BÀI TẬP CƠ CHẾ PHẢN ỨNG HÓA HỌC HỮU CƠ
vectorstock.com/28062440
Ths Nguyễn Thanh Tú eBook Collection
BÀI TẬP CƠ CHẾ PHẢN ỨNG HÓA HỌC HỮU CƠ NÂNG CAO CÓ ĐÁP ÁN
有機反応機構 by 福⼭ 透
演習で学ぶ
WORD VERSION | 2022 EDITION ORDER NOW / CHUYỂN GIAO QUA EMAIL TAILIEUCHUANTHAMKHAO@GMAIL.COM
Tài liệu chuẩn tham khảo Phát triển kênh bởi Ths Nguyễn Thanh Tú Đơn vị tài trợ / phát hành / chia sẻ học thuật : Nguyen Thanh Tu Group Hỗ trợ trực tuyến Fb www.facebook.com/DayKemQuyNhon Mobi/Zalo 0905779594
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
benzyloxycarbonyl 10-camphorsulfonic acid chlorosulfonyl isocyanate cyclohexyl 1,4-diazabicyclo[2.2.2]octane
methoxymethyl methanesulfonyl
MS n NBS
molecular sieves normal N-bromosuccinimide
NCS NMM
N-chlorosuccinimide N-methylmorphuline
IC IA L
Cbz CSA CSI Cy DABCO
MOM Ms
FF
aryl benzyl t-butoxycarbonyl butyl catalytic amount
m-chloroperbenzoic acid methyl (2-methoxyethoxy)methyl
O
Ar Bn Boc Bu cat
mCPBA Me MEM
NMO Ns o
N-methylmorpholine-N-oxide o-nitrobenzenesulfonyl, nosyl ortho
Ơ
acelyl acetylacetonate 2,2"-azobisisobutyronitrile aqueous
liquid meta
H
Ac acac AIBN aq
liq m
N
heat
dibenzylidenacetone 1,8-diazabicyclo[5.4.0]undec-7-ene N.N'-dicyclohexylcarbodiimide 2,3-dichloro-5.6-dicyano-1,4benzo-quinone
p Ph
para phenyl
Pr rt s
propyl room temperature secondary
DEAD DMAP DME DMF DMSO
diethyl azodicarboxylate 4-(dimethylamino)pyridine 1,2-dimethoxyethane N, N-dimethylformamide dimethyl sulfoxide
SET t
single electron transfer tertiary
TBAF TBS Tf
tetra-n-butylammonium fluoride t-butyldimethylsilyl trifluoromethanesulfonyl
dppb DPPE EDCI
1,4-bis(diphenylphosphino)butane 1,2-bis(diphenylphosphino)ethane 1-ethyl-3-(3-dimethylaminopropyl carbodiimide equivalent
TFA TFAA TfOH THF
trifluoroacetic acid trifluoroacetic anhydride trifluoromethanesullonic acid tetrahydrofuran
ẠY
KÈ
M
Q
U
Y
N
dba DBU ICC DDQ
D
eq
Et HMPA hv i KHMDS
ethyl hexamethylphosphoramide photoirradiation iso potassium hexamethyldisilazide
LDA
lithium diisopropylamide
TIPS TMS
triisopropylsilyl triraethylsilyl
tol tolyl TosMIC p-toluenesulfonylmethyl isocyanide Tr triphenylmethyl, trityl Ts TsOH
p-toluenesulfonyl, tosyl p-toluenestdfonic acid
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
Provide reasonable arrow-push mechanisms for following recations
O
O
NaCN (cat) H
EtOH-H2O reflux
IC IA L
OH
benzoin condensation
FF
O
H O
O
O
H CN
H
Ơ
N
CN
O
O
OH
CN
Q
U
Y
N
H CN
M
OH
D
ẠY
KÈ
CN
H O
O
OH
Adams, R; Marvel, C. S. Org. Synth., Coll. Vol.
1941, 94
Provide reasonable arrow-push mechanisms for following recations
A001 O2N
OMe
NaOH H2O, reflux
O O2N
OH
aq HCl
A002 O
H2SO4(cat) OH
OEt
O
EtOH reflux
O
SOCl2
Ơ
Me
N
A003 O
Me
Cl
N
H
OH
A004
Y aq NH4Cl
PhMgBr Et2O o 0 C to rt
KÈ
M
A005
OEt
Q
Me
PhMgBr (2 eq) Et2O o 0 C to rt
U
O
CN
Ph Ph Me
OH
O MeO
Ph
aq H2SO4
ẠY
MeO
A006
D
O H MgBr
Me N Me (DMF)
Et2O o 0 C to rt aq HCl
FF
O
O H
IC IA L
O
A007 N C N (DCC) O OH EtO
O
EtO
Me Me OH Me CH2Cl2, rt
FF
O
O
O
Me Me Me O
IC IA L
Me N N Me (DMAP)
O
O
O
Ơ
HO
(TsOH, cat) benzene reflux
N
H
+
OH
N
A008
A009
OMe
Y
O
Q
BnO
U
H
OMe
HC(OMe)3 MeOH reflux
BnO
Br2 HBr, (cat)
O
OH
O
O
O
Br
o
0 C
ẠY
KÈ
M
OH
A010
(TsOH, cat)
D
A011
NaCN, NH4Cl Et2O-H2O 0oC to rt
O Me
H
aq HCl reflux
H3N CO2H Me
H
A012 O
DMF, POCl3 0oC then
H
H2O
Me2N
A013 (HCHO)n Me2NH, HCl
O Me
O NMe2
FF
EtOH reflux
2) Ac2O, reflux
MeO
CN
N
H
MeO
MeO
N
H
1) NH2OH-HCl NaOH Et2O-H2O, rt
Ơ
O
O
A014
MeO
IC IA L
Me2N
A015
KÈ
A016
M
Q
OMe
O
H2O
MeMgBr Et2O, -40oC
H
NC
O
Me
aq H2SO4
ẠY
EtO
O
Et2O, 5oC
U
N OH
Y
PCl5
D
A017
Me
H2NNH2 O Me
Me
Me
Me
K2CO3 triethlene glycol reflux
Me Me
Me
A018
N H
CO2Et
H +
CO2Et
benzene reflux
CO2Et
IC IA L
O
CO2Et
H
+
2) H2O, acetone reflux
O
O
OH
N H
HN
N
Me
1) NaOAc Ac2O, reflux
O
O
FF
A019
Ơ
Me
O +
NaOH
H
EtOH-H2O rt
NaH DMSO, rt
M
A021
Q
U
Y
Me
O
N
O
H
A020
CO2Et CO2Et
KÈ ẠY
O
H3O+
CO2Et
A022
D
1) O
N H benzene reflux
O
O Me
2) Ac2O dioxane, rt; H2O, reflux
O
O
OH
A023
CO2Et EtO2C
IC IA L
Me
1) Br (1.02 eq) n-BuONa (1.0 eq) n-BuOH, reflux
Me
HO2C
FF
aq KOH, reflux; aq HCl 2) heat, 180oC
A024 O
O
Br2
Br
O
Me
AcOH 20oC
N
Br
Ơ
Br
H
A025 Br2, PCl3 70 oC
Me
N
OH O
Me
O Br
U
Y
H2O
OH
Q
A026 O Me
M
Me
H
KÈ
Me
H
H
NaOH EtOH-H2O H3O+
Me H HO
ẠY
HO
O Me
I2 (3eq) pyridine, ;
D
A027
Br2
O O
Me
EtOH 10oC
OEt Br
OEt
H H
OH
A028 1) BH3-THF (0.33 eq) THF, rt Me 2) NaOH aq H2O2, rt
OH
A029 O3, CH2Cl2 -78 oC;
OAc C10H21
OAc
C10H21
OHC
Me2S, rt
OBn
FF
OBn
O
A030
Me
O
O
Me Me O
N
A031
Y
Hg(OAc)2 Et2O-H2O, rt;
OH Me
U
Me
Hg(OTf )2 (1 mol%) H2O
O
MeCN-CH2Cl2 rt
Me
ẠY
KÈ
M
Q
NaBH4 aq NaOH, rt
A032
D
A033
MeO MeO
CHO 1) NH2
MeO I MgSO4, CH2Cl2, rt
2) CF3CO2H, benzene reflux
Me
O Me Me
H
Et2O, rt
O
Ơ
Me H2SO4
OH O
N
Me
HO
IC IA L
Me
NH
MeO I
A034 POCl3
MeO
toluene reflux
MeO
MeO Me
HN
MeO
N Me
IC IA L
O
A035 OH
OH
OH
aq NaOH
CHO
o
+
FF
CHCl3, 60 C
O
CHO
MeO
N
H
CH2Cl2 -78 oC to rt
O
A037
Y
HCl, NaNO2 H2O, 0 oC
U
NMe2 N
PhNMe2 0 oC
Q
NH2
N
CO2H
ẠY
KÈ
M
CO2H
A038
O
Ơ
H2C CH2 , AlCl3
Cl MeO
N
A036
Me
Na, liq NH3
Me
Me
EtOH, Et2O -78 oC
Me
D
A039
OMe CO2H
1) Na, liq NH3 THF, -78 oC C7H15Br -78 oC to rt 2) aq HCl ClCH2CH2Cl reflux
O C7H15
A040 CO2Me
NaH
NO2
NO2
THF 0 to 60 oC
F
CO2Me CO2Me
IC IA L
MeO2C
A041 PBr3
Me
Me
OH
0 oC to rt
OH
CrO3, H2SO4
Br
Me
FF
Me
N
O
(COCl)2 Me
Me
Me
A
H
o
Q
CH2Cl2, -50 C;
OH
O
M
Et3N -50 oC to rt
Me
Me
KÈ
Me
A
CH2Cl2 -50 oC
Y
O S
U
Me
N
H
Ơ
acetone-H2O rt
A043
O
A042
Me
ẠY
A044
D
O
O
NaIO4 aq NaHCO3
OH
OH O
2
O
CH2Cl2 rt
O
O CHO
A045 O
Me OH +
HO
CO2Et
EtO2C N NCO2Et Ph3P Benzene rt
Me
O O
CO2Et
A046 Me Me
Br
OH
aq H2SO4
Me
reflux
IC IA L
Br
A047 aq H2SO4
HO
reflux
OH
FF
O
Me
Me
H2SO4
N
Me
O
A048
Ơ
rt
Me
O
N
H
OH
A049 Me
KÈ
M
A050
D
ẠY
H
Br
Y
Q
OH
PhCN
O
O
U
OH Me Me
Me
conc H2SO4
Me NC
Me Me
5 oC
Ph
Me
N N CN e e M M ca t) AIBN , ( n-Bu3SnH benzene reflux
H
N
H
O
H
A051 HO
1) NaH, THF, CS2; MeI
H
H Ph
;
2) n-Bu3SnH, AIBN toluene, reflux
N O
H
H Ph
N O
A052 O
O K2CO3, reflux
Cl
IC IA L
NH
1)
H2N
FF
2) H2NNH2, MeOH reflux
A053
N Ơ
H
2) aq H2O2 MeOH 3) heat 160 oC
O
1) HCHO, HCO2H H2O, reflux
NH2
M KÈ
Cl
U
O
O (mCPBA)
Q
O
O H
Y
N
A054
O O
CH2Cl2 rt
A055
OH
O 85% H2SO4
HN
D
ẠY
N
A056 O H OH
aq H2O2 NaOH H2O, 50 oC
OH OH
A057 MeO
NH2
MeO
NaOCl NaOH
MeO
H2O 50 oC
MeO
NH2
IC IA L
O
A058 O Ph
OH
Ph
N
C
O
FF
1) ClCO2Et, Et3N acetone, 0 oC; NaN3, H2O
O
2) toluene reflux
Me O
H
N2
dioxane Et2O-H2O
H
O
U
A060
ẠY
KÈ
M
Q
Cl
A061
H
H HO
Y
HO
Me Me
H
H
N
Me
hv
Ơ
N
A059
O
NaOMe Et2O reflux
1) CHBr3, t-BuOK pentane -15 oC to rt 2) MeLi Et2O, -40 oC
D
OMe
A
A062 1) OH OMe
Br K2CO3 acetone, reflux
2) heat, reflux
OH OMe
H
CO2H
A063
TsOH (cat)
O
toluene,
O
IC IA L
O
A064 CO2Me
CO2Me
200 oC
O
CO2Me
O
A065 1) PhNHOH EtOH, rt
O
Ph
Ơ
2) PhHC CH2 60 oC
N Ph
N
CHO
FF
e O M O2C
H
Ph
N
A066
630 oC
O
Y
O
12 mmHg
U
Cl
Q
Me
M
A067
ẠY
KÈ
+
O
O O O
O
o-C6H4Cl2 reflux
O
D
A068
Me
Me
Me
Me OAc
SeO2 t-BuOOH H2O CH2Cl2 0 oC
Me
Me
Me OAc
OH
A069 O
CH2
Ph3P CH2
IC IA L
Et2O reflux
A070 O Br
O (EtO)2P
(EtO)3P OEt
OEt
FF
reflux
O
O (EtO)2P
O OEt
N
O
O
A071
NaH
H
O
N
benzene rt to 200 oC
Ơ
OEt
A072 NH2
U
H2N
Y
S 1)
Q
CN
Cl
H2O, 70 to 100 oC
CN
HS
M
2) aq NaOH, 45 oC
KÈ
A073
O
Me
1) NaH, THF, 0 oC PhSeCl, 0 oC
O
A074 O
1) Me3SiCH2MgBr Et2O, reflux 2) NaH, THF reflux
O Me
2) aq H2O2 CH2Cl2, rt
D
ẠY
O
CH2
A075 Me
CO2Me
Me
Pd(OAc)2 (cat) Ph3P (cat)
Br
Me
Me CO2Me
Me
Me
Me
IC IA L
Et3N, 150 oC Me
Pd(OAc)2 (cat) Ph3P (cat) Na2CO3
Br + (HO)3B
n-PrOH-H2O reflux
OHC
A077 Pd(OAc)2 (cat) CuCl (cat), O2
O
H
O
Ơ
N
O
OHC
FF
A076
Me
N
DMF-H2O, rt
Y
O
U
A078
Q
PCy3 Cl Ru Cl PCy3 Ph (cat)
D
ẠY
KÈ
M
Boc N
CH2Cl2 reflux
Boc N
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
Provide reasonable arrow-push mechanisms for following recations
H2O, reflux
O
OH
FF
NH2
H
O
O
O
IC IA L
f uming H2SO4 MeCN-hexane 0 oC to rt
HN
Me
N
H2O
Ơ
-H+
O H2N
OH Me
+H+
U
OH
Y
N
H
OH
+H+
N C Me
KÈ
M
Q
OH O
OH2
Me
NH2 -H+
+H+
N C Me
-H+
HO OH NH2
+H+
O H
Me
-AcOH
D
ẠY
OH
O HN OH
Me H2O
NH2
Jacobsen, E.N. Org. Synth, Coll. vol
2004. 29
Provide reasonable arrow-push mechanisms for following recations
B001 HO2C + MeNH2 +
O
CHO
MeN
H2O,
HO2C
B002 O
OH
FF
Al(i-OPr)3
O
i-PrOH reflux; aq HCl
OH
Ơ
NH2NH2 AcOH (cat)
N
B003 O
O
IC IA L
CHO
NaOH Na2HPO4 (pH 2.5-4.5)
O
N
H
EtOH, rt
B004
O
Y
1) aqH2O2, K2CO3 MeOH, 0 oC to rt
U
Ar =
2) ArSO2NHNH2 CH2Cl2-AcOT, rt aq K2CO3
Q
i-Pr
M
O
KÈ
B005
i-Pr
O NaCN (cat)
CHO
+
CN
DMF 35 oC
N
ẠY
i-Pr
CN N
D
B006
Cl
Bn
Me N
H
Me O + O Me
HO
S (cat) Et3N, EtOH 80 oC
O Me
Me O
B007 1) KOAc, Ac2O reflux O
CO2H
O
2) aq HCl, reflux
IC IA L
H
O
B008 O N H
Me
Me
KOH (cat) MeOH, reflux
aq HCl
benzene reflux
O
O
O
O Me
FF
O
N
B009 LiOMe
CO2Me
+ MeO2C
OMe
H
MeOH reflux
CO2H
Y
N
H
O
Ơ
O
U
B010
O
Q
Me Ph
ẠY
Et2O, rt
Ph
O OMe
M
KÈ
B011
OH
Me
H2C N N
OTs Li liq NH3
O
O
D
B012
CN Cl
NaNH2 liq NH3 -78 oC
CN
B013 NaNO2 aq HCl, 0 oC
NH2
Cl
IC IA L
CuCl2 (trace CuCl) 0 oC to rt
DCC, TFA pyridine OH
O Me
DMSO, rt
Me
H Me
HO
Ơ
N
B015
O
Me
FF
B014
Br
B016
U
OTs
t-BuOK
t-BuOH 40 oC
Q
H
Y
N
H2O, 0 oC
H
aq HBr
KÈ
B017
O
M
OH
n-Bu3SnH AIBN (cat)
Me
Me Me
benzene reflux
ẠY
I
H Me
Me Me H
D
B018
O
O Ph
O O (cat)
Ph
CHCl3, reflux
CCl3
H
B019 O
Cl
Me Cl O o CH2Cl2, -7 C NH HCl
MeOH, reflux
IC IA L
Ph N
B020 C5H11
N
Me3SiI CH2Cl2, reflux
CO2Me
H N
C5H11
O
MeOH, rt
CO2Me
FF
OMe
O
Pd(dba)2, (cat) dppb, Et2NH
N
O
NH
N
H
THF, rt
EtO2C
Ơ
O
EtO2C
N
B021
B022
Y
Ph
NO2
U
PhSH KOH
KÈ
MeO
M
Q
O O S N
CH3CN 50 oC
N H MeO
ẠY
B023
O
O BF3-Et2O O
Me Me
benzene
Me
CHO Me
Me Me
D
B024
O
Me
O Me S N O NO aq KOH, EtOH 10 to 20 oC
O
Ph
B025 NC Me Me
Me HMe
o-dichlorobenzene 180 oC
IC IA L
NC
B026 O
O
CH2Cl2 0 oC
H
O
SiMe3
FF
FeCl3
OH
Ơ
1) O2, hv acetone
N
B034
H
2) Et3N, CH2Cl2 reflux
N
O
Y
B035
1) O2, hv acetone 2) Ph3P benzene
M
Q
U
O
KÈ
B041
ẠY
Me
PhCHO CrCl2 (2 eq) Br
OH Ph
THF, o 0 C to rt
Me
D
B042
H2, CO HRhCO(PPh3)2 (cat) n-Bu
benzene, rt
CHO n-Bu
CHO
+
n-Bu
Me
B045 S
KSCN Ph
dioxane-H2O 60 oC
H
IC IA L
O H Ph
B046 O Me
Me
MeOH Me2N
OMe
N N H
Y
N
NO2
2) Raney Ni, NH2NH2 THF-MeOH rt to 50 oC
H
Me
OBn
Ơ
1) Me2NCH(OMe)2 pyrrolidine DMF, 110 oC
O
B047
OBn
FF
MeO
O
Me2NH (1.1 eq)
Q
U
B048
O O S
NC
M
Me (TosMIC)
CN
t-BuOH, EtOH DME 5 to 40 oC
ẠY
KÈ
O
D
B049
1) CBr4 (1 eq) Ph3P (2 eq) CH2Cl2, 0 oC
O n-C7H15
H
2) n-BuLi (2 eq) THF, -78 oCto rt H2O
n-C7H15
H
B050 O
2) n-BuLi (2.2 eq) THF, -78 oC to rt benzophenone 0 oC to rt
Me Me
Ph Ph
Me Me
i-Pr Ar =
OH
IC IA L
Me Me
1) ArSO2NHNH2 HCl, MeCN, rt
i-Pr
Me Me
O
CO2Na AcOH
+
MeOH-H2O 35 oC
NH OMe
Ơ
CO2Me NH2
OMe
N
H
HO
HO
N
MeO
HO
CO2Me
HO
O
MeO
FF
B051
i-Pr
O
U
O
Y
B052
(HCHO)n K2CO3
H
Q M
KÈ ẠY
CO2Me
+
OH OH
N N (DABCO, cat)
O Me
O
MeOH reflux
O
B053
O
H
OH Me
heat, rt
CO2Me
D
B054
O
N H s T OH xylene reflux
CO2Me Et2O, rt
1) aq HCl 60 oC 2) H2, Pd/Al2O3 MeOH, rt
O CO2Me
B055 O S N3 O
O
O
Ph
O
Et3N OEt
O
Ph
MeCN rt
OEt N2
O H3N
2) aq HCl, rt
Cl
S
N
S
O
N
1) t-BuOK EtOH-toluene 0 oC to rt
Ts
FF
B056
IC IA L
Me
Br2 NaHCO3
CO2Et
EtOH-Et2O reflux
N
Et2O, 0oC
Me
NaOEt
H
Me
Ơ
B057
U
Y
O
Q
B058
M
O
KÈ
CO2Me
KOH DMF, 60 oC
I2
O
MeI, rt
MeCN-H2O rt
O O
OMe
D
ẠY
B059
H2C N N , 2 eq Et2O, rt
O
MeO2C
Cl
O MeO2C
HBr
B060 CO2H N Me
Ac2O reflux
N Me
O
Br
B061
OH + H2N
CO2t-Bu
Et3N DMF, rt
11
Me
OH O
H N
Me 11
Me
OH O
B062 PCl5 POCl3 100 oC
N
Cl
B063 O OMe
O
CH2Cl2
N
OH
O
Me
H
DDQ
Ơ
N
N O
Me
CN
O
NH2
FF
O
Y
OMe
U
B064
Q
1)
KÈ
M
OMe
O Cl S N C O O (CSI) toluene, rt
CN OMe
2) DMF, rt OMe
ẠY
OMe
D
B065
NC CO2H NH2
O Br t-BuNO, H2O ClCH2CH2Cl reflux
N H
Br
CO2t-Bu
IC IA L
Me
O EtO P EtO CN
B066 OH 1) PhI(OAc)2 CF3CH2OH 2) NaHCO3 MeOH
O
N Cbz
H
CO2Me
FF
OH NHCbz
IC IA L
O
H
O
B067 MeO2C
CH2Cl2
cyclohexane CH2Cl2, rt
MeO2C
Ơ
N
Me TfOH (cat)
N Y
B068
CO2H
M
Q
U
t-BuOH, HCO2H H2SO4 CCl4, rt
KÈ
B069
O
Ph
ẠY
Ph
n-BuLi
Ph
Ph
Et2O, rt
OH
D
B070
Ph Ph
CO2Me
N NaH
OH
DMF-dioxane rt
Ph
CO2Me O
OBn Me
H
OH
OH
DBU (cat) Cl3CCN
B071 S
N n-Bu3SnH AIBN (cat)
O O
Me
H
IC IA L
N
benzene, reflux OH Me
CH2Cl2, -15 oC H
t-BuOK
Me SO2CH2Br
t-BuOH-THF 0 oC to rt
H
B073
O
Br
hv
N
Me
Br
Ơ
Br
O O S
FF
B072
Br
+
KNH2 hv
N
Me
Me
THF, rt
Y
Me
O
Q
U
O
M
B074
S
KÈ
N
N
Bu
hv BF3-Et2O THF, rt
ẠY
O
O
Bu N
N S
D
B075
Me Me
1) CHBr3, t-BuOK petroleum ether 0 oC t o r t 2) MeLi Et2O, 0 oC to rt
Me Me
B076 O Cl3C
Cl
OEt
NaOMe petroleum ether 0 oC to rt
IC IA L
Cl
B077
Ơ
N
2) MeLi, THF, -10 oC H3O+
O
CHO
FF
1) Cl3CCO2H, Cl3CCO2Na DMF, rt; Ac2O, rt Zn, AcOH, 60 oC
B078
SiMe3
N
H
BnNH2 aq HCHO TFA
OH
Y
H2O, 25 oC
NBn
Q
U
H
M
B079
KÈ
Me Me
Me
H
Me H
Me
H
O O S HN NH2 NO2 EtO2C N N CO2Et Ph3P, NMM -30 oC to rt
H
ẠY
HO
Me Me Me
Me H
H
H
H
N H
CO2Et
H
D
B080
CHO
1) Ph3P CHCO2Et benzene, reflux
NO2
2) (EtO)3P 170 oC
Me
B081 NaNO2
CO2H H Me
Cl
aq HCl rt
CO2H H Me
IC IA L
H2N
B082 MeO
NaNO2 A NH2
FF
aq HCl, 0 oC
CO2Et
Me
Me
H
CO2Et
Y
N
B083
(C6H13)3B
O
U
N2
M
Q
Ph
KÈ
B084
O
Me
THF-H2O reflux
ẠY
O C6H13
Ph
I2, AgNO3 HC(OMe)3 MeOH reflux; H2O
i-Bu
OMe O
i-Bu
B085
D
N H
Ơ
Et
2) aq HCl, EtOH 65 oC
MeO
N
O
O
1) KOH, EtOH-H2O A 0 oC
Me
Me
Me
Me
H2SO4 Me
O
Ac2O -20 oC to rt
O SO3H
B086 OMs Me
B2H6, THF
IC IA L
Me
aq NaOH reflux
B087 1) Br2, CHCl3-CH2Cl2 0 oC
O
O
2) t-BuOK, Et2O 65 oC
Ơ
N
B088
Me
O
Me
Me
FF
Me
N
toluene MS 4A reflux
N
U
Y
O
H
N N
N
+
N H
OH
M
N
Q
B089
+
CH2Cl2 0 oC
KÈ
H
N O
aq NaOCl Et3N
ẠY
B090
Me
+
AcO
D
O2N
PhN C O (2eq) Et3N benzene rt to 80 oC
O
N
Me
AcO
B091 CH3C(OMe)3 EtCO2H (cat)
Me
138 oC
HO Me
Me EtO2C Me
B092 O Me
PhCHO CSA N H Me OMe
Ph
benzene reflux
N
IC IA L
Me
Me
B093
O
2) toluene, 110 oC; 1 N HCl, THF, rt
Ơ
N
OMe
Ph
Y
NaH THF rt
U
Me
N
O S
H
B094
decalin 150 oC
Me
CHO
ẠY
KÈ
M
Q
OH
B095
OMe
HO2C
O
O
FF
1) TBSOTf , Et3N CH2Cl2 -78 to 0 oC
Br
1) 1,3-dithiane, 20 oC 2) n-BuLi, THF -78 oC 3) HgCl2, MeCN-H2O reflux
CHO
D
B096
Br
H N
CO2Et
CHO
K2CO3
Me
OH
DMF 20 oC
toluene reflux Dean-Stark trap
CO2Et
Me H
N H O
B097
Me H Me OH
2) hv , benzene, rt 3) THF-i-PrOH reflux
OAc
NO2
O
O
Ph
OH
Ơ
CCl4, rt
H Me OH
N
Ph
O
hv
Me
AcO
B098 O
IC IA L
AcO
AcO
FF
AcO
NOH
1) NaOCl, pyridine -78 oC
Me
H
B099
N
O Me P(OEt)2 n-BuLi
O
Me
O
THF -78 oC
PPh3 Br NaH CHO N H
Et2O reflux
N
D
ẠY
KÈ
B100
M
Q
U
Y
O
B101 N3 Ph
Ph OH
Ph3P
H
toluene reflux
Ph
H N
H Ph
OAc
B102 Ph3P Se TFA
H Ph
CH2Cl2, rt
Ph
Ph
IC IA L
H Ph
O
B103 1) N OH
N
toluene, reflux Ph
2) (MeO)3P reflux
Ph
Ơ
Ph
O
Ph
N
N
HO
N
FF
S
H
B104 O
N
C8H17
CCl4, rt
C8H17
C8H17
U
Y
C8H17
Me3SiI (2 eq)
Q
B105
M
OMOM C6H13
KÈ
H Si Me Me
ẠY
O
1) Pt[(H2C=CHSiMe2)2O]2 toluene, 60 oC
OMOM C6H13
2) 30% H2O2, aq KOH MeOH-THF, rt
OH OH
D
B106
Me Me
Me OH Me
PhSCl Et3N CH2Cl2 -78 oC to rt
Me Me
Me
Me SPh O
B107 O SmI2 (4 eq)
I
THF-HMPA 0 oC to rt
O
Me
O Me
IC IA L
MeO Me
HO
B108 MeO Me
OMe
MeO Me
MeNO2 0 oC
FF
Hg(OTf )2 (1% mol)
OMe
O
H Me
N
Me
Ơ
B109
H
PCy3 Cl Ru Cl PCy3 Ph (cat)
O
CH2Cl2 reflux
H
N
O
Q
U
Y
H
N
MeO2C
MeO2C
SMe2 I NaH
M
B110
KÈ
CHO
N H
THF, 0 oC
NaN3
N3 N
H2O, 0 oC
OH
ẠY
B111
D
TfOH
O Me
Ph
O CH2Cl2 0 oC
N3
Me
N
(n = 1)
O n
Ph
TfOH CH2Cl2 0 oC
Me NHPh
(n = 3)
B112 O O S Tol S
O
Et3N
aq HCl
MeCN, reflux
50 oC
S
B113
t-BuOH-DMF rt
H
O Me
N
Me N Me
THF, 0 oC
O
toluene reflux
O
Q
U
CO2H
CSA (0.1 eq)
Y
OH
OSiMe3
CO2Et
toluene reflux
OSiMe3
M CO2Et
Na (4eq) Me3SiCl (4 eq)
KÈ ẠY
NAc
N
O
Ơ
B114
B115
FF
NAc
O
O
HN
O
O
AcN
Ph
t-BuOK PhCHO
S
IC IA L
N
O O S Tol S
D
B116
O3 MeOH-CH2Cl2 -78 oC; TsOH -78 oC to rt NaHCO3 neu tralize); ( Me2S
OMe MeO
CHO
B117 O3 e M OH-CH2Cl2 -78 oC;
OMe CHO
IC IA L
O
evaporation; Ac2O, Et3N 0 oC
n-Bu3SnCl (cat) NaBH3CN AIBN, t-BuNC
I
O
OEt O
O
OEt
FF
B118
N
t-BuOH, reflux
Ơ
CN
O
N
BF3-Et2O
O
Y
N3
N
H
B119
Q
U
CH2Cl2, rt
M
B120
KÈ
Ph
N O
CH2Cl2 rt
ẠY
Cl
NOH
O
NMO, Et3N
D
B121
O
O
decalin 290 oC
Ph
B122 Me
Me
1) CH2N2, Et3N Et2O, 0 oC
O SO2Cl
Me
2) 95 oC
O
IC IA L
Me
B123
FF
PPh3Br
O
O
t-BuOK
N
THF, rt
Ơ
B124
1) CHCl3, reflux 2) PhSeCl, CH2Cl2 -78 oC
H
OTBS
Me
N
O Me
O H
Q
U
Y
3) aq H2O2, THF 0 oC
SH
KÈ
Ph
M
B125
1) ClCH2COPh, K2CO3 THF, rt
Ph
ẠY
2) hv , cyclopentadiene CH2Cl2, rt
S
D
B126
AcO
Me
Me
O Me N2
rhodium(II) mandelate CH2Cl2 reflux
AcO Me O
B127 OMe Ph
OMe
Ph
Ph Cr(CO)3 Ph
n-Bu2O 45 oC
OH
Ti(Oi-Pr)4 (cat) EtMgBr (2 eq)
O OMe
Me
Et2O, rt
OH
D
ẠY
KÈ
M
Q
U
Y
N
H
Ơ
N
O
Me
FF
B128
IC IA L
Cr(CO)5
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
Provide reasonable arrow-push mechanisms for following recations
Hg(OAc)2 AcOH, 70-75 oC
CO2Me
MeO2C CO2Me benzene, reflux
CO2Me
AcO
FF
H
OAc
IC IA L
+
OAc
O
OAc
N
H
H
Ơ
AcO
MeO2C
Y Q
HgOAc
U
H
OAc
M
H
AcO AcO
KÈ
H
Hg OAc
ẠY D
O
CO2Me CO2Me
O
H
CO2Me
AcO
N
H
H
OAc Hg OAc
Me CO2Me
H O
OAc CO2Me
Me
AcO + AcO
O H AcO
OAc
Noller, C. R;Dinsmore, R. Org. Synth. Coll. vol
1943. 358
Provide reasonable arrow-push mechanisms for following recations
C001 O MeOH, rt
Me H
t-Bu
Me H
t-Bu
FF
C002 SO2 NH2
O2N O
Et3N, THF reflux
MeO
Ơ
N
MeO
CN
O
NO2
Cl
IC IA L
OMs
MeO OMe OH
NaOMe
H
C003
Me
H
N
Me
TiCl4
Me
O
MgBr THF, 0 oC
O
Cl
heat, 200 oC
U
CH2Cl2 -78 oC
Et Me O
Q
O
H
Y
Et
Me
Me
ẠY
KÈ
M
C004
D
C005
1) TfOH, CH2Cl2, 0 oC
EtO2C
SiPh3
Me pyridine 2) toluene, reflux 3) TBAF, H2O2 DMF, 55 oC
OH Me
CO2Et OH OH
C006
O O
1) TsNHNH2 Et2O
OH
2) NaH DMF, 120 oC
H
N Ts
IC IA L
NHTs
C007
Me
O
CHO
FF
Me
O
O
t-Bu N C Ph
toluene -30 oC to rt
NH2
H N
N
Ph
O Me
Ơ
N
Me
Ph
O
Ph CO2H
OBn
H
C008
U OMe
OMe OMe
toluene 110 oC
OH O O
Q
O
BnO
Y
HO O
N
OMe OMe
ẠY
C009
KÈ
M
Me
OH
D
O
F3C + F
KOH
N O
Ph
dioxane, rt H2O
O HO2C CF3 Ph NH O
Me
C010 PhI Pd(OAc)2 (cat) NaOAc, LiCl DMF, 100 oC
Ph
Me
t-Bu
C011 MeO2C
IC IA L
PhCl 190 oC
CO2Me
C012
FF
O
N
Et
N
Ac2O
Et
O
N H
85 oC
N H
O
OAc
Ơ
N
HO
N
H
C013
1) t-BuOOH, VO(acac)2 CH2Cl2, -30 oC
O
OMEM Me Me
Y
OH
OHC
H
MEMO
OH
o
U
2) toluene, 110 C
H MeMe
Q KÈ
M
C014
1) NOCl o pyridine, 0 C
ẠY
OH
OH
NH
Me
O
D
Me
2) hv , pyridine 3) TsCl, pyridine benzene, rt
C015 O Me
O
O N2
+
HO
1) Rh(OAc)2 (cat) CH2Cl2 2) SmI2 THF, 50 oC
O
O
H
H
O
C016 N2 1) Me3Si BuLi, DME-hexane
Me
Me O
O
Me
2) silica gel
HO
C017
H
N
OH
N
3) Ca(OCl)2 CH2Cl2-H2O, 10 oC 4) aq HCl THF-H2O, rt
N Tr
NH2
Cl
Ơ
N
N Tr
O
O
FF
1) H2C CHMgBr THF, -10 oC 2) DBU, Cl3CCN CH2Cl2, rt
Me
O
IC IA L
O
OH
1) EtMgBr, THF-H2O
OH
2) benzene, reflux
OMe OH Me
Me
Q
OMe
1) TsNH2, BF3-Et2O benzene, reflux
O H
2)
Ts N
CO2Et Ph3P (cat) benzene, reflux
Ph CO2Me
C020 CO2Et TBSO
Ti(OPr)4 i-PrMgCl (2 eq)
1) FeCl3 pyridine, DMF
Et2O
2) NaOAc, MeOH
O
TBSO
Me Me
Me
M KÈ Ph
D
ẠY
C019
OMe
MeO
U
Me
MeO
Y
MeO
N
H
C018
C021 Me Me N Li Me Me
Cl
Cl
O
+
Ph
n-BuLi
IC IA L
Ph
OH
Et2O-hexane
Et2O
FF
C022
CO2H
N
O
O
1) pyrrolidine toluene, reflux 2) (PhO)2P(O)N3 toluene rt then reflux
N
H
Ơ
3) KOH ethylene glycol reflux
Y
C023
Q CO2Me
N
KÈ
Me
O
M
O
U
TMS
1) LiI, EtOAc reflux 2) Ac2O 70 to 125 oC
O
Me
N
D
ẠY
C024
1) PhSeBr, i-Pr2NEt MeCN, 0 oC
Me O
OH
2) NaIO4, NaHCO3 MeOH-H2O, rt 3) hexylamine, MgSO4 toluene, reflux
Me O O
C025 O HgCl2
AcO
