b c b c
B
D
C
11
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
Dạng 2:
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
1 1 1 1 b+c b b+c = + <=> = <=> = a b c a bc a c
TP .Q
(1)
ẠO
= DAB = 600 a) Qua C kẻ CF //AD, F ∈ AB, ta có: F = CAD = 600 (2) FCA
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
AD AB AB CF.AB = = => AD = CF BF AB + AC AB + AC
10
∆ BFC có AD//FC =>
00
B
BAC = b) ∆ AFC cân (do F ) =>AF=AC nên: BF =AB + AC ACF = 2
2+
3
> 600 => Fɵ < 600 => FC > AC nên : Do ∆ AFC cân tại A có góc FAC AC.AB 1 1 1 => < + AC + AB AD AB AC
(Đpcm)
C
ẤP
AD >
A
> 1200 lập luận tương tự ta cũng được 1 > 1 + 1 c) Khi BAC AB
AC
H
Ó
AD
-L
Í-
Ví dụ 6(lớp 8). Cho tam giác ABC, biết AB = c; BC =a; CA = b. Phân giác AD.
ÁN
Chứng minh rằng: AD <
2bc b+c
Lời gải tóm tắt: Kẻ AD là tia phân giác góc A, D∈BC. Qua D kẻ DE song song với AB, E∈AC. Ta có ∆EAD cân tại E. Suy ra AE =ED. Áp dụng hệ quả của định lý Ta-lét vào ∆ABC ta
G
A
https://daykemquynhonofficial.wordpress.com/blog/
H
TR ẦN
AD BA AC.AB AD AB hay = = ⇒ AD = FC BF AC AB + AC AB + AC 1 AB + AC 1 1 Suy ra: (Đpcm) = = + AD AB.AC AB AC
Ư N
G
Đ
Từ (1) và (2) suy ra ∆ AFC đều =>AF=FC=AC =>BF =AB+AF=AB + AC Áp dụng hệ quả định lý Ta-lét vào ∆ BFC, AD//FC:
TO
http://daykemquynhon.ucoz.com
Lời giải (tóm tắt):
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U
Y
N
H Ơ
N
Ở ví dụ này ta biến đổi hệ thức cần chứng minh về dạng 2. Qua C kẻ CF //AD, F ∈ AB, ta có nhận xét gì về ∆ AFC? Độ dài BF? Áp dụng định lý Ta-lét vào ∆ BFC ta được Đpcm.
BỒ
ID Ư
Ỡ N
E
ED EC B = AB CA 1 1 bc AE ED EC AE Suy ra: + = + = 1 hay AE( + ) = 1 ⇔ AE = AC AB AC CA b c b+c
có:
D
C
12
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
2bc (đpcm) b+c 1 1 b+c 1 1 1 Nhận xét: Từ kết quả bài toán trên ta có: > . = ( + ) . Áp dụng kết quả AD 2 bc 2 b c
1 b
A
1 1 b+c 1 1 1 1 1 1 1 > . = ( + ) ⇔ > ( + ) (1) AD 2 bc 2 b c x 2 b c
b
c
G
(2) B
Ư N
1 1 1 1 > ( + ) z 2 a b
C
D a
(3)
H
và
TR ẦN
Từ (1) (2) và (3) ta có:
B
1 1 1 1 1 1 + + > + + (đpcm) x y z a b c
3
10
00
Ví dụ 9(lớp 8).Cho tứ giác lồi ABCD. Gọi O là giao điểm của AD và BC. Gọi I, K ,H là chân các đường cao kẻ từ B, O ,C tới AD .Chứng minh rằng : A AD.BI.CH ≤ BD.OK.AC
2+
I
AO OK = ⇒ AO.HC = OK . AC . AC HC Ta lại có AD.BI.CH=2. S ABD .CH
B O
K E
C
ẤP
Lời giải (tóm tắt) Kẻ AE ⊥ BD Vì OK//HC nên theo hệ quả định lý Ta-lét ta
H
Ó
A
có:
H Ơ
E
H
D
C
TO
ÁN
-L
Í-
Mà BD.CE=2SABD ,OA.HC=OK.AC, AO ≥AE nên AD.BI.CH=2. S ABD .CH=BD.CE.CH ≤ BD.AO.CH=BD.OK.AC Dấu “=” xảy ra khi AE=AO hay AC ⊥ BD
BỒ
ID Ư
Ỡ N
G
Ví dụ 10 (lớp 9)(Câu 4c_Trích đề thi HSG tỉnh Vĩnh Phúc năm học 2012 – 2013) Cho tam giác nhọn ABC ( AC > AB ) có các đường cao AA ', BB ', CC ' và trực
https://daykemquynhonofficial.wordpress.com/blog/
1 1 1 1 > ( + ) y 2 c a
x
Đ
Chứng minh tương tự ta có:
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
Từ ví dụ 6 ta có:
1 c
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
1 a
Y
1 z
U
1 y
TP .Q
1 x
tương ứng. Chứng minh bất đẳng thức sau: + + > + +
N
này ta có thể giải bài toán sau:Ví dụ 7 (lớp 8). (Trích đề thi HOMC 2014).Cho a, b, c là độ dài ba cạnh của một tam giác và x, y, x là độ dài của các đường phân giác
N
Trong tam giác ADE có AD < AE + ED hay AD < 2AE =
tâm H . Gọi (O) là đường tròn tâm O, đường kính BC. Từ A kẻ các tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm). Gọi M ' là giao điểm thứ hai của A ' N và đường tròn (O) , K là giao điểm của OH và B ' C ' . Chứng minh 2