H2O-caetone reflux
BnO
O
BnO
OMe
OH
OBn
OBn
C026
Ph
1) LiO-i-Pr (cat) Et2O, rt
O Me
+
Me
H
OH OH Ph
2) NaOH, MeOH reflux
Me
Me
O
Me
Me
FF
O
IC IA L
AcO
O
Ơ
BF3-Et2O ethylene glycol
O Me
O
Me
CH2Cl2, 20 oC
N
Me
OH
O
H
H
N
C027
Y
Me
Q
U
C028
O
MeN
M
O
MeO
KÈ
Cl
Me Me
2,6-lutidine toluene, rt
3) MsCl, Et3N CH2Cl2, -78 oC 4) t-BuOK THF, reflux
ẠY
Me
O
1) MeAlCl2 CHCl3, rt 2) NaBH4 MeOH, 0 oC
NMe MeO Me
O
D
C029
BH2
H
Me
Et2O -20 oC
Me
H
B
1) CH3CHO Et2O, 0 oC 2) Cl2CHOCH3 t-BuOLi, Et2O 0 oC to rt 3) H2O2, NaOAc H2O, reflux
H
H
O
C030 PhNC Me3SnSnMe3 hv
N I
N
benzene 20 oC
OH O
Et HO
Me
O
C031 O
O
FF
Et
O N
IC IA L
O
OH Me
OH
Me
N Ơ
PhNEt2 230 oC
Me
Me
N
H
Me
Me
+
C032
Y
Me Me
Ph
S
O
S
N C N benzene, reflux;
Q
O
Ph
Ph
Ph
KÈ
M
HO
Me
U
Me
D
ẠY
C033
OH
n-BuLi, THF -78 oC;
n-BuLi (1 eq) THF, -78 oC;
PhSCl -50 to 0 oC
Me
HO OHMe Me
OHMeCHO O
Me
O
O H (0.4 eq) aq NH4Cl, rt
Me Me
Me
O H
O
H O Me Me
S O
Ph
C034 OTBS
PCy3 Cl Ru Cl PCy3 Ph (cat)
IC IA L
OTBS
benzene rt, 4h
FF
Me
C035
OBoc
OEt
Et2O -78 oC to rt
O
Ơ
OBoc
N
PhMgBr
+
H
Ph
OEt
H
O
O
OBoc
N
C036
O
BnO BnO
O
NBS MeOH CH3CN
OBn O
BnO BnO
OBn
OMe
M
Q
OBn
U
Y
OBn
KÈ
C037
ẠY
Me
Me
Me
Et2O -78 to 20 oC
H2O
O
Me Me
Me Me
D
S
Li
Me Cl Me HgCl2 (cat)
C038 O H
1) N3CH2CO2Me NaOH, MeOH, rt 2) cyclohezane, reflux 3) p-xylene, reflux
N H
CO2Me
C039 OLi 1) Li Me Et2O -78 oC to rt
O
2) H2SO4 MeOH 0 oC
Me Me
FF
Me
C040 Me
HO
OMe
PhI(OCOCF3)2
H
mesytilene 200 oC
O e OM O
Ơ
N
THF rt
Me
Me Me
O
OH
IC IA L
O
H
C041
N
O
hv NaBH4
MeO N
MeO
Y
MeO
N
MeO
H
U
MeOH 5 to 10 oC
O H
M
Q
H
KÈ
C042
TMS
O
LDA
Me
ẠY
O TBSO
TBS
THF, -80 oC
(CH2)4CH3
THF -80 to 30 oC
TMS
D
C043
Me H
O
O
SmI2 HMPA t-BuOH THF 0 oC
HO Me H
H O
O
(CH2)4CH3
C044 O Me
NaOMe
H H
MeOH reflux
OTs
H
IC IA L
Me O
MeO
Me Me O
O
Me
FF
O O (Meldum's acid)
H
O
H
N
MeO
Ơ
H2NCH2CH2NH2 2AcOH (cat) Na2SO4, MeCN, 20 oC reflux
O
H
O
H
C045 Me
OEt
Y U Q M OMe
KÈ Me
N N
O
ẠY
Me
O
Me
O
Br Br
C046
Me
N
t-BuLi (4 eq), THF -78 to 0 oC
O
OH Me CO2Et
-78 oC
MeO2C
CO2Me
H toluene reflux
O
OMe
C047
D
1) NaH, Me DMF, 60 oC 2) LiAlH4, AlCl3 Et2O, 0 oC
MeO
O N H
Ph
CH2 Br
3) mCPBA, CH2Cl2, rt KCN (excess) DMF-H2O, 50 oC
MeO
CN N Ph
Me
C048 1) O S N CO2Me benzene, 0 oC 2) PhMgBr THF, -60 oC
H
3) (Me2N)3P -78 oC
H
IC IA L
NH O
O
Me
Me
2) O3, CH2Cl2, rt 3) H2, Pd/C, EtOH, rt
Me
Ơ
Me
Me Me OH
N
OMe
Me Me OH
Y
Br
CH2Cl2, rt
Br
OMe
O Br
H2N
O
OMe
N H
ẠY
KÈ
M
CO2H
Ph3P CHCN EDCI
Br
OMe
benzene, 0 oC PhMgBr THF, -60 oC
U
Br
Q
Br
Pr
D
OH
+
H
C050
C051
OH
N
O
Me
O
1) LDA, TBSCl HMPA, THF
FF
C049
1) O
O
O
AcCl toluene, reflux
NH2 CO2Et
2) NaBH4, H2SO4 EtOH, -30 oC 3) Me3SiCH2MgCl (2 eq) CeCl3, THF; aq HCl
O Pr
H N
C052
CO2H
3) MeLi, THF, -78 oC 4) Mn(OAc3), Cu(OAc)2 EtOH, rt
IC IA L
1) (COCl)2, benzene 2) Et3N, toluene, reflux Me
O
FF
C053 TMSOTf (0.5 eq) MS 4A
CHO
Ph
+
O
OH Ph
CH2Cl2 -78 oC
O
Ph
Ơ
N
SiMe3
Ph
O O
N
Q M
C055
KÈ
H N
Ts n-BuLi (1 eq)
O
OSii-Pr3
Ph Ts Me N
OTf Me
ẠY
O
hv ClCH2CH2Cl rt to reflux
U
i-Pr3SiCl
OSii-Pr3
OH
N2
O
Y
LiCHBr2, THF n-BuLi (2 eq) -78 to 25 oC
H
C054
Ph
I
Ph THF, reflux
D
C056
OBn
OBn
H
O OHC
H
1) NH3, CH2Cl2, 0 oC 2) NH4OAc, AcOH, 75 oC
HN
C057 H2 Lindlar catalyst quinoline CH2Cl2-MeOH 25 oC
OH
IC IA L
HO
H H OH
HO
O
O
Tol
S
Zn(Cu) Cl3CCOCl
Me
O
O
FF
C058
O
Cl
O
N
O STol N(Boc)2
Ơ H N
C059
Me
KÈ
AlCl3
O
MeO
Me Me
CN
CN
N
CH2Cl2 0 oC
M
N
Q
S Me Me
MeO
S
U
Cl
Me
Y
O
Cl
Cl
ẠY
C060
D
O
Me
THF, -45 oC
N(Boc)2
Cl
Me
O
1) Pd2(dba)3-CHCl3 (2.5 mol%) DPPE, MECOCH2CO2Me THF, rt 2) silica gel
Me O Me
O OMe Me
C061 Me
MeCN 130 oC
Br
IC IA L
Me
Pd(OAc)2 Ph3P, Ag2CO3
O
O
Me3Si OH
TsOH decalin 175 oC
CH2Cl2 -78 oC
H OH
Ơ
benzene
O
O
EtAlCl2
N
O
OH
FF
C062
Ph
O
2) activated Zn i-PrOH-H2O reflux
O Me
OH O
BzO Me
Q
U
H
N
O
1) NBS, BaCO3 CHCl3, reflux
OMe OH
Y
H
H
C063
n-BuLi 330 oC
N NHTs
ẠY
KÈ
M
C064
D
C065
NO2 SiMe3 TBSO
SO2NHNH2 DEAD, Ph3P
OH
THF -15 oC to rt
SiMe3 TBSO
C H
H
C066 BrMg (excess) Me
Me
N H
IC IA L
THF -40 oC
NO2
C067
+
O
Cl
Me
CH2Cl2, rt
Me
O
FF
N
Me
N
O
TiCl4-(THF)2 (cat) i-Pr2NEt
O
Me
O
N
sy n : anti = >99 : 1
Ơ
C068
N
H
1) Zn(Cu), Cl3CCOCl Et2O, reflux 2) Zn, HOAc, 85 oC S
O
3) HF, MeCN-H2O, 20 oC 4) CSA, hexane-CH2Cl2,
HS
O
Q
U
Y
TBSO
C069
Me
+
H
N Bn
ẠY
KÈ
(OC)4Cr
M
OMe
1) ZnCl2, hv CO, THF
H
H I
N
2) I2, MeCN, rt
O
Me OMe
D
C070
Me Me OH OH
1) ClOC OAc e (2 q) e M CN
OH OH OH
2) NaOMe, THF
O
O OH
C071
NHBn
BF3-Et2O toluene, reflux
IC IA L
MS4A
CO2Me
N H
NBn
CHO
O
O
N H
CO2Me
FF
C072
H
N
3) mCPBA, CH2Cl2, 4) MeOH, heat 5) H2, Pd/C, MeOH
N
N H
O
1) H2C CHCN MeOH 2) H2C CHCH2Br NaH, THF
Me
H
Ơ
OH
N
C073
O
MeLi (cat) Ph2O, 180 oC
Y
O
O
TBAF
H
Q
U
OH
O
TMS
C074
KÈ
M
H
O
+
O
1) NaOH, THF, rt S
N H
2) Rh2(OAc)4 benzene, reflux 3) Raney Ni, acetone
N
D
ẠY
N2
O
C075 O Me
OMe N2
1) Rh2(OAc)4 benzene, reflux
OH
O +
Me
Me
2) BF3-Et2O benzene, rt
Me H HO MeO
Me O
O
Me
C076 1) LiSnMe3, THF O Me , BF3-Et2O o -78 C
O
Me
O
IC IA L
O 2) Pb(OAc)4, CaCO3 benzene, reflux 3) H2, (Ph3P)3RhCl
FF
C077 H
n-BuLi
O
O
O
THF, -85 oC Me
Ơ
N
Me
Me
1) C6H11NHOH, NaHCO3 EtOH, rt
Me
Y
O O Me
Me
Q
U
Me
OAc Me
M
C079
KÈ
OTBS Me
ẠY
HO O
D
OTBS
1) O2, hv rose bengal MeOH-CH2Cl2 Me2S 2) Ac2O, Et3N DMAp, CH2Cl2 3) DBU, toluene 110 oC
TBSO H O OTBS O
C080 O
O Cl
Et3N benzene reflux
hv CH2Cl2 O
Me Me
2) AcCl, Et3N, Et2O, 0 oC to rt 3) NaOAc, AcOH, rt
O O Me
OHC
N
CHO Me
H
C078
C081 O
O TiCl4
SiMe3 +
C
SiMe3
CH2Cl2 -75 to 0 oC
Me Me
Me Me
H
Me
C082
O Ph
Me
Ph2PCl, 0 oC
Me
Ơ N
MeO
H
1) KHDMS Et2O
Me
OMe
Cl
OMe
MeO
Y
2) O3, CH2Cl2 -78 oC; Ph3P TsOH benzene
O
U
H
Q
BnO
M
Bn
KÈ N
Bn
ẠY
N Ns
O Et
Ph
PhCO2H CH2Cl2, rt
C083
C084
O
Me
O
N
Et OH
Ph
O
n-BuLi THF, 0 oC
FF
Me
IC IA L
Me
O
Bn N C CO2H MeOH rt
toluene reflux
NHBn N Bn
NsHN O
D
C085
Me Me
Li
O H
Me
THF -70 oC to rt
SOCl2
Mg Et2O, rt; 60 oC
Et2O rt
H2C CHCHO -10 oC to rt
Me OH Me
MeH
C086 O P Ph Ph Ph
t-BuOK, THF, rt; ClO4
P
CO2Et
Ph
Ph Ph
EtO
IC IA L
reflux
CO, Pd(PPh3)4 K2CO3, n-Bu4NBr
FF
C087
O
O
I
O
MeCN, 70-80 oC
N Ts
C088 Li SPh
Me
Et2O, rt
THF, rt OH
U
Y
THF 0 oC
LiBH(s-Bu)3 MeLi, KOEt
H
Me
HBF4
N
O
Ơ
N
NHTs
Q
C089
M
Boc N
ẠY
KÈ
O
1) LDA, Et2O 0 oC NBoc
2) KH, CS2; MeI THF, 0 oC 3) n-Bu3SnH, AIBN toluene, 100 oC
D
C090
Me
O MeN
N H
Me N
HO N
(HCHO)n Na2SO4 O
NMe
NMe N N
MeCN reflux O
Me
C091 Ph O
Me
SnCl4, CH2Cl2, -78 oC
Ph
NaHCO3
NiCl2/NaBH4
benzene reflux
EtOH, rt
HO
H2N Me
C092
Et2O -78 oC
dioxane 0 oC
FF
BF3-Et2O H2O
Me
BnO
Ơ
OH
Et3N
N
BnO
O
H
C093
HO
O Me4N CH2Cl2, 0 C
Y
Tf 2O pyridine
U
CH2Cl2 0 oC
M KÈ
C094
Me
ẠY
O
Br
o
H
2) benzene, 65 oC
O
Q
EtO2C
Me
(OC)5Mo
N
1)
D
Ph
O
ClSN Me
OH
IC IA L
NO2
Me
Me Me
1) t-BuOK, t-BuOH -5 oC to rt 2) O3, NaHCO3 MeOH-CH2Cl2, -70 oC
O
Me CO2Me
3) Ac2O, Et3N, DMAP benzene reflux
Me Me
C095 Me H
Me
Me O
H TMSOTf toluene rt
Me CO2Et
H Me
OSiMe3
C096 1) PhLi, Et2O; H3O+
H O
O OH
2) TsOH, H2O CH2Cl2
Me
Me
IC IA L
MeO
C097 1) Br2, CHCl3, rt 2) AgNO3, MeOH reflux
CO2Me
O
FF
Me3Si
CO2Me
3) TFAA, DMSO CH2Cl2 -78 oC to rt
O
CO2Me
N
CO2Me
Ơ
C098
H
1) NH2OH-HCl NaOAc MeOH, rt
N
O
Y
CN
N O
2) sealed tube toluene, 160 oC
CN
C099
M
TBS
Q
U
CN
NC
O
OH
KÈ
O
H
TBS
SPh2 BF4 KOH, DMSO aq BF4, Et2O, rt
2) PhSSPh (excess) NaOMe, MeOH,
O PhS PhS
O O H
H
H
ẠY
H
1)
D
C100
Me
OTs CO2t-Bu N Boc
S CO2Me 1) Cl pyridine, CH2Cl2 2) mCPBA (2 eq) CH2Cl2 3) KOMe, THF-MeOH 4) SmI2, THF-MeOH
Me
CO2Me CO2t-Bu N oc B
C101 OMe S
toluene
IC IA L
hv
OMe
S
OSiMe3
BF3-Et2O CH2Cl2, -75 oC
OSiMe3
CH3CO2H -75 oC to rt
O
O
N
+
O
EtO OEt
FF
C102
1) NH2OH-HCl NaOAc, MeOH, rt 2) NaBH3CN, MeOH, rt
H
O
N
Me
3) (HCHO)n, MS4A toluene, reflux 4) MeOSO2F, ether, 0 oC LiAlH4, THF, rt
Me
HO
Q
U
H
Me H N
Y
H
Ơ
C103
KÈ
M
C104
CO2Et
MeO
CO2H
reflux
ẠY
MeO
Ac2O (10 eq) NaOAc (2eq)
AcO
CO2Et
MeO OAc
MeO
D
C105
Me Me O Me
Me
1) hv acetone
O O
2) H2, Pd/C MeOH, rt
O
H H
H Me Me O
O
C106 H
Ph Ph
O
N N
O
toluene 110 oC
H
IC IA L
O
Ph H
OH
C107 210 oC
Cl
O
S
quinoline
FF
Cl Cl
N
C108
Ơ
1) KH (excess) 18-crown-6, THf , rt ClCO2Me (excess) o pyridine, -78 C to rt
H
H
OH
N
NH
2) KOH, MeOH-H2O, rt
O
U
Y
CN
OMe
N
O
D
ẠY
KÈ
TBSO
M
Q
C109
1) mCPBA, CH2Cl2, 0 oC 2) aq HBF4, CH2Cl2, rt
Me TBSO
Me ,CeCl3 3) BrMg THF, -78 oC to rt 4) PdCl2(MeCN)2 (1 eq) DME, rt
Me O
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
A001 O O2N
OH O
O OH O2N
OMe
O2N
OMe
A
O
B
H C
O
O
O2N
aq HCl O2N
O
O
O2N
H
D
OH
FF
O
IC IA L
OH
Kamm, O.; Segur, J. B. Org. Synth. Coll. Vol.
1941, 391
A: Addition of hydroxide ion to the carbony group to form a tetrahedral intermediate. B : Elimination of
O
methoxide ion helped by the oxygen lone pair. C: Deprotonation. pKa AcOH = 4.8, H2 O = 15.7. +
Ơ
N
Protonation on work-up. pKa H 3O = -1.7.
D:
H
O
OH
H
N
O
H
A002
H HO O Et
OH
OH
OH
B
C
Y
A
HO OEt
-H+
Q
U
EtOH
+
+H
M
OH2
KÈ
D
O
HO OEt
H
O +
-H2O
OEt
E
-H
OEt
F
Fischer, E.; Speier, A. Ber. Deut. Chem. Ges. 1895, 28, 3252
A: Acti vation of the carbonyl group by protonation. B: Additiono f EtOH to the activated carbony group.
ẠY
C: Deprotonation of the oxonium ion. D: Protonation makes a hydroxy group a good leaving group.
D
E: Elimination of water helped by the oxygen lone pair. F: Deprotonation
A003
O Me
Cl OH
O S
Cl
Cl A
Me
O
O S
Cl
OH
B
O Cl Me
S O
Cl H
O
-SO2 Me
OH
-H+
O Me
Cl
Cl
O
Cl
O Me
O S
O
Me
A
OH
Cl
C
Me
C
O
Cl H
FF
Me
Cl
O S
O
O Cl
O
O
O S
IC IA L
or
Me
D
Cl
N
Helferich, B.; Schaefer, W. Org. Synth., Coll Vol
1941, 147.
Ơ
A : Atack of a carboxylic acid to SOCl 2 forms a mixed anhydride. B: Addition of chloride ion to the
H
carbonyl group to form a tetrahedral intermediate. C: Formation of an acylium ion. D: Addition of
N
chloride ion to the acylium ion
Y
A004 O
O Ph
U
OEt
Q
Me
BrMg
A
Me
OEt
O -EtOMgBr B
KÈ Ph Ph
ẠY
Me
O MgBr
Ph
C
Ph MgBr
M
Ph MgBr
Me
aq NH4Cl
Ph Ph Me
O
H
Ph Ph Me
OH
Allen, C. F. H.; Converse, S. Org. Synth., Coll. Vol.
1941, 226.
D
A: Addition of PhMgBr to the carbonyl group of the ester to form a tetrahedral intermediate. B: Elimi-
nation of ethoxide ion to form a ketone. C: Addition of PhMgBr to the more reactive ketone to form a tertiary alkoxide.
A005
MeO
C
N
N MeO
H
Mg
N
aq H2SO4
MeO
Ph
A
Ph
Ph MgBr
MeO
H
H
N
N
MeO
Ph
H H2N O H e M O Ph
H Ph
B
-H+
+H+
MeO
H -H+ Ph
D
O
MeO
E
Ph
O
C
O
H3N OH MeO Ph
FF
H2O
H2N OH e M O Ph
IC IA L
H
1955, 562.
N
Moffett, R. B.; Shriner, R. L Org. Synth., Coll Vol.
A: Addition of PhMgBr to the nitrile forms an imine anion, B: Addition of water to the iminium ion gives
Ơ
a hemiaminal. C: Protonation occurs on a more basic amino group. pKa H3O+ = -1.7, EtNH3+ = 10.6.
N
H
D: Elimination of ammonia helped by the oxygen lone pair. E: Deprotonation.
A006 Me
A
M
MgBr
KÈ
OH
H
Me
ẠY
N Me
H
H O MgBr Me N Me
U
N Me
Q
H
Y
O
C
OH H N Me Me
H O aq HCl
Me N Me
O
H H
D
B
O -H+
H
E
Olah, G. A; Surya Prakash, G. K.; Arvanaghi, M. Synthesis 1984, 228
D
A: Addition of PhMgBr to the carbonyl group. The resulting tetrahedral intermediate is relatively stable because the alkoxide anion cannot generate an amine anion ( pKa i-PrOH = 17, Et2NH = 36). B: +
+
Protonation on workup. C: Protonation of a more basic amino group. pKa H3O = -1.7, EtNH 3 =
10.6. D: Elimination of the amine helped by the oxygen lone pair E: Deprotonation.
A007 O
H
O
R' N C N
O
A
R
O
N C N R' H
B
EtO2C
N
O
R
Me Me
O
R H O
R'
Me Me Me
O
O R
Me N Me N
O
N
H
Me Me Me
N
N
N
N
R'
Ơ
N H
O
Me R' N N Me H
O
R' NH
O
D
N R'
R' NH
R'
N O
C
N R'
IC IA L
N
R
FF
O
Me N Me
N
O OEt
-DMAP F
Me R O
Q
E
O
U
Me Me
Y
Me N Me
Me Me
O Me
O 1990, 93.
M
Neises, B.; Steglich, W. Org. Synth., Coll. Vol.
A: Acti vation of DCC b y protonation. B: Addition of the carbo xylate to the protonated DCC. C:
KÈ
Addition of DMAP to the carbonyl group. D: Elimination of a urea anion which then abstracts a proton from an alcohol.
E: Addition of the alkoxide anion to the carbonyl group to form a tetrahedral
ẠY
intermediate. F: Elimination of DMAP to form the product.
D
A008
O
H
O A
H
HO
HO H HO O
OH
B
H -H+ C
HO
HO O
HO +H+ H2O O
O
-H2O
O
OH
D
-H+
O H
O
O
E Daignault, R. A.; Eliel, E. L Org. Synth., Coll Vol.
1973, 303.
IC IA L
A: Activation of the carbonyl group by protonation. B: Addition of ethylene glycol to the activated carbonyl group. C: Proton transfer. D: Elimination of water helped by the o xygen lone pair. E:
FF
Intramolecular addition of the second hydroxy group.
A009 O
H A
B
BnO OH
MeOH
H
N
H2O OMe
+H+
H
O
-H2O
E
BnO
BnO OH
Q
OH
KÈ
M
H MeO O Me H
D
ẠY
BnO
OMe
OMe -H
OMe BnO OH
H e M O O Me -MeOH
MeO OMe F
MeOH
+
OH
H
Me H
U
BnO
H
OH
D
Y
H
OH
C
H
OH
-H+
BnO
Ơ
BnO
HO OMe
H
N
H
H HO O Me
H
O
H
O
H
OMe
OMe H
OMe H2O
OMe H G
O H
OMe
H
H
OMe
+
-H
+H
OMe
HO
H
+
O
Me -MeOH OMe
HO
H H
I
OMe
O
H
-H+
OMe
O
Baker, R.; Cooke, N. G.; Humphrey, G. R.; Wright, S. H. B.; Hirshfield, J. J. Chem. Soc., Chem. Commun. 1987, 1102.
IC IA L
A: Acti vation of the carbonyl group by protonation. B: Addition of MeOH to the activated carbonyl
group. C: Proton transfer. D: Elimination of water helped by the oxygen lone pair. E: Addition of MeOH and protonation to form a dimethyl acetal. F: Trimethyl orthoformate serves as a scavenger of water to let the equilibrium to the product side. Protonation followed by elimination of MeOH.
G:
FF
Addition of water. H: Proton transfer. I: Elimination of MeOH followed by deprotonation to form
O
HCO2Me.
H O
O H
H
B
Br Br
C
U
O
Br
-HBr
O
O
Br
E
Q
D
O H Br
Y
OH Br
-HBr Br
OH
O
N
A
O
Ơ
O
OH
H
O
O
N
A010
M
Aben, R. W. M.; Hanneman, E. J. M.; Scheeren, J. M. Syn. Commun. 1980, 10, 821. A: Protonation. B: Cleavage of the dioxolane ring helped by the oxygen lone pair. C: Deprotonation
KÈ
to form an enol ether. D: Bromination of the electron-rich enol ether. E: Intramolecular addition of the hydroxy group.
Opening of the dioxolane ring of the product is more difficult because of the
ẠY
electron-withdrawing bromine atom.
D
A011
H
O Me
H
O A
Me
H HO NH2
H H NH3
B
Me
H
H +
-H
HO NH2 Me
H
+H+ C
NH2
H2O NH2 -H O 2 Me
Me
H
H
D
N H2N C aq HCl
N H H3N C
Me
H
Me
NH
-H+
E
H
F
CN
R
G
OH2
O H
H
R
H
R
OH +H+
H
R
+H+ J
OH
R
K
O
H
N
R
I
H
OH OH2
-H+
H3N CO2H
Me
H
N
O H
OH
-NH3
O
R
H3N OH
-H+
+H+
O H
H H2N OH
H
NH2
IC IA L
R C N H
-H+
FF
NH
Ơ
Kendall, E. C.; McKenzie, B F. Org. Synth., Coll. Vol.
1941, 21
H
Strecker amino acid synthesis, A: Protonation of the carbonyl group. B: Addition of NH3 to the carbenyl group followed by deprotonation to form a hemiaminal.
C: Protonation followed by
N
elimination of water is helped by the nitrogen lone pair to form an iminium ion. D: Addition of a cyanide ion to form an aminonitrile. E: Acidic hydrolysis of the nitrile. The amino group is protonated
Y
throughout the reaction. F: Protonation of the nitrile to form a reactive nitrilium ion. G: Addition of
U
water to the nitrilium ion. H: Deprotonation and tautemerization. I: Protonation of the resulting amide
Q
followed by addition of water. J: Proton transfer. K: Elimination of NH 3 followed by deprotonation to
M
form theproduct.
KÈ
A012
O Me
H
D
ẠY
O Cl P Cl Cl
N Me
A
Cl
O P Cl O Cl Me H N Me
Cl H Me2N
H
Me
N Me
C
Me2N
O P Cl O Cl Cl Me H N Me
B
Cl
Cl Me N Me
-H
+
Me2N
Me N Me
R
D
OH R
H2O
N Me
H +H+ Me
Me
R
N Me
OH
N Me
Me N H Me
R
R
-H+
Me
R
E
O
H
O
N Me
F
H
O
IC IA L
Me
H
H2O
-H+
H
H Me2N
1963, 331
FF
Campaigne, E.; Archer, W. L. Org. Synth., Coll. Vol.
Vilsmeier reaction. A: The electron-rich oxygen of D MF attacks POCl 3 (oxygen of amides is generally more reactive toward electrophiles under neutral conditions). B: Addition of chloride ion followed by
E: Addition of water to the iminium ion.
H
Ơ
nitrogen lone pair leads to the formation of an iminium ion F: Proton transfer followed by elimination of Me 2NH.
D: Elimination of chloride ion helped by
N
aromatic ring to Vilsmeier reagent followed by rearomatizatien
O
eation of a dichlorophosphate ion to form the Vilsmeier reagent. C: Addition of an electron-rich
N
A013 H
Y
Me
O
U
NH
H
Me
A
H e M 2N OH
H H
H
-H+
H
H
B
Q
H
O
M
H
KÈ
Me2N OH
ẠY
H
Me2N OH2
+H+
H
H
H
H
O
D
H
H
H
O
H
Me -H2O
H
N
Me H
Me O
-H+
N
H
Me H
C H
D
O NMe2
-H+
O NMe2
Maxwell, C. E. Org Synth., Coll. Vol.
1955, 305.
Mannich reactien. A: Protonation of formaldehyde followed by addition of Me 2NH to the carbonyl group. B: Proton transfer followed by elimination of water to form an iminium ion. C: Tautomerization of the carbonyl goroup to form an enol. D: Attack of the electron-rich enol to the iminium ion.
Ar
A MeO
OH
Me
-H+
H
N
Ar
+H+
OH
Ac2O
H
N
H
O
N
Me
O
OH
H
N
N
Ar
H
O
C
H Me O O
Ar
H
O
Me
-H+
O
N
H
Ar
Y
O
D
Q
H
MeO
Me
O
N
U
Ar
H
-H2O
Ar
+H+ B
Ơ
Ar
H
NH2OH
H H2O N OH
HO NHOH
-H+
FF
H
O
MeO
H
H O NHOH
O
IC IA L
A014
CN
MeO Buck, J. S,; Ide, W. S. Org. Synth., Coll Vol.
1943, 622
M
A: Addition of NH 2OH to the aldehyde. B: Proton transfer followed by elimination of water to form an
KÈ
oxime. C: Acetylation of the oxime. D: syn-Elimination of AcOH to form a nitrile.
D
ẠY
A015
N OH OMe
PCl4 Cl
H N O PCl4 A
B
OMe
OMe
Cl
CN OMe
-H+
OMe
Cl -POCl3
Cl N O PCl3
C
NC
OMe
H2O
R
Cl
H OMe
OMe
R
R
O H
OH2
-MeOH R
O
R
E
+H
NC
O
R
OH
H
-H+
H
+
Me OH
IC IA L
D
-H
H
H
OMe
+
O
Ohno, M.; Naruse, N.; Terasawa, I. Org. Synth., Coll. Vol.
1973, 266
FF
Beckmann fragmentation. A: Attack of the oxime to PCI5. B: Elimination of POCl 3 is helped by the oxygen lone pair of the methoxy group, causing the cleavage of the C-C bond. C: Addition of chloride
ion. D: Elimination of chloride ion followed by addition of water. E: Proton transfer followed by
N
O
elimination of MeOH.
O MgBr aq H2SO4 EtO Me
EtO
O
U
H
Y
Me MgBr
+H+
EtO
B
Me
Me
H2O
M KÈ ẠY D
H EtO HO
H EtO O H
EtO
OH2 Me
Q
OH Me
C
H
N
A
EtO
O Me
H
EtO
Ơ
A016
H Me
-H+
EtO HO
-H+
Me
D
-EtOH
H
O
Me
-H+
O
Me
Woods, G. F.; Griswold, P. H., Jr.; Armbrecht, B. H.; Blumenthal, D. I.' Plapinger, R J. Am. Chem. Soc. 1949, 71, 2028 A: 1,2-Addition of MeMgBr to the carbonyl group. B: Protonation followed by elimination of water helped by the oxygen lone pair of the ethoxy group. C: Addition of water. D: Proton transfer followed by elimination of EtOH.
A017 Me
H H N NH2 O Me H OR Me
Me O Me
Me
A Me
Me
N H
-H2O
+H+ B
Me
Me
B
Me
Me
Me
H OR
O
Me -N2
B
Me
FF
Me
H N H N
Me
Me
C
Me
Me
D Me
Me
Me
Me
Ơ
Me
Me
N
Me
Me
N H N
N Me
H N NH2 OH Me
H OR
H
Me
Me -H+
IC IA L
H2N NH2
H
Paquette, L. A.; Han, Y. K. J. Org. Chem. 1979, 44, 4014. Wolff-Kishner reduction
A: Addition of H 2NNH2 to the carbonyl group. B: Proton transfer followed by
Y
of N2, an extremely good leavlng group.
N
elimination of hydroxide ion to form a hydrazone. C: Deprotonation of the hydrazone. D: Elimination
O
Ph
M
H
A
H N O H
-H+
N OH
+ Ph +H B
H
HO
ẠY
N H
OEt
OEt
EtO2C
C
H
Ph
D
O
\
D
O
O EtO HO
Ph
N
H
EtO2C
-OH-
Ph
KÈ
N H
Q
U
A018
N
Ph H CO2Et
H OH
O
-H+ +H+ E
EtO
N
H Ph CO2Et
EtO2C F
Ph CO2Et
Allen, C. F. H.: Spangler, F. W. Org. Synth., Coll. Vol.
1955, 37
Knoevenagel condensation
A: Addition of piperidine to the aldehyde. B: Proton transfer followed
byelimination of hydroxide ion to form an iminium ion. C: Deprotonation of a malonate to form an enolate ( pKa RO2CCH2CO2R = 13, H2O = 15.7). D: Addition of the enelate to the iminium ion. E: Profonation of the amine and deprotonation of the malonate. F: Elimination of piperidine.
O N H
O H O
Me
N H
O O
Me
B
O
N
HO OH O
KÈ
-H
M
OAc
N
Q
Ph
D
ẠY
+H+ F
U
O O
Me
N
H
Ph
OAc H
N
Ph
E
OAc
O
H2O
O
Me
H2O
N Ph
O
+
-H
+H+
Me
OAc O C Ph
Me
Ph
N
O
Y
O
+
Me
O
O
O
N
D
H
O Me
Ơ
Ph
N
O
H
Me
C
O Me
A
O
O
OAc H
N
Me
O
O
O
Me
O
O Me -AcOH
O
FF
Me
O
OAc
O
Me
O
N H
O
Me
O
IC IA L
A019
N H
N Ph
OH OH
Ph O Me
Ph
H O C
N H
Me
acetone reflux
O O
N H
OH O
Ph N OAc
Herbst, R. M.; Shemin, D. Org Synth., Coll, Vol.
1943, 1
A: formation of a mixed anhydride. B: Intramolecular attack of the amide oxygen to the mixed anhydride to form an azlactone.
C: Facile deprotonation of the azlactone (aromatization).
D:
Addition the enolate to an aldehyde followed by acetylation. E: Deprotonation followed by elimination of an enolate anion. F: Hydrolysis of the azlactone
A020
H
Ph
A
O
O
OH
Ph
O
H
Ph
O
OH
Ph
Ph
Ph
B
Ph
Ph
Ph
OH
H O C
H H
D
Ph
Ph H
OH
O
O C Ph
C
O
H
HO
H OH
O
FF
Ph
O
OH
IC IA L
O
1941, 78
N
Kohler, E. P.; Chadwell, H. M. Org. Synth., Coll Vol.
Aldol reaction. A: Deprotonation of the ketone to form an enolate. B: Attack of the enolate to an C: Protonation and deprotonation followed by elimination of a h ydroxy ion. D: Newman
Ơ
aldhyde
U
Y
N
H
projection.
M
CO2Et H
Q
A021
O OEt
A
OEt O
B
H
OEt
ẠY
KÈ
O
D
D
O H CO2Et
O
OEt
C
CO2Et
OEt
O CO2Et
H3O+
O CO2Et
Schaefer, J. P.; Bloomfield, J. J. Org. React. 1967, 15 14
Dieckmann condensation. A: Deprotonation of the ester to form an enolate. B: Intramolecular
addition of the enolate to the other ester, C: Elimination of ethoxide ion. D: pKa RCOCH2CO2R = 18. EtOH = 16.
A022 H O N
O
O N
Ac2O
Me
O
N
Me
O
D
O H
Me
O
FF
C
H O
N
aq HCl Me
Me
N
OAc
OH Me
F
H
O
H
-2H+
Me
N
O
+H+
HO
Me
H
N
H
O Me
Q
U
G
HO
H
Y
H N H O
N
H
Ơ
E
H2O
O
N
N
OH
H
+H+ B
A
N
N
HO N
-H+
IC IA L
N H
KÈ
M
O
H
O
O Me
-H+
O Me
Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207.
ẠY
Stork enamine reaction. A: Addition of p yrrolidine to the ketone. B: Proton transfer followed by elimination of hydroxide ion. C: Deprotonation to form an enamine. D: Attack of the enamine to
D
acetic anhydride. E: Deprotonation to form a vinylogous amide. F: Protonation of the vinylogous amide. G: Addition of water to the resulting iminium ion. H: Proton transfer followed by elimination of
pyrrolidine.
A023
EtO
OEt
EtO
OEt
EtO
Br
n-C6H13
O
OH OEt
O
O
O
HO
D
R
+H+ E
R
O
OH
R
O
-H+
H
Ơ
HO
OH -CO2
OH
O
O
O
aq KOH
HO
+H+
R
H
H
work up O
R
O
O
R O
O
O
EtO
R
O
EtO
O
OH OEt
EtO
C
R
O
O OEt n-C7H15
B
On-Bu
O
O
O
A
H
O
O
FF
EtO
O
IC IA L
O
N
O
HO n-C7H15
H
Reid, E. E.; Ruhoff, J. R. Org. Synth., Coll. Vol
1943, 474.
N
A: Deprotonation of the malonate to form an enolate ( pKa ROH = 16, RO2CCH2CO2R = 13). B: Attack of the enolate to an alkyl bromide. C: Hydrolysis of the esters. D: Decarboxylation through a
KÈ
A024
M
Q
U
Y
six-membered transition state. E: Tautomerization.
O
H
OH
OH H -H
Me
+
Br Br
ẠY
A Br
D
Br
O
H
Br
Br O Br
-HBr
Br
B Br
Br Langley, W. D. Org. Synth., Coll. Vol.
A: Acid-catalyzed formation of an enol. B: Bromination of the electron-rich enol.
1941, 127
A025 Cl P
Cl PCl2 R
OPCl2
H
O
R
Cl O R
OH
OH
Cl OH
Cl
H
R
OH
R
-HCl
OH
C
Br
Br
H2O
O
Br
HO Cl
-H+
A
+H+
FF
Cl Cl
R
Br Br
B
H2O
Cl
-HBr
OH
OH
R
O
Br
N
Cl
O P
R
O
R
Cl
IC IA L
Cl
O
Formattion of an electron-rich enol followed by bromination. C: Hydrolysis of the acid chloride.
N
24.
A: Formation of an acid chloride. B: pKa CH3COCl = 16, CH 3CO2R =
H
Hell-Volhard-Zelinsky reactlon
Me
Q
H
H
H
O
N
KÈ
O
I
R
ẠY
I
I
O
R
M
HO
H
U
O Me
Y
A026
I
O
NaOH
O OH I
R
EtOH-H2O
I
I
R
O
I
R
A
I
B
I
R I
I
C
HO O Me
O
D
1941, 115
Ơ
Clarke, H. T.; Taylor, E. R. Org. Synth., Coll. Vol.
H
I
O
-CHI3
I I
R
workup O
Me
+H+
H
OH
H H
HO Bergmann, E. D.; Rabinovitz, M.; Levinson, Z. H. J. Am. Chem. Soc. 1959, 81, 1239. Idioform reaction. A Elimination of an iodoform anion.
-position of the ketone. B: Addition of hydroxide ion. C:
A027 EtOH
Et
-H+
-B Me
O
Et
O
r-
Br
A
H O
O
Br
OEt
OEt
Br
Br HOEt
O
H
OEt Br
O Me
-AcOH
Me
O
-H+
Et
O H
D
O
H O
B
Br
Me
O
C
Et
+H+
Br
Me
O
O
IC IA L
O
FF
Br Br
OEt
O
McElvain, S. M.; Kundiger, D, Org. Synth., Coll. Vol.
C: Proton transfer followed by
N
A: Bromination of the electron-rich enol ester. B: Addition of EtOH.
1955, 123
A028 H BH2 A
n-Bu
B R R
U O OH
B
M
aq H2O2
R
Q
NaOH
KÈ
RO B OR RO
C6H13 B C6H13 C6H13
A
Y
n-Bu
n-Bu
BH2
N
H
H
Ơ
elimination of AcOH. D: Addition of EtOH.
R O OH -OH B R R C
RO B R R
aq NaOH Me
D
OH 1988, 919
Kono, H.;Hooz, J Org. Synth., Coll, Vol,
ẠY
A: H ydroboration through a four-membered transition state. B: Attack of a h ydroperoxide anion to the
D
borane to form an ate complex, C: Migration of an alkyl group. D: Hydrolysis of the borate.
A029 O O O
OAc
O
C10H21 A OBn
O
R
H
H
O B
O
O
O R
Me2S
C
O
Me2S
O
O
O
O
O R
D
R
Me S Me O
Me2S
O
R
OAc
H +
C10H21
OHC
+ H
O
O
IC IA L
O
OBn
Ko, K.-Y.; Eliel, E. L. J Org. Chem. 1986, 51, 5353
A: 1,3-Dipolar cycIoaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozenide. C:
D: Reductive
FF
Recombination of the resulting 1,3-dipole and the aldehyde to form an ozonide.
O
cleavage of the O-O bond of the ozonide with Me 2S.
N
A030
Me
H Me
A
Me
Me H
O O
O OH
Me
OH
O
O Me Me O
Me
Q
O
O
U
O
B
Me Me O
Y
Me Me -H+
OH
Me Me
N
HO
O
H
Me
Me O
Ơ
Me
McCloskey, A. L.; Fonken, G. S.; Kluiber, R. W.; Johnson, W. S. Org. Synth., Coll. Vol
1963, 261.
ẠY
KÈ
esterication.
M
A: Protonation of isobutylene to form a stable tertiary carbocation. B: Attack of a carboxylic acid to the
D
A031
Me
OAc Hg OAc
H2O
A
Me Hg OAc
OH Me Hg OAc
OH Me
NaBH4
OH Me B
Hg OAc
OH Me
Hg H
C
R
Hg
HO Me
OH Me
-Hg
H
OH Me D
Hg
IC IA L
H
Jerkunica, J. M.; Traylor, T. G. Org. Synth., Coll. Vol.
1988, 766.
FF
A :Oxymercuration of the olefin. B: Reduction with NaBH 4 to form a Hg-H bond. C: Cleavage of the
Hg-H bond followed by extrusion of Hg to form a secondary carbon radical. D: Abstraction of a
Ơ
N
O
Hydrogen atom.
H
A032
N
OTf Hg OTf
HgOTf H2O
Q
U
Y
A
M
+H+ B
OTf
-Hg(OTf )2
KÈ D
ẠY
H
O
Hg
H
OTf
C
H +H+
O HgOTf
OH
-H+ +H+
O Me
Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 12.
A: Oxymercuration of the alkyne.
Hg(OTf)2.
-H+
HgOTf
HO
-H+
B: Tautomerization of the enol. C: Demercuration to regenerate
A033 MeO
MeO -H+
NH2
MeO
MeO
+H+
-H2O
NH
MeO
N
MeO
A
HO
I
O
CF3CO2H
MeO NH
MeO
+H+
MeO NH
MeO B
I
I
NH
MeO
H
I
FF
MeO
IC IA L
I
I
O
Whaley, W. M.; Go vindachari, T. R. Org, React. 1951, 6, 151.
N
Pictet-Spengler reaction. A: Formation of an imine. B: Addition of an electron-rich aromatic ring to
H
Ơ
the iminium ion followed by aromatization.
N
A034 MeO Me
HN
MeO
Y
MeO
U
A
HN
MeO
Q
O Cl Cl Cl P O
MeO
M
MeO
Me Cl Cl O Cl P O
KÈ
HN
ẠY
MeO
D
MeO
HN
MeO
Cl
C
Me
MeO N
MeO
Cl Me
MeO N
B
Me
MeO
D
-H+
Cl Me Cl O Cl P O
E
MeO
MeO N H
N
MeO
Me
Me
Brossi, A: Dolan, L. A.; Teitel, S. Org. Synth., Coll Vol. Bischler-Napieralski reaction. A: Attack of the o xygen atom of the amide to POCl 3.
1988 1
B: Addition of
chloride ion followed by elimination of dichlorophosphate ion. C: Deprotonation. D: Elimination of chloride ion to form a nitrilium ion. E: Attack of an electron-rich aromatic ring to the nitrilium ion.
A035
H
HO
Cl Cl Cl
A
O
Cl C Cl
H
O
OH
C B
H OH O CCl2
H
OH
O
CHCl2
O
O
H
E
OH
Cl
O
F
O
OH
OH O
H
H
Cl
workup +H+
H
N
G
O
Cl
D
C
Cl
FF
H
O
O
Cl Cl
IC IA L
Cl Cl Cl
reaction.
A: Deprotonation
of CHCl 3
-elimination
to
form di-
H
Reimer-Tiemann
Ơ
Wynberg, H.; Meijer, E. W. Org. React. 1982, 28, 1.
chlorocarbene ( pKa CHCl 3 = 13.6, H2O = 15.7). B: Formation of phenoxide ion ( pKa PhOH = 10).
N
C: Attack of the phenoxide ion to dichlorocarbene. D: Protonation. E: Aromatization. F: Elimination of chloride ion helped by the o xygen lone pair of the phenoxide ion. G: Conjugate addition of
U
Y
hydroxide ion. H: Elimination of chloride ion.
H2C CH2
Q
A036
O
A
C
MeO
O O MeO
B
MeO
O
H2C
O MeO
H
D
ẠY
KÈ
MeO
M
Cl AlCl3 -AlCl4-
or
H2C CH2 Cl AlCl3 -AlCl4-
MeO
O
A
O O MeO
B
MeO
H2C
O O D
E
MeO
MeO
O MeO
H
Sims, J. J.; Selman, L. H.; Cadogan, M. Org. Synth, Coll. Vol.
1988, 744
IC IA L
Intramolecular Friedel-Crafts acylation. A: Formation of an acylium ion. B: Addition of ethylene to
the aeylium ion. C: Attack of the aromatic ring to the resulting primary carbocatian. D: Attack of the aromatic ring at the para position of the methoxy group to the primary carbocation. E: 1,2-Alkyl shift.
H
O
NH2
HCl
O
H N
+H+ C
CO2H
N
OH -H+
+H+
CO2H
N
N
H N
OH
N
N
U
D NMe2
Q
CO2H
OH
H2 N
N
O
B
CO2H
O
-H+
N
N
N
N
Ơ
H2O
O
H
A H
O
N
O
N
O
N
OH2
CO2H NMe2 N
N
H CO2H
N
CO2H
NMe2
Y
HO
N
FF
A037
E OH2
N
CO2H
Clarke, H. T.; Kimer, W. R. Org. Synth., Coll. Vol.
1941, 3. 4,
M
A: Formation of nitrous anhydride. B: Addition of the aniline to nitrous anhydride. C: Proton transfers fallowed by elimination of water to form a diazonium salt. D: Addition of electron-rich dimethylaniline
KÈ
to the diazonium salt. E: Aromatization.
A038
D
ẠY
Na/NH3
e
H OEt Me
Me
Me
Me
Me
A Me
B
H H Me
Me
Me
Me
Me
Me
Me > C
Me
Me
Me
Me
FF
Me
IC IA L
H OEt
e
Paquette, L. A.; Barrett, J. H. Org. Synth., Coll. Vol.
1973, 467.
Birch reduction. A: Single electron transfer (SET) from Na to the aromatic ring to form a radical anion.
Ơ
N
O
B: Protonation. C: More substituted olefins are formed because alkyl groups destabilize a carbanion.
OMe O
H
A039 OMe O H
OMe O
N
O
NH2
O
Y
H NH2
U Q C7H15Br
ẠY
CO2H C7H15
H
O
H2O
CO2H C7H15
E
O CO2H C7H15
-H+
H
O
O O C7H15
e
H CO2 C7H15
D
OMe
D
H
C6H13 Br
OMe
H H
OMe CO2
KÈ
C
O B
OMe
M
CO2
O
A
e
OMe
OMe O
-H+ +H+ F
H HO O Me CO2H C7H15
H -H+ +H+ I
H
G
O C7H15
H
H3O+
C7H15
Taber, D. F.; Gunn, B. P.; Chiu, I.-C. Org. Synth., Coll Vol Birch reduction
1983, 249.
A: Single electron transfer (SET) to form a radical stabilized by the carboxylate. B:
Protonation of the radical anion, C: SET to form a dianion species. D: Alkylation of the dianionic species. E: Protonation of the electron-rich enol ether. F: Addition of water followed by proton transfer. G: Elimination of MeOH. H: Decarboxylation through a six-membered transition state.
IC IA L
I: Tautomerization.
A040 Na H
O O
A
OMe
O
MeO
F
O
H
MeO
FF
O
O N
OMe
C
N
F MeO2C
H
O N
O B
Ơ
N
O
O MeO2C
O N
CO2Me
Y
CO2Me
U
Selvakumar, N.; Reddy, B. Y.; Azhagan, A. M.; Khera, M. K.; Babu, J. M.; Iqbal, J
Q
Tetrahedron Lett. 2003, 44, 7065
A: Deprotonation of the malonate to form an enolate ( pKa RO2CCH2CO2R = 13, H2 = 35), B:
M
Nucleophilic addition of the enolate to the electron-deficient aromatic ring. C: Elimination of fluoride
ẠY
KÈ
ion.
D
A041
Br Me
Me
H O
P Br
Br
Me A
Me Br
H O
Me P Br
Br B
Me
Noller, C. R.; Dinsmore, R. Org. Synth., Coll. Vol. A: Attack of the alcohol to PBr3.
B: SN2 reaction.
Br
1943, 358
A042
O OH
O
A
OH Cr OH O
OH r C OH O
H
-H2O
O
B
H
+H+
H2O
O
O
Cr
O
Cr
O
OH
O OH
O C
OH
IC IA L
Cr O
FF
O
1973, 310.
B:Attack of the alcohol to H2CrO4. C: Elimination of H2CrO3.
Ơ
N
Jones oxidation. A: Hydration of CrO3.
O
Eisenbraun, E. J. Org. Synth., Coll. Vol
A043
N Y
O
Me
U
Me
O S
Cl
O Me
-CO2 -CO
Cl Cl S Me Me
A
Cl
Q
Me
O
Cl
Cl O S
H
O
KÈ
M
Cl Cl S Me Me R
ẠY
O H
D
C
H R
B
CH3 S Me O
H
Me Me S O Cl
-HCl R
O
S
Me
H
-Me2S D
R
NEt3
R
O
LeopoLd, E. J. Org. Synth., Coll. Vol.
1990, 258.
Swern Oxidation. A: Attack of D MSO to (COCl)2 to form a chlorosulfonium ion with generation of CO and CO2.
B: Attack of an alcohol to the chlorosulfonium ion. C: Formation of a sulfur ylide. D:
-Elimination of Me 2S.
A044
O
O
H O
O
H O O O I O O R
HO R
O
O O HO I O HO O
-H+ +H+
R
Me Me Me Me
O
O O I O O
O A
2
B R
H
O H
O
R
R
O
FF
-H2O
R
IC IA L
HO
O O I O O
Me Me
O
Schmid, C. R.; Bryant, J. D. Org. Synth., Coll. Vol
1995, 450
N
A: Formation of a cyclic intermediate. B: Cleavage of the C-C bond to form two molecules of the
Ơ
aldehyde,
H
A045 CO2Et N N
A
B
Y
EtO2C
CO2Et O N N H Ph3P O
N
EtO2C
Q
U
Ph3P
M
EtO2C CO2Et N NH Me Ph3P
D
ẠY
KÈ
O H
Ph3P
EtO2C CO2Et N NH Me
CO2Et
C
Ph3P
O Me O
O
O H
EtO2C CO2Et - HN NH
CO2Et
Me
O - Ph3P O
O
CO2Et
CO2Et
Mitsunobu, O. Synthesis 1981 1 Mitsunobu reaction. A: Conjugate addition of Ph 3P to DEAD to form a zwitter ion. B: Deprotonation to the most acidic proton in the reaction system. C: Attack of the alcohol to the activated reagent followed by deprotonation. D: Attack of the carboxylate with inversion of configuration.
A046 Br
Br
O H
A
Me Me
Br
Me H Me O H
IC IA L
Me Me
Me
Me
Br
B
Br
C
H
FF
Zhong, G.-F.; Schlosser, M. Synlett. 1994, 173
Wanger-Meerwein rearrangement. A: Protonation of the alcohol. B: Elimination of water assisted by
O
cleavage of the C-C bond to form a stable tertiary carbocation C: Deprotonation to form an olefin.
H
H
H
-H2O
N
A
OH
O
H
HO
Ơ
N
A047
OH
OH
Y
-H+
U
B
O
Q
OH
M
Walter, C. R., Jr. J. Am. Chem. Soc. 1952, 74, 5185.
pinacol rearangement. A: Protonation of the alcohol followed by elimination of water to form a tertiary
KÈ
center. B: 1,2-Alkyl shift helped by the oxygen lone pair of the hydroxy group.
D
ẠY
A048
Me
Me
Me
Me A
O
Me B
O H
H
O H
Me
Me +
-H D
C Me
H OH
Me OH
Me
Waring, A J.; Zaidi, J. H.; Pilkington, J. W. J. Chem. Soc., Perkin Trans.
1981, 1454.
Dienone-phenol rearrangement. A: Protonation of the ketone. B: 1,2-Alkyl shift to form a stable tertiary carbocation. C: 1,2-Alkyl shift to form a stable tertiary carbocation. D: Aromatization by
A049 Me
Me
Me Me
A OH
Me Me
C Ph
H
-H+
Ph
Me Me
Me
O N
Ph
H
C
N
N C Ph
N
O
B
O
Me
OH N
Me Me
OH2
Me
Me Me
OH
Ơ
Me Me
OH
FF
OH
Me
IC IA L
deprotonation.
Tillmanns, E.-J.; Ritter, J. J. J. Org. Chem. 1957, 22, 839
N
Ritter reaction. A: Protonation of the tertiary alcohol followed by elimination of water to form a more stable tertiary carbocation.
B: Attack of PhCN to the carbocation to form a nitrilium ion.
C
Q
U
Y
Intramolecular addition of the hydroxy group to the nitrilium ion.
M
A050 Me
Me
N N
KÈ
NC
Me
ẠY
Me
CN
-N2 A
H
Me H SnBu3
NC Me
B Bu3Sn
H
O
H
O
Br
H
O
D
D
C
H
H
Bu3Sn H Hamon, D. P. G.; Richards, K. R. Aust. J. Chem. 1953, 36, 2243 A: Thermal decomposition of AIBN to gi ve the stable tertiary radicals. B: Abstraction of a hydrogen atom from Bu 3SnH. C: The resulting tin radical reacts with a halide to form a carbon radical. D: Abstraction of a hydrogen atom from Bu 3SnH to continue the radical chain reaction.
A051
H
O
S I CH3
H
A
O
Bu3Sn
S O
H Ph
Bu3SnH
H
N
S
MeS
H
N O
O
O
H
H Ph
N O
H
F
H
E N O
H Ph
N
H Ph
O
H Ph
O
Bu3Sn H
Bu3Sn
D
AIBN C
N
O
S
MeS
H
H Ph
N
MeS
B
N
H Ph
H
Ơ
H Ph
N
O
IC IA L
O
FF
H
S
S C S
O
H
N O
Y
Comins, D, L.; Abdullah, A. H. Tetrahedron Lett. 1985, 26, 43.
U
Barton-McCombie deoxygenation. A: Deprotonation of an alcohol. B: Addition of the alkoxide ion to
Q
CS2 followed by methylation to form a xanthate. C: Generation of a tin radical. D: Attack of the radical to the sulfur atom of the xanthate to form a stable carbon radical. E: Cleavage of the C-O bond
M
to form a secondary carbon radical. F: Abstraction of a hydrogen from Bu 3SnH.
KÈ
A052
O
D
ẠY
N H
O
B
O
N
A
N
B Cl
O
O O H2N NH2
H2NNH2 N Ph O
O O +
-H
+H+ C
O
NH NH2 NH Ph
-H+ +H+ D
O
O NH NH NH2
O
NH NH
H2N
+
O
Ph Manske, R. H. F. Org. Synth., Coll. Vol.
1943, 83.
IC IA L
Gabriel synthesis. A: pKa RCONHCOR = 9.6,
HCO3-
= 10.3. B: Afkylation, C: Addition of H 2NNH2
to the imide to form a hydrazide. D: Intramolecular addition of the amino group of the hydrazide to the
FF
amide carbonyl to release benzylamine.
A053
H
O
H
OH2
-H+
NH2
HN
N Me
aq H2O2
-CO2 B
N Me D
O NMe2
H
O NMe2 E
M
Q
OH H O NMe2
U
Y
C
O
HO OH
Me
N
HN Me
H
Me
H
HN CH2
Ơ
N
+H+ A
-H2O
O
O
H
KÈ
Cope, A, C.; Bumgardner, C. L.; Schweizer. E. E. J. Am. Chem. Soc. 1957, 79, 4729
Eschweiler-Clarke methylation (A-C)and Cope elimination (E). A: Addition of the amine to formaldehyde followed by dehydration to form an immium ion. B: Hydride transfer from a formate and
ẠY
to the iminium ion with generation of CO2.
C: Iteration of the same steps. D: Oxidation of the tertral
amine to form an N-oxide. E: syn-Elimination.
D
A054
H
H
O
Cl
O O -H+
O OH
A
O H O
B
O O
O
O O
C
IC IA L
Cl
+
HO
FF
Cl
Krow, G. R. Org. React. 1993, 43, 251.
O
Baeyer-Villiger oxidation. A: Acti vation of the carbonyl group by protonation. B: Addition of mCPBA
N
to the carbonyl group. C: 1,2-Alkyl shift helped by the o xygen tone-pair with cleavage of the peroxide
Ơ
to form a lactone.
H
OH
N
OH2
Y
N
N
H
A055
OH
N B O
-H+
N
KÈ
M
-H+
Q
U
A
H2O
HN
+H+
Eck, J. C.; Marvel, C. S. Org. Synth., Coll. Vol.
1943, 76.
Beckmann rearrangement. A: Protonation of the oxime. B: Migration of the alkyl substituent with
ẠY
simultaneous cleavage of the N-O bond.
D
A056
O
O H
O H
A O H
OH
B O
O OH
H O OH O
C
O H
O
O D O
O
OH
workup
O
+H+
E
O
OH
O
OH
Dakin. H. D. Org. Synth., Coll. Vol.
1941, 149.
IC IA L
Dakin reaction. A: Deprotonation of the phenol ( pKa PhOH = 10, H2O = 15.7). B: Addition of
hydroperoxide ion to the carbonyl group. C: Attack of the electron-rich aromatic ring to the peroxide oxygen with cleavage of the O-O bond to form an epoxide. D: Cleavage of the epoxide to restore the
FF
aromaticity, E: Hydrolysis of the resulting formate.
A057 O
O
MeO
A
Ar
NH
Ar
D
Y
O H
Ar
Cl OH
HO H Ar
E
OH
N
O OH
H OH -CO2 O
H N
MeO
NH2
F
O
OH
Q
O
N H
N
Ar
U
Ar
N Cl
H N
O C N
Ar
B
H
O C
O
OH
H
N
N H
Cl OH
Ơ
MeO
O
MeO
Buck. J. S.; Ide, W. S. Org. Synth., Coll. Vol.
M
1943, 44
Hofmann rearrangement. A: pKa RCONH 2 = 17, H2O = 15.7. B: Chlorination of the amide anion.
KÈ
C: Deprotonation. D: The anion on the nitrogen atom induces migration of the aromatic ring with cleavage of the N-Cl bond to form an isocyanate.
E: Addition of hydroxide ion to the isocyanate. F:
ẠY
Decarboxylation.
D
A058
O Ph
O
O O H
NEt3
Ph A
O
Cl
O OEt
Ph
O O
OEt Cl
O
N
N O N Ph
O
Ph
O
OEt
O O
OEt
B
O Ph
O Ph
N N N
-N2
N N N
Ph
C
IC IA L
N N N
N
O
C
1988, 910.
FF
Kaiser, C.; Weinstock, J. Org. Synth., Coll. Vol
Curtius rearrangement. A: Formation of a mixed anhydride. B: Addition of azide ion to the mixed anhydride occurs at the more electron-deficient carbonyl group to form an acyl a zide. C: Migration of
O
the carbon atom to the nitrogen proceeds with retention of configuration as N 2, an extremely good
Ơ
N
leaving group, departs from the molecule.
Me O H
N N
Me O
H
A H
Y
H
-H+ H H
H
Me
-H+
Me
O C H2O
H
CO2H
H
+
+H
H
H
H
HO
KÈ
+H C
OH
M
+
H
HO
Q
Me
H
H
B
U
HO
Me
N
Me
-N2
H
A059
Wheeler, T. N.; Meinwald, J. Org. Synth., Coll. Vol
1988, 840.
Wolff rearrangement. A: Photo-induced generation of a carbene. B: Insertion of the carbene to the
ẠY
C-C bond results in a ring contraction to form a ketene. C: Addition of water to the ketene.
D
A060
O MeO
H
O Cl
O Cl
A
OMe B
O OMe
OMe H
O
OMe D
C
Goheen, D. W.; Vaughan, W. R. Org. Synth., Coll. Vol
1963, 594.
Favorskii rearrangement. A: Deprotonation to form an enolate. B: Formation of a cyclopropanone.
IC IA L
C: Addition of methoxide ion to the carbonyl group. D: Cleavage of the cyclopropane ring with simultaneous protonation.
MeLi Me
A
Br Br
Br Br
B
Br Br
O
Ot-Bu
N
H
Br Br Br
Br
C
D
E
Ơ
Br Br Br
FF
A061
H
Skattebel, L,; Solomon, S. Org. Synth., Coll. Vol. A: Generation of a dibromocarben
N
-elimination of HBr,
A
1973, 306,
B: Insertion of the carbene to the olefin
toform a cyclopropane. C: Halogen-lithium exchange. D: Generation of a carbene. E: Insertion of
Q
U
Y
the carbene to the C-C bond to form an allene.
A062 H
M
B
O
O
O OMe
Br
OMe A
O
D
ẠY
KÈ
OMe
O OMe A
H
OH - + OMe H +H+ B
Allen, C. F. H; Gates, J. W., Jr, Org. Synth., Coll. Vol. A: Allylation of the phenol. Aromatization.
OMe
1955, 418
B: [3,3] Sigmatropic rearrangement (Claisen rearrangement).
C:
A063 H O
+H+
O
A
H O B
IC IA L
O
H -H+ O
O
O
D
C
1973.25
FF
Howard, W. L.; Lorette, N. B. Org, Synth., CoIl Vol.
A: Protonation of an oxygen atom of the acetal. B: Elimination of allyl alcohol helped by the oxygen lone pair of the acetal. C: Deprotonation to form an enol ether. D: [3,3] Sigmatroplc rearrangement
N
O
(Claisen rearrangement).
Ơ
A064 O
H
CO2Me
O
O
N
A CO2Me
B CO2Me
CO2Me
Y
O
CO2Me
CO2Me
U
Ziegler, T,; Layh, M.; Effenberger, F. Chem. Ber. 1987, 120, 1347.
M
Q
A: Diels-Alder reaction. B: Retro Diels-Alder reaction.
A065
KÈ
O
O
H
ẠY
Ph
D
A
NH OH
N O
Ph
Ph
N H OH
Ph Ph H
OH
N O
OH
-H+ +H+ B
Ph
Ph
N OH
Ph
Ph Ph
Ph Ph
N O
-H2O
Ph C
Ph N O Ph
Brüning, I.; Grashey, R.; Hauck, H.; Huisgen, R.; Seidl, H, Org. Synth., Coll. Vol.
1973, 1124
A: Addition of a hydro xylamine to the aldehyde. B: Proton transfer followed by elimination of water to form a nitrone cycloaddition).
C: 1,3-Dipolar cycloaddition of the nitrone to stvrene (electronically, [4+2]
A066 Cl O H
O H
A
O
-HCl
O
B
C
or Cl
Cl OH
OH
A
D
-HCl E
O
FF
O H
Cl
IC IA L
Cl
Schiess, P.; Barve, P. V.; Dussy, F E.; Pfiffner, A. Org. Synth., Coll. Vol. A: Isoerization to form an o-quinodimethane.
B: Elimination of HCl to form a ketene.
N O
N
O
O
H
O H
Ơ
A067
O
U
Y
O
KÈ
M
A068
ẠY D
Rondestvedt, C. S., Jr. Org. Synth., Coll. Vol. /V 1963, 766
Q
Ene reaction.
OH H Se O OH
C: 4e
O
Elimination of hydrogen chloride to form a ketone.
Me
1998, 28.
Me
H2O + O Se O
Me
HCl OAc
HO Se O HO
Me
-H2O
Me
R
A HO
Se OH OH
R O
Se
OH
Me
Me
O
O
O Se
Me OAc
R
C
Se OH
Me
O Ot-Bu H
OH
H O Se
D
O
Se
IC IA L
R
B
Me
-Se O
O H
O Se O Ot-Bu
Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526. B: [2,3] Sigmatropic rearrangement.
C:
FF
A: Ene reaction occurs on the least hindered olefin.
Elimination of the alcohol. D: Oxidation of SeO with TBHP to regenerate SeO2.
PPh3 CH2
O PPh3
O PPh3 - Ph P O 3
Ơ
O
N
O
A069
B
C
H
A
CH2
N
Wittig, G.; Schoellkopf, U. Org. Synth., Coll. Vol
1973, 751.
Wittig reaction. A: Addition of the ylide to the carbonyl group to form a betaine. B: Attack of the
U
Y
alkoxide to the phosphonium cation to form an oxaphosphetane. C: Irreversible elimination of Ph 3PO.
Q
A070 O
M
Br
Br Me
KÈ
OEt
A
O (EtO)2P
O
-EtBr OEt
B
O (EtO)2P
O OEt
P(OEt)3
van der Klei, A.; de Jong, R. L. P.; Lugtenburg, J.; Tielens, A. G. M. Eur. J. Org. Chem. 2002, 3015.
ẠY
Arbuzo v reaction. A: Attack of P(OEt) 3 to the reacti ve bromoacetate to release bromide ion (SN2 reaction). B: Attack of the resulting bromide ion to the ethyl group in an SN2 fashion to form a
D
phosphonate.
A071 O (EtO)2P
O
O (EtO)2P
OEt H
A H Na
O
O O P(OEt2)
OEt O Na
OEt C
B O
OEt O
Wadsworth, W. S., Jr.; Emmons, W. D. Org. Synth., Coll. Vol.
1973, 547.
Horner-Wadsworth-Emmons reaction. A: Deprotonation of the phosphonate. B: Addition of the phosphonate ion to the ketone. C: Attack of the alkoxide to the phosphonate followed by elimination of a phosphate ion to form an olefin.
IC IA L
A072 OH2 H
Cl
H2N H2N
S
N
H2N
A
H
NH CN
S
H2N
H2N
CN
S
H2N
B
Ơ
H OH N S
+
+H
N
OH
workup
CN
H
H2N
+
CN
S OH
N
OH
H
N
O
NaOH
H
N
FF
CN H
CN
S
NH2
H2N
O
+
CN
HS
Gerber, R, E.; Hasbun, C.; Dubenko, L. G.; King, M. F.; Bierer, D. E. Org. Synth., Coll. Vol.