KB ' HB ' rằng: = . KC ' HC '
13
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
H Ơ
H
F E O
C
B
TR ẦN
B
Ư N
G
K
H
C'
00
D
Ó
A
C
ẤP
2+
3
10
Lời giải Qua O kẻ đường thẳng d song song với B’C’ , d cắt BB’ và CC’ lần lượt tại D, E. Áp dụng hệ quả định lý Ta-lét ta có: KB ' KH KC ' KB ' OD ⇒ = = ⇒ = (1) OD OH OE KC ' OE = ECO (vì cùng bằng BB = EOC Ta có: BDO ' C ' ) và BOD
H
OD OB OD OC 2 = ⇒ OD.OE = OC 2 ⇒ = (2) OC OE OE OE 2 Lấy F (F ≠ E) trên đường thẳng CC’ sao cho OE = OF =B ' ). ⇒ OFC ' C ' H (vì cùng bằng OEC
TO
ÁN
-L
Í-
⇒ ∆DBO ~ ∆CEO ⇒
G
' C ' = OCF Lại có HB
BỒ
ID Ư
Ỡ N
⇒ ∆B ' C ' H ~ ∆CFO ⇒
HB ' OC HB ' OC = ⇒ = HC ' OF HC ' OE
https://daykemquynhonofficial.wordpress.com/blog/
Đ
B'
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
* Hướng dẫn tìm lời giải: Ta thấy đẳng thưc cần chứng minh là đẳng thức của các tỉ số. Để chứng minh các hệ thức giữa các tỉ số ta có thể vận dụng một trong các kiến thức: Định lý Ta-lét; tam giác đồng dạng; hệ thức giữa cạnh và đường cao trong tam giác; tính chất của cát tuyến cắt nhau với đường tròn. Tuy nhiên trong bài toán này sử dụng phương pháp loại trừ ta có thể thấy chỉ có thể sử dụng kiến thức về định lý Ta-lét và tam giác đồng dạng. Để có thể sử dụng được định lý Ta-lét ta cần phải vẽ thêm hình phụ:Qua O kẻ đường thẳng d song song với B’C’. Từ đó ta có thể tìm được mối quan hệ giữa các tỉ số và chứng minh được định lí.
N
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
N
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
(3)
2
KB ' HB ' Từ (1), (2), (3) ⇒ = KC ' HC ' Ví dụ 8 (lớp 9)(Trích đề thi khảo sát học sinh giỏi lớp 9 vòng 1 huyện Tam Dương 2014 - 2015)
14
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Cho tam giác ABC vuông tại A. Đường cao AH, gọi E và F theo thứ tự là hình
H Ơ
CE AC 3 . = BF AB 3
N
a)
N
chiếu của H trên AC và AB. Cho D là một điểm trên BC. Gọi M, N theo thứ tự là hình chiếu của D trên AB và AC. Chứng minh rằng:
AC2 HC Ta có: AC = CH.BC; AB = BH.BC ⇒ 2 = (1) AB HB CH CE Ta có: EH // AB ⇒ (Định lý Ta-lét) (2) = E HB EA AC AB (hệ quả định lý Ta-lét) hay HF // AC ⇒ = HF BF A AC HF AC AE M mà HF = AE nên (3) = = AB BF AB BF AC 2 CH AC HC CE AE AC3 CE Từ (1), (2) và (3) ta có: hay . . = . . = AB2 HB AB HB AE BF AB3 BF 2
TR ẦN
H
Ư N
H
B
10
b/ Dễ thấy MD//AC và ND //AB.
00
B
F
BD MD MB (4) = = BC AC AB CD NC ND = = Vì ND//AB nên theo hệ quả của định lý Ta-lét ⇒ CB AC AB BD.CD MD.NC MB.ND Từ (4) và (5) ⇒ = = BC 2 AC 2 AB2 MD.NC + MB.ND MD.NC + MB.ND NA.NC + MB.MA = = = AC 2 + AB2 BC 2 BC 2
2+
3
Vì MD//AC nên theo hệ quả của định lý Ta-lét ⇒
Í-
H
Ó
A
C
ẤP
(5)
-L
⇒ BD.CD = NA.NC + MA.MB
BỒ
ID Ư
Ỡ N
G
TO
ÁN
Ví dụ 9: (Lớp 9)(Trích câu 4b đề thi vào lớp 10 chuyên Toán và chuyên Tin – Thành phố Hà Nội – Năm học 2009 – 2010) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Gọi BD và CE là hai đường cao của tam giác ABC. b/ Tia AO cắt BC tại A1 và cắt cung nhỏ BC tại A2 tia BO cắt AC tại B1 và cắt cung nhỏ AC tại A B2. Tia CO cắt AB tại C1 và cắt cung nhỏ AB tại B2 C2 C2. D
https://daykemquynhonofficial.wordpress.com/blog/
G
Đ
2
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
D
N
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
= 900, AH ⊥ BC a/ ∆ ABC, A
TP .Q
C
Lời giải tóm tắt
http://daykemquynhon.ucoz.com
U
Y
b) DB.DC = MA.MB + NA.NC.
Chứng minh:
A1 A2 B1 B2 C1C2 + + =1 A1 A B1 B C1C
B1 E
H
O
15 B
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
K
A1
C
www.facebook.com/daykemquynhonofficial M A2 www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Lời giải tóm tắt tại M. Ta có AK ⊥ BC Gọi H là giao điểm của BD và CE. AH cắt BC tại K cắt BC
H Ơ
Ư N
TR ẦN
H
Dạng 2: CHỨNG MINH HAI ĐƯỜNG THẲNG SONG SONG, NHIỀU ĐƯỜNG THẲNG ĐỒNG QUY, NHIỀU ĐIỂM THẲNG HÀNG
ẤP
2+
3
10
00
B
Ở lớp 7 để chứng minh hai đường thẳng song song thì ta phải tìm các mối quan hệ về góc hoặc các mối quan hệ giữa các đường thẳng. Để chứng minh đồng quy ta thường áp dụng tính chất của các đường trong tam giác, A ...Đến lớp 8, sau khi học song định lý Ta-lét đảo, từ hệ thức về độ dài đoạn thẳng cũng cho ta kết luận 2 đường thẳng song M N song.
A
C
AM AN = => MN / / BC AB AC
Ó
∆ ABC, .
C
ÁN
-L
Í-
H
Như vậy định lý Ta-lét đảo cho ta thêm một cách chứng minh B 2 đường thẳng song song. Ví dụ 1 (lớp 8): ∆ ABC, trung tuyến AM, phân giác AMC cắt AC tại H, phân giác góc AMB cắt AB tại K. Chứng minh rằng HK // BC.
TO
A
BỒ
ID Ư
Ỡ N
G
Hướng dẫn tìm lời giải:
https://daykemquynhonofficial.wordpress.com/blog/
Đ
A1 A2 B1 B2 C1C2 S ABC + + = = 1 (đpcm) A1 A B1 B C1C S ABC
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
ẠO
CC S B1 B2 S HAC (3) và 1 2 = HAB (4) = C1C S ABC B1 B S ABC
Từ (2), (3) và (4) suy ra:
N
TP .Q
U
AA HK S HAB A1 A2 MK . Kết hợp với (1) suy ra: 1 2 = (2) = = A1 A KA A1 A KA S ABC
G
Tương tự ta có:
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
Theo định lý Ta-lét ta có:
Y
= BCH (cùng phụ với góc ABC) suy ra BCH = BCM nên tam giác BCM Lại có BAK cân tại C, do đó HK = KM (1) AMA2 = 900 nên MA2//BC
N
= BCM . và BAK
minh .
Để
chứng
minh
KH//BC
ta
chứng
K
H
AH AK , hãy tìm cách chuyển các tỉ số ở hai = HC KB
vế đẳng thức về cùng một tỉ số bằng cách sử dụng tính chất đường phân giác trong tam giác. Lời giải:
B
M
C
16
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
=> AK = AM Theo giả thiết: MK là phân giác của AMB KB
MB
AH AM = HC MC AH AK Mà MB = MC (theo giả thiết) nên suy ra: . = => KH / / BC (định HC KB
OB OE thức = OF OC
* Lời giải tóm tắt: Theo giả thiết MB//NF
M
O
N
C
00
B
B
OB OM (1) = OF ON OE OM NC//ME => (2) = OC ON OB OE Từ (1) và (2) suy ra: = => BE / / CF (Định lý Ta-lét đảo) OF OC
C
ẤP
2+
3
10
=>
a c = b d
Í-
H
minh hệ thức dạng
Ó
A
Nhận xét: Ta chuyển từ yêu cầu chứng minh 2 đường thẳng song song về chứng
G
TO
ÁN
-L
Ví dụ 3(lớp 8):Cho ∆ ABC, có AB + AC = 2.BC. Gọi I là giao điểm 3 đường phân giác trong, G là trọng tâm của ∆ ABC (I khác G). Chứng minh rằng IG // BC . * Hướng dẫn tìm lời giải:
ID Ư
Ỡ N
Để chứng minh IG // BC, ta phải chứng minh
BỒ
F
D
Từ giả thiết của bài toán suy ra:
Hãy chứng minh
AI AG AI hay = 2 = ID GM ID
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
Ư N
A
TR ẦN
Hãy sử dụng các đường thẳng song song trong giả thiết và định lý Ta-lét để chứng minh hệ
https://daykemquynhonofficial.wordpress.com/blog/
G
OB OE = OF OC
H
BE / / CF ⇔
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
đảo) Ví dụ 2(lớp 8):Qua giao điểm O của 2 đường chéo tứ giác ABCD, kẻ 1 đường thẳng tuỳ ý cắt cạnh AB tại M và CD tại N. Đường thẳng qua M song song với CD cắt AC ở E và đường thẳng qua N song song với AB cắt BD ở F. Chứng minh BE//CF. * Hướng dẫn tìm lời giải: E
H Ơ
Ta-lét
N
lý
N
MH là phân giác góc AMC suy ra:
AB + AC =2 BC
AB + AC AI , bằng cách sử dụng tính = BC ID
chất của đường phân giác. * Lời giải:
A
17 I
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
G
www.facebook.com/daykemquynhonofficial C B www.facebook.com/boiduonghoahocquynhonofficial M D
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