2002, 475
Y
A: Attack of the more reactive sulfur atom of thiourea to the alkyl chloride to form an isothiourea (SN2
Q
U
reaction). B: Hydrolysis of the isothiourea.
Na
M
A073 O
KÈ
O
H
Me
O
ẠY D
O
HO OH
O Me SePh
B
aq H2O2
PhSe Cl
O Me SePh
O Me
A
Na H
O
O
O Me SePh O H
C
O
O
H
Me SePh O
O D
Me
HO Renga, J. M: Reich, H. J. Org. Synth., Coll. Vol.
A
O
-diketone ( pKa RCOCH 2COR = 9, H2 = 35). B
C: Oxidation of the selenide to form a selenoxide. D
-Elimination.
1988.23 -position.
A074 BrMgO
O MgBr
SiMe3
OH SiMe3
workup +H+
A
H2C SiMe3
O
NaH
H
Na
H SiMe3
O
SiMe3
IC IA L
Na
-Me3SiO-
B
C
FF
Ager, D. J. Org. React. 1990, 38, 1.
Peterson olefination. A: Addition of Me3SiCH2MgBr to the ketone. B: Exchange of the counter cation from Mg to Na. C: Elimination of a silanol ion via a four-membered transition state.
A
N
B
CO2Me
U
Me Br
Me
Me
E
Me
Me CO2Me
Pd(0)Ln
H
Me
D
ẠY
KÈ
Me
M
D
Me
PdLn
Q
Me
-Elimination. C: Reductive
N Me Br
Y
Me
Pd(0)Ln
C
Reduction of Pd(OAc) 2 to Pd(0) using Et3N. A: Ligand exchange. B elimination of AcOH.
-AcOH
AcO Pd H
H
Et3N
NEt2
Ơ
Me H AcO Pd NEt2
AcO Pd OAc
Me
H
H
O
A075
PdLn Br
Me Me
Me
F CO2Me
G HBr
Br H PdLn Me
Me
Patel, B. A.; Ziegler, C. B.; Cortese, N. A.; Plevyak, J. E.; Zebovitz, T. C. Terpko, M.; Heck, R. F. J. Org. Chem. 1977, 42, 3903. Heck reaction. D: Oxidative addition. E: Carbopalladation. F
-Elimination to form the product. G:
Reductive elimination of HBr.
Pd(OAc)2 + 2Ph3P
AcO
OAc
AcO
Pd Ph3P
IC IA L
A076 OAc
AcO
Pd PPh3
Ph3P
PPh3
Ph3P
Ơ
Reduction of Pd(OAc)2 to Pd(0) using Ph 3P.
OH
(HO)3B
H
(HO)2B
N
Activation of boronic acid,
Br
U
Y
OHC
O PPh3 Ph3P Pd(0) + Ac2O
O
Ph3P
O O Pd PPh3
N
AcO
PPh3
FF
Me OAc AcO Pd PPh3 Ph3P
OAc
Pd
M
Q
A
ẠY
KÈ
Pd(0)Ln
D
OHC
OHC
B
C OHC
Br PdLn
(HO)3B
PdLn
BrB(OH)3 Huff, B. E.; Koenig, T. M.; Mitchell, D.; Staszak, M. A. Org. Synth., CoIl Vol.
2002, 122
Suzuki-Mi yaura coupling. A: Oxidative addition. B: Transmetallation. C: Reductive elimination.
A077 O
2HCl + 1/2O2 H2O
PdCl2
2CuCl2 D
IC IA L
2CuCl
A
Cl
FF
O
C
N
O
Pd(0)
O
O
Cl H
B
Ơ
O
H
Pd
H
Pd Cl
H
Me
N
O
H
O
Tsuji, J.; Shimizu, I.; Yamamoto, K. Tetrahedron Lett. 1976, 34, 2975.
Y
Wacker oxidation, A: Olefin complexation. B: Oxypalladation. C: Hydride shift. D: Oxidation of Pd(0) with CuCl 2 to regenerate PdCl 2.
Q
U
E: Oxidation of CuCl with O2 to regenerate CuCl 2.
A078
Boc N
M
Boc N
D
ẠY
KÈ
LnRu
R
RuLn
A
R
Boc N
- H C RuLn 2
R B
Boc N RuLn
Boc N
D
C RuLn
Ferguson, M. L.; O'Leary, D. J.; Grubbs, R. H. Org. Synth. 2002, 80, 85. Ring closing metathesis (RCM). A: C ycloaddition of a ruthenium carbene complex to the olefin to from a metallacyclobutane.
B: Retro cycloaddition.
C: Intramolecular cycloaddition of the ruthenium
carbene complex. D: Retro cycloaddition to regenerate a ruthenium carbene complex.
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
B001 OH -H+
H
OH
NHMe
NH2 +H+ Me
-H+ +H+ A
CHO
H
O
OH2
+H+ N Me
N Me
OH
OH
IC IA L
O
HO2C OH CO2H +
-H
MeN
+H+ B
N Me
O CO2H +H+
MeN
MeN
OH C CO2H
O H O
H
MeN
OH CO2H
H MeN
OH
D
Q
O
N
MeN
-CO2
Y
+H+
O H CO2H
CO2H
U
-H+
O H -CO 2 O D
N
-H+
MeN
Ơ
-H+
-H2O
CO2H
H2O
OH
O
O
-H2O
CO2H
FF
HO2C
-H+
MeN
+H+
O
H
Cope, A. C: Dryden, H. L.: Howell, C. F Org. Synth., Coll. Vol. A: Formation of a cyclic hemiaminal.
B: Mannich
reaction
C:
M
Robinson-Schöpf reaction.
1963, 816
KÈ
Intramolecular Mannich reaction. D: Decarboxylation through the six-membered transition state.
i-PrO Oi-Pr Al O O Ph Me H Me
Al(Oi-Pr)3
O A
D
ẠY
B002
Ph
O
Al(Oi-Pr)2 H
O Me
Me B
OH aq HCl
Wilds, A. L. Org. React. 1944, 2. Meerwein-Ponndorf-Verley reduction. A: Formation of an ate complex. B: H ydride transfer via a six
membered transition state with formation of acetone.
B003 H
O
NH2NH2
+H+
O
O
-H+
O
N
-H+
N
-H2O
H2N
N H
O H
O
H
H -N2 B
N
A
N
O
+H+
H2N
O
FF
H2O NHNH2
-H+
H HO NHNH2
IC IA L
H
O
OH
Ơ
OH
Wharton rearrangement.
H
Wharton, P. S.: Bohlen, D. H. J. Org. Chem. 1961, 26, 3615. A: Cleavage of the epoxide helped by the nitrogen lone pair of the
Y
N
hydrazone. B: Elimination of N 2 (an extremely good leaving group).
KÈ
M
HOO
Q
U
B004
ẠY
O
-OHO
A O
ArSO2NHNH2
O
aq K2CO3
O
-H2O
D
HO
N NH SO2Ar
O
-N2 -ArSO2-
D
E N N O
S Ar O
O O
B H N N SO2Ar
O
Reese, C. B.; Sanders, H. P. Synthesis 1981, 276. Eschenmoser fragmentation. A: Michael addition. B: Formation of an epoxide (the O-O bond is activated). C: Formation of a hydrazone. D: pKa HCO3- = 10.3, ArSO 2NH2 = 8.5. E: Fragmentation involving a loss of N2 and a sulfinate ion.
O
O
OH
H CN
H
IC IA L
B005
CN
CN A N
H
O CN
CN
-CNCN
CN
C N
CN
D
N
N
O
O
O
B
N
FF
CN
N
N 1988, 866
Ơ
Stetter, H.; Kuhlmann, H.; Lorenz, G. Org. Synth., Coll Vol.
H
A: Formation of the less favored cyanohydrin carbanion. B: Michael addition. C: Regeneration of the
N
cyanide ion (cyanohydrin is unstable under basic conditions).
Bn H
S
M KÈ
ẠY
HO
D
O
N
Me Bn
Me
O
N
Me
OH
S
O H
Me
O
Bn
S
HO
C
S
O
H
Me Me Bn
O Bn
Me
N S
HO
H
Me
Me
Me
HO
N S
A
NEt3
Bn
Me
N
HO
Me
B
Bn
Me
U
Cl
N
Q
Me HO
Y
B006
O
N O
D
HO
S
+ Me
Me O
Me Stetter, H.; Kuhlmann, H.; Haese, W. Org. Synth., Coll. Vol Stetter reaction. A: pKa thiazolinium ion = 10, (
HNEt3+
1993. 52
= 10.7. B: Generation of a stabilized carbanion
ref B005). C: Michael addition. D: Regeneration of the thiazolinium ion.
B007
O
O Me
O
H
OAc
O
O
Me
A
Me
O
O
O
OAc
H
O
O
Me
C
O
O
H2O
Me
O
Me
-AcOH
O
O
N
O
O
O
O
O
OH
Ơ
D
aq HCl
B
O
AcO
O Me
O
O O Me
O
OAc O
O
O
O
O
H
O
O O
O
O
IC IA L
O
FF
Me
O
O
O
Me
1955, 425.
H
Rajagopalan, S.; Raman, P. V. A. Org. Synth., Coll. Vol.
N
Perkin reaction. A: pKa (CH 3CO)2O = 13.5, AcOH = 4.8 (a small amount of the acetic anhydride anion can be formed).
B: Intramolecular acyl transfer.
C: Formation of a mixed anhydride.
U
Y
Base-catalyzed elimination of acetic acid.
Me
H
O
M
HO
Q
B008
Me
KÈ ẠY
O
O Me
Me O
Me
O
B Me
O
O Me
N H benzene reflux
O Me
MeO H
O
A
O
D
O
O
Me
O
O
-H+ N H
+H+
D:
O Me HO N
Me
O Me C
N
O
O Me
H
N
O
O
O Me
N
O Me
HCl
H
O Me
N
HO N
N
O
H
Y
+H+
-H+
O Me
H2O
Ơ
N
O Me
O Me
H
N
-H+
N
OH
aq HCl
H
FF
H
O Me
O
O
HO
N
N
O Me
IC IA L
OH
1973, 486
U
Ramachandran, S.; Newman, M. S. Org. Synth., Coll. Vol.
Q
Robinson annulation. A: pKa RCOCH 2COR = 9, H2 O = 15.7. B: Michael addition. C: Formation of
KÈ
B009
M
an enamine followed by an intramolecular addition to the ketone.
O
MeO2C
OMe A
D
ẠY
H
B
MeO2C
OMe
O
O
H
O
Ph Ph H
OMe OMe
Ph
O OMe O
O
H
OMe
Ph H
H
O
O
OMe
O O
Ph OMe O O
O
H CO2Me
O
O OMe O
Ph C
workup +H+
OMe
Ph
CO2H
OMe Johnson, W. S.; Daub, G. H. Org. React. 1951. 6
IC IA L
Stobbe condensation. A: pKa CH3CO2R = 24, MeOH = 15.5. B: Formation of a five-membered lactone. C: Elimination of the carboxylate occurs by avoiding the steric repulsion between the phenyl
B010 Me
A
O OMe
H
Ph
Ph
H3C N N
O
N
Me
-N2
H2C N N
O
H
O
O
Ơ
Ph
B
Me
O
FF
and the methoxycarbonyl groups.
Black, T. H. Aldrichimica Acta 1983, 16, 3
Y
N
A: pKa CH3CO2H = 4.8, CH 3N2 = 10.2. B: The SN2 reaction occurs in a solvent cage.
U
B011
M
O
O
KÈ
O
OTs
OTs
Q
OTs
ẠY D
O
e
e
Li/NH3
OTs
workup O
+H+
O
O H
Stork, G.; Tsuji, J. J. Am. Chem. Soc. 1961, 83, 2783. Two successive SET reactions followed by cyclopropane formation.
B012 CN Cl
CN A
H
CN B
Cl NH2
H
CN
IC IA L
NH2
CN
FF
H NH2
Skorcz, J. A.; Kaminski, F. E. Org. Synth., Coll. Vol.
1973.263
A: pKa CH 3CN = 25, NH3 = 35. B: Formation of benzyne followed by an intramolecular nucleophilic
N
O
addition.
B013
NH2
N N
N N
H
A
CuCl
Ơ
NaNO2 HCl
U
Y
N
e
CuCl2 B -CuCl D
C
Cl CuCl
Ropp, G. A.; Coyner, E. C. Org. Synth. Coll, Vol
1963. 27
M
Q
Cl
Meerwein arylation. A: Formation of a diazonium salt ( ref A037). B: SET induces a loss of N 2 to form
KÈ
a phenyl radical. C: Addition of the phenyl radical to butadiene to form a stabilized radical. D:
ẠY
Recycle of CuCl to continue the radical chain reaction.
D
B014
H
Cy N C N Cy A
H O N C N Cy S Cy Me Me
CyHN CyN
Me O S Me Me H
O
Me
Me Me
CyHN
-H+
O +
+
+H B
CyHN
O
S Me
Me
-Me2S
Me H
O
C
Me H
B
Me Me
S
O H
IC IA L
or Me Me
Me
O
H
Me
S CH2 H
C
Me
-Me2S
O
Me
H
FF
B
Tidwell, T. T. Org. React. 1990, 39, 297. Pfitzner-Moffatt o xidation. A: Activation of DCC by protonation. B: Nucleophilic substitution at the -Elimination of dimethyl sulfide might proceed either by 1) direct deprotonation with a
O
sulfur atom. C
Ơ
N
base or 2) formation and collapse of a sulfur ylide.
H
B015 H2O
N
H HO
H
-H2O Br
H
U
Y
A
H
M
H
Q
Br
B
Br
Ferreri, C.; Ambrosone, M. Syn. Commun. 1995, 25, 3351.
KÈ
A: Generation of a carbocation stabilized by a cyclopropyl group. B: Cleavage of the cyclopropane ring occurs by avoiding the steric repulsion to form the trans -product.
D
ẠY
B016
H
O
OTs
H
O
H
OTs H O
Ot-Bu Wharton, P. S.; Hiegel, G. A. J. Org. Chem. 1965, 30, 3254. Grob fragmentation. This Grob fragmentation can occur when the orbitals of the breaking C-C o-bond and C-
-bond overlap on the same plane (antiperiplanar interaction).
B017 Me Me Me n-Bu3Sn
A
Me Me
I
H
Me Me
Me
B
Me
IC IA L
AIBN
n-Bu3SnH
C H
n-Bu3Sn H H Me Me Me H
H
H Me
H
O
D
Me Me
-n-Bu3Sn
FF
H
H
N
Weinges, K.; Reichert, H.; Huber-Patz, U.; Irngartinger, H. Lieb igs Ann. Chem. 1993, 403. A: Generation of a tin radical ( ref A050). B: Attack on the iodide to initiate the radical chain reaction. 5-exo-dig Radical cyclization.
Ơ
C: 5-exo-trig Radical cyclization. D:
N
H
B018 O
Ph
O
Ph
A
Ph
H CCl3
O
KÈ
M
Q
U
O O
Y
O
CCl3
B
CCl3
CCl3
CCl3 -CCl3
C Cl3C H Dowbenko, R. Org. Synth., Coll Vol.
1973, 93.
A: Homolytic cleavage of dibenzoyl peroxide. B: Generation of a trichloromethyl radical which then
ẠY
adds to 1,5-cyclooctadiene. C: Transannular radical cyclization.
D
B019
Ph
Cl
Ph N Cl
A Me
O O
Cl
N
Me
O O
Cl
-PhCH2Cl B
N
Me
O O
Cl
-Cl-
MeOH N O
N H
N
C
Cl
O
N
D
OMe
O
O
Me
+H+
HOMe
-CO2
Me
O
Me
O
O
NH HCl
E
IC IA L
reflux
-H+
OH
Yang, B. V.; O'Rourke, D.; Li, J. Synlett. 1993, 195.
A: Acylation of a tertiary amine. B: Attack of chloride ion on the benzylic position. C: E1 elimination
FF
ofthe chloride followed by addition of methanol, D: Elimination of the carbamic acid helped by the oxygen lone pair of the methoxy group. E: Decarboxylation.
O
B020
Me CO2Me
N
C5H11
I
Me
-MeI
CO2Me
B
N
A
H
O
Ơ
Me
N
C5H11
Me Me Si O O
N
Me I Si Me Me O
N
-Me3SiOMe CO2Me
Y
M
C5H11
Me Me Si O O e MeOH M OH N C5H11 CO2Me C Me
U
Me Me Si O O
Q
Me
OH
KÈ
O
N
CO2Me
ẠY
C5H11
-CO2
H N
C5H11
CO2Me
Laurent, P.; Braekman, J.-C.; Daloze, D. Eur. J. Org. Chem. 2000, 2057.
D
A: Sil ylation of the electron-rich oxygen of the carbamate. B: Demethylation by SN2 reaction. C: Methanolysis of the silyl carbamate.
B021 O
EtO2C N
PdLn O
O
EtO2C N
O
PdLn
A
NHEt2
O
EtO2C N
O Pd Ln
-PdLn -CO2
H
O
EtO2C N
B
Et N Et
+
O
LnPd
EtO2C +
NEt2
IC IA L
NH
Genet, J. P.; Blart, E.; Savignac, M.; Lemeune, S.; Lemaire-Audoire, S.; Bernard, J. M. Synlett 1993, 680.
-allylpalladium complex. B: Attack of Et2
-allylcomplex.
FF
A
Ph
O
B022 Ph
O O O O N S N S Ph
- PhS
Ơ
N
O O O O N S N
O2N
B
H
A
MeO
PhS H
PhS
U
B
Y
N
MeO
Ph
Ph
Q
Ph
M
O S
O
N
H SPh
KÈ
N
MeO
O S
O H
-SO2
MeO
NH
MeO
ẠY
Kurosawa, W.; Kan, T.; Fukuyama, T. Org. Synth., Coll. Vol.
2004, 482.
A: Addition of a thiolate ion to the electron deficient aromatic ring to form a Meisenheimer complex. B:
D
Elimination of an amidosulfurous acid anion which, upon protonation and extrusion of SO2 , gi ves an amine.
B023 O
O BF3-Et2O
Me Me
O Me
Me Me
O BF3 Me
BF3 O
O A
O B
Me Me
CHO Me
Me Me
Me
Ryerson, G. D.; Wasson, R. L.; House, H. O. Org. Synth., CoIl Vol
1963, 957.
IC IA L
A: Cleavage of the epoxide to form the more stable tertiary carbecation (formation of a carbocation next
FF
to a carbonyl group is unusually difficult). B: Wagner-Meerwein-type rearrangement.
B024
O
H2C N N
B
N
Me N N OH
Ơ
O Me S N A O N O H OH OH
Me
OH H H2C N N
O H2C N N
-N2
N N
N
C
O
H
O
Y
de Boer, T. J.; Backer, H. J. Org. Synth., Coll Vol
1963, 225.
U
A: H ydrolysis of N-methyl-N-nitrososulfonamide. B: Formation of diazomethane. pKa CH3N2 = 10.2,
Q
H 2O = 15.7. C: Addition of diazomethane to a ketone followed by ring expansion (cf. Tiffeneau-
KÈ
M
Demjanov rearrangement).
B025
D
ẠY
NC
Me CN
Me Me
A
Me Me
Me
NC H CN
B
Kametani, T.; Kondoh, H.; Tsubuki, M.; Honda, T. J. Chem. Soc., Perkin Trans.
Me M H e 1990, 5.
A: 4e Conrotatory electrocyclic reaction to form an o-quinodimethane. B: Intramolecular Diels-Alder
reaction.
B026 FeCl3 O
O
FeCl3
O
FeCl3
A SiMe3
SiMe3
O FeCl3
O FeCl3 B
C
H
SiMe3
O
X
O
H
H
H
Ơ
N
workup
FF
SiMe3
O FeCl3
IC IA L
SiMe3
Jones, T. K.; Denmark, S. E. Helv. Chim. Acta 1983, 66, 2397.
N
Silicon-directed Nazarov reaction. A: Acti vation of the carbonyl group with FeCl 3, a Lewis acid. B: 4e
U
Y
Conrotatory electrocyclic reaction. C: Desilylation to form the olefin regioselectively.
Q
B034
hv 1O 2
A
KÈ
M
3O 2
O O
ẠY D
O O
1O 2
Et3N
B
O O
O
OH +H+
H Et3N
C O
O Balci, M. Chem. Rev. 1981, 81, 91.
A: Generation of singlet oxygen. endoperoxide.
B: Diels-Alder reaction.
C: Base-induced cleavage of the
B035 hv
O O
1O 2
A
O O
1O 2
O O
Ph3P
B
Ph3P
O
O
- Ph3P O
FF
C PPh3
O
O
IC IA L
3O 2
N
Balci, M. Chem. Rev. 1981, 81, 91
A: Generation of singlet oxygen. B: Diels-Alder reaction. C: Reductive cleavage of the endoperoxide D: Formation of an epoxide via SN2' reaction with elimination of
Ơ
with triphenylphosphine.
Y
N
H
triphenylphosphine oxide.
Br
CrCl2
CrCl2
Me
Ph
KÈ ẠY D
O
H
H OCrCl2
Me H
O CrCl2
A
Me
Ph
Ph
CrCl2
Me
M
Me
Q
U
B041
Ph Me
O CrCl2 OH
workup +H+
B
Ph Me
Okude, Y.; Hirano, S.; Hi yama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.
A: Since CrCl2 is a single electron reductant, two molecules of CrCl 2 are needed to convert an alkyl bromide to the corresponding organochromium species. B: Addition to an aldehyde via a chair-like six-membered transition state.
B042 O n-Bu HRh(CO)L2
A
E O H L2 Rh H CO
H L2 Rh CO
n-Bu B
IC IA L
n-Bu
n-Bu
n-Bu
L2 Rh CO O
D
CO L2 Rh CO
n-Bu L2 Rh CO
H2
C
n-Bu
CO
FF
H
O
Hallman, P. S.; McGarvey, B. R.; Wilkinson, G. J. Chem. Soc. (A) 1968, 3143.
Ơ
N
Hydroformylation. A: Complexation of the catalyst with an olefin. B: Hydrometallation. C: Insertion
H
B045
N
N C
O
O
A
Y
H Ph
H
O
S B
S
H Ph
Ph
U
SCN
N
M
Q
N C O
KÈ
H
S
H
Ph S C
O C N
Ph
S Ph H
Guss, C. O.; Chamberlain, D. L., Jr. J. Am. Chem. Soc. 1952, 74, 1342.
ẠY
A: Cleavage of the epoxide by SN2 reaction at the less hindered position. B: Migration of the cyano
D
group. C: Intramolecular SN2 reaction with inversion of configuration.
B046 O
-H+ Me
MeO
HO NMe2
OMe
Me
HN Me
Me
+
+H
MeO
OMe
Me HO
H MeO
N
Me Me
OMe
Me
N
Me
Me -MeO-
Me
N
Me
Me
N
-H+ Me
Me Me
A
B OMe
Me
N
-
-MeO
MeO
Me Me
O
HO NHMe2
OH2 - + H
-
-MeO
Me
+
+H
Me
+
-H
Me2N
Me2N
FF
Me2N
NMe2
MeO
Me HN Me
IC IA L
MeO
Kozmin, S. A.' He, S.; Rawal, V. H. Org. Synth., Coll. Vol.
2004, 301.
A: Formation of an enamine to eliminate methoxide ion. B: Conjugate addition of dimethylamine to the
O
-unsaturated iminium ion.
N
-MeO-
OMe
OMe
H N
A
-H+
OMe
N
+H+
H OMe
N
B
Q
U
Y
MeO
N
Ơ
Me
H Me N
Me
N
Me
Me
H
Me
N
B047
OBn
M
OBn H
N O
OBn H
ẠY
H
C
O
KÈ
N O
N
OMe NO2
OBn N
Raney Ni NH2NH2
D
MeO H OBn N
E
D NO2
NH2
NO2
OBn H -
-MeO
-MeO-
N
O
-H+
N
OBn
OMe
OBn
OBn +
-H
N
+H+
F NH2
N H H
N
N H
H N
OBn
N H
-
OBn H
+
-H
G N H
N H Batcho, A. D.; Leimgruber, W. Org. Synth., Coll. Vol
1990
IC IA L
Leimgruber-Batcho indole synthesis. A: Generation of an iminium ion under thermal conditions. B:
Replacement of dimethylamine with pyrrolidine. C: Generation of a benzylic carbanion stabilized by o-nitro group. D: Formation of an enamine. E: Reduction of the nitro group. F: Protonation of the
enamine to form the reactive iminium ion. G: Elimination of pyrrolidine helped by the nitrogen lone
O
FF
pair.
B048 ArO2S
NC
N
ArO2S
Ơ
NC
H
H A
O
N
Q OEt
O
SO2Ar H OEt
N Ar
SO2Ar C
S O O
-ArSO2-
Oldenziel, O. H.; Wildeman, J; van Leusen, A. M. Org. Synth., Coll. Vol
D
ẠY
N
N
OEt
KÈ O
O
SO2Ar
H
B
H
OEt
M
N H SO2Ar
U
Y
H OEt O
SO2Ar
N
t-BuO K
C N
O
O
CN
1988, 41.
TosMIC (p-toluenesulfonylmethyl isocyanide). A: Deprotonation of an active methylene compound.
B: Intramolecular addition to the isocyanide to form an oxazoline anion. C: Loss of the activated formyl
group with a concomitant elimination of a toluenesulfinate ion ( pKa PhSO2H = 1.5).
B049 Ph3P Br
O
O Br Br
Br Br C Br
A
O Br Br
n-C7H15
H
Br Li
PPh3 B
Br
Br
FF n-C7H15
n-C7H15
H
D
workup
n-C7H15
Li
+H+
H
Ơ
N
Br
n-Bu
n-C7H15
H
D
Li
O
C
-LiBr
n-C7H15
Br
H n-C7H15
Br
n-C7H15
Ph3P
Li
n-Bu
BuLi
Br
n-C7H15
n-C7H15
IC IA L
Ph3P
Br Br C Br Br
N
Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769
Corey-Fuchs reaction. A: Generation of a stable carbanion (cf. pKa CHCl 3 = 13.6). B: E2 elimination
Y
(triphenylphosphine oxide is an extremely good leaving group). C: Halogen-lithium exchange follow by -
M
Q
U
-elimination to generate an alkylidene carbene. D: C-H insertion of the carbene. E: pKa n-Bu = 50,
B050 Me Me
ArSO2NHNH2
KÈ
O
ẠY
Me Me
D
Me Me
N
Me Me
N
-H2O A
N
N H
SO2Ar BuLi
Me Me
Me Me
Me Me O O N S N Ar
Me Me
SO2Ar
N
-SO2Ar
N H
SO2Ar
n-Bu Li
Me Me
N
N
B H Me Me n- u B Li
-N2
Me Me
C Me Me
Me Me
O Ph
Ph
Me Me
Me Me Ph Ph
Me Me
O
workup +H+
Me Me
Ph Ph
Me Me
OH
Rupert, K. C.; Liu, C. C.; Nguyen, T. T.; Whitener, M. A.; Sowa, J. R.. J, Organometallics 2002, 21,144 Shapiro reaction. A: Formation of a hydrazone. B
-position of the hydrazone
anion. C: Elimination of a sulfinate ion ( pKa RSO2H = 1.5). D: Loss of N 2 to form an alkenyl anion.
Ar
+H+
+H+
H
Ar
+
-H+
CO2Me
C
N
HO
H
B
HO
+H+
NH2
HO
HO
OH
CO2Me H2O
HO
O
Ar
A
H
N
HO
CO2Me H
Ar
CO2Me
HO HO
NH Ar
N
Ar
OH
Ar
O
-H+
OH
H
N
OH
Ơ
Ar
-CO2 -H+
H O O
H
O
H O O
O
FF
H
IC IA L
B051
Konda, M.; Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1975, 23, 1025
Y
A: Generation of a stabilized benzyl cation.
B: Decarboxylation to form an enol, an aldehyde
Q
U
equivalent. C: Pictet-Spengler reaction ( ref A033).
O
H
OMe
KÈ
O
H H
M
B052
H
O
O
A
O
D
ẠY
O
MeO H
O O
H
O
H H
O
H
H H
O
O
-HCO2Me O
O
C O
O
O
B
O
O
O
O
HO
H
+H+ O
O
OH OH
MeO Shimada, K.; Kaburagi, Y.; Fuku yama, T. J. Am. Chem. Soc. 2003, 125, 4048.
A: pKa MeOH = 15.5, CH 3CHO = 16.7. (Cannizzaro-type reaction).
B: Aldol reaction.
C: Intramolecular hydride transfer
B053 O O
OMe
OMe Me
A N
O B
N N
OH O -H+
Me
OH O Me
OMe
+H+
OMe
H
N
N
O
H
IC IA L
N
O Me
OMe
C
FF
N N
1993, 420.
O
Brown, J. M.; Evans, P. L.; James, A. P. Org. Synth., Coll. Vol.
N
Morita-Baylis-Hillman reaction. A: Michael addition of DABCO. B: Aldol reaction. C: Elimination of
Ơ
DABCO.
H
B054
N
CO2Me
N O
Y
O
N
N H
U
-H2O A
B
Q
OMe
M
N
N
OMe
ẠY
CO2Me C
O
KÈ
A
N
CO2Me
N
N CO2Me aq HCl
N
+ CO2Me -H
CO2Me
D
OH2
+H+
H
-
NH OH CO2Me
N H -H+
O CO2Me
H2 Pd/Al2O3 MeOH
O CO2Me
Burpitt, R. D.; Thweatt, J. G. Org. Synth., Coll. Vol.
1973, 277.
A: Formation of an enamine. B: A stepwise formation of the four-membered ring by means of Michael addition. C: Cleavage of the cyclobutene to release the ring strain.
B055
OEt
Ph
A
H
OEt
H
O
O
-TsHN-
Ph
OEt
C
O
O
Ph
OEt N N N Ts H
OEt N N N Ts
FF
O
O Ph
Ph
B
N N N Ts
NEt3
O
O
N N
OEt
N N
N
O
Ph
O
O
IC IA L
O
O
Lall, M. S.; Ramtohul, Y. K.; James, M. N. G.; Vederas, J. C. J. Org. Chem. 2002, 67, 1536.
Ơ
Regiz Diazo transfer reaction. A: pKa RCOCH 2CO2R = 11, HNEt3+ = 10.7. B: Attack on the less
H
hindered, electrophilic nitrogen. C: pKa PhSO2NH2 = 8.5:
Ts
Y
N
N
U
H
t-BuO
N
B056
N
OEt
A
S
Q
S
OEt
KÈ
N
M
H OEt
HN
D
ẠY
S
-H+
OEt aq HCl S
H2N
S
O
S
OH
H3N
OH2
OEt H2N
+H+ B
H EtO OH
H
Et
S
-H+
H3N
O H3N
+H+ S
S
S
Dijkstra, D.; Rodenhuis, N.; Vermeulen, E. S.; Pugsley, T. A.; Wise, L. D.; Wikstrm, H. V. J. Med. Chem. 2002, 45, 3022. Neber rearrangement. A: Generation of a nitrene to form the azirine, which then undergoes addition of ethanol. B: Acidic hydrolysis of the ethoxyaziridine.
B057 Me
Me
Me
Me
OEt H
NaOEt Br
O
O Br
Br Br
O
Br
Br
Br Me
Me
O
O
Br
OEt
OEt
O
Br
Br
CO2Et
B
O
Br
Me
FF
Me
A
Br
IC IA L
O
A: Favorskii rearrangement ( ref
A069).
N
Marx, J. N.; Norman, L. R. J. Org. Chem. 1975, 40, 1602. B: Cleavage of the strained cyclopropanone with a
B058 O
O
O
KÈ
I
ẠY D
O O
I A
O OMe
Me O OH H
O
I
I B
O O
O
O
OH
OH O
O H3C I
OH H
I O H2O
O
O
O
O
HCl
O
O
O
OMe
O
M
CO2Me
Q
I
U
I
I
Y
N
H
Ơ
concurrent elimination of the bromide (formation of the thermodynamically more stable trans -ester).
O O
O
O O
OMe
Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem. Int. Ed. 2002, 41,319; A: Iodolactonization. B: Hydrolysis of the lactone followed by formation of the epoxide.
B059 O MeO2C
O MeO2C
Cl
N
N H
H2C N N
FF
N
MeO2C
N
N
O
MeO2C
O
HBr
N
ClCH3 + N2
H3C N N
Cl
O
IC IA L
H2C N N
MeO2C
N
-N2
N
O Br
MeO2C
Ơ
O
N
H
H
Br
N
Nair, V.; Jahnke, T. S. Tetrahedron 1987, 43 4257.
Q
U
Y
Excess diazomethane is needed to scavenge HCI.
B060
O
M
O
KÈ
OH N Me
D
ẠY
O
N Me H
O O
Me
Me
O
H
A
N Me H
O Me
O
Me H O
Me N Me H
B
O
O O
C
Me
O
N
O O
O
O
-AcOH
Me N O e M H
OAc
D N Me
O
Rueppel, M. L.; Rapoport, H. J. Am. Chem. Soc. 1978, 92, 5781. A: Formation of a mixed anhydride. B: pKa (CH 3CO)2O = 13.5. C acylation is faster than intermolecular one.
-Elimination. D: Intramolecular
B061
Me
O 11
Me
O EtO P EtO CN
NEt3 H
R
O
CN O P(OEt)2 OH O O
R A
OH O
R
CN
-HCN
CO2t-Bu
H2N
H N
Me
B
11
Me
OH O
IC IA L
OH O
OH O
CO2t-Bu
Shioiri, T.; Terao, Y.; Irako, N.; Aoyama, T. Tetrahedron 1998, 54, 15701.
FF
A: Formation of a mixed anhydride. B: Formation of the reactive acyl cyanide.
B062 O
N O
Cl4P Cl
Cl PCl4
N O
O
B
Q
NH2
U
-HCl
Y
O
Cl
Cl H
PCl3 Cl
N
Cl4P Cl
N
-HCl -POCl3
N
A
NH2
H
N O
NH2
Ơ
NH2
O
O
O
N
Cl PCl3
-HCl -POCl3
NH
CN N
Cl
Cl 1963, 166.
M
Taylor, E. C., Jr.; Crovetti, A. J. Org. Synth., Coll. Vol.
KÈ
A: Activation of the N-oxide with PCl 5. B: Dehydration of the amide.