H Ơ N
AG =2 GM
(4)
AG AI = => IG BC GM ID
(Đpcm)
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
* Chú ý: + Bài toán đảo của bài toán trên vẫn đúng: Từ IG//BC => AB+ AC = 2.BC + Nếu thay giả thiết AB + AC = 2.BC bằng giả thiết AB + AC < 2.BC thì kết luận của bài toán thay đổi như thế nào? (IG cắt tia MC) Ví dụ 4(lớp 8):∆ ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, CA. Chứng minh rằng M, N, P, Q thẳng hàng. * Hướng dẫn tìm lời giải: A Yêu cầu bài toán chứng minh M, N, P, Q E thẳng hàng. Giả thiết của bài toán cho các đường F thẳng vuông góc, từ đó sẽ có các đường thẳng song H Q P song. Hãy chứng minh M, N, P, Q thẳng hàng N M bằng cách chứng minh nó cùng nằm trên một đường thẳng song song với EF. B C D * Lời giải tóm tắt: Từ giả thiết suy ra: AE AH (1) (theo định lý Ta-lét) = EQ HD
TO
ÁN
HE // DQ =>
AF AH (2) (theo định lý Ta-lét) = FM HD AE AF Từ (1) và (2) suy ra: = => EF / / MQ (*) (theo định lý Ta-lét đảo) EQ FM
BỒ
ID Ư
Ỡ N
G
HF/ / DM =>
https://daykemquynhonofficial.wordpress.com/blog/
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
Từ (3) và (4) suy ra:
TP .Q
(3)
Vì G là trọng tâm của ∆ ABC nên:
http://daykemquynhon.ucoz.com
Y
AI =2 ID
ẠO
Từ (1) và (2) suy ra
AB + AC AI (2) = BC ID
U
Theo giả thiết AB + AC = 2. BC =>
(1)
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
AI AB AC AB + AC AB + AC = = = = ID BD CD BD + CD BC
Đ
.
N
Gọi AI cắt BC ở D, AG cắt BC tại M. Nối B với I, C với I sử dụng tính chất đường phân giác trong tam giác ta được:
DM // CF suy ra: DN // CE suy ra:
BM BD (3) (theo định lý Ta-lét) = BF BC BN BD (4) (theo định lý Ta-lét) = BE BC
Từ (3) và (4) suy ra: MN // EF
(**)
18
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
CQ CD (5) (theo định lý Ta-lét) = QE DB
DQ // BE suy ra:
CP CD (6) (theo định lý Ta-lét) = PF DB CP CQ Từ (5) và (6) suy ra: = => PQ / / EF PF QE
H Ơ
N
DP // BF suy ra:
00
C
2+
3
* Lời giải tóm tắt: Gọi M, O, N lần lượt là giao điểm của EF, AC, GH với BD. ME DM = AO DO MF DM MF // OC suy ra = OC DO MF ME Từ (1) và (2) suy ra: = OC AO
(1)
ẤP
ME // AO suy ra:
Ó
A
C
(2)
Í-
H
hay
ÁN
-L
Chứng minh tương tự ta cũng được
TO
Từ (*) và (**) suy ra:
NH OC = NG OA
MF OC = ME OA
(*) (**)
NH MF mà EF // GH nên suy ra: GE, BD, HF đồng quy = NG ME
BỒ
ID Ư
Ỡ N
G
Nhận xét: Hệ quả của định lý Ta-lét tổng quát cho ta một cách chứng minh đường thẳng đồng quy. Ở bài toán trên nếu GH = EF thì 3 đường thẳng GE, BD, HF có mối quan hệ với nhau như thế nào? Ví dụ 6(lớp 8): Cho hình thang ABCD (AB < CD), AD cặt BC tại I, AC cắt BD tại O. M, N lần lượt là trung điểm của AB, DC. Chứng minh rằng I, M, O, N thẳng hàng.
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
H
B
ME NG ME DM ,. = = MF NH AO DO
10
.
B
https://daykemquynhonofficial.wordpress.com/blog/
TR ẦN
H
Ư N
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
U
Y
Kết hợp (*), (**) và (***) suy ra: M, N, P , Q thẳng hàng. * Nhận xét: Chứng minh các điểm thẳng hàng bằng cách chứng minh chúng cùng nằm trên một đường thẳng cố định. Ví dụ 5(lớp 8): Cho tứ giác ABCD, vẽ các đường thẳng d1//d2 // AC. d1 cắt AD, BC theo thứ tự tại E và F. d2 cắt BA, BC theo thứ tự tại G và H (GH khác EF). Chứng minh rằng EG, DB, HF đồng quy. * Hướng dẫn tìm lời giải: A Theo giả thiết EF // AC // GH yêu cầu E G bài toán phải chứng minh GE , BD, HF đồng O D quy, ta suy nghĩ đến việc sử dụng hệ quả của M N định lý Ta-lét tổng quát, EG, BD, FH đồng quy F nếu như ta chứng minh được hệ thức
N
(***)
19
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Hướng dẫn giải Đây là một bài tập khá đơn giản, việc chứng minh nó có thể sử dụng định lý Ta-lét trong tam giác hay phương pháp diện tích. ở đây ta trình bày lời giải theo cách sử dụng hệ quả của định lý Ta-lét tổng quát. Lời giải: Theo giả thiết M là trung điểm của AB, N là
ẠO
MA MB mà AB// DC = ND NC
BỒ
ID Ư
Ỡ N
G
TO
ÁN
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
https://daykemquynhonofficial.wordpress.com/blog/
nên suy ra AD, MN, BC đồng quy hay I∈ MN(2) Từ (1) và (2) suy ra: I, M, O, N thẳng hàng. * Nhận xét: - Bài toán trên được vận dụng nhiều trong giải toán với tên gọi Bổ đề hình thang: “Trong hình thang có hai đáy không bằng nhau, đường thẳng đi qua giao điểm của các đường chéo và đi qua giao điểm các đường thẳng chứa hai cạnh bên thì đi qua trung điểm của hai đáy” Ngược lại: “ Trong hình thang có hai đáy không bằng nhau, giao điểm của hai cạnh bên, giao điểm của hai đường chéo và trung điểm của hai đáy là các điểm thẳng hàng” Ta có thể sử dụng Bổ đề hình thang để dựng trung điểm của đoạn thẳng mà chỉ dùng thước, và có thể vận dụng bổ đề hình thang để vận dụng giải một số bài toán hình học. Ta có thể xét một số ví dụ sau: Ví dụ 7(lớp 8).Xét ví dụ 5_Dạng 1(Trích đề thi HOMC 2006) Cho tam giác ABC, PQ//BC với P, Q là các điểm tương ứng thuộc AB và AC. Đường thẳng PC và QB cắt nhau tại G. Đường thẳng đi qua G và song song với BC cắt AB tại E và AC tại F. Biết PQ = a và EF = b. Tính độ dài của BC. Lời giải (tóm tắt): A Gọi M, N lần lượt là giao điểm của AG với PQ và BC. Áp dụng bổ đề hình thang cho các hình thang: BCQP M và BCEF dễ dàng suy ra được: MP = MQ; GE = GF; Q P NB = NC. E F G Vì PQ//EF//BC nên theo hệ quả định lý Ta-lét ta có:
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U
C
TP .Q
N
Đ
Lại có:
H Ơ Y
N
O
D
MB MA = ND NC
N
B
M
A
Mà AB // DC suy ra: MN, BD, AC đồng quy hay O ∈ MN (1)
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
trung điểm của DC, nên suy ra:
I
B
N
C
20
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
H Ơ Y
N
ab BC BC PC GC − = − = 1 suy ra BC = b 2a − b a PG PG 2
H
Ư N
A
TR ẦN
Mà A, I, J thẳng hàng. Từ đó cho ta định hướng chứng minh góc tạo bởi AD’ và AH với AI bằng nhau.
D'
F
B
B
D
H
00
Từ mối quan hệ giữa tiếp tuyến và dây cung ta suy ra được IF//GJ.
I
3
10
C
G
ẤP
2+
Từ đó vận dụng định lý Ta-lét và tam giác đồng dạng ta chứng minh được bài toán.
A
C
Lời giải tóm tắt:
J
-L
Í-
H
Ó
Gọi F và G tương ứng là tiếp điểm của đường tròn (I) và đường tròn (J) với AB.
ÁN
Ta có IF ⊥ AB, GJ ⊥ AB nên IF//GJ. Theo Ta-lét ta có: ID' AI . = JH AJ
G
TO
JH nên
AI IF mà ID’ = IF, JG = = GJ AJ
https://daykemquynhonofficial.wordpress.com/blog/
Để chứng minh A, D’, H thẳng hàng ta cần chứng minh AD’ và AH trùng nhau.
G
Đ
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
TP .Q
Ví dụ 8 (lớp 9). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với cạnh BC tại D, đường tròn tâm (J) bàng tiếp góc A của tam giác tiếp xúc với cạnh BC tại H. Vẽ đường kính DD’ của đường tròn (I). Chứng minh ba điểm A, D’, H thẳng hàng. Hướng dẫn tìm lời giải:
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U
Từ (1) và (2) ta có:
N
BC PC BC PC (1) = ⇔ = b EG GC GC 2 BC GC BC GC (2) = ⇔ = PQ PG a PG
BỒ
ID Ư
Ỡ N
' = nên AJH suy ra △ AID ' ∼△ AJH (c-g-c), ta có I AD ' = JAH Lại có: DD’//JH nên AID hai tia AD’ và AH trùng nhau, nghĩa là ba điểm A, D’, H thẳng hàng.
Nhận xét: Qua bài toán trên ta thấy nếu gọi bán kính đường tròn (I) là R và bán kính đường tròn (J) là R’ thì ta có:
R AD ' . = R ' AH
Vận dụng bài toán trên ta có thể giải bài toán sau:
21
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Ví dụ 9 (lớp 9). Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho bán kính
N
của đường tròn nội tiếp tam giác ABD và ACD bằng nhau. Chứng minh rằng các đường tròn bàng tiếp góc A của hai tam giác ABD và ACD cũng bằng nhau.