B063
D
ẠY
Cl
Cl
O
O
NC
H
CN
O Me
OH
O OMe
A Cl O NC
Me Cl O CN
OH
OMe
O -H+
Me
O OMe
OH
-H+
Me
O
B OMe Crimmins, M. T.; Siliphaivanh, P. Org. Lett. 2003, 5, 4641. A: Transfer of two electrons from the starting material to DDQ by forming a charge-transfer complex.
IC IA L
B: Deprotonation to form a p-quinonemethide-type intermediate.
N O S Cl O
OMe
O H
H N O S Cl O O
OMe DMF
Me
OMe B
H
OMe
Ơ
OMe
Me O N O Me O S N O
Me O N O Me O S N O -SO3 OMe -DMF
N
H
Me O N O Me O S HN O
N Me
N
A OMe
O
O
O Cl S N C O O
FF
B064
U
OMe
Q
C
Y
-H+
OMe
OMe
OMe
OMe
OMe
Lohaus, G. Chem. Ber. 1967, 100, 2719.
M
OMe
CN
A: Electrophilic substitution of an electron-rich aromatic compound. B: Attack on the oxygen of DMF.
KÈ
C: Cyclization followed by fragmentation to form the nitrile.
ẠY
B065
O
D
CO2H NH2
t-BuO N O
CO2H A N N O H
O
+
-H
+H+
O
H
N N OH
O N N OH2
O C N
O
C N
B
C
N N
Br
Br
OH
IC IA L
H OH
HO
O
N
-H+
N
N H
+H+
D Br
Br
FF
Br
Rigby, J. H.; Laurent, S. J. Org. Chem. 1998, 63, 6742. A: Formation of a diazonium salt ( ref A037). B: Formation of a benzvne with a loss of CO2 and N2.
Ơ
N
O
C: Nucleophilic addition of the isocyanide. D: Addition of water to the nitrilium ion.
H
B066 OAc I Ph OH
AcO
U
-AcOH
Y
N
OAc I Ph O
Q
O
OH NHCbz
O
O
ẠY
KÈ
M
OH NHCbz
O
CbzHN
D
O
H
O
O
-AcOH
NaHCO3
-PhI A
MeOH O CbzHN O
H
H -H+
+H+
+H+
B
OH OMe
CbzN
O
N H Cbz
CO2Me
O
MeO Wipf, P.; Li, W. J. Org. Chem. 1999, 64, 4576.
A: Oxidative lactonization of N-Cbz tyrosine. conjugated dienone.
B: Intramolecular Michael addition to the cross-
B067 O
H
N C CCl3 O
H
B
N
O
O
CCl3
CO2Me
NH
-H+
O
CCl3
B
O
+H+
Me + NH2
H
N
TfOH CCl3
CO2Me
O
Me H
FF
HO
O
IC IA L
A
O
CCl3
N
White, J. D.; Reddy, G. N.; Spessard, G. O. J. Am. Chem. Soc. 1988, 110, 1624. A: Addition of benzyl alcohol to electron-deficient Cl 3CCN with a help of catalytic amount of base. B:
N
H
B068 H OH
Q
U
Me
+H+
O
H
ẠY
KÈ
OH
Me H
-H+
OH2
Me
O H
A
Me
-H2O
H
O H
Me H
-
-H2O
Me
O
H
M H
Me Me
Y
Me Me
D
Ơ
Ftherification of alcohols under acidic conditions.
Me
Me Me
-H+ B
Me
O C
O C
Me
C
OH2 C O
OH D O
Koch, H.; Haaf, W. Org. Synth., Coll. Vol.
1973, 20.
A: Formation of a stable t-butyl cation. B: Generation of CO by dehydration of formic acid. C: Hydride abstraction from the bridgehead of adamantane. D: Addition of CO to form an acylium ion.
B069 t-BuO
Ph
O
Ph
A
Ph
Ph
B
Ph
+
C
Ph
O
-H+
Ph
Ph
Ph
O
Ph
O
+H
OH
Ph
IC IA L
Ph
H
OH
Hauser, C. R.; Kantor, S. W. J. Am. Chem. Soc. 1951, 73, 1437.
[1,2] Wittig rearrangement. A: pKa PhCH 3 = 41, n-BuH = 50. B: Homolytic cleavage to form a radical
FF
anion. C: A facile radical recombination in a solvent cage.
O
B070 Ph
N
N
H H
Ph
OMe -PhCN Ph B
CO2Me
O
Y
O N
N
O C H
N
O
A
H
Ph
O
Ơ
Ph
OMe
O
+H+
Ph
CO2Me O
U
Ph
workup
Q
Gómez, V.; Perez-Medrano, A.; Muchowski, J. M. J. Org. Chem. 1994, 59, 1219
n-Bu3SnH
n-Bu3Sn
S
n-Bu3SnS
N
N
N
N
O
AIBN
D
ẠY
KÈ
B071
M
A: Michael addition of an oxime anion. B: Intramolecular deprotonation to cause fragmentation.
O O
O
n-Bu
n-Bu Me
A
O n-Bu
B
O
C
H Me
OH
Me
H
n-Bu3Sn H
H
- n-Bu3Sn
Me
D OH
OH
Rawal, V. H.; Newton, R. C.; Krishnamurthy, V. J. Org. Chem. 1990, 55, 5181. A: Barton-McCombie deoxygenation ( ref A051).
B: Cleavage of the strained epoxide ring. C:
IC IA L
Intramolecular abstraction of a hydrogen via a six-membered transition state. D: 5-exo-trig Radical cyclization.
FF
B072
Br SO2CH2Br
Me
hv
Br
Me
A
B
Br
Me
Br
t-BuOK
H
-SO2CH2Br
Ơ
N
SO2CH2Br
O
O r B S O
H
SO2CH2Br
U
-SO2
Q
M
Br
D
Ot-Bu
Ot-Bu H CH2 S O O
SO2CH2Br
Me
Y
H
SO2CH2Br
N
C
H
KÈ
S O O Block, E.; Aslam, M. Org. Synth., Coll. Vol.
1993, 212.
A: Photo-induced homolytic cleavage to form a sulfinyl radical. B: Addition to the olefin to form a
ẠY
stable tertiary radical. C: Attack on the bromide of the reagent (radical chain reaction). D: Elimination
D
of HBr followed by vinylogous Ramberg-Bäcklund reaction.
B073 Me
Me KNH2
Me
Br +
O
O
hv A
Me
Br +
O
Br
IC IA L
B
Me
Br
O
O
FF
Me D
C
O
Me
Ơ
H
Br
N
O
N
Rossi, R. A.; Bunnett, J. F. J. Org. Chem. 1973, 38, 3020.
SRN1 reaction. A: SET to bromobenzene to form a radical anion. B: Fragmentation of the radical
Y
anion to form a phenyl radical. C: Addition to enolate to form a radical anion. D: SET to continue the
Q
B074
M
O
Bu
hv
KÈ
S
U
radical chain reaction.
A
O
N
ẠY
N
Bu N F3B
O O
N
-CO2
Bu
Bu F3B
B
N
C
O N
F3B Bu N CH2
D
D
O
N
Bu
S
E
CH2
N F3B Bu O N N
F3B Bu
O
N
Bu
F3B Bu N
S F
N S
workup
Bu N
N S
Newcomb, M. Ha, C. Tetrahedron Lett. 1991, 32, 6493. A: Photo-induced homolytic cleavage. B: Decarboxylation to form an aminyl radical. C: Acti vation of the aminyl radical by Lewis acid. D: Kinetically fa vored 5-exo-trig radical cyclization.
E: Group
transfer reaction.
H CBr3
t-BuO
-Br-
CBr2 Br
A
CBr2
B
Me C
Br Br
Me Me
Me
Me
-Br-
Me
H
Me Me
Ơ
Br
MeLi
D
O
Me
Me
Br Br
N
CBr2
Me
FF
Me
IC IA L
B075
Me
Me E
B
1990, 200.
-Elimination to form dibromocarbene. C: Cyclopropanation of the more
N
A: pKa CHCl 3 = 13.6.
H
Taylor, R. T.; Paquette, L. A. Org. Synth., Coll. Vol
Me
electron-rich, tetrasubstituted olefin. D: Halogen-
-elimination to
Y
form a carbene. E: C-H insertion of the carbene (the corresponding allene cannot be formed due to
Q
U
the excessive ring strain. ref A061).
M
B076
Cl
KÈ
O
D
Cl Cl
OEt
Cl
ẠY
Cl Cl
C
O OEt
OMe
OMe Cl
A
Cl Cl
Cl
B
Cl Cl
Cl
-Cl-
Cl
Cl D Cl
Cl
Jefford, C. W.; Gunsher, J.; Hill, D. T.; Brun, P.; Gras, J. L.; Waegelt, B. Org. Synth., Coll Vol.
1988, 142.
A: pKa CHCl 3 = 13.6. B: Generation of dichlorocarbene. C: Cyclopropanation from the sterically less hindered exo-side. D: 2e Disrotatory electrocyclic reaction to form an allyl cation.
B077 O -CO2
O
Cl Cl
A
Cl
O
OH
O
H Cl
Cl
OAc
Cl Cl
Cl
OAc
Ac2O Cl
Zn
Cl Cl
B
Cl
Cl Cl
Cl Cl
MeLi
Cl
C
Cl
FF
Zn
H
O
OMe
Cl
Cl
Ơ
OMe
N
Cl
CCl3
IC IA L
Cl Cl
H
O
O
workup
H
H
H
+H+
N
Wang, Z.; Campagna, S.; Xu, G.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 4007.
Y
A: pKa CHCI3 = 13.6. B: Reduction with Zn to form a gem-dichloroolefin. C: Corey-Fuchs-type
Q
B078 H
M
O
-H+
H
H2O
KÈ
H
U
alkynylation ( ref B049).
+
+H
H N
SiMe3 H N
Bn
D
ẠY
H2N Bn
Me3Si
O
OH2 H NHBn
H
OH2
-H2O NBn
NHBn
A
Bn
H
NHBn
B
SiMe3
OH2
-H+ +H+
-H+
NBn
OH
NBn
C H
NBn H
Larsen, S. D.; Grieco, P. A.; Fobare, W. E J. Am. Chem. Soc. 1986, 108, 3512. A
-carbocation). B:
Desilylation to form an olefin. C: Olefin-iminium ion cyclization to form a stable tertiary carbocation.
B079 O O S N NH2 NO2 H CO2Et N N EtO2C PPh3
HO
O O S N NH2 NO2 O PPh3
- Ph3P O
O
CO2Et HN N EtO2C
N
O PPh3
O S N O NH2
N N
-N2 D H
H
Myers, A. G.; Zheng, B. Tetrahedron Lett. 1996, 37, 4841.
Q
U
Y
C
N
-ArSO2H
O2N
H
Ơ
H
B
FF
A
IC IA L
CO2Et N N EtO2C Ph3P
CO2Et HN N EtO2C PPh3
A: Mitsunobu reaction ( ref A045). B: Deprotonation of the more acidic proton. C: Elimination of a
KÈ
B080
M
sutfinate ion. D: Elimination of N2 via a concerted mechanism.
PPh3
H
O
PPh3
O
CO2Et NO2
NO2
CO2Et NO2
PPh3 CO2Et
CO2Et
A
D
ẠY
O
NO2
CO2Et
P(OEt)3 N O
O
B P(OEt)3
CO2Et
CO2Et
N O O P(OEt)3
N
O
CO2Et C N
P(OEt)3
O
P(OEt)3
D
H
N H
CO2Et
CO2Et
CO2Et A
FF
N
N
H CO2Et
N H
O
N
N
CO2Et
CO2Et
N
N
IC IA L
CO2Et
Ơ
Mali, R. S.; Yadav, V. J. Synthesis 1984, 862.
H
A: Wittig reaction. B: [4+2] Cheletropic reaction and elimination of a phosphate to form a nitroso intermediate. C: Deoxygenation of the nitroso compound to form a nitrene. D: Formation of the
N
indole could be interpreted as a result of either 1) a direct C-H insertion or 2) formation of the azirine
U
Y
followed by homolytic cleavage and recombination of the resulting diradical.
M
OH
OH2
-H
ẠY D
-H2O
O N
+
+H+
H2N
N N
OH
KÈ
O N
O N
Q
B081
H Me
O
O N
H
CO2H H Me
+
-H
+H+
N HN
O
O
-N2
H
A Cl
H O
-H+
CO2H H Me
+H+
OH2 CO2H H Me
H
O Me
Cl B
CO2H H Me
Koppenhoefer, B.; Schurig, V. Org. Synth., Coll. Vol A
N N
-lactone via a diazonium salt. B
1993. 119 -lactone with
-position is retained as a result of the double inversion.
B082 O CO2Et
Me MeO
NaNO2
Et
HCl A
NH2
KOH
N N
IC IA L
MeO
O MeO
CO2Et
Me
MeO
OH Me O
O
Et N N
B
HO H MeO
N N H
aq HCl
Ơ
MeO
MeO
CO2Et
Q M
KÈ ẠY
+
-H+ +2H+
CO2Et N H NH3
-NH3
Me
MeO
-H
N H
CO2Et
CO2Et
Zhao, S.; Liao, X.; Wang, T.; Flippen-Anderson, J.; Cook, J. M.
D
N H
CO2Et
Me
MeO
+2H+
Me H
D
Me
-H
NH NH2 2
MeO
+
-H+
H
Y U CO2Et
CO2Et
NH NH
N
N N H H
MeO
H
H
Me
Me
N N H H
CO2Et EtOH 65oC
C
Me
H
O
Et
N
MeO
Et OEt
FF
N N
Japp-Klingemann reaction and Fischer indole synthesis.
Addition of the enolate to the diazonium salt. C D: Fischer indole synthesis ( ref B031).
J. Org. Chem. 2003, 68, 6279. A: Formation of a diazonium salt.
B:
-ketoester to form a hydrazone.
B083 O N
N Ph
N
A C6H13
C6H13
B(C6H13)2
Ph
O Ph B(C6H13)2
Ph C6H13
C
-N2 B
B(C6H13)2
O
(C6H13)2B
O
workup
O
C6H13
IC IA L
N
C6H13
+H+
Ph
Kono, H.; Hooz, J. Org. Synth., Coll. Vol.
B: Elimination of N2 with a
FF
A: Attack of a diazoketone to B(n-hexyl)3 to form an ate complex.
1988, 919.
simultaneous migration of n-hexyl group. C: Formation of a boron enolate.
O
H2O OMe
+
-H
Me
+H+
i-Bu
Ơ
Me
i-Bu
-H+ H
i-Bu MeOH
N
H
HOMe
OMe
N
H
O
B084
Y
MeO OMe Me
U Q
OMe
ẠY
KÈ
i-Bu
MeO
OMe
A i-Bu
i-Bu
HOMe
HOMe OMe C
i-Bu
MeO OMe I AgNO3
I -H+
OMe
B
D
i-Bu
I
M
I
-MeOH
i-Bu
OMe
-H+
OMe MeO OMe
i-Bu OH2
H2O +H+ D
OMe i-Bu
MeO OMe H
OMe i-Bu
OMe
-H+ +H+
OMe
OMe
HO OMe H
i-Bu
O
i-Bu
Oppolzer, W.; Rosset, S.; Brabander, J. D. Tetrahedron Lett. 1997, 38, 1539. A: Iodination of the enol ether with concomitant formation of a dimethyl acetal. B: Activation of the iodide with a silver ion to form a phenonium ion. C: Restoration of the aromaticity causes a cleavage
IC IA L
of the electron-rich cyclopropane ring. D: The orthoester thus formed undergoes a facile hydrolysis to give the ester.
Me
Me
Me
Me
O S O O
Me
Ơ
Me
N
Me
O -AcOH AcO S OH A O
O
O HO S OH O
O AcO
FF
B085
B
Me
H
Me
Me
Me
U
Y
Me
O
N
O
H
Me
H
OH
Me
Me
-H+
C
M
Q
OH O S OH O
O SO3H
OH SO3H
KÈ
Bartlett, P. D.; Knox, L. H. Org. Synth., Coll Vol
1973, 194.
A: Generation of SO3. B: Wagner-Meerwein-type rearrangement. C: Sulfonation of the olefin to form
ẠY
a stable tertiary carbocation.
D
B086
OMs Me
OMs Me A
H2B
H
OMs Me
NaOH H2O
H2B
H
(HO)3B
H
H Me
H (HO)3B
OMs H
H
Me
B
H
H Marshall, J. A.; Bundy, G. L. J. Am. Chem. Soc. 1966, 88, 4291.
B087 Br Br
Me Br
O
Br
O
A Me
t-BuOK
O
Me
Br
O
O C
Me
Me
N
H
H
B Me
Me
Me
O Br
O
Me
N
H
Ơ
t-BuO
Br
Me
Br
Me
FF
Me
IC IA L
A: Hydroboration from the less hindered side. B: Grob fragmentation ( ref B016).
t-BuO
Y
Paquette, L. A.; Barrett, J. H. Org. Synth., Coll. Vol
1973, 467.
U
A: Bromination of the olefin. B: Dehydrobromination to form a diene. C: 6e Disrotatory electrocyclic
M
Q
reaction (valence isomerism).
KÈ
B088
-H+
N H
H N
+H+
O
N N N
N
OH
ẠY D N
N N
-H+
N
A N
-N2 B N
H
N
C N
Golka, A.; Keyte, P. J.; Paddon-Row, M. N. Tetrahedron 1992, 48, 7663. A: Inverse electron demand Diels-Alder reaction. B: Retro Diels-Alder reaction. C: Aromatization.
B089 N
NEt3
O H H
H OH
N
Cl
H
A
O
N O
O
N Cl
B
NEt3
Cl
Cl OH
N
O H
IC IA L
Cl O
O
N
D
FF
C
Lee, G. A. Synthesis 1982, 508.
O
A: Chlorination of an oxime. B: Elimination of chloride ion is facilitated by the formation of an oxime
N
anion. C: Generation of a nitrile oxide. D: 1,3-Dipolar cycloaddition.
O A
H
H
Me
O N
Me
N
O
O N
Ơ
B090
O
N Ph
O
Y U
Me
C
KÈ
M
AcO
D
ẠY
O
O N
Ph
N H
O C
H
O
Me
AcO
O Me
N
N Me
H
+H+ O
D
N
H
or Me
N Ph
O
O
N
Q
O
Me
B
O C NPh
Et3N
O N
-CO2
Ph N C O Ph NH2
-H+ +H+
O Ph
N H
N H
Ph
Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339. A: pKa CH 3NO2 = 10.2,
+ HNEt3
= 10.7. B: Addition of the nitronate to PhNCO. C: Formation of the
nitrile oxide might proceed either by 1) syn-elimination of the carbamate ion or 2) elimination of the carbamate ion followed by deprotonation. D: 1,3-Dipolar cycloaddition.
B091 Me
EtO EtO H
+H+
A
H3C OEt
Me
CH3
O H
Me
H EtO
O
O
B
Me
Me
EtO
EtO R
O
EtO
Me
N
Me
Me
O
O
Me
Me
R
O C
O
Me
-H+
-EtOH
Me EtO
OEt
FF
-H+
OEt -EtOH H3C OEt OEt H
+H+
IC IA L
OEt H3C OEt OEt
Ơ
Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J,; Li, T.-t. J. Am. Chem. Soc. 1970, 92, 741.
H
Claisen-Johnson rearrangement. A: Acid-catalyzed ether exchange of the orthoester. B: Formation of the mixed ketene acetal is effected by removal of ethanol from the reaction system by distillation. C:
Y
N
[3,3] Sigmatropic rearrangement via a chair-like transition state to form an (E)-olefin.
U
B092 H
-H+
HN n-Pr Me OMe
+H+
Ph
KÈ
M
Ph
OMe Me
OH2
Q
O
N n-Pr Me OMe
ẠY D
B
Ph
N n-Pr
-H+ OH2
+H+
N n-Pr
H O H MeO Me
MeO
Me
Ph
Ph
OMe Me A
Ph
O -H+ -MeOH
Me Ph
N n-Pr
N n-Pr
N n-Pr
Overman, L. E.; Kakimoto, M.; Okazaki, M. E.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6622.
A: Aza-Cope rearrangement. B: Intramolecular Mannich reaction.
B093 t-Bu
OTf Si Me Me
O
Me Me Si t-Bu O
Et3N H
O
OTBS
O
O
OMe
OMe OMe H B
TBSO
OMe H
H
O
OMe
O
Me HO t-Bu Si Me O H2O
OMe
OMe
Ơ
HO2C
H
H3O
N
O
OSBT
+
OMe
TBSO
FF
O
IC IA L
A
N
Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583.
Claisen-lreland rearrangement. A: Formation of a ketene silyl acetal. B: [3,3] Sigmatropic
Q
U
Y
rearrangement via a boat-like transition state.
M
B094 Me
Me
O
O
KÈ
H
H Me
ẠY
workup
O S
D
+H+ O
O S
Me Ph
C
A O
150oC
Me
Ph
O
Me B
O S
Me
H
O S
Ph
Ph
CHO
O Saito, M.; Kawamura, M.; Ogasawara, K. Tetrahedron Lett. 1995, 36, 9003. A: Conjugate addition to the vinyl sulfoxide. B: syn-Elimination. C: Claisen rearrangement.
B095 Br S
Br
n-BuLi
S
S
A
A
S
H
S
S
S
HgCl2
S S
S
H2O C
S
S
S
CHO
N
S Hg Cl
OH
Ơ
H2O
S Hg Cl
HgCl S
+
O
-H
S
FF
Cl Hg Cl
S
IC IA L
n-Bu
H
Hunt, E.; Lythgoe, B. J. Chem. Soc., Chem. Commun. 1972, 13, 757. A: Formation of a sulfonium ion. B: Deprotonation to form a sulfur ylide, which undergoes [2,3]
Y
N
sigmatropic rearrangement. C: Hydrolysis of the thioacetal.
U
B096 H
B
KÈ
Me O
D
ẠY
Me
H N
CO2Et
CHO Br
O
M
O
CHO
Q
CHO
H N
O
CO2Et
CO2Et Me -H+
H
OH
+H+
O
O
CO2Et Me
N
H
CO2Et Me
OH
CO2Et
Me
N
A O
N
H
N H
B O
O
Bashiardes, G.; Safir, I.; Mohamed, A. S.; Barbot, E; Laduranty, J. Org. Lett. 2003, 5, 4915. A: Formation of an azomethine ylide. B: Intramolecular 1,3-dipolar cycloaddition.
B097
Me
AcO
H Me O
OAc
hv
O C
-H
D
+H+ E
H Me OH
AcO
OAc
H
OAc
Me
H Me OH
Ơ
Me
AcO
N
AcO
O
NOH
+
AcO
H
FF
H
OAc
N O
OH
AcO AcO Me
O N
H
H Me O
O N
H
B
Me
AcO
OAc
N O
N O
AcO AcO Me
Me
AcO Me
AcO
A
H Me O H Cl
Me
AcO
IC IA L
Me
AcO
Murai, A.; Nishizakura, K.; Katsui, N.; Masamune, T. Tetrahedron Lett. 1975, 16, 4399.
N
Barton reaction. A: Formation of a nitrite. B: Homolytic cleavage. C: Abstraction of a hydrogen atom via a six-membered transition state. D: Recombination of ,NO with the resulting radical.
U
Y
Tautomerization.
Ph
O
+
N
O
N
O
HO
O
O
Ph
B
OH
O C
O
O O
N
O
D
ẠY
O
O Ph
Ph
A
H
O
hv
KÈ
O
N
M
O
O
Q
B098
Ph
E:
Ph
O N O
N
O
O
OH -H+ +H+ D
O
H
Barltrop, J. A.; Plant, P. J.; Schofield, P. Chem. Commun. 1996, 822. Photo-cleavable protecting group for acids.
A: Photo-activated formation of a diradical.
B:
Intramolecular abstraction of a hydrogen atom. C: Recombination of the diradical. D: Elimination of benzoic acid.
B099
O
A O P(OEt)2
O
Me
Me
O
O
H
O O
O O P(OEt)2
O
IC IA L
O
O P OEt)2 H2C (
P(OEt)2 O
O P(OEt)2
Me
O
O
FF
B
Altenbach, H.-J.; Holzapfel, W.; Smerat, G.; Finkler, S. H. Tetrahedron Lett. 1985, 26, 6329.
O
A: Addition to the reactive enol lactone. B: Intramolecular Horner-Wadsworth-Emmons reaction ( ref
N
A071 ).
Ơ
B100
CHO
A
B
N
N
H
U
Y
O N
PPh3 Br
H
CHO N H
Q
O PPh3
N
C
PPh3
N
M
Schweizer, E. E.; Light, K. K. J. Org. Chem. 1966, 31, 870.
A: pKa of the parent indole NH = 17, H 2 = 35. B: Addition to the vinylphosphonium salt to form an ylide.
KÈ
C: Intramolecular Wittig reaction.
B101
D
ẠY
N N N
Ph
Ph
Ph
N
-N2
Ph
H
H Ph
H Ph Ph3P O
NH2 H Ph
PPh3 N
HO Ph
H Ph
H
OH
Ph3 P H OR NH O Ph
PPh3 Ph
B
OH
-H+ +H C
Ph
A
OH
+
N N N PPh3
PPh3
-Ph3P=O D
H Ph
H N
H Ph
Pöchlauer, P.; MüIler, E. P.; Peringer, P. Helv. Chim. Acta 1984, 67, 1238. Staudinger reaction (A-B).
A: Cheletropic reaction.
B: Formation of an iminophosphorane. C:
Migration of the phosphorus group. D: Intramolecular SN2 reaction.
B102
O
H Ph
+ H +H Ph
H Ph
O
H
HO
H Ph
Ph
H Ph
A
Ph3P HO Se
IC IA L
H
H Ph
Se PPh3
SeH
Ph
Ph
H Ph
Ph3P O
H
C
Se H -Se Ph D
H Ph
N
H Ph
H
-H+ -Ph3P=O
+H+ B
Ph
O
PPh3 O SeH
H
-H+
FF
Ph3P Se
Ph
Ph
Clive, D. L. J.; Denyer, C. V. J. Chem. Soc., Chem. Commun. 1973, 253. B: Migration of the
Ơ
A: Acid-catalyzed cleavage of the epoxide with inversion of configuration.
H
phosphorus group. C: Intramotecular SN2 reaction with inversion of configuration to form a cis-
N
episelenide. D: Spontaneous extrusion of selenium.
HO
OH N
N
Ph
HO
+H+
N
NH
N
N HO
O
Ph
Ph
Ph
M
Ph
-H+
Q
N
N
S N
U
S
N
Y
B103
KÈ
HN
-H+
D
ẠY
+H+
N
S
O
O
Ph
S O
P(OMe)3
O
O
A Ph
Ph
Ph
Ph
Ph
S P(OMe)3 O Ph
O Ph
O B
Ph
or
O Ph
-CO2 C
Ph
O Ph
P(OMe)3
S O
S
Ph
P(OMe)3 O
P(OMe)3
O
Ph
O C
Ph
-CO2 -P(OMe)3
O
Ph
Ph
Ph
Ph
Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677.
IC IA L
Corey-Winter olefination. A: Formation of a thionocarbonate. B: Reductive desulfurization of the thionocarbonate to generate a carbene.
C: The resulting carbene might undergo a direct
fragmentation to form the cis-olefin. Alternatively, it would react with a phosphite to form an ylide,
FF
which then collapses to give the product.
B104 SiMe3 O A
H C8H17
C
B
Ơ
C8H17
H C8H17
C8H17
I
I
H C8H17 I
H
SiMe3 H Me3Si O
C8H17
N
C8H17
Me3Si
Me3Si O
N
O C8H17
O
I SiMe3
C8H17
D
C8H17
Y
I
U
Denis, J. N.; Magnane, R.; Eenoo, M. V.; Krief, A. Nouv. J. Chim. 1979, 3, 705.
Q
A: Silylation of the epoxide. B: SN2 reaction with inversion of configuration. C: Silylation of the silyl
M
ether. D: E2 elimination.
B105
KÈ
OMOM
C6H13
O
H
PdLn A
O
D
ẠY
O
Si Me Me
Pd
Si Me Me
-PdLn C
Me Ln Si O Pd H
C6H13
Si Me Me
Ln MOMO Pd H C6H13
Me
OMOM H Ln
MOMO H C6H13 O
Si Me Me
B C6H13
H OMOM
OMOM
H2O2 KOH C6H13 O
OOH Si Me Me
D
OMOM
OMOM
C6H13
OMOM
C6H13 O
Si O OH Me Me
workup O
O Si Me Me
E
C6H13 OH OH
+H+
Tamao, K.; Nakagawa, Y.; Arai, H.; Higuchi, N.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 3712.
IC IA L
Tamao oxidation (D-E). A: Oxidative addition to the Si-H bond. B: Intramolecular diastereoselective
silametallation to the olefin. C: Reductive elimination. D: Formation of a silicate ion. E: Migration of the Si-C bond.
NEt3
N
Me
Me Me SPh
A
Me
Me
B Me
Me
SPh O
SPh O
U
Y
Me
Me Me
A
N
Me O
H
Me Me
Me O
O
Me O H Me
PhS Cl
Me Me
Ơ
Me Me
FF
B106
Q
Okamura, W. H.; Peter, R.; Reischl, W. J. Am. Chem. Soc. 1985, 107, 1034.
M
A: [2,3] Sigmatropic rearrangement of the propargyl sulfenate. B: 6e Disrotatory electrocyclic reaction.
B107
KÈ
O
MeO Me
I
ẠY
O
D
I2Sm
O
OMe
SmI2
O MeO Me
A
O Me
O
I2Sm
SmI2
O
O Me
MeO Me
I O
SmI2
O
SmI2
B
O O Me
I2Sm
SmI2
O
I2Sm
SmI2 HO
O
O
workup
O
Me
Me
O
+H+
Me
Me
Molander, G. A.; Harris, C. R. J. Org. Chem. 1997, 62, 2944
IC IA L
A: Since Sml 2 is a single electron reductant, two molecules of Sml 2 are needed to convert an alkyl
iodide to the corresponding organosamarium species. B: SET to the ketone followed by radical
FF
cyclization.
OMe
MeO Me
A
Ơ
TfO Hg TfO
H
TfOHg
N
Me
OMe
TfO Hg
KÈ
M
Me
TfO TfO Hg
MeO Me
OMe
H
C
Q
TfO Hg
U
B
Me
MeO Me
Y
MeO Me
OMe
H Me MeO Me
OMe
D H Me
H Me
H Imagawa, H.; lyenaga, T.; Nishizawa, M. Org. Lett. 2005, 7, 451.
D
ẠY
OMe
N
MeO Me
O
B108
A: Coordination of Hg(OTf)2 to the alkyne.
B: 6-endo-dig cation cyclization to form a stable
tertiarycarbocation. C: Attack of the electron-rich aromatic ring to the carbocation.
of the C-Hg bond to regenerate the catalyst.
D: Protonolysis
B109
H
MeO2C
A
H
RuLn
RuLn
Ph
Ph
MeO2C
MeO2C
MeO2C LnRu
O
H
B
- Ph
O
H
LnRu
O
N
LnRu
H
N
H
O H
N
+
RuLn R
N
R
O
O
MeO2C
MeO2C
O
N
FF
R
LnRu
IC IA L
MeO2C
O
Ơ
Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356.
H
Intramolecular enyne metathesis ( ref A078). A: Intermolecular alkene metathesis. B: Intra-
N
molecular alkyne metathesis.
U
Y
B110 CHO
A
Q
N H
O CHO
B
N
N
SMe2
SMe2
KÈ
M
H
Na3N
O
N
C
D
N
N
O
O
E
D
ẠY
SMe2 N3
N
N3
+H+
N O
N3 N
O
OH
Wang, Y.; Zhang, W.; Colandrea, V. J.; Jimenez, L. S. Tetrahedron 1999, 55, 10659. A: pKa indole NH = 17, H 2 = 35.
B: Addition of the vin ylsulfonium salt to form an ylide.
C:
Intramolecular addition to the aldehyde (reversible). D: Intramolecular SN2 reaction to form an epoxide. E: Cleavage of the epoxide helped by the indole nitrogen lone pair.
B111 n=1
O
N
Me
N
OH A
Ph
Me
N
N
Ph
N
N
-N2
N
O Me
Ph
Me
N HN
O Me
N
-N2
+H+ C
O
Ph
N
FF
H N
O
N
Me
B
n=3
N
Ph
O
IC IA L
H
N
N
OH
NH Me
N
Me
N
H
NHPh
D
H
Me
O
N
O
H
Ơ
H
Wrobleski, A.; Aube, J. J. Org. Chem. 2001, 66, 886.
Y
Intramolecular Schmidt reaction. A: Acti vation of the carbonyt group by protonation followed by
U
intramolecular addition of the azide (six-membered ring is easy to form). B: Ring contraction. C: The D:
Q
formation of a phenonium ion is preferred over the formation of the eight-membered ring.
M
Intramolecular Mannich reaction.
O Tol S S O
ẠY
N
KÈ
B112
N
STs
N
S H
A
STs
S O S O Tol
D
NEt3
N
Et3N H
N
S S
N
S
aq HCl H S
C
S
S
H2O S
N
B
S S
N
H2O
S
O
+
-H
N H S
-
+H+
S
O
N H
S
-H+
S
S
Woodward, R. B.; Pachter, I. J.; Scheinbaum, M. L. Org. Synth., Coll. Vol.
1988, 1014.
IC IA L
A: pKa PhSO2H = 1.5. B: Formation of an easy to form six-membered ring. C: Hydrolysis of the enamine.
Ph
A
NAc
t-BuO H
NAc
Me N
N U
Ph O
M KÈ
A
Ph H Ot-Bu O NAc
O
H O
O
HN
C
OAc
NAc
AcO
B
NAc
Ph
Ph H N
Q
HN
O
HN
NAc
O
AcO
O
O
Y
O
Ơ
O
N
Ph
O
O
O
O
N
O
NAc
O
Ph Me O
O
H
O
O H
AcN
N
O
AcN
Ph
O Me
O
Ot-Bu
H
FF
B113
NAc
O
Gallina, C.; Liberatori, A. Tetrahedron Lett. 1973, 1135.
-position of an imide (more acidic than amides). B: Aldol reaction followed by
an intramolecular acyl transfer via a five-membered ring transition state. C: Elimination of the acetoxy
ẠY
group.
D
B114
O Me
H
O
R
O
OH
O Me
N Me
Me A
C
O C
Me
N Me
O
R Me
H C
Me2N
O
O R
-H+ +H+
Me N Me O
O
O
Me
O
O
B
R O
R
O
O
O
O
C H
O
H
O Me N Me
Me
+
O
Me N Me
OH Me
O
O
toluene
R
Me N Me
OH Me
CSA
IC IA L
O
Me
Me N Me
O
Me N Me
FF
Me
Me N Me
Me
OH
O
O
O
O
N
Gais, H. J. Tetrahedron Lett. 1984, 25, 273. A: Protonation of the carbonyl group followed by addition of the carboxylate to the iminium ion. B:
Ơ
Intramolecular acyl transfer to form a vinylogous anhydride. C: Acti vation of the vin ylogous anhydride
N
H
by protonation resulted in the formation of the macrocyclic lactone.
B115 OEt
Y
OEt
e
Q
A
ẠY D
O
O
O
O
O SiMe3
e
O
e O
O
B
O
EtO
OEt
KÈ
OEt
O
O O
OEt
M
OEt
OEt
U
O O
OEt
e
O
Me3Si Cl
C O
O
O SiMe3
O SiMe3
O
O
D
O
Me3Si Cl
Bloomfield, J. J.; Nelke, J. M. Org. Synth., CoIl Vol. Acyloin condensation.
OSiMe3 OSiMe3 1988, 167.
A: Single electron transfer (SET) to the carbonyl group followed by
lactonization. B: SET followed by a ring contraction. C: SET followed by silylation. D: SET to form an enolate followed by silylation.
B116 O
O
A
O HO
O
MeOH H O
TsOH H
HO
D
O
H
OMe
O O
MeOH OMe
OMe
O
HO
+H+ F
Me2S E
O
OMe
NaHCO3
OMe
-MeOH
R
HO
N
-H+
O
OMe
Ơ
HO
R
O
OMe
R
OMe
OMe Me2S
H
O
FF
R
H
-H+
+H+
OMe MeOH
-H+
+H+ C
B
O
IC IA L
O O
-H+
O
O
OMe
H
H
Claus, R. E.; Schreiber, S. L. Org. Synth., CoIl Vol.
1990, 168.
N
A: 1,3-Dipolar cycloaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozonide. C: Trapping the dipole with methanol. D: Formation of a dimethyl acetal from the aldehyde (protonation
Y
of the less electron-dense hydroperoxy group is more difficult). E: Neutralization to kill TsOH. F:
Q
U
Reduction of the hydroperoxide with dimethyt sulfide.
B117 O
M
O O
O
O O
A
KÈ ẠY
O
H
D O OMe
O O
R O
D
O
H
OMe
NEt3 Me
O
H
Et3N
+H+ C
NEt3
O
Ac2O OH
OMe
O
R
O O
MeOH
O
Me
B
O
-H+
H
O
OMe
or
O O
O Me
E
H
O OMe
R
H
O
O
R
Me
E
OMe
NEt3
H O
O
O O
H
OMe
OMe
H R MeO
Me
O O
IC IA L
or O
O
O
H
E
OMe
1990, 168
FF
Claus, R. E.; Schreiber, S. L. Org. Synth., CoIl VoL
A: 1,3-Dipolar cycloaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozonide. C: Trapping the dipole with methanol. D: Acetylation. E: Elimination of acetic acid might proceed either
O
by 1) deprotonation with triethylamine, 2) Baeyer-Villiger-type 1,2-hydride shift, or 3) thermal eliminatior
Ơ
N
via a six-membered transition state.
H
B118 A
AIBN
Y
H X=Cl or I
n-Bu3SnH
N
n-Bu3Sn X
U
OEt
I
KÈ
OEt
OEt
O
O -t-Bu
C
ẠY
O B
OEt
O
D
OEt
Snn-Bu3 -n-Bu3SnI
M
Q
O
n-Bu3Sn
H C N
C N
CN
Me Me Me
t-Bu
Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303.
A: Reduction of Bu 3SnX with NaBH3CN to form a low concentration of Bu 3SnH to avoid the premature reduction of the radical intermediates. B: 5-exo-trig Radical cyclization. C: Addition to the isocyanide followed by elimination of a stable t-butyl radical.
B119
N N N
F3B O
N
N N OBF3
A
N
-N2
N
N
OBF3
B
IC IA L
N
N O
O
D
BF3
N
E
O
FF
C
BF3
Lang, S.; Kennedy, A. R.; Murphy, J. A.; Payne, A. H. Org. Lett. 2003, 5, 3655.
O
A: Generation of a stable benzylic carbocation. B: Intramolecular attack of the azide. C: formation
Ơ
N
ofan aziridine. D: Restoration of the aromaticity. E: 1,2-Alkyl shift.
Ph
N
H
B120
Ph
Ph
Y
N O H
O Me N
N O
Cl
A
U
Cl
NEt3
N
C
O Ph
O
ẠY
O
O Me
KÈ
O
B
Q
N
M
Ph
N O
N
N O
D O
Ph
O
Quadrelli, P., Mella, M.; Invernizzi, A. G.; Caramella, P. Tetrahedron 1999, 55, 10497.
A: Elimination of chloride ion is facilitated by the formation of an oxime anion. B: Addition of NMO to
D
the nitrile oxide. C: Generation of an acylnitroso compound. D: Hetero-Diels-Alder reaction.
B121 H O
H
-H+ +H+ A
O
O B
H
H O
-H+
O
+H+ A
B
Drouin, J.; Leyendecker, F.; Conia, J., M. Tetrahedron. 1980, 36, 1203.
IC IA L
A: Tautomerization. B: Oxy-ene reaction.
B122 Me
Me
Me
Me
Me
Me
O
A
OO
S
N N
Cl Me
Me
Me
SO2
Me
Ơ
Me
N N
N
NEt3 Me
B
O S O CH2 O
C
O
O
H
FF
-N2
H
95oC
Me
Me
-SO2
D
O
SO2
N
SO2
O
O
O
SO2 1973, 877.
B: 1,3-Dipolar cycloaddition of diazomethane to the sulfene.
U
A: Generation of a sulfene.
Y
Fischer, N.; Opitz, G. Org. Synth., Coll. Vol.
ẠY
KÈ
M
B123
Q
Extrusion of N 2 to form an episulfone. D: Ramberg-Bäcklund reaction.
PPh3Br A
H t-BuO K
O
D
PPh3
O PPh3
O PPh3
B
PPh3 C
H
D
C:
Ph + PPh3
Ph
E
Ph
O
Ph
IC IA L
O
O
Dauben, W. G.; Ipaktschi, J. J. Am. Chem. Soc. 1973, 95, 5088. A: Generation of an ylide.
B: Michael addition.
C: Regeneration of a phosphorus ylide.
D:
Intramolecular Wittig reaction (irreversible). E: The unstable diene was trapped as the Diels-Alder
FF
product.
O
B124 OTBS
Cl SePh
O
Me O
N
A
OTBS
H
OTBS
PhSe
N
PhSe
Me
Y
O Sit-BuMe2
OH
Q
Cl
KÈ
M
H Ph O Se Me
H
Me
aq H2O2
O H
Ph O Se Me
Me
H H
O
PhSe
Me
O
B
HO OH
H
U
H
Me O
Ơ
Me
PhSeCl
O
-PhSeOH
O
C H
H
ẠY
Curran, D. P.; Rakiewicz, D. M. Tetrahedron 1985, 41, 3943,
A: Claisen-lreland rearrangement. B: Selenolactonization. C: syn-Elimination of the selenoxide.
D
B125
Ph Ph
S H B
O
S
Ph
O hv
Ph
Cl O
Ph
S
Ph
S
Ph
A
Ph
O
H Ph
Ph
HO B
S
Ph
Ph
S S
S
C
Ph
Vedejs, E.; Eberlein, T. H.; Ma zur, D. J.; McClure, C. K.; Perry, D. A.; Ruggeri, R.; Schwartz, E.; Stults, J. S.; Varie, D. L.; Wilde, R. G.; Wittenberger, S. J. Org. Chem. 1986, 51, 1556. A: n-
B: Intramolecular abstraction of a hydrogen atom
IC IA L
Norrish type II reaction.
followed by fragmentation to form a highly reactive thioaldehyde. C: Hetero-Diels-Alder reaction.
B126 Me
Me
O
O
AcO
RuLn
Me
O
N N
AcO
Me
Ru
Me
Ln
Me
AcO
C
Me O
N
1991, 2565.
Y
B: C yclopropanation of the aromatic ring. C: 6e
U
Disrotatory electrocyclic reaction.
A
AcO
Kennedy, M.; McKerve y, M. A. J. Chem. Soc., Perkin Trans. A: Formation of a rhodium carbene complex.
-N2
Me
H
AcO
O
B
Ơ
O
N
-RuLn
Me RuLn N N
FF
Me
Q
B127
-CO
OMePh
KÈ
OMe
Ph
ẠY
(CO)4Cr
OMe Ph
A
OMe
OMe Ph
Ph
D
OMe Ph
B (OC)3
Cr
Ph C O
OMe
O
C
Ph Cr(CO)3 Ph
Ph
(CO)4Cr
(CO)4Cr
M
Cr(CO)5
Ph
(OC)3
Ph O
OMe
OMe
Ph Cr(CO)3 Ph
D H
C Cr
O
Ph Cr(CO)3 Ph OH
Dötz, K. H. Angew. Chem. Int. Ed. Engl. 1975, 14, 644. Dötz reaction. A: Alkyne metathesis of Fischer carbene complex. B: Insertion of CO. C: Reductive elimination to form a ketene. D: 6e Electrocyclic reaction.
B128 Et MgBr Et
H Ti(Oi-Pr)2
A
B
H Ti(Oi-Pr)2
-EtH C
Ti(Oi-Pr)2
MeO
O D
Ti(Oi-Pr)2
MeO OMe Ti(Oi-Pr)2
Me
Ti(Oi-Pr)2 O 2EtMgBr
Me
Ơ
O
Ti(Oi-Pr)2
E
O
OMe Ti(Oi-Pr)2
OMgBr workup Me
F
N
H
Me
Me
O
O
Me
N
Me
FF
Et MgBr OMe
Ti(Oi-Pr)2
IC IA L
Et
i-PrO Ti Oi-Pr)2 i-PrO (
+
OH
+H+
Et Ti(Oi-Pr)2 Et
A: Substitution of the isopropoxide with EtMgBr.
U
Kulinkovich reaction.
Y
Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234.
a titanium
Q
Reductive elimination to form
B
-Elimination.
C:
ethylene complex (or a titanocyclopropane).
D:
D
ẠY
KÈ
M
Carbotitanation. E.: Formation of a cyclopropane. F: Regeneration of the active reagent.
D
ẠY M
KÈ Y
U
Q H
N Ơ N
IC IA L
FF
O
C001 H OMe O
MeO O
OMe OMs
Me H
A
H OMs
t-Bu
Me H
IC IA L
t-Bu
O MeO
Me
t-Bu MeO
OMe
MeO OMe OH
B
Me H
t-Bu
t-Bu
FF
OH
Me H
O
Yamauchi, T.; Hattori, K.; Nakao, K.; Tamaki, K. Bull. Chem. Soc. Jpn. 1987, 60, 4015.
N
A: Formation of an epoxide by intramolecular SN2 reaction of a hemiacetal. B: E1-like cleavage of the
Ơ
reactive epoxide.
C002
NO2
N
H
NO2
NEt3
M
NO2
O2N
KÈ N H
Ar
N H
OMe
NO2 O
O
O2S
Cl O2S
U
N H
H
Q
O2S
O2N
Y
O2N
O
N O O2S
NO2 O
O A N
Ar
N O OO S N Ar O H
ẠY
NEt3
O2N
D
NC
O2N
-SO2
+
O O2N O
N S
Ar
OH
OMe
O2N
O Huber, V. J.; Bartsch, R. A. Tetrahedron 1998, 54, 9281.
Smiles rearrangement. A: Addition-elimination process via a Meisenheimer complex.
C003
Me
Me
Et Me
Et
Me
O TiCl 4
H
Me
H
Me
Cl4TiO
workup
Et
Me
Me Et
H
Me O TiCl4
H
Me
H
Me
Et
Me O
FF
H
H
IC IA L
O TiCl4 Me
Me
H
Me
Bender, J. A.; Arif, A. M.; West, E G. J. Am. Chem. Soc. 1999, 121, 7443.
O
Cation-olefin cyclization initiated by Nazarov reaction ( ref B026).
Ơ
BrMg
O A
Cl
OMgBr
OMgBr +H+
C
U
O workup
Y
OH
BrMg
B
N
Cl
O
H
O
N
C004
Q
H
Kato, T.; Kondo, H. ; Nishino, M.; Tanaka, M.; Hata, G.; Miyake, A.
M
Bull. Chem. Soc. Jpn. 1980, 53, 2958.
A
-substituent. B: 1,2-Alkenyl
KÈ
shift. C: Anion-accelerated oxy-Cope rearrangement via a chair-like transition state.
ẠY
C005
D
EtO
O
TfO
Ph Ph Si
EtO A
H
Me
OH
O
Ph Ph Si OTf
EtO
prydine
Ph Ph Si H
O Me
OH
Ph Ph Si OTf
EtO O
-H+
EtO2C Me
120oC SiPh2 O
Me
H
H
H
SiPh2 O
EtO2C Ph Ph H Me Si H O
B
TBAF H2O2 C
H
Me
SiPh2 F OH
CO2Et F O SiPh2F
Me
OOH
F
CO2Et O OH SiPh2
Me
OH
+H+
CO2Et OH
Me
OH
FF
CO2Et
+H+
EtO2C Ph Ph Me Si O
IC IA L
EtO2C
OH
O
Sieburth, S. M.; Lang, J. J. Org. Chem. 1999, 64, 1780.
N
A: Protodesilylation to form a silyl triflate. B: Intramolecular Diels-Alder reaction. C: Tamao-Fleming
N
H
Ơ
oxidation.
Y
C006
NHTs
U
NHTs TsNHNH2
N
ẠY
NTs
D
N
N
N
N Ts
H
NTs
O
-ArSO2
A
B N
N
H
O
O
Ts
H
O
NHTs
KÈ
M
O
NaH
O
Q
O
TsN H
O
Ts
N N S
R
O
O
N H Ts
N H Ts
H
N Ts
O O
-N2 H
N N
N N
H
N Ts
O
OH N Ts
H
N Ts
H
Kim, S. H.; Fuchs, P. L. Tetrahedron Lett. 1996, 37, 2545.
IC IA L
A: Cleavage of the epoxide helped by the hydra zone anion. B: Conjugate addition of the sulfonamide
FF
anion.
O
C007 O H
-H
O
Me
N H
+H+
NH2
-H2O
Ph
Ph
O
Y Me
O
Q
Me
Ph
O
A
KÈ -H+
D
ẠY
+H+ B
Ph
Ph
N
Ph
Me Me
O O
Me
Ph
H N t-Bu
O
t-Bu H N O
M
N H
Ph
H
O
N
O
Ph
O
U
t-Bu N C
N
O
N
Me
O
Me
H
Ph
OH Me
+
Me
Ơ
Me
N
O
O
O Me
Ph
Me
H N
N Ph
t-Bu
O Me
Semple, J. E.; Wang, P. C.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 7505.
Ugi reaction (four-component condensation, 4CC). A: Most likely, addition of the isocyanide to the iminium ion and addition of the benzoate ion to the ensuing nitrilium ion takes place simultaneously. B:
Intramolecular acyl transfer reaction (the benzoyl group is activated).
C008 OMe OMe
OBn OMe OMe
OBn OMe OMe OMe
HO O
A
OMe
O
OMe B
OH O O
OH O O
Me
Me
BnO
OMe H
OMe
O O
OMe
-2H+
OMe
+H+ Me C
H
O O
Me
O
OMe
OH O O
Me
Ơ
O
BnO
Me
FF
Me OMe
O
O
N
H
BnO
IC IA L
OBn
H
Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. Org. Lett. 2004, 6, 2503.
U
Y
N
A: 4e Electrocyclic reaction. B: 6e Electrocyclic reaction. C: Aromatization.
O
KÈ
O
OH
M
H O
Q
C009
O
ẠY
H
CF3 N
D
O
O
Ph
-H+ +H+
F3C
F3C F
Ph
O
O
A
CF3 N
Me O
N
O
N
O
+H+
O
Ph
B
O HO2C CF3 Ph NH
C Ph
O
O
O
Me
OH Burger, K.; Gaa, K.; Geith, K.; Schierlinger, C. Synthesis 1989, 850.
A: ipso-Substitution of the electron-deficient oxazole. B: Claisen rearrangement. C: H ydrolysis of the azlactone.
C010 Ph Pd I
Ph
A Ph
Ph
I H Pd
H Ph
Ph
FF
Pd I
H
LnPd
O
-HI
Ph
D
C
Pd H I
B
IC IA L
Pd(0)
I
Ph
I Pd
Ph
Ph
N
E
Ơ
Larock, R. C.; Tian, Q. J. Org. Chem. 2001, 66, 7372.
H
A: Oxidative addition followed by carbopalladation to an alkyne. B: Oxidative addition to the aromatic C-H bond. C: Reductive elimination. D: Oxidative addition to another aromatic C-H bond.
N
Reductive elimination to form the C-C bond.
E:
MeO2C
MeO2C
Q
U
Y
C011
M
A
B
CO2Me
D
ẠY
KÈ
H
MeO2C
H MeO2C C
C
Grissom, J. W.; Calkins, T. L.; Egan, M. J. Am. Chem. Soc. 1993, 115, 11744. Masamune-Bergman cyclization. A: Radical cyclization of an endiyne. B: Kinetically favored 5-exotrig radical cyclization. C: Abstraction of a hydrogen atom from 1,4-cyclohexadiene.
C012 N
N H
Me
-AcOH O
Et Me O
O
A
O
Me
O
Et
IC IA L
O
O
Et
N
FF
Et
N H
OAc
O
N H OAc
Et
N
O N
B O
HO
N H
O
N
N H
N
Harley-Mason, J.; Atta-ur-Rahman Tetrahedron 1980, 36, 1057. A: Formation of a mixed anhydride. B: Acylation of the tertiary amine followed by cleavage of the C-N
Ơ
bond assisted by the nitrogen lone pair of the indole.
H
C013 O
OH O
A
Y
OMEM
t-BuOOH VO(acac)2
N
OH
O
R OH
B
R OH
Q
U
Me Me
OH
O -H+
-H+
KÈ
+H+ C
OMEM
ẠY
O Me Me
MEMO
O Me Me
O
HO H
H
H H
OHC
-H+
O
H
D
MEMO
O
O
M
OH
R
D
HO
OH
O Me Me
+H+
H
O
MEMO
OH H MeMe
Richter, E; Maichle-Mossmer, C.; Maier, M E. Synlett. 2002, 1097. Achmatowicz reaction (A-C).
A: Epoxidation directed by the h ydroxy group.
B: Cleavage of
theepoxide followed by the ring opening to form a cis-enal. C: C yclization to form a lactol. D: Intramolecular Diels-Alder reaction.
C014
N O
N O n-Bu O
H
O O
n-Bu B
n-Bu H
C
OH N O
n-Bu
pyridine
n-Bu E
OH
N
OH
N HO
workup
n-Bu
NH
OH
OH
O
Ơ
N TsO
+H+ D
n-Bu
N
TsCl
-H+
OH
N O
N
A
O
IC IA L
Cl
H
n-Bu
hv
O
O
n-Bu
-HCl
FF
n-Bu
H
OH2
Corey, E. J.; Arnett, J. E; Widiger, G. N. J. Am. Chem. Soc. 1975, 97, 430.
N
Barton reaction (A-D, ref 097). A: Photo-induced homolytic cleavage of the nitrite. B: Abstraction of a hydrogen atom via a six-membered transition state. C: Recombination of .NO with the resulting
U
Y
radical. D: Tautomerization to form an oxime. E: Beckmann rearrangement ( ref A055).
Me
O
N
O
N
M
O
Q
C015
A
O N
Me
Me H
O H
RhLn
Me
O O
O
Me H
SmI2
O O
H I2Sm
O
H
Me H
O D
H
O
O
B
RhLn
O
C
Me
Me
O RhLn
D
ẠY
Me
O
O
RhLn
KÈ
RhLn
O
-N2
N
O O H SmI2 H
O
SmI2 O H O
SmI2 H O
O E
H
O
+H+
F O SmI2
HO
workup
O SmI2
H
O
H
H
IC IA L
Padwa, A.; Sandanayaka, V. P.; Curtis, E. A. J. Am. Chem. Soc. 1994, 116, 2667. A: Formation of a rhodium carbene complex.
B: Formation of a carbonyl ylide.
C: 1,3-Dipolar
O
FF
cycloaddition. D: SET to form a ketyl radical. E: Homolytic cleavage of the C-O bond. F: SET.
N2 H
Me
Me
A
N
n-Bu
Me O
O
U
Q
O
Me O
-N2
Me
O
Me O
H O
KÈ
Me
H
silica gel
D
ẠY
+H+
O
Me
Me O
O
O
B
O
Me HO
Me O Me
+
H Me OH
Me O
Me
H
Me
M
Me
Me O
Y
N N C
N N C
Me3Si N2 O
O
H
Me3Si
N2
Ơ
Me3Si
N
C016
-H O
Me
HO
O
Me
Walker, L. F.; Connolly, S.; Wills, M. Tetrahedron Lett., 1998, 39, 5273.
A: Peterson olefination ( ref A074) followed by elimination of N 2 to form an alkylidene carbene. B: C-H insertion.
C017 Cl3C C N
MgBr
H
N
workup
N Tr
N
-H+ A
N Tr
CCl3
N Tr
CCl3
N
O
O
DBU Cl3CCN
NH
O
H OR
N
CCl3
N
N
N Tr
CCl3
N B
Cl
N Tr
+H+
Y
NH2
Q
M
Cl
Cl
N Tr
CCl3
U
O
-H+
N
-H+
N
+H+
O
HO CCl3 O
NH
O
N
N Tr
aq HCl
H
N
N Tr
N
O
CCl3
H2O
N
NH
O
N Tr
Ơ
CCl3
Ca(OCl)2 H2O
O
N Tr
NH
O
FF
N
OH
IC IA L
O
N
N Tr
OH
NH2
N
Cl
N Tr
NH2 Cl
Commercon, A.; Ponsinet, G. Tetrahedron Lett. 1990, 31, 3871.
KÈ
A: Formation of a trichloroacetimidate followed by aza-Claisen rearrangement. B: While formation of five-membered rings is kinetically favored, acti vation by the imidazole ring directed the cycli zation to
ẠY
form a six-membered ring.
D
C018
MeO
H O
Et MeO
O benzene
Me OMe OH Me
R OMe OH
reflux
MeO
O
O
MeO
H
R
R
OMe OH
OH R
A
OMe
OMe
OMe
MeO
MeO OH MeO
MeO
R
O
IC IA L
MeO
OMe
OH
FF
B R OMe
Me
Me
OMe
Me
O
Me
N
Tatsuta, K.; Tamura, T.; Mase, T. Tetrahedron Lett. 1999, 40, 1925.
H
Ơ
A: Restoration of the aromaticity. B: Hetero-Diels-Alder reaction.
H2N Ts +
-H
U
Ph
H
+H+
Ph
KÈ
C
OMe
A
ẠY D
Ph
H
Ph
Ts N
Ph
Ph OMe
Ph3P
CO2Me
O
O
Ts N
NTs
NTs
M
PPh3
H Ts F3B O NH
Y
O
Q
F3B
N
C019
PPh3
Ts N
-H+
Ph
Ts N
Ph
+
B Ph3P
+H HCO2Me C
Ph3P
H CO2Me
CO2Me
Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031. A: Conjugate addition of Ph3P to the allenyl ester to form an enolate. B: 5-endo-trig Cyclization to form an ylide. C: Proton transfer followed by elimination of Ph 3P.
C020 Me i-PrO i-PrO
+2i-PrMgCl
Ti(Oi-Pr)2
-2Oi-Pr-
Me
Me
H Ti(Oi-Pr)2
Me
H Ti(Oi-Pr)2
Me
Me
Me
Me A
OEt
Ti(Oi-Pr)2 B
O
+H+
FeCl2
TBSO
M
TBSO
Cl
O
MeOH
O
OAc
KÈ
H
TBSO
NaOAc
U Q
Cl
O FeCl2
O
Y
O
TBSO
D
Ti(OR)3 FeCl3
N
TBSO
O
Ơ H
workup
Ti(Oi-Pr)2
TBSO
OH
OTi(OR)3
O
TBSO
C
O
OEt Ti(Oi-Pr)2
TBSO
TBSO
Ti(Oi-Pr)2
TBSO
O
E
OEt O
N
TBSO
Ti(Oi-Pr)2
Ti(Oi-Pr)2
Me CO2Et
Me
FF
Me
IC IA L
Me -
TBSO
Cl
Cl
TBSO
ẠY
Hanazawa, T.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2001, 42, 5455.
A: Formation of a titanium-propylene complex or a titanacyclopropane derivative ( ref B128). B:
D
Olefin exchange. C: Intramolecular insertion of the carbonyl group to the titanium complex.
Formation of a cyclopropane. E: Oxidative cleavage of the cyclopropane ring.
C021 B
Ph
H Cl
O
Cl
Cl
O
Cl A
H
O
Cl
D:
Ph
Ph
Ph O
B
Cl
O
O
C
D
Ph
IC IA L
n-Bu Ph
workup O
OH
Danheiser, R. L.; Martinez-Davila, C.; Morin, J. M., Jr. J. Org. Chem. 1980, 45, 1340. -Elimination to form a carbene. B: Cyclopropanation. C
anion.
-Elimination to form a cyclopropanol
FF
A
D: Anion-accelerated vinylcyclopropane rearrangement (homolytic cleavage followed by
N
O
recombination of the diradical).
H
Ơ
C022
Y
-H2O A
U O P(OPh)2
M KÈ
O N N P(OPh)2 N N
B
-N2
O N P(OPh)2 N
C
KOH
D
D
ẠY
N N N
N3
O P(OPh)2
O N P(OPh)2 N N N
Q
N
N
N
N H
O
Hamada, Y.; Shioiri, T. Org. Synth., Coll. Vol.
CO2H
1990, 207
A: Formation of an enamine. B: 1,3-Dipolar cycloaddition. C: Cleavage of the N-N bond.
Tiffeneau-Demjanov-type ring contraction.
D:
C023 TMS
TMS I O
O
H O
Me
+H
N
O
O
Me
TMS Me
O
O
O
HO
O
Me
O
O B
O
O
O
Me
O
N
TMS
Ơ
N
N
N
IC IA L
Me Ac2O
Me
O
TMS
workup
O
+
A
N
O
O
FF
O
Me
CH3 O
O
O
Li O
TMS
TMS
H
O Me
O H
O
O
N
N
Me
-CO2 Me
Q H OAc E
N
KÈ
D
AcO O
TMS
M
O
TMS
Me
Me
O
H SiMe 3 N
O
O N
C
U
Me
O
O
O
Y
O
N
O
N
Me
Nayyar, N. K.; Hutchison, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62, 982.
ẠY
A: Demethylation via an SN2 process. B: Cycli zation of the mixed anhydride followed by formation of a E: Protodesilylation.
D
1,3-dipole. C: Intramolecular 1,3-dipolar cycloaddition. D: Decarboxylation.
C024 Me
Me O
OH PhSe Br
A
-H+ O
PhSe
OH
Me O
B
O PhSe
NaIO4 Me O
Ph
Se
Me
Me
toluene
O
reflux C
O H
D
O
O
O
O Petrzilka, M. Heir. Chim. Acta 1978, 61, 3075.
A: Selenation of the electron-rich enol ether. B: Intramolecular acetal formation. C
IC IA L
the selenoxide. D: Claisen rearrangement.
OMe
OMe OBn
O AcO
HgCl
ClHg AcO
BnO
O
O
H
O
BnO
H
N
H
BnO
OMe OBn O
AcO
+H+ B
BnO
OBn
OH OBn
Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S. J. Chem. Soc., Chem. Commun. 1989, 436.
U
Y
OBn
+H+
HgCl
O
N
OBn
-H+
-H+
O
BnO
A
HO
AcO
O
AcO
O
BnO
HgCl
Ơ
AcO
H2O
FF
C025 Cl Hg Cl
-Elimination of
Q
Ferrier rearrangement. A: Oxymercuration of enol ether. B: Intramolecular aldol reaction of the
M
mercury enolate with the aldehyde.
O
KÈ
C026
O
O
Me
ẠY
Ph
O Me
Ph
Me
Me
Me
Oi-Pr
D
O
Me
H
Ph
H
Me
O Me Ph
i-Pr O H i-Pr
OLi O A
O Li O
i-Pr
H
O
Ph Me
O i-Pr Me
Me
OH O
workup +H+
Ph Me
i-Pr Me Me
OH
O i-Pr Me
OH O
NaOH Ph
MeOH
Me
OH OH Me
Ph
Me
Me
OH OH
workup +H+
Me
Me
Ph Me
Me
Mascarenhas, C. M.; Duffe y, M. O.; Liu, S.-Y.; Morken, J. P. Org. Lett. 1999, 1, 1427. A: Intramolecular hydride transfer (Cannizzaro-type reaction) through a
IC IA L
Tishchenko reaction.
FF
chair-like transition state.
C027
H
F3B
O
H
+
-H O
Me
Me
H OH
O
Q
Me
M
KÈ
Me
Me
HO
HO
HO
O
O
-H2O
Me
O
ẠY
H2O
D
Me
Me
Me
HO OH OH Me
OH2
B Me
Me
-H+
Me
HO
+H+
+H+
HO
+H
HO
+
O
+
Me
HO
-H
U
Me
+
Y
OH
HO
-H
Me
F3B H O H
O
-H+
Me
Me
N
F3B H
O
H
Me
+H+
Ơ
A
H
O
N
O
O
O
H
F3B
BF3
O
Me
Me
OH
O Me
Nagumo, S.; Suemune, H.; Sakai, K. J. Chem. Soc., Chem. Commun. 1990, 1778. A: Intramolecular acid-catalyzed aldol reaction. B: Grob-type fragmentation.
C028 O hv
Me3Sn SnMe3
O
N
N
I
Me3Sn
N
OH O
C
Et
OH O
IC IA L
Et
O
O
N
N
N
N Et HO
FF
A
Et HO
O
O
O
H
H
Ơ
N
I
N Et HO
O
O
N
Et HO
N
H
B
R I
O
N
O N
O
N
Y
-HI
U
N
Q
Et HO
O
M
Curran, D. P.; Ko, S.-B.; Josien, H. Angew. Chem. Int. Ed. 1995, 34, 2683.
KÈ
A: Radical addition of an isocyanide to form an imidoyl radical. B: Atom transfer reaction.
D
ẠY
C029
Me Me O
MeO
O
O
Me
O Ar
Cl
A NMe
O
Me
N Me
Me Me
H
O Ar
O B
O
Me
N Me
Me Me O
Me Me Me
Ar
O
N Me
Me
NMe
AlCl2 Me
B Me
Me AlCl2 O
H O -H+
NMe
workup
O
MeO
Me
Me
NMe
Ơ
t-BuOK
O
MeO
MeO
N
OMs Et3N MsCl
MeO
H
Me
NaBH4
O
O
MeO
NMe
OH
FF
H
OMs NMe
Me H
O
N Y MeO
O
Me
O Me
NMe Me
M
MeO
Q
NMe
NMe
t-BuO
U
OMs
C
O
MeO
IC IA L
O
O
AlCl2Me
AlCl2 O
O
KÈ
Fuchs, J. R.; Funk, R. L. Org. Lett., 2001, 3, 3923.
A: Acylation of the imine to form an enamide. B
-amidoacrolein. C:
ẠY
Intramolecular conjugate addition of the electron-rich aromatic ring to the amidoacrolein.
D
C030
H H BH Me
CH3CHO
H B
A Me
H
Me
H
B
H
B O H
Me
H Me
Me -
H
B
H
B OEt
H
B OEt H Cl O Me
Cl OMe
IC IA L
Cl Cl OMe
H
H
B H OEt Cl O Me
OEt -MeOH H B Cl -EtOH MeO H
N
H
Ơ
O B OH
O
H
H Cl
OOH
H
OOH OH
O OH H B Cl HO OH
OH H Cl B HO
FF
H
H
NaOAc aq H2O2
O
OMe
H
Cl
B H EtO
Cl Cl t-BuO
H
Brown, H. C.; Mahindroo, V. K.; Dhokte, U. P. J. Org. Chem. 1996, 61, 1906. B: H ydride transfer via a six-membered
N
A: Sequential hydroboration to form a trialkylborane.
U
Y
transition state. See Meerwein-Ponndorf-Verley reduction ( ref B002).
Me Me Me
Me
Q
C031
Me
M
N C N H O
KÈ
O
Ph
S
O
Me
A
Me
HN Me
O
N Ph Me
Ph
Me
HN O
O
S
Me Ph
O N
Me
O H Ph
O Ph
S
B
ẠY
O
O
D
Ph
S
O Ph
O Ph C
S
Ph
Ph D
S
S
Ph
Ph
E Ph
Sponholtz III, W. R.; Trujillo, H. A.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 1687. A: Acti vation of the carboxyl group as an O-acylisourea. B: Generation of a 1,3-dipole. C: 1,3-Dipolar cycloaddition. D: Decarboxylation to form a 1,3-dipole. E: Intramolecular 1,3-dipolar cycloaddition.
C032 O
O
H
H
-H+
Me
Me
+H+
A
Me H O
Me
Me
O
Me
H
Me
OH Me
Me
H
C
Me
Me
FF
Me
B
IC IA L
Me
O
Fukuyama, T.; Li, T.; Peng, G. Tetrahedron Lett. 1994, 35, 2145. Abnormal Claisen rearrangement.
A: Claisen rearrangement followed by tautomerization.
B:
N
O
Intramolecular oxy-ene reaction to form a cyclopropane. C: Retro oxy-ene reaction.
O
H n-Bu
Y
n-BuLi RCHO
U
Ph
O S
C
M
H
PhS Cl
Q
O S
KÈ
O S
ẠY D
R
E
Ph
Ph
D
OH
B
S Ph
O S
Ph H R
aq NH4Cl
O S
O
A
N
O
H
Ơ
C033
R
Ph
O
O
O R S Ph
OH
OH R Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186.
A: Formation of a sulfenate. B: [2,3] Sigmatropic rearrangement. C: Deprotonation followed by addition to the aldehyde (pKa D MSO = 35).
D: [2,3] Sigmatropic rearrangement of the sulfoxide. E:
[2,3] sigmatropic rearrangement of the sulfenate.