N
H Ơ
A
Y
N'
TP .Q
N
M
Đ
K'
TR ẦN
H
Ư N
G
K
Lời giải tóm tắt Theo bài toán trên ta chứng minh được tứ A, M’, H thẳng hàng. Và A, N, E
3
AM ' AN ' . Theo nhận xét trên dễ dàng suy ra: = AH AE
2+
theo định lý Ta-lét ta có:
10
00
B
thẳng hàng. Dễ dàng chứng minh được MM’N’N là hình chữ nhật nên MM’ //BC. Nên
ẤP
IM ' I ' N ' mà IM’ = I’N’ từ đó suy ra: KH = K’E (đpcm) = KH K ' E
A
C
Ví dụ 8(lớp 8).Định lý Menelaus (Nhà toán học cổ Hy Lạp, thế kỷ I sau công
-L
Í-
H
Ó
nguyên) Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm
ÁN
thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi
TO
A'B B ' C C ' A . . =1 A'C B ' A C ' B
G
Chứng minh * Trường hợp 1: Trong 3 điểm A’, B’, C’ có đúng 2 điểm thuộc cạnh tam giác ABC. Giả sử là B’, C’
BỒ
ID Ư
Ỡ N
M
Phần thuận Qua A kẻ đường thẳng song song với BC cắt đường thẳng B’C’ tại M. 22
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
https://daykemquynhonofficial.wordpress.com/blog/
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
C
E
ẠO
H
B
U
I' I
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
M'
A
C' B'
B
C
A'
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
Ta có:
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
C'A AM B ' C A ' C A'B B ' C C ' A AM A ' C A ' B . Vậy . . = . . =1 = ; = C ' B A ' B B ' A AM A ' C B ' A C ' B A ' B AM A ' C
Phần đảo: Gọi A’’ là giao của B’C’ với BC.
N
thẳng hàng .
TR ẦN
Ví dụ 9(lớp 8). Định lý Ceva (Nhà toán học Ý, 1647-1734) Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC,
N
C'
2+
Phần thuận: Qua A kẻ đường thẳng song song
A'B B ' C C ' A . . = 1. A 'C B ' A C ' B A
M
3
Chứng minh
10
00
B
CA, AB. Khi đó AA’, BB’, CC’ đồng quy khi và chỉ khi
B'
ẤP
với BC cắt đường thẳng BB’, CC’ tại M, N. Theo hệ quả định lý Ta-lét ta có:
C
I
Ó
A
B ' C BC C'A AN A ' B AM . = ; = ; = B ' A AM C ' B BC A ' C AN
H
B
C
Í-
A'B B ' C C ' A AM BC AN . . = . . =1 A ' C B ' A C ' B AN AM BC
-L
Vậy ta có
A'
G
TO
ÁN
Phần đảo: Gọi I là giao của BB’ và CC’. Giải sử AI cắt BC tại A’’, suy ra A’’ cũng thuộc BC.
BỒ
ID Ư
Ỡ N
Theo định lý Ceva (phần thuận) ta có nên
https://daykemquynhonofficial.wordpress.com/blog/
H
Ư N
G
Đ
* Trường hợp 2: Trong 3 điểm A’, B’, C’ không có điểm thuộc cạnh tam giác ABC được chứng minh tương tự.
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TP .Q
A''B A ' B và A’, A’’ nằm ngoài cạnh BC suy ra A '' ≡ A ' . Do đó A’, B’, C’ = A '' C A ' C
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
Vậy
U
nên A’’ nằm ngoài cạnh BC.
N
A''B A ' B A'B B ' C C ' A . Do B’, C’ lần lượt thuộc cạnh CA, AB . . = 1 nên = A 'C B ' A C ' B A '' C A ' C
Y
mà
A''B B ' C C ' A . . =1 A '' C B ' A C ' B
H Ơ
Áp dụng định lý Menelaus (phần thuận) ta có
A''B B ' C C ' A A'B B ' C C ' A . . = 1 mà . . =1 A '' C B ' A C ' B A'C B ' A C ' B
A'B A '' B . Từ đó suy ra A '' ≡ A ' . Do đó AA’, BB’, CC’ đồng quy = A ' C A '' C
Nhận xét: Định lý Menelaus và định lý Ceva là những định lý được áp dụng nhiều trong các bài toán hình học trong bồi dưỡng HSG, trong các đề thi vào trường 23
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
chuyên toán, chuyên tin và các kì thi học sinh giỏi. Sau đây là một số bài toán áp
H Ơ N Y
00 A
ẤP
(định lý Ta lét đảo) mà AB ⊥ BC = 900 ⇒ MF ⊥ BC ⇒ MFC
I B
O
2+
3
10
MA FB Từ (1) và (2) ta có . Do đó MF // AB = CM CF
F
C
N
D
Í-
H
Ó
A
= EBA (cùng phụ với góc EAB); Ta có EFB = EMC (tứ giác AMEB nội tiếp) EBA
-L
= EMC ⇒ Tứ giác MEFC nội tiếp ⇒ EFB = MFC = 900 . Do đó: ME ⊥ EC ⇒ MEC
ÁN
(3).
BỒ
ID Ư
Ỡ N
G
TO
= 900 (chắn nửa đtròn) ⇒ ME ⊥ EN (4). Lại có MEN Từ (3) và (4) suy ra C, E, N thẳng hàng. Ví dụ 11(lớp 9). (Trích Đề thi vào lớp Chuyên Toán, Vĩnh Phúc 2013-2014)
https://daykemquynhonofficial.wordpress.com/blog/
E
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TP .Q
Ư N H M
B
(2)
TR ẦN
AB OI CM OI MA . . =1⇒ = (1) BO IC MA IC 2CM Tương tự với tam giác BCO và ba điểm thẳng hàng là A, I, F ta có:
G
ba điểm thẳng hàng là B, I, M ta có:
OI FB = IC 2CF
C
Đ
ẠO
Lời giải. Áp dụng định lý Menelaus vào tam giác ACO với
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
U
Cho đường tròn (O; R) đường kính AB. Qua B kẻ tiếp tuyến d của đường tròn (O). MN là một đường kính thay đổi của đường tròn (M không trùng với A, B). Các đường thẳng AM và AN cắt đường thẳng d lần lượt tại C và D. Gọi I là giao điểm của CO và BM. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai là E, cắt đường thẳng d tại F. Chứng minh ba điểm C, E, N thẳng hàng.
N
dụng các định lý trên: Ví dụ 10(lớp 9): (Trích Câu 5.d Đề HSG tỉnh Phú Thọ 2010-2011)
Cho tam giác nhọn ABC, AB < AC . Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi P là giao điểm của đường thẳng BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S. Chứng minh: a) Tứ giác BQCR nội tiếp.
24
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
b)
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
PB DB và D là trung điểm của QS. = PC DC
Lời giải. a) Do AB < AC nên Q nằm trên tia đối của tia BA và R nằm trong đoạn CA,
N
ẠO
D
M
B
DC HC = AF HA
10
00
DB AE HB AE FB . . = = (1) DC AF HC AF EC
C
PB DB = ( 3) PC DC
A
Từ (1) và (2) ta được
ẤP
2+
PB EC FA PB AE FB . . . =1⇔ = ( 2) PC EA FB PC AF EC
3
Áp dụng định lý Menelaus cho tam giác ABC với cát tuyến PEF ta được:
H
Ó
Do QR song song với EF nên theo định lý Ta-lét
DQ BD DS CD . = , = PF BP PF CP
-L
Í-
Kết hợp với (3) ta được DQ = DS hay D là trung điểm của QS.
ÁN
c). Gọi M là trung điểm của BC. Ta sẽ chứng minh DP.DM = DQ.DR .
TO
Thật vậy, do tứ giác BQCR nội tiếp nên DQ.DR = DB.DC (4). DC − DB = DB.DC 2
Ỡ N
G
Tiếp theo ta chứng minh DP.DM = DB.DC ⇔ DP
https://daykemquynhonofficial.wordpress.com/blog/
G Ư N
H
DB HB = AE HA
TR ẦN
b) Tam giác DHB đồng dạng tam giác EHA nên
C
Đ
Q
tiếp.
Tam giác DHC đồng dạng tam giác FHA nên
S
B
= BQR hay tứ giác BQCR nội Từ đó suy ra BCA
R
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
U H
TP .Q
F
P AFE = BQR Do QR song song với EF nên
Y
E
, AFE = BCA Do tứ giác BFEC nội tiếp nên
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
H Ơ
A
từ đó Q, C nằm về cùng một phía của đường thẳng BR.
Từ hai tỷ số trên ta được
N
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC.
BỒ
ID Ư
DP ( DC − DB ) = 2 DB.DC ⇔ DB ( DP + DC ) = DC ( DP − DB ) ⇔ DB.PC = DC.PB
⇔
PB DB (đúng theo phần b). Do đó DP.DM = DB.DC ( 5) = PC DC
Từ (4) và (5) ta được DP.DM = DQ.DR suy ra tứ giác PQMR nội tiếp hay đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC.
25
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Ví dụ 12(lớp 9). (Trích Đề thi vào lớp Chuyên Tin, Vĩnh Phúc 2011-2012)Cho tam giác ABC có AB = AC. Trên các cạnh AB, AC lần lượt lấy các điểm E , D sao
H Ơ
N
cho DE = DC. Giả sử đường thẳng đi qua D và trung điểm của đoạn thẳng EB cắt đường thẳng BC tại F .
Y TP .Q
U
A
ẠO
GA EA = ⋅ GD ED G
GA FD EM GA FM EA ⋅ ⋅ =1⇒ = ⋅ GD FM EA GD FD EM
TR ẦN
D
Lấy I ∈ BC sao cho DI AB . Khi đó do hai tam giác FMB, FDI đồng
B C
3
2+
ẤP
C
M
B
F
FM BM BM = = FD DI DE
EA EA = EM MB
Ó
A
GA FM EA BM EA EA điều phải chứng minh. = ⋅ = ⋅ = GD FD EM DE BM ED
H
Vậy
γ
β Ι
Do ∆ABC cân, DI AB nên ∆DCI cân, hay DI = DC = DE suy ra: Do M là trung điểm của BE nên EM = MB do đó
E
α
α
00
FM BM = FD DI
γ
γ
10
dạng nên
H
Ư N
∆ADM với cát tuyến G , E , F ta có:
BỒ
ID Ư
Ỡ N
G
TO
ÁN
-L
Í-
KẾT LUẬN SỐ 2: - Định lý Ta-lét đảo cho ta một cách chứng minh 2 đường thẳng song song. Khi gặp bài toán chứng minh hai đường thẳng song song ta có thêm một cách phân tích để tìm lời giải, chuyển từ chứng minh đường thẳng song song về chứng minh hệ thức đoạn thẳng. - Bài toán chứng minh nhiều điểm thẳng hàng, nhiều đường thẳng đồng quy ngoài những cách phân tích tìm lời giải quen thuộc ta có thêm cách phân tích tìm lời giải theo hướng sử dụng kết qủa suy ra từ định lý Ta-lét, bổ đề hình thang, định lý Menelaus và định lý Ceva.
https://daykemquynhonofficial.wordpress.com/blog/
Áp dụng định lý Ménélaus cho
Đ
Ta sẽ chứng minh
G
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
http://daykemquynhon.ucoz.com
điểmcủa các đường thẳng EF , AC.