C034 OTBS
OTBS
RuLn
OTBS RuLn
RuLn
A
R
R Me
Me
OTBS
OTBS
RuLn
OTBS
RuLn
Me
Me
Me
N
OTBS
Ơ
OTBS
LnRu
Me
OTBS
LnRu
N
H
RuLn
Ru Ln
O
Me
FF
B
IC IA L
Me
Me
Me
Y
OTBS
C Me
KÈ
M
Ru Ln
RuLn
Q
U
-
OTBS
Zuercher, W. J.; Scholl, M.; Grubbs, R. H. J. Org. Chem. 1998, 63, 4291.
Domino intramolecular enyne metathesis. A: Alkene metathesis at the terminal olefin. B: Sequential intramolecular alkyne metathesis to form a kinetically favored, six-membered intermediates.
ẠY
Intramolecular alkene metathesis.
D
C035
OBoc
OBoc
OBoc O
OBoc O
H
Ph
O Ph
O
Ot-Bu
O
A Ph
O O
Ot-Bu
C:
OBoc
OBoc
O
B Ph
O
C Ph
OEt
OEt
Jones, R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2002, 67, 6911
IC IA L
A: Intramolecular acyl transfer (pKa PhOH = 10, t-BuOH = 19). B: Generation of o-quinonemethide C: Hetero-Diels-Alder reaction to form an endo-adduct.
C036 N Br
OBn O
O
O
O
O
HO Me
A
OBn
-H+
O
BnO BnO
OBn
OBn
N
OBn
BnO BnO
Ơ
OBn
O
BnO BnO
OBn
N
Br
OBn
Br
O
BnO BnO
O
O
OBn
OBn
H
BnO BnO
FF
O
OMe
Fraser-Reid, B.; Konradsson, P.; Mootoo, D. R.; Udodong, U.
Y
J. Chem. Soc., Chem. Commun. 1988, 823.
Q
U
A: Bromination of the olefin causes the formation of a five-membered oxonium ion.
C037
M
Me
Me
ẠY
S
Me Me
Me
B
Me Me
C
Me
Me
SMe Me
C
C
Me Me
C
C
Me
S
Cl Hg Me Cl
Me
Me Me ClHg
OH2
Me Me
Me HS OH Me
-H+
Me
+H+
Me Me HgCl
Me
H
O
Me
OH
Me Me Me HgCl
C Me Me
Cl
H
-H+
O
Me Me
Me
Me
Me
S Me
D
HgCl2
S
A
KÈ
Me Cl Me
Me Me
Me Me
Michelot, D.; Linstrumelle, G.; Julia, S. J. Chem. Soc., Chem. Commun. 1974, 3, 10. A: Generation of an alkylidene carbene. B: Formation of a sulfur ylide (carbene is electrophilic). C:
C038 O OMe
CO2Me
H
OMe
N3
A
OMe
N3
O
N3
OH -H2O
CO2Me
N
N
N
H
CO2Me N
B
N
Ơ
N3
MeO
-N2
CO2Me
N
CO2Me N3
O
O
H
H OMe
O
FF
H
IC IA L
[2,3] Sigmatropic rearrangement.
Y
C
NH2
N H
CO2Me
Q
U
H
CO2Me
or
M
CO2Me
CO2Me
D
ẠY
KÈ
N
C
N H
N H
N
CO2Me
CO2Me Knittel, D. Synthesis 1985, 186.
A: Claisen-Schmidt reaction. B: Formation of an azirine. C: Cleavage of the azirine ring to form
either 1) a nitrene which undergoes C-H insertion or 2) a diradical that recombines to form, upon aromatization.an indole.
C039 OLi OLi
Me
O
OLi workup Me
+H+
Me
OH2
-H+
Me +H+
OMe
C
Me Me H
OMe
Me
Me
Me OMe H
-H+
A Me Me
O
H3O+
Me Me
Me Me
N
Me
H
FF
Me H
OMe
-H+
O
OH
Me MeOH
Me
MeOH OH2
OH H SO 2 4
IC IA L
Me
OH
Ơ
Hiyama, T.; Shinoda, M.; Nozaki, H. J. Am. Chem. Soc. 1979, 101, 1599.
H
A: Nazarov reaction ( ref B026).
Ph I O OCOCF3 OMe
Y
OCOCF3 I Ph OCOCF3
O
U
OH
N
C040
OMe
Me
HO
Q
OMe
Me
M
A
Me
Me
KÈ
O
D
ẠY
-H
OMe
+
O
O
Me
B
OMe O
Me Me
Me Me O
mesitylene 200oC
O
Me
Me Me
OMe O
O C
Me Me
OMe O
Me Me H O e OM O
Hsiu, P.-Y.; Liao, C.-C. J. Chem. Soc., Chem. Commun. 1997, 1085. A: Oxidation of the phenol to form a mixed o-quinone monoacetal. B: Intramolecular Diels-Alder
reaction. C: Cope rearrangement.
C041 MeO N
MeO
O
MeO N
MeO
O
N
MeO
A
O
IC IA L
MeO
H OMe
H
MeO N
MeO
O H
H
MeO
B
O H
H
N
O
H
N
FF
MeO
H
Ơ
Naito, T.; Tada, Y.; Nishiguchi, Y.; Ninomiya, I. Heterocycles 1981, 16, 1137.
N
H
A: 6e Electrocyclic reaction. B: Reduction of the acyliminium ion from the convex face.
C042 O
Y U
H
Q
B
O
O
TBS
R
M
R A R TMS
O
KÈ
R C TMS
TBSO
ẠY
TMS
O
B
D
O u e t B M 2Si
TBSO
O
workup
R TMS
O TBSO
TBSO
O
+H+
D TMS
R
TMS
R
Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400. A: 1,2-Addition of the enolate to the acylsilane. B: Brook rearrangement. C: Cyclopropanation. D: Anion-accelerated divinylcyctopropane rearrangement.
C043
H
O
Me
Me H
A
O
O
O
SmI2
I2SmO Me
SmI2
H
I2SmO Me
I2SmO Me
B
C O
I2SmO Me
HO Me
workup
H
+H+
D H
H
O
O
FF
H
O
H
SmI2
H
H
N
H
O
IC IA L
Me
SmI2 O
H
O
Ơ
O
Chem. Commun. 1998, 1875.
B: 5-exo-trig Radical cyclization to form a radical at a cyclopropylcarbinyl position which
N
A: SET.
H
Boffey, R. J.; Santagostino, M.; Whittingham, W. G.; Kilburn, J. D.
induces cleavage of the cyclopropane ring (cf. radical clock). C: 5-exo-dig Radical cyclization. D:
U
Y
SET.
Q
C044
O
M
Me O
OMe
Me
KÈ
H
H
H
H2N
Me O
NH2
+H+
A
+H+
OTs H
D
ẠY
MeO
Me Me H
NH2
O
O
Me NH
-H+ O
H
HO
O
Me Me
+H+ B
Me
O
O
Me
NH2
O NH2
H
H
O
O
Me Me
O
H2O
Me Me O
O
Me
O
H
IC IA L
Me OH
O
+
-H
O
H
O
+
+H
H
H
H O
O
+H+
H
Me
O
Me
-H+
O
D
H -CO2
O
Me
O
C
O C
H
FF
MeO
Tietze, L. F.; WöIfling, J.; Schneider, G. Chem. Ber. 1991, 124, 591. A: Grob-type fragmentation. B: Knoevenagel reaction ( ref A018). C: Intramolecular hetero-Diels-
O
Alder reaction. D: Retro Diels-Alder reaction to generate a highly reactive acylketene.
Ơ
N
C045
Me
Me
OEt
Br Br
N
O O
OEt
Br
t-Bu
Me CO2Et
A
U
Y
t-Bu
Q
O
Me
C
Me O
O
Me
Me O
CO2Et
O
D
Me O
O
O
Me
KÈ
M
B
ẠY
Me
OH
H
O
OEt
Me O
O
Me
Me
O
O
H
-CO2
Me Me
workup
Me
+H+ O
O Me O
EtO Me
C
OH
Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2001, 66, 7818. A: Formation of an ynolate. B: Addition of the ynolate to the ketone leads to the formation of a strained -lactone enolate. C: Claisen condensation followed by aromatization with decarboxylation.
C046
Me
CO2Me
OMe
O N N
CO2Me
-N2
O
O -
O
Me
Me
O MeO
H B
OMe
H
OMe
C O
H
O
OMe
Ơ
O
MeO2C
O
O
N
MeO
OMe
FF
A
IC IA L
Me
H
Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Belanger, F. J. Am. Chem. Soc. 2004, 126, 9926.
N
A: Fragmentation to form a dialkoxycarbene. B: Cyclopropanation. C: Cleavage of the cyclopropane
Y
ring.
Q
U
C047
MeO
O MeO
M
O
N
Ph
KÈ
N H
Me
MeO
Ph N
Me Br
Ph
ẠY
H
Me
MeO
MeO mCPBA
D
LiAlH4 AlCl3
Me
O
O N
N Ph
Ph
A
MeO
Me
C
H
MeO
Me
Me
MeO +
N
O
N
B
Ph
-H
O
Ph
Ph MeO
-H
N
+H+
Me OH
N Ph
FF
Ph
MeO N
Me
Ph
N
Ph
O
CN
Me
N
Me OH
KCN
CN
O H
IC IA L
MeO +
MeO
N
+H+
Ơ
Makisumi, Y.; Takada, S. Chem. Pharm. Bull. 1976, 24, 770.
N
H
A: [2,3] Sigmatropic rearrangement of the N-oxide. B: [3,3] Sigmatropic rearrangement.
Y
C048 O S N CO2Me
M
Q
A
U
N
ẠY
KÈ
CO2Me workup S O Ph
PhMgBr
CO2Me
S O
B
Ph NHCO2Me
HMPT EtOH 80oC
H N
NHCO2Me D O SPh
N
S O
Ph S O
C
D
CO2Me
O
Ph S O
NHCO2Me
H NH
O
OMe
H
O
O
P(NMe2)3 Anderson, G. T.; Chase, C. E.; Koh, Y-H.; Seien, D.; Weinreb, S. M. J. Org. Chem. 1998, 63, 7594.
A: Hetero-Diels-Alder reaction. B: Cleavage of the S-N bond by SN2 attack of Ph MgBr.
C: [2,3]
Sigmatropic rearrangement (reversible process). D: Irreversible cleavage of the S-O bond by attack of a thiophile (P(NMe2)3) generates an alkoxide ion which then cyclizes to give an oxazolidinone.
C049 Me t-Bu Si Cl Me
Me B
O
O
Me
Me
Me O
O O OTBS Me
B Me
Me
H
O O
Me
O
D
Me
OH
+
Me Me OH
H Me Me
C
Me
OH
H
H Me Me
Me
H2 Pd/C
H
+
O
O
Me
O O
Me
N
Me
Me
Me
O O OTBS
Me
Me
O
Me
OTBS
A
Me Me OH
Ơ
Me
O3
FF
H
Me
IC IA L
Me
Casey, M.; Culshaw, A. J. Synlett
N
A: Formation of a silyl enol ether. B: 1,3-Dipolar cycloaddition of O3 followed by cleavage of the ozonide to form a 1,3-dipole (carbonyl oxide). C: 1,3-Dipolar cycloaddition. D: Reductive cleavage of
U
Y
the O-O bond.
Q
C050
Ar
KÈ
O
M
O
Ar Et
CN O
A
ẠY Ar
O
O N R
N C N H R
D
Ar
PPh3
B
NHEt
R
PPh3 H
N
CN NHEt
O
Ar
O
O
O
Ar
O3 O
PPh3 CN
O
PPh3 CN
C
O
Ph3 P O NC O O
Br Br
Br
Ar
OMe
O O H2N
O
N H
O
CN
IC IA L
D
Br
OMe
OMe
Wasserman, H. H.; Wang, J. J. Org. Chem. 1998, 63, 5581. A: Acti vation of the carboxylic acid as an O-acylisourea. B: Acylation of the stabilized ylide. C: 1,3-
FF
Dipolar cycloaddition of O3 to the ylide. D: Fragmentation to generate an acyl cyanide.
C051 Me
-H+
OH O
CO2Et
A
N
Pr
CO2Et
O
N
ẠY D
O
-H+
M
CO2Et
N
O
Pr
Ơ OH
O NH O CO2Et
O
+H+
CO2Et
OH2
N
CO2Et
Pr
O
N
TMSCH2MgCl CeCl3
OEt
Pr
O
OEt
O
OEt
Pr
C O
N
OEt
Cl2Ce CH2SiMe3
OEt
Pr
O
N Pr
O
N
Pr
KÈ
Pr
EtOH B
Q
HOEt
O
N
-AcOH
NaBH4 H2SO4
O
Me
O
Y
O
Pr
U
Pr
O
NH O CO2Et
H
+H+
NH2
Cl
O
O
N
O
O
SiMe3
Cl2Ce CH2SiMe3
OEt
O
N
SiMe3 O
Pr SiMe3
OEt SiMe3
aq HCl O N + +H Pr C
H OEt
O SiMe3
H
O
N SiMe3
Pr
N
D Pr
Chalard, E; Remuson, R.; Gelas-Mialhe Y.; Gramain J.-C.; Canet I. Tetrahedron Lett. 1999, 40, 1661.
IC IA L
A: Formation of a succinimide via a mixed anhydride. B: Partial reduction of the imide. C: Peterson
olefination ( ref A074) to form an allylsilane. D: Intramolecular addition of the allylsilane to the
FF
acyliminium ion.
C052 CO2H (COCl)2
H
O Cl
O
Et3N
C
O
A
Ơ
N
Et3N
Me OH
Me O
H
MeLi
O
Cu(OAc)2 Mn(OAc)3
Mn(OAc)2
Cu(OAc)2
Q
Me O
U
Y
N
B
D
M
C
H
E
CuOAc O
Me
O
KÈ
Me
ẠY
H
D
Me
O
Me
O
Snider, B. B.; Vo, N. H.; Foxman, B. M. J. Org. Chem. 1993, 58, 7228.
A: Formation of a ketene. B: Intramolecular [2+2] cycloaddition. C: Generation of an oxygen radical.
D: Cleavage of the cyclobutane ring to form a stable tertiary carbon radical. E: 5-e xo-trig Radical cyclization followed by oxidation with Cu(OAc)2.
C053 Me3Si Me3Si OTf
H O SiMe3
O
Ph
H -H+
O Ph
+H+
OH
H
Ph
O Ph SiMe3
IC IA L
Ph SiMe3
Ph
O
Si Me Me Me
H
O
Ph
O
Ph
FF
Ph
N
Roush, W. R.; Dilley, G. J. Synlett. 2001, 955
Ơ
Intramolecular Hosomi-Sakurai-type reaction.
O O
O
O
M
KÈ N2
ẠY
O
O
D
Br
Li Br n-Bu
O
i-Pr3SiCl
O
O
O
O
U
Br
Q
Br
O
Br
Br
Y
A
H Br
n-Bu
N
O
H
C054
i-Pr3SiO OSii-Pr3
O
H
hv O
B
C
O O
O C
i-Pr3SiO
i-Pr3SiO
O O
O i-Pr3SiO
D OSiPr3
O
OSii-Pr3 C
OH
OSii-Pr3
-H+ OSii-Pr3
+H+ E
O
OSii-Pr3
Danheiser, R. L.; Trova, M. P. Synlett. 1995, 573.
A
-elimination followed by insertion of the carbene into the C-
C bond (Kowalski reaction).
B: Wolff rearrangement.
C: [2+2] Ketene cycloaddition.
D: 4e
Electrocyclic reaction. E: 6e Electrocyclic reaction followed by aromatization.
C055
N
Ts
Ts N
OTf Ts Me
I Ph
A
Ph
Ph
Ts N
Me
B
Ph Ts Me N
Ph Ts Me N
O
Ts N
Me
FF
Ph
IC IA L
H N
n-Bu
Me
Ph
Ơ
N
C
H
Ph
N
Feldman, K. S.; Mareska, D. A. J. Org. Chem. 1999, 64, 5650. A: Addition of a sulfonamide ion to the electron-deficient acetylene to form an alkylidene carbene. B:
Q
U
Y
Cyclopropanation. C: Homolytic cleavage of the strained cyclopropylidene ring.
C056 H
NH3
KÈ
O
M
OBn
ẠY
OHC
D
H
H
N
OBn H
HO
H
HO
HN
H OH
OBn
H
N OH
OBn H
-H2O N
OH
OBn
OBn NH4OAc AcOH 75oC
H
H
N
OBn
OBn
OBn
H H A
H B
HN
H
-H+
HN
HN
IC IA L
Heathcock, C. H.; Stafford, J. A. J. Org. Chem. 1992, 57, 2566. A: Aza-Diels-Alder reaction. B: Cation-olefin cyclization.
H2 Lindlar catalyst A HO
O
OH
FF
C057
N
HO
HO
C
HO
N
OH
H H OH
Ơ
H
H
H
B
OH
Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J.
Y
J. Am. Chem. Soc. 1982, 104, 5555.
U
A: Partial reduction of the alkynes to form a tetraene. B: 8e Conrotatory electrocyclic reaction. C: 6e
Q
Disrotatory electrocyclic reaction.
KÈ
M
C058
Zn
O
Cl
A
ẠY
Cl
Cl Cl
O A Cl O
Cl O
Cl
Cl
O
O
S
O
Tol
S
Tol
R
Me
N(Boc)2
D
N(Boc)2
Cl H Cl R
O o S T l O
Cl H Cl B R
O o S T l O
O
O
Cl
Cl O
Me C
O STol N(Boc)2
Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. J. Am. Chem. Soc. 2002, 124, 13398. A: Generation of dichloroketene.
B: [3,3] Sigmatropic rearrangement.
C: Cyclization of the
carboxylate to the sulfenium ion.
C059
IC IA L
O Me
Cl3Al Cl
Me
O S Me Me
MeO
MeO A
CN
N R
MeO
O
HS
Me Me
R'
N R
R'
CN
N
N
N R
O
MeO
H
C
Me
S
O
Ơ
Me
N
Me
MeO
B
R'
O
Cl
Cl3Al Cl S
Cl
FF
N
S
Y
Cl
U
Chung, J. Y. L.; Reamer, R. A.; Reider, P. J. Tetrahedron Lett. 1992, 33, 4717.
Q
A: FriedeI-Crafts acylation at the indole 3-position. B: Cleavage of the strained four-membered ring by
M
chloride ion. C: Intramolecular electrophilic substitution by the resulting sulfenyl chloride.
KÈ
C060
O
A C
PdLn
O
Me
Me
OMe H
O
PdLn
D
ẠY
Me
O
O Me C PdLn
Me OH
Me
O OMe
-H+ +H+ B
O OMe
O Me
C PdLn
HO
O
Me
OMe PdLn
O
O
Me
-Pd(0)Ln
OMe
O
Me
Me
Me
H
Minami, I.; Yuhara, M.; Tsuji, J. Tetrahedron Lett. 1987, 28, 629.
IC IA L
A: Formation of an allenylpalladium species. B: Addition of the acetoacetate anion to generate a -allylpalladium complex. C
-allylpalladium complex.
C061 Me
Me
A
Br LnPd
Br PdLn B
N
Br O
O
O
H
Ơ
O
Br LnPd Me
O
Pd(0)Ln
FF
Me
Me
Y
-
Me
PdLn Br C
O
O
U
O
H
H PdLn Br
N
BrMe LnPd
Q
Me yer, R E.; Parsons, P. J.; de Meijere, A. J. Org. Chem. 1991, 56, 6487.
M
A: Oxidative addition. B: Sequential intramolecular carbopalladation. C
KÈ
C062 O
OH
O
O
H O
D
ẠY
+H+
O
H
-H+ SiMe3
HO
O Me3Si
O
OH2 O
+H+
SiMe3
O
H
-Elimination.
Me3Si
decalin 170oC A
H O Me3Si
O
Me3Si
Me3Si EtAlCl2
O
Me3Si O
O
O
O
O Cl2EtAl
Me3 Si Cl - e M 3SiCl
O B
workup
O
+H+ H OAlEtCl
H OAlEtCl
IC IA L
AlEtCl2
O
H OH
FF
Paquette, L. A.; Ladouceur, G. J. Org. Chem. 1989, 54, 4278.
O
A: Claisen rearrangement via a boat-like transition state. B: Intramolecular Hosomi-Sakurai reaction.
O H
O
N
O Me
U B
M
Ph Br
OMe OH
Q
O
O
Br
O
H
O
KÈ
BrZn Zn
ẠY D
-H
D
BzO Me
H
O
Ph
Br N
O
OMe OH
O
O Me O Br
O
OMe OH
O Me
H
O C
Ph
O
OMe OH
ZnX O
O OH
OH
BzO Me
OZnX O
OMe OH
O Me
ZnX2
BzO Me
+
Ph
A
Y
O
H
O Me
H
Ph
H
O
N
N Br
OMe OH
O
Ơ
H
O
N
C063
BzO Me
OH workup +
+H
BzO Me
O
Holt, D. J.; Barker, W. D.; Jenkins, P. R. J. Org. Chem. 2000, 65, 482. A: Radical bromination of the benzylic position. B: Formation of a stable carbocation. C: SN2 reaction. D: 1,2-Alkyl shift.
C064
A N NTs H
B
N N Ts
N N
N N
IC IA L
n-Bu
D
FF
C H
Bian, N.; Jones, M., Jr. Tetrahedron Lett., 1993, 25, 3967. A: Formation of a diazoalka
O
-elimination. B: Elimination of N 2 to form a carbene. C: Insertion
Ơ
N
of the carbene to the C-C bond. D: Retro Diels-Alder reaction.
H
C065 NH2 Ns N H
N
SiMe3
TBSO
OH
Y
CO2Et N N EtO2C PPh3
A
SiMe3 -H+
PPh3
Q
U
CO2Et N NH EtO2C
M
KÈ
ẠY D
O
Ph3P
SiMe3
HN H
SiMe3 TBSO
N
H
O S O O2N
N
N
H
SiMe3
-N2 C
TBSO
+H+
TBSO
B
Ns N NH2
TBSO
C
H
H Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
A: Mitsunobu reaction ( ref A045). B: Elimination of a sulfinic acid. C: Sigmatropic elimination of N2 (stereospecific delivery of a hydride via a concerted mechanism).
C066 BrMg O A Me
MgBr
O
N O
N
O
Me
Me
BrMg H
H O N MgBr
Me
OMgBr
N
OMgBr
N
Me
Me
FF
C
O N MgBr
B
IC IA L
Me
N O
BrMg H
O
workup +H+
N MgBr
Ơ
Me
N
N Me
N H
Me
H
Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chem. Soc., Perkin Trans. 2 1991, 657.
N
Bartoli indole synthesis. A: Reduction of the nitro group by means of addition of CH 2=CHMgBr and elimination of an enolate to form a nitroso compound. B: Addition of CH2=CHMgBr to the nitroso
Q
U
Y
group. C: [3,3] Sigmatropic rearrangement.
O
H
KÈ
Cl4Ti
M
C067
Cl
A
ẠY
Me
Me
D
Me
O
Cl4Ti
Me
O O C
Me N
TiCl4 B
N
Me
TiCl4
O
O Me
N O
Me
O
Me
TiCl4 N
Me
O N
O Me
O
Yoon, T. P.; Dong, V. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 1999, 121, 9726. A: Formation of a ketene. B: Aza-Claisen rearrangement through a chair-like transition state.
C068 S
S TBSO
Cl O A
O
S HO
IC IA L O
FF
O HO
+H+ B
S
HO
SH
-H+
O H
workup
S
-H+
+H+
O
HS
O
Ơ
+H+
H t-Bu O Si O e e M M F
O
CSA
Cl Cl
O
HF
S
AcOH
O
Cl
Cl
TBSO
TBSO
A
Cl
N
TBSO
Zn
S
H
Vedejs, E.; Buchanan, R. A. J. Org. Chem. 1984, 49, 1840.
N
A: [3,3] Sigmatropic rearrangement. B: Intramolecular acyl transfer reaction.
A
(OC)4Cr
Q
Me
N Bn
Me
Me
O
O A (CO)4Cr OMe
D
ẠY
KÈ
M
(OC)4Cr C O
H
OMe
U
OMe
Y
C069
Me
N Bn O
I
I2 N Bn O
OMe
N Bn O
B
I
H Me OMe
H I
N C Ph
Me OMe
O
N Bn O
H Me OMe
Me OMe
H I
N O
Me OMe
I eur, C. J.; Miller, M. W.; Hegedus, L. S. J. Org. Chem. 1996, 61, 2871. A: Photo-induced insertion of CO to form a ketene. B: Aza-Claisen rearrangement. C: Intramolecular
iodoamidation followed by debenzylation in an SN2 fashion.
C070 OH OH R Me Me
O O
Me
+
-H
O
A
O
Cl
R
OH Me Me
O
O Me
+H+ B
IC IA L
Me
O O
O
O OH
Me
-H
OH +H+ Me Me C
R
O
H OMe
R
D
Cl
O
E
Cl
O
O
R
R
N
R
Me
O
NaOMe
O
R
O Me
O
OH e O MeM
O
O
O
Me
O
N
O
+
FF
O
O
Me
Ơ
R
Me Me
Cl
Cl
Y
Schreiber, S. L.; Sammakia, T.; Uehling, D. E. J. Org. Chem., 1989, 54, 15.
U
A: Activation by cyclization. B: Formation of an orthoester followed by cleavage of the five-membered
Q
lactone. C: Intramolecular interception of the stable carbocation by the secondary alcohol.
M
Cleavage of the resulting orthoester. E: SN2 reaction at the less hindered carbon with chloride ion.
KÈ
C071
F3B
F3B
O
N H
H
-H
+
NHBn N H
D
ẠY
O
R
Bn
O
N H
CO2Me
NBn
O
BF3
R CO2Me
NBn -H+ H
A N H
R CO2Me
N H
R CO2Me
D:
NBn
NBn
NBn H
R CO2Me
N H NBn
NBn
-H+
H
B
R CO2Me
O
N H
CO2Me
FF
N H
R CO2Me
N H
IC IA L
R CO2Me
N H
Parsons R. L.; Berk J. D.; Kuehne M. E. J. Org. Chem. 1993, 58, 7482.
O
A: Mannich reaction followed by [3,3] sigmatropic rearrangement. B: Mannich reaction.
N
C072
Br
N OH
O O
A
U
N
Y
mCPBA
MeOH
N OH
O H
H
N O
O
O Me
H
H
H2, Pd/C
N
KÈ
B
M
Q
NC
O
NC
H
NC
N
NaH
OH
N
N H
Ơ
CN
N Me O'Neil, I. A.; Cleator, E.; Ramos, V. E.; Chorlton, A. P.; Tapolczay, D. J.
ẠY
Tetrahedron Lett. 2004, 45, 3655.
A: Cope elimination. B: Retro Cope elimination.
D
C073 O
TMS
O
O
TMS H OR
O
O H
Me
TMS
O
O
O A
O
O
O TMS B H
O
F H
workup
H
+H+
H
O
OTMS
O
O
H
O SiMe3
H
H
O
O
H
C
O
O
TBAF
H
IC IA L
O
O
H SiMe3
FF
O
O
O
O
O
N
Ovaska, T. V.; Roses, J. B. Org. Lett. 2000, 2, 2361. A: 5-exo-dig Cyclization of the alkoxide ion. B: Claisen rearrangement. C: Migration of the silyl group
Ơ
to form a silyl enol ether.
S
S
N H
N
N
H
C074
Y
N2
U
N2
Q M
Rh2(OAc)4
N2
RhLn S
N
N
N
ẠY
N
S
RhLn N
C
O RhLn
S
O
N
O
D D
S
O
N
S
RhLn N N
N B
O
S
H
A
H OH
KÈ
N
O
N
O
OH
S
S
O
SH O
O N
Raney Ni E
O N
Fang, F. G.; Prato, M.; Kim, G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 3625. A: Conjugate addition of a thiolactam anion. B: Formation of a rhodium carbene complex. C: Attack of the sulfur atom to the rhodium carbene complex followed by formation of a thiirane. D: Cleavage of
the thiirane assisted by the nitrogen lone pair. E: Desulfurization.
C075 O O
Me
OMe N N
RhLn
O
O
Me
Me
O Me
OH O Me
MeO
Me
D
MeO
OMe
F3B
Me O
O
Me
or
Me
MeO
O
Me
MeO
Me O Me OH
H
N
BF3
O
Me H HO
O Me O
E
MeO
Me O
O
Me
Q
Me
F2B
Y
O
Me
O
U
H
BF3-Et2O
Me
O Me OH
O
HO Me
Me
Me
Me
O
Me
O
Me
B
O
N
Me
-H+
OH
Me
OMe
O
MeO
RhLn
O
HO
C
OMe
OMe N RhLn N
+H+ OMe
Me
Ơ
Me LnRh
Me
A
O
IC IA L
O
FF
O
O
Drutu, I.; Krygowski, E. S.; Wood, J. L. J. Org. Chem. 2001, 66, 7025.
M
A: Formation of a rhodium carbene complex. B: Addition of an alcohol to the carbene complex. C: Formation of an (Z)-enol. D: [3,3] Sigmatropic rearrangement via a chair-like transition state. E: 1,2-
KÈ
Migration through a synperiplanar transition state.
ẠY
C076
F3B O O
F3B O
D
O
O
Me
Me O
SnMe3 SnMe3
A
SnMe3
workup +H+
AcO Me
Me
H O
Pb(OAc)4
O
OAc Pb O AcO O
Me
OAc O
O
SnMe3
SnMe3
Me
AcO
-H
O
+H+ B
SnMe3
+
HO
-H+
O
AcO
OAc Pb
Me
O
O
(Ph3P)3RhCl
O Me
A
O
O
FF
SnMe3
IC IA L
O
H O
Posner, G. H.; Wang, Q.; Halford, B. A.; Elias, J. S.; Maxwell, J. P. Tetrahedron Lett. 2000, 41, 9655.
O
A: Attack to the epoxide takes place from the less hindered side to form the trans-product. B:
N
Formation of a hemiacetal. C: Oxidative fragmentation induced by Pb(OAc)4.
n-Bu
H
O
O A
N
O
H
Ơ
C077
Me
Me H
U
HO
Y
Me
B
Q
workup
M
Me
KÈ
O
+H+ Me
Sayo, N.; Kimura, Y.; Nakai, T. Tetrahedron Lett. 1982, 23, 3931.
A: [2,3] Wittig rearrangement. B: Oxy-Cope rearrangement.
ẠY
C078
D
CHO
R
-H2O
O
C6H11 N R
O Me
R
B
A O Me
Et3N AcCl
C6H11 N AcO H
O O Me
Me
O O Me
Me
C6H11 N
-H+
Me
C6H11 N
O
R
OAc R
NaOAc OHC OAc aq AcOH R
O
O
O
O Me
O Me
Me
O Me
Me
Me
IC IA L
O
Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Angew. Chem. Int. Ed. 1999, 38, 971. A: Formation of a nitrone. B: Acetylation followed by [3,3] sigmatropic rearrangement.
OTBS Me
B SMe2
O O OTBS Me
O
M
AcO
H O
R
O
DBU
O OTBS
Y
U Q
OTBS Me
O
OTBS Me
OTBS O
H
C
AcO
N
O
+H+ D
O O O SMe2
H
Ac2O Et3N
HO
-H+
-DMSO
R
N
OTBS
R
OH
Ơ
O O O
A
OH
O
OH
HO O
FF
C079
toluene 100oC
O
OTBS Me
OTBS Me
O
O
E OTBS
KÈ
OTBS
OTBS
O
O
ẠY
TBSO H O
D
F
OTBS O
Bauta, W. E.; Booth, J.; Bos, M. E.; DeLuca, M.; Diorazio, L.; Donohoe, T. J.; Frost, C.; Magnus, N.; Magnus, P.; Mendoza, J.; Pye, E; Tarrant, J. G.; Thom, S.; Ujjainwalla, F. Tetahedron. 1996, 52, 14081.
Achmatowicz reaction (A-D). A: Diels-Alder reaction of singlet oxygen.
B: Reductive cleavage of the
endoperoxide with Me 2S. C: Elimination of DMSO to form cis-enal. D: C yclization to form a lactol. E: Generation of a pyrylium ion (or a carbonyl ylide). F: 1,3-Dipolar cycloaddition.
C080 H
O
O
O
C
O hv
Cl A O
O
B
C
C O
O
O -CO D O
O -CO
E O
O
O
O
FF
O
IC IA L
Et3N
1973, 297
N
Turro, N. J.; Leermakers, P. A. Vesley, G. E Org. Synth., Coll. Vol
A: Formation of a ketene. B: [2+2] Head-to-tail dimerization of a hindered ketene. C: Norrish type I
Ơ
cleavage of the ketone followed by decarbonylation to form a diradical. D: Recombination of the
N
H
diradical.
U
Y
C081 TiCl4 Me
O
M
Q
O
KÈ ẠY D
Me SiMe3 C
Me
O
TiCl4
Me
Me
TiCl4
O
Me Me
Me Me
SiMe3 Me
A
SiMe3 Me
H
Danheiser, R. L.; Fink, D. M.; Tsai, Y.-M. Org. Synth., Coll. Vol.
1993, 347.
Danheiser annulation. A: Conjugate addition of the allenylsilane to form a carbocation stabilized by the silicon atom.
C082
Et O
Et O H Ph
O
Ph2P Cl
n-Bu
Me
Ph
Me
Et O PPh2 Ph
A
Me
Me
Me O
Me O Ph2P Et O
Ph
Ph2P Et O
O Me
Me
Me O
+
O O PPh2
OH
Ơ
Me
Ph
N
O Et Ph
Me
O
O Ph
OH
FF
Ph
Me
Ph
C
O
O
B
H O
IC IA L
Me
O
H
Me
Mukaiyama, T.; Shintou, T.; Fukumoto, K. J. Am. Chem. Soc. 2003, 125, 10538.
N
A: Formation of a phosphinite ester. B: Addition of the phosphinite to the electron-deficient quinone.
Q
U
Y
C: SN2 reaction with inversion of configuration.
M
C083
Me
OMe
KÈ
MeO
D
ẠY
BnO
OMe MeO
Cl H
Cl
A TMS N TMS
BnO
OMe
OMe
MeO
O3
MeO B H
BnO
Me
Me
Me
BnO
Ph3P C
O
OMe
MeO
MeO
TsOH
Me MeO
-H2O D
O
O
BnO
Bn
A
IC IA L
Taber, D. E; Neubert, T. D. J. Org. Chem. 2001, 66, 143.
-Elimination to form an alkylidene carbene. B: C-H insertion at the kinetically favored position. C:
C084
O
Bn
Bn
A
N
N
N Ns Bn N C
O
Ơ
N Ns
O
O
H
H N
FF
Ozonolysis. D: Intramolecular aldol reaction.
O
O
Y
N Ns
ẠY
O
N Ns
N Bn
N Bn O
O
NHBn
+
-H+
-H
N Bn
H
+H+
+H+
O
O
NHBn
NHBn
-H+ N Bn
NsHN
+H+
N Bn NsHN
O
O Paulvannan, K. J. Org. Chem. 2004, 69, 1207
A: Ugi reaction ( ref C007). B: Intramolecular Dielsrelease the ring strain.
O
NHNs
HO
D
NHBn N Bn
O
O
U
KÈ
M
O Ns H N
B
N
+H+
Q
N Ns N Bn
-H+
BnHN
H
BnHN
Bn NH O
-elimination to
C085 Me Me
Me
Me Me
Li
O
workup
Me
Me Me HO
+H+
O
Me
Me Me HO Cl S O Cl
Me
Me Me
Cl
Me A
O S Cl O
Me 60 C
Me Me Me
C
H
Ơ
O Me
MeH
Me
OHC
H
MgCl
Me workup
OMgCl
Me
OH
+H+
Me
N
Me
Me
MgCl
N
Me
MgCl
O
o
MgCl Me
Me
Me
Mg B
Me
Cl
FF
SOCl2
IC IA L
Me
MeH
MeH
MeH
Y
Oppolzer, W.; Bättig, K. Tetrahedron Lett. 1982, 23, 4669.
U
A: Formation of an allyl chloride via SN2' reaction.
B: Formation of a Grignard reagent.
C:
Q
Magnesium-ene reaction through a chair-like conformation.
O
D
ẠY
Ph Ph
Ph Ph Ph
Ot-Bu
Ph H
P
KÈ
P
H
M
C086
OEt
A
Ph Ph
O OEt
O
Ph P B
P
Ph Ph
O
EtO C
Ph P Ph
Ph
OEt O EtO Ph
Ph P Ph EtO
O P Ph Ph Ph
Fujimoto, T.; Kodama, Y.; Yamamoto, I.; Kakehi, A. J. Org. Chem. 1997, 62, 6627.
A: Conjugate addition of an ylide.
B: Intramolecular proton transfer to generate an ylide.
C:
Intramolecular Wittig reaction.
I
I PdLn
I B
NTs
PdLnI
NTs
NTs
O
N
O PdLnI B
NTs
C
H
NTs
Ơ
O A
CO
FF
H
O C PdLnI
O
N Ts
Pd(0)
IC IA L
C087
O
N
O CO
PdLnI
NTs
Y
PdLnI O
NTs
U
NTs
LnPd
D
KÈ
M
Q
O
I
O
O
O
-Pd(0) E
N Ts
N Ts
von Seebach, M.; Grigg, R.; de Meijere, A. Eur. J. Org. Chem. 2002, 3268.
A: Pd-mediated carbonylation to form an acylpalladium species. B: Carbopalladation to a strained -Carbon elimination. D: Intramolecular carbopalladation to the resulting strained olefin. E:
ẠY
olefin. C
D
Reductive elimination of the palladacycle.
C088 O
O Me SPh
Me SPh
workup +H+
HO
Me SPh
HBF4 +H+
H H O
Me
Me SPh
H2O
Me
SPh
-H+ +H+
A SPh
LiBH(s-Bu)3 MeLi, KOEt
Me
Me
B O
O
C
H Bs-Bu3
OH
FF
Me
Me
Me
Me workup
O
+H+ O
OH
N
OH
OH S Ph H
IC IA L
Me
Me
Ơ
Danheiser, R. L.; Martinez-Davila, C.; Sard, H. Tetrahedron. 1981, 37, 3943.
H
A: Pinacol-type rearrangement. B: Reduction of the ketone. C: Anion-accelerated vinylcyclobutane-
N
cyclohexene rearrangement.
C089 Boc N
U
O
O
Q
A
H
S C S
M
KÈ
O
OH
+
+H
Boc N
Boc N S H3C I
O S
SMe
O
S
SMe S
SnBu3
Boc N
Boc N O
S
SnBu3
Boc N NBoc
D H SnBu3
SMe
O
Boc N
C
D
workup
B
Boc N
ẠY
Bu3SnH AIBN
O
Boc N
H
Boc N
KH
Boc N
Y
Boc N
Hodgson, D. M.; Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J,; Dickenson, A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 . 2001, 3150. A
-Elimination of the epoxide to form a carbene.
B: C-H insertion.
C: Barton-McCombie
deoxygenation of a xanthate ( ref A051). D: Formation of a radical at a cyclopropylcarbinyl position
IC IA L
induces cleavage of the cyclopropane ring (cf. radical clock).
C090 Me -H+
H
H
N OH2
+H+ HO
HO
O
HO R
R
Me
R
N
OH
N
FF
N
Me
Ơ
H
Me
Me
H
A
B
N
N
O
O
R
Me
Q
U
Y
HO
N
N
R
R
Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W., Jr.; Overman, L. E
M
J. Am. Chem. Soc. 1993, 115, 3966
KÈ
A: Aza-Cope rearrangement. B: Mannich reaction.
C091
ẠY
Cl3Sn Cl
D
O
N
Cl3SnO
O
Me
N
O RO A
Me Ph
Cl3SnO
N
O
N
O
Ph
OR
O NaHCO3
Me Ph
OR
Me
Ph
workup
O
benzene reflux
N
O
Me
OR A
Ph
N O O Me
NiCl2 NaBH4
H Ph
H2N Me
HO
O
-ROH
OR
B
H
HO
O H
HO
Ph
HO
O workup
H H2N Me
Ph
H2N Me
H
+H+
OH
IC IA L
Ph
H2N Me
Ph
Ph
FF
Denmark, S. E.; Dixon, J. A. J. Org. Chem. 1998, 63, 6178. A: In verse electron demand hetero-Diels-Alder reaction. B: 1,3-Dipolar cycloaddition. C: Reductive
O
cleavage of the N-O bonds.
Me
BnO
A
Et3N
S N
O
BF3-Et2O
Q
Me
H2O
N
KÈ
O
N
S N
S
O
O
Me
OH2
-SO2
BnO
M
BnO
BnO
B
O
U
Cl
O
N
O
H
Y
O
BnO
H
BnO
Me
Me
Ơ
Me
N
C092
H
S O BF3
O
S
C
Me BnO
O
Baudin, J.-B.; Julia, S. A. Tetrahedron Lett. 1988, 29, 3251.
ẠY
A: Formation of a morpholinesulfenate. B: [2,3] Sigmatropic rearrangement. C: Extrusion of SO2 through a six-membered transition state.
D
C093 HO
Tf 2O pyridine
OTf
A
O EtO2C Me
Mo(CO)5
CO2Et
Me
O
B
Mo O (CO)5 Me
Mo(CO)5 Me
CO2Et
H H
H Mo O (CO)5 Me
C
CO2Et
CO2Et
IC IA L
O
Mo(CO)5
H
D
E O
Me
Me CO2Et
FF
CO2Et
O
CO2Et
Harvey, D. E; Brown, M. F. J. Org. Chem. 1992, 57, 5559.
O
A: Formation of a Fischer carbene complex. B: Intramolecular alkyne metathesis. C: Intramolecutar D: Reductive elimination to form a cyclopropane.
Ơ
rearrangement ( ref A042) via a boat-like transition state.
Ot-Bu
H
Me
O
N
Me
H
C094
O
O
Y
Me Me
Br
Me
Me Me Me
O
M
Me
Me
Me
MeOH
Me
O A
Me
O
Me O O
Me
O
ẠY
O Me
O Me
+
-H
O
Me
KÈ
O O O
Q
O
Me
MeO +
+H
O HO
Me
O3
Me
U
Br
D
E: Divinylcyclopropane
N
alkene metathesis.
Et3N Ac2O
Me
MeO O
Me
MeO
O
O
O
OMe O
Me
O
Et3N
O
Me
H
Me
MeO
O
Me
Me CO2Me
Me
MeO B
Me
O
AcO
AcO
Me
O
Me Me
IC IA L
Srikrishna, A.; Anebouselvy, K.; Reddy, T. J. Tetrahedron Lett. 2000, 41, 6643.
A: Ozonolysis of the less hindered olefin in MeOH to form a hydroperoxide ( ref Bl16, Bl17). B:
FF
Grob-type fragmentation.
C095 H
O
Me
Me O
Me
Me H
Me
Me
Me
OSiMe3
Me H
H
H
OSiMe3
OSiMe3
Me
U
OSiMe3
Y
N
H
H
Me
H
Me
H
SiMe3
H
Ơ
Me3Si OTf
O
Me
N
H
Q
Fujita, T.; Ohtsuka, T.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1982, 23, 4091
M
Wagner-Meerwein rearrangements.
KÈ
C096
MeO
MeO
MeO
MeO
H
Ph
D
Me
H3O+
MeO
O
A
ẠY
O
Me
OMe
H OH Me
C
OH2 OH Me
OH
OH
B
Me
Me
H MeO OH OH Me
O OH Me
TsOH H2O
O
O
OH2
-H2O
O -H+
OH
D
OH2 Me
Me
Me
Dechoux, L.; Agami, C.; Doris, E.; Mioskowski, C. Eur. J. Org. Chem. 2001, 4107. A
-Elimination of the epoxide to form a carbene. B: Cyclopropanation. C: Cleavage of the electron-
IC IA L
rich cyclopropane ring. D: Cleavage of the cyclopropane ring.
C097 Me3Si
Me3Si
Me3Si
A
CO2Me
OMe
Br
O
N
O
MeOH
Y
Q
M
O O S Me CF3
Me
KÈ
H
OH
S O
Me O CO2Me
CO2Me
TFAA DMSO C
CO2Me
CO2Me
ẠY
O
CO2Me
U
CO2Me
OH
O
O
O
Me
CO2Me B
O
H
O
O CH3 Br
CO2Me
Ơ
AgNO3 A g MeOH
O
N
Me3Si CO2Me
CO2Me
O
O
Me3Si Br
Br
CO2Me
Br
FF
CO2Me
Br Br
CO2Me
CO2Me
CO2Me
Fleming, I.; Michael, J. P. J. Chem. Soc., Perkin Trans 1 .1981, 159. B: Wagner-Meerwein rearrangement followed by desilylation.
C: Swern
D
A: Bromolactonization.
oxidation.
C098 HO
O
CN
NH2OH CN
-H2O
CN
N
CN
HO
A
H O
N
160oC
N
N
CN
CN
CN O
N
N
NC
CN
N O
CN
FF
B
IC IA L
A
CN
O
N
CN
O
Stockman, R.A. Tetrahedron Lett. 2000, 41, 9163.
Ơ
B: Intramolecular 1,3-dipolar cycloaddition.
C099
TBS
O
N
O
OH
O
O
B
Ph2S
Y
H
HBF4
OH
H
H
H
H
Q
U
H
O
OH
A
Ph2S
TBS
H
TBS O
-unsaturated nitrile.
N
A
M
TBS
H O
O
KÈ
OH
H
ẠY
H
D
MeO
O
O
O
OH
TBS O
PhSSPh NaOMe
+
-H
OH H
PhS SPh
TBS
O
TBS
H
OH H
H
TBS O
TBS O
O
O
PhS
H
OH H
OH H
H
OH H
H
H
TBS
O PhS PhS
O
O
TBS O
O
PhS PhS
H O
TBS workup
O
+
MeO
H
H
H
+H C
H
O
PhS PhS
O H H
H
IC IA L
Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 1880.
A: 1,2-Addition of the sulfur ylide followed by formation of an epoxide in an SN2 fashion. B: Cleavage
of the epoxide induces 1,2-migration to form a cyclobutanone via a stable tertiary carbocation. C: Ring
FF
opening of the cyclobutanone by the proximal alkoxide is facilitated by formation of the sulfur-stabilized carbanion.
O
C100 CO2Me
S Cl
H Y KOMe
D
B
SmI2
Me
CO2t-Bu N oc B Cl
-SO2
Cl
O
H
OTs
Me
CO2t-Bu N Boc
M ẠY
Me H
SO2 OTs
Me
KÈ O2 S
CHO2Me
Cl
SO2
CO2t-Bu N Boc
Cl
CO2t-Bu N oc B
CO2Me
H
O2 S
Me H
O H
CO2t-Bu N Boc
SmI2
Cl Me H
Me
CO2t-Bu N oc B
C
H
D N Boc
Me
CO2t-Bu
workup +H+
Me
O2 S
m O S I2 H
Me
CO2t-Bu N oc B
m O S I2
Me H
OTs
Me
N
OTs
Me
Cl
U
SO2
Q
mCPBA
S
CO2t-Bu N oc B
B
CO2Me
Cl
Me
A
CO2t-Bu N oc B
CO2Me
Cl
OTs
Ơ
OTs
Me
CO2Me
N
Cl S
CO2Me CO2t-Bu N Boc
Bachi, M. D.; Melman, A. J. Org. Chem. 1997, 62, 1896. A: Formation of an episulfonium salt followed by attack of chloride ion at the less hindered carbon. B: Cyclization proceeds by an SN2 mechanism. C: SET. D
-Cleavage followed by extrusion of SO2
and elimination of a chloride radical.
MeO
MeO
H
H
H
A S
B
C
S
S
FF
MeO
IC IA L
C101
OMe
O
hv D S
S
N
OMe
Ơ
Wu, J.-Y.; Ho, J.-H.; Shih, S.-M.; Hsieh, T.-L.; Ho, T.-I. Org. Lett. 1999, 1, 1039. B: Thermally allowed suprafacial
H
A: Photo-induced 6e conrotatory etectrocyclic reaction.
N
1,9-hydrogen shift. C: 6e Electrocyclic reaction. D: Photoisomerization of the (Z)-olefin.
C102
Y
Me3SiO
BF3 EtO OEt
Me3SiO
M
Q
U
OEt
ẠY
KÈ
Me3SiO EtO
D
Me3SiO
Me3SiO EtO
O
CF3CO2H
A Me3SiO Et O H O
+H+
X e M 3Si O
O
X O SiMe3
O
O
B Nakamura, E.; Kuwajima, I. Org. Synth., Coll. Vol.
A: Mukaiyama aldol reaction. rearrangement).
O
1987, 17.
B: Preferential migration of the carbonyl carbon (Pinacol
C103
Me
H
H
HCHO
N
N
F S O O
FF
Me
O
N
MeOSO2F
Me
O
Me
H
Me N
Me
Me
O
Me
H
O
B
-H2O A
OH
HN H
NaBH3CN
-H2O
Me
H
O
H
NH2OH
OH
O
H
N
IC IA L
O
LiAlH4
Me H N
Me
N
HO
B: 1,3-Dipolar cycloaddition.
C104 CO2Et
AcO
Ar
O
U
O
CO2Et
H
O
O Me
O
OAc
Q
MeO
Y
MeO
N
H
A: Formation of a nitrone. ref A065.
Ơ
Oppolzer, W.; Petrzilka, M. J. Am. Chem. Soc. 1976, 98, 6722.
KÈ
M
OAc
Ar
ẠY D
CO2Et
OAc
H
AcO
B
CO2Et Ar
A
O
O
AcO
AcO
CO2Et
O
Me
CO2Et
MeO
O
Ar
C
OAc
MeO
OAc
O H AcO
OEt OAc
Ar
C
OEt OAc
C Ar
O
O
CO2Et
CO2Et
Ar H
AcO
D
O
Ar C O
AcO
AcO Ar
E
MeO
OAc
OAc
MeO
Ơ
OAc
CO2Et
O
Me
O
AcO
CO2Et
N
O
FF
H AcO AcO Ar
CO2Et
F
O
AcO H AcO AcO Ar
CO2Et
AcO
OAc AcO
IC IA L
AcO
OH
H
Serra, S.; Fuganti, C. Synlett. 2002, 1661.
A: Generation of a ketene via a mixed anhydride. B: Benzannulation. C: Michael addition. D:
N
Formation of a ketene. E: 6e Electrocyclic reaction. F: Michael addition.
Me
U
Me Me O
O
Me
KÈ
D
Me
H2 Pd/C B
Me
O
ẠY
Me
O
Me
O
O
O
Me Me O
Me Me O
O
A
M
O
O
Q
Me Me O
Y
C105
O
Me
Me Me O O
O
H H
H Me Me O
O
H H
H Me Me O
O Singh, V.; Prathap, S.; Porinchu, M. J. Org. Chem. 1998, 63, 4011.
Oxa-di- -methane rearrangement. A: nring.
B: Reductive cleavage of the cyclopropane
C106 Ph
Ph
Ph
Ph O
N N
O
-N2 A
N N
O
O
B
N N
O O
IC IA L
H H
Ph
Ph
O
Ph
O
O
D
O
E
OH
OH
H
FF
C
Ph H
OH
OH
O
Lee, H.-Y; Kim, Y. J. Am. Chem. Soc. 2003, 125, 10157.
N
A: Thermal decomposition of an a ziridinylimine to form a diazoalkane. B: Cleavage of the epoxide followed by elimination of N 2 to form an alkylidene carbene. C: C yclopropanation. D: Homolytic
Ơ
cleavage of the strained cyclopropylidene ring to form a trimethylenemethane diradical. E: Radical
N
H
addition.
H
A
Q
Cl Cl
U
Y
C107
KÈ S
Cl
Cl
S
S
M
S
Cl
-H+
-S B
Cl
S
C
Cl
ẠY
Parham, W. E.; Koncos, R. J. Org. Chem. 1961, 83, 4034.
D
A: 2e Electrocyclic reaction. B: 6e Disrotatory electrocyclic reaction. C: Spontaneous loss of S.
C108 O H
O
NH CN
N H
CN
O N
H H
CN
H
OH
H ClCO2Me
A
N
O
N
H
H
H OMe
OMe
N
O
N
N
O
H
FF
OMe
O
OMe
O
O
OMe
N
O
OMe
N
O
O
KOH
O O
OMe
Cl OMe
O
H
N
O
IC IA L
N
O
O
Ơ
H OMe
H
Earley, W. G.; Jacobsen, E. J.; Meier, G. P.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3781.
U
Y
N
A: Anion-accelerated aza-Cope rearrangement.
Q
C109
M
mCPBA
ẠY
TBSO
-H+
BrMg
TBSO
Cl Pd
Cl PdCl
TBSO
Me
OH PdCl2
Me
workup
C
Me
O H
TBSO
O OH
B
D
O HBF4
TBSO
A
KÈ
TBSO
OH
TBSO
TBSO D
Me O
H
Me O
H PdCl Me O
TBSO
E
H
TBSO
F
Cl H Pd Me O
Me O
Me TBSO
FF
TBSO
-HCl -Pd(0)
G
IC IA L
ClPd
Nemoto, H.; Miyata, J,; Yoshida, M.; Raku, N.; Fukumoto, K. J. Org. Chem. 1997, 62, 7850.
O
A: Epo xidation of the strained olefin. B: Cleavage of the epoxide to form a stable benzylic cation. C:
of the olefin with PdCl 2.
N
1,2-Migration to form a cyclobutanone ( ref A099). D: Ring expansion reaction initiated by o xidation E: Intramolecular carbopalladation.
F
-Elimination.
D
ẠY
KÈ
M
Q
U
Y
N
H
Ơ
hydropalladation and 6-elimination process to give the more stable endocyclic olefin.
G: Reversible
IC IA L FF O N Ơ N
H
+
M
Q
U
Y
NaOEt)
+
Na
OEt
Na
Br
+
H3C OEt
ẠY
KÈ
Br CH3
D
+
Brønsted
.
H+
+
R'
O O
O R'
R
R
R
R
O C
H R
R
O C
H R
IC IA L
R
O C
B 2.0
C 2.5
N 3.0
Na 0.9
Mg 1.2
Al 1.5
Si 1.8
P 2.1
K 0.8
Ca 1.0
O 3.5
F 4.0
O
Be 1.5
S 2.5
Cl 3.0
Br 2.8 I 2.5
Q
U
Y
N
H
Ơ
N
Li 1.0
FF
H 2.1
A-
+ H2O A
-
+ H3O+
HA
KÈ
HA
M
HA
ẠY
PKa
D
p Ka
log Ka
A-
H3O + HA
PK B (HA)
HB PKa
B-
+
HB Keq
pKa
+ B-
HA
pKeq
A-
log
A
HB
HA B
+ HB
pKa HA
pKa HB
PKa pKa = 13)
(NaOEt,
O
EtO
O +
OEt
EtO
O
FF
O
EtOH 0) pKa = 16)
IC IA L
EtO2CCH2CO2Et;
EtO
OEt
EtOH
O
H
+
pKa EtOH =13 16=-3
Ơ
Keq=103
N
pKeq=pKa malonate
N
H
Keq
50 LDA
Y
(LDA
npKa = 36
U
PKa
. n-
M
Q
LDA
pKa = 24
PKa
pKa = 17
D
ẠY
KÈ
pKa = 4.8 f
i-Pr
PKa
n-BuLi
i-Pr
N H i-Pr
N Li i-Pr
(LDA)
PKa=
LDA; PhCHO;
O EtO
OH Ph
EtO
AcOH
i-Pr2NH
IC IA L
n-Bu
CH3
O
36
O n-BuH
i-PrN
EtO
50
CH3 24
i-Pr2NH
EtO
O
FF
O H
CH2
Ph
O
O
O
EtO
Ơ
N
O
AcOH 4.8
OH AcO
Ph
EtO
pKa pKa
U
Y
N
H
pKa
Ph
pKa = -6
0) pKa
M
Q
(pKa = 15.7
R
D
ẠY
HO
KÈ
MeSO2Cl Et3N CH2Cl2
O Me S O O
NuR
O Me S O O
+
Nu
pKa ([H2O]
pKa 55.5 pKa
pKa
R
O HO S O O
OH
O Cl
R
H
O e M S OH O
KÈ
H r A O R
Y OH
OH
O ClH2C
OH
Ph
OH
OH
PhOH
H3O
H2O
HO OH
Ar
NH2
O
O
EtOH
Me
Me
OH
O C O HO PhO HO O
Me NOH
Me
O
Ph
O
EtOH2
NH2
ClH2C O
R O R
Ar
O
O
O
Me
O
O S
O HO P O OH
Ar O R
OH
Ph
O
O HO P OH OH
HO C O HO
H R O R
F3C
O O S O O
O
R
NH2
O HO S O O
U
Q
M
OH
O S
Ơ
O e M S O O
N
ArOH
R
OH
N
O r A S O O
ArOH2
OH
ẠY
Ph
R
R
O
O
R
R
O r A S OH O
D
F3C
H
O
OH R
O
O
OH R
NH2
R
FF
R
Cl
O N O O O
OH
H
R
O N OH O
IC IA L
O HO S OH O
NO Me
A
aminonitrile
A011
abnormal Claisen rearrangement C032 acetal A008, A009, A010, A063, B084, B 116 Achmatowicz reaction C013, C079 acid chloride A003, A025
Arbuzov reaction ate complex
acyl azide A058 acyl cyanide B061, C050 acyl transfer B007, Bl13, Bl14, C007, C035, C068 acylation B060, C012, C029, C050
azirine azlactone
acyliminium ion acylium ion acylnitroso compound acyloin condensation acylpalladium species
Bartoli indole synthesis Barton reaction
B033, B038, C028 B101, Bl19 C 106
IC IA L
atom transfer reaction aziridine aziridinylimine
FF
B056, B080, C038 A019, C009
A054
C066 B097, C014
N
O
B Baeyer-Villiger oxidation
Ơ
Barton-McCombie deoxygenation A051, B071, C089 Beckmann fragmentation A015
H
C041, C051 A003, A036, B068 B120 Bl15 C087
A070 A028, B002
Beckmann rearrangement benzannulation
A008, A010, A021, A049, A052, B008, B012 to carbonyl group A001, A002, A003, A004 to electron-deficient aromatic ring A040, B022
bromination A010, A024, A025, A027, B087, C036, C063
addition-elimination C002 aldol reaction A020, B052, B053, Bl13 aldol reaction intramolecular C025, C027, C083 1, 2-alkyl shift
Cannizzaro-type reaction B052, C026 carbamate-type protective group for amines
KÈ
ẠY D
A036, A047, A048, A054, B119, C004, C063 allene A061, B028 allenylpalladium species C060 allenylsilane C081 rc-allylpalladium complex allylsilane
B021, B040, C060 B078, C051
A055, C014 C 104
benzyne B012, B065 Birch reduction A038, A039, B011 Bischler-Napieralski reaction A034
Brook rearrangement
M
Q
U
Y
N
addition 1,2A016, C042, C099 conjugate B046, B094, C006, C019, C086, C029 intramolecular
C042 C
B019, B020, B021 carbanion B006, B047, B049, C099 carbene A059, A061, B075, B103, C021, C064, C089, C096 alkylidene B036, B049, C016, C037, C054, C055, C083, C106 dialkoxyC046 dibromodichlorocarbocation
A061, B075 A035, B076
A030, A036, A046, A047, A048, A049, B015, B023, B051, B068, B078, B085, B108, Bl19, C063, C070, C081, C099, C109
of S--N bond of S-O bond of thiirane
C048 C048 C074
carbon monoxide carbonyl oxide carbonylation carbopalladation carbotitanation
of c~-lactone oxidative
B081 A044
IC IA L B092, C090, C108 C004, C077
FF
Corey-Fuchs reaction B049, B077 Corey-Winter olefination B103 CSI (chlorosulfonyl isocyanate) B064
O
Curtius rearrangement cyanohydrin cyclization 5-endo-trig 5-exo-dig
[2 + 2] cycloaddition cyclobutane
C052, C054, C080 A066
U
Y
N
azaC017, C067, C069 Claisen-Ireland rearrangement B093, B124 Claisen-Johnson rearrangement B091 Claisen-Schmidt reaction C038 cleavage B004, B070, B103, C046, C076
A029, B 116, B 117 B018, B038, B039, B069, B080, B097, C055, C106 C038 C012
M
Q
heterolytic homolytic
KÈ
of azirine ring of C-N bond
D
ẠY
of C-S bond B044 of cyclobutane ring C052 of cyclobutene B054 of cyclopropane ring A060, B015,B084, C020, C043, C046, C089, C096
of cyclopropanone B057 of endoperoxide B034 of epoxide B003, B023, B051, B071, B102, Bl10, C001, C006, C013, C099, Ct06, C109 of four-membered ring of N-N bond
C059 C022
A058 B005 C019 C073
H
cheletropic reaction B030, B080, B101 chlorination B089 Claisen condensation C045 Claisen rearrangement A062, A063, B094, C009, C024, C062, C073
azaoxy-
N
cation cyclization B108 cation-olefin cyclization C003, C056 C-H insertion B036, B049, B075, B080, C016, C038, C083, C089 charge-transfer complex B063
reductive A029, B035, C079, C091, C105 Cope elimination A053, C072 Cope rearrangement C040
Ơ
B042, B068, B127, C069 C049 C087 A075, C010, C087 B128
cyclobutanone C099, C109 cyclopropanation C106, B075, B076, B126, C021, C042, C046, C055, C096 cyclopropane cyclopropanone
A061, B128, C020, C093 A060 D
Dttz reaction
B127
Dakin reaction A056 Danheiser annulation C081 DCC (N,N'-dicyclohexylcarbodiimide) A007, B014 decarboxylation A023, A039, A057, B001, B019, B051, C023 dehydration deprotonation desulfurizatio diazo coupling diazo transfer reaction diazoalkane
B062 A002, A019 B103, C074 A037 B055 C064, C106
B083 B010, B024, B059, B122 A037, B013, B065, B081, B082 A021 A064, B027 C056
Dieckmann condensation Diels-Alder reaction aza hetero
A014, A053, B037, B090, B094, B124 A061, B049, B075, C021, C064, C089, C096 A073, A075, B060, B128, C021, C024, C061, C084, C109 C087 C029
-carbon enamide
IC IA L
diazoketone diazomethane diazonium salt
B120, B125, C018, C035, C044, C048, C091 intramolecular B025, B027, B028, C005, C013, C040, C044, C084 inverse electron demand B088, C091
enamine A022, B008, B046, B047, B054, B112, C022
retro A064, B027, B088, C044, C064 dienone-phenol rearrangement A048 1, 3-dipolar cycloaddition C022, C031, C079, C091 intramolecular
oxyenol
B034, B035, C079 A067, A068 C085
FF
endoperoxide ene reaction Magnesium-
N
O
B121, C032 A013, A024, A025, A032
enol lactone enolate
B099
U
Y
N
B029, B096, C023, C098 of azomethine ylide B096 of carbonyl ylide C015 of diazomethane B122 of nitrile oxide B089, B090
A027
A010, A039, A063, C024, C025
H
Ơ
enol ester enol ether
A018, A019, A020, A021, A023, A060, C019 episelenide B102 episulfide B044
episulfone episulfonium salt
double inversion E1 elimination E2 elimination electrocyclic reaction 2e
B104, C076, C089, C096 Eschenmoser fragmentation B004
D
ẠY
KÈ
M
Q
of nitrone A065, B029, C098, C103 of ozone A029, Bl16, Bll7, C049, C050 diradical C021, C038, C080 divinylcyclopropane rearrangement C042, C093
4e 6e
8e
B081 B019 B044, B049, B104 B076, C107
B122 C100
epoxidation C013, C109 epoxide A056, B003, B004, B023, B040, B045, B058,
Eschweiler-Clarke methylation A053 ester A001, A002, A007 esterification A002, A007
A066, B025, B026, C008. C054 B087, B106, B126, B127, C008, C041, C054, C057, C101, C104, C107 C057
elimination syn-
F~H Favorskii rearrangement Ferrier rearrangement Fischer carbene complex Fischer indole synthesis fragmentation
A060, B057 C025 B127, C069, C093 B031, B082
B004, B070, B 103, C046, C076 Friedel-Crafls acylation A036, C059 Gabriel synthesis A052
hypobromite
Gilbert reagent Grignard reagent
B036 A004, A005, A006, A016, A074,C066, C085 Grob fragmentation B016, B086, C027, C044, C094
imide iminium ion
group transfer reaction B074 Heck reaction A075 Hell-Volhard-Zelinsky reaction A025 hemiacetal C001, C076 hemiaminal A005, A011, B001
insertion of carben
Hofmann rearrangement A057 Hofmann-Lrffler-Freytag reaction B033 Horner-Wadsworth-Emmons reaction A071, B036, B099 Hosomi-Sakurai-type reaction C053, C062
intramolecular carbopalladation C061, C087, C 109
B038 I~K B113 A005,A011, A012, A013, A018,
A059, A061, C054. C064
FF
of carbon monoxide
C101 B043 A025 A019, C009
D
ẠY
1,9hydrogenation hydrolysis of acid chloride of azlactone
of borate A028 of ester A001, A023 of N-methyl-N-nitrosulfonamide B024 of nitrile A011 hydrometallation B042, B043 hydropalladatio hydroperoxide
C109 C094
N
A045, B040. B109 A026. B084 A026
Ơ
inversion iodination iodoform reaction
H
Y
U
KÈ
M
Q
A053, B002, B052, C026, C030 hydroboration A028, B086, C030 hydroformylation B042 hydrogen shift 1, 5B027, B030
B042, B127. C069 C026
O
of carbonyl group
ipso-substitution isocyanate isocyanide Jones oxidation ketene
N
hydrazone A017, B003, B004, B031, B050, B082, C006 hydride abstraction B068 hydride shift A077 hydride transfer
IC IA L
A033. A053, B046, B047, B078, B114, C007 iminophosphorane B100 indole B031, B047, C038. C066
C009 A057, A058 B048, B065. B118,. C007 A068 A059, A066, C052, C067 L~N
lactam lactol lactone macrocyclic lactonization bromoiodo-
A055 C013, C079 A054. B058 B111 B114 C045 B066, B115 C097 B058
selenoB124 leaving group A002, A017, A058 Leimgruber-Batcho indole synthesis B047 lone pair A001, A002 malonate A018, A023, A040 Mannich reaction
A013, B001, B092, B111, C071, C091 Masamune-Bergman cyclization C011 Meerwein arylation B013
oxazoline oxidation of alcohol
Meerwein-Ponndorf-Verley reduction B002, C031 Meisenheimer complex B022. C002 mercury(II) triflate A032. B108 metathesis
of palladium (0) oxidative addition
IC IA L
B089, B120, C014, C098 A002, C036
oxymercuration oxypalladation ozonide
A031, A032, C025 A077 A029
FF
oxonium ion
O
ozonolysis A029, B116, B117, C049, C083, C094 P
palladacycle
C087
H
migration A028, A055, A057, C075, C099, C102, C109 Mitsunobu reaction A045, B079, C065 mixed anhydride
A077
A076, B042, B043, C061, A075, B105, C010 oxime A014, A015, A055, B070,
N
B066, B070, B123, C098, C104
A042, A043, B014
Ơ
alkene A078, B 109, C034, C093 alkyne B109, B127, C034, C093 enyne B109, C034 Michael addition B004, B005, B006, B008, B053, B054,
B048
palladium-mediated reaction A075, A076, A077, C010,
Neber rearrangement B056 nitrene B080, C038 nitrile A005, A014, A015, B062, B064 nitrile oxide B089, B090, B120 nitrilium ion A011, A034, A049, B065
peroxide Peterson olefination
nitrite B097, C014 nitrone A065, B029, C078, C098, C103 Norrish type I reaction C080 Norrish type II reaction B125 N-oxide A053, B062
phosphonate A070, A071 photo-cleavable protecting group B098
D
ẠY
KÈ
M
Q
U
Y
N
A003, A019, A058, B007, B060, B061, C012, C023., C051, C104 Morita-Baylis-Hillman reaction B053 Mukaiyama aldol reaction C102 Nazarov reaction B026, C003, C039
O organochromium species organosamarium species orthoester
B041 B107 B084, B091, C070
orthoformate oxa-di- -methane rearrangement
A009 C105
partial reduction Perkin reaction
C060, C061, C087, C109 C051, C057 B007
Pfitzner-Moffatt oxidation phenonium ion phosphinite ester
A054, A056, B018 A074, C016, C051 B014 B084, B111 C082
photo-induced homolytic cleavage B072, B074, C014 photoreaction B032, B033, B097, B125, C014, C041, C080, C105 Pictet-Spengler reaction A033, B051 pinacol rearrangement A047, C088 protodesilylation proton transfer
C005, C023
A008, A009, A011, A