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
Lời giải. Gọi M là trung điểm BE , G là giao
N
AED. Chứng minh rằng đường thẳng EF chia đôi góc
26
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
H Ơ N
A'M B 'M C 'M + + =3 A 'G B 'G C 'G
1 2
Ư N
G
b) Chứng minh rằng kết luận của câu a) vẫn đúng nếu thay điều kiện : “M là CN = 2 ” bởi điều kiện tổng quát hơn ND CN BM “M trên cạnh BC, N trên cạnh CD sao cho ” =2 ND MC
TR ẦN
H
trung điểm của BC, N trên cạnh CD sao cho:
BM CN AP = = = k ( k > 0) MC CA AB
ẤP
và P sao cho:
2+
3
10
00
B
Bài 3(lớp 8): Cho ∆ ABC, I là giao điểm 3 đường phân giác , G là trọng tâm ∆ ABC, biết AB = 8cm, AC = 12 cm, BC = 10 cm, . a) Chứng minh: IG // BC b) Tính IG = ? Bài 4(lớp 8+9): Cho ∆ ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N
BỒ
ID Ư
Ỡ N
G
TO
ÁN
-L
Í-
H
Ó
A
C
a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là ∆(k). b) Tìm k để diện tích tam giác ∆(k) nhỏ nhất. Bài 5(lớp 8): Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho bán kính của đường tròn nội tiếp tam giác ABD và ACD bằng nhau. Chứng minh rằng các đường tròn bàng tiếp góc A của tam giác ABD và ACD cũng bằng nhau. Bài 6(lớp 8+9). Cho tam giác ABC và điểm M nằm trong tam giác. AM, BM, CM lần lượt cắt các cạnh đối diện tại A1, B1, C1. Giả sử đường tròn ngoại tiếp tam giác A1B1C1 cắt các cạnh BC, CA, AB tại điểm thứ hai là A2, B2, C2. Chứng minh AA2, BB2, CC2 đồng quy. Bài 7 (lớp 9). Cho (O1) và (O2) cắt nhau tại hai điểm A, B. Các tiếp tuyến tại A và B của (O1) cắt nhau ở K. Lấy điểm M nằm trên (O1) không trùng A và B. Đường thẳng AM cắt (O2) tại điểm thứ hai P, đường thẳng KM cắt (O1) tại điểm thứ hai là C và đường thẳng AC cắt (O2) tại điểm thứ hai là Q. Gọi H là giao điểm của PQ với đường thẳng MC. Chứng minh rằng: H là trung điểm của PQ.
https://daykemquynhonofficial.wordpress.com/blog/
Đ
Gọi giao điểm của AM, AN với BD là P, Q. Chứng minh: S( APQ ) = S ( AMN )
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
ẠO
CN =2 . ND
CD sao cho:
http://daykemquynhon.ucoz.com
TP .Q
U
Bài 2(lớp 8): a) Cho hình bình hành ABCD, M là trung điểm của BC, điểm N trên cạnh
Y
C’. Chứng minh:
N
III – MỘT SỐ BÀI TẬP ÁP DỤNG. Bài 1(lớp 8): Cho ∆ ABC đều, trọng tâm G, M là một điểm bất kỳ nằm bên trong tam giác, đường thẳng MG cắt các đường thẳng BC, AC, AB theo thứ tự ở A’, B’ ,
27
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial
https://twitter.com/daykemquynhon https://plus.google.com/+DạyKèmQuyNhơn
www.facebook.com/daykem.quynhon https://daykemquynhon.blogspot.com
Bài 8(lớp 8+9). Cho góc xOy, trên tia Ox lấy hai điểm C và A, trên tia Oy lấy hai điểm D và B sao cho AD cắt BC tại E. Các đường thẳng AB và CD cắt nhau tại K;
H Ơ N
ẠO
Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định
ÁN
BỒ
ID Ư
Ỡ N
G
https://daykemquynhonofficial.wordpress.com/blog/
-L
Í-
H
Ó
A
C
ẤP
2+
3
10
00
B
TR ẦN
H
Ư N
G
Đ
Trong thời gian giảng dạy ở trường THCS, qua học hỏi kinh nghiệm của các thày cô giáo và các bạn đồng nghiệp, tôi đã viết đề tài này với mong muốn được trao đổi với đồng nghiệp những kinh nghiệm trong quá trình dạy và BD HSG toán. Trong phạm vi của đề tài tôi đã cố gắng hệ thống lại hai dạng bài tập vận dụng định lý Ta-lét mà học sinh thường gặp trong quá tình giải toán, đặc biệt là trong bồi dưỡng HSG. Tuy đã có cố gắng tìm tòi, nghiên cứu nhưng do trình độ, kinh nghiệm còn hạn chế và thời gian có hạn chắc chắn đề tài còn có nhiều thiếu sót, hạn chế. Tôi rất mong được sự góp ý của các bạn đồng nghiệp để nội dung đề tài được phong phú và đầy đủ hơn. Trân trọng cảm ơn!
TO
http://daykemquynhon.ucoz.com
PHẦN 3: KẾT LUẬN
DẠY KÈM QUY NHƠN OFFICIAL ST&GT : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN
TP .Q
U
Bài 9(lớp 9): Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho bán kính của đường tròn nội tiếp tam giác ABD và ACD bằng nhau. Chứng minh rằng các đường tròn bàng tiếp góc A của tam giác ABD và ACD cũng bằng nhau.
N
IA KA = IB KB
Y
tia OE cắt AB tại I. Chứng minh rằng:
28
Đóng góp PDF bởi GV. Nguyễn Thanh Tú
www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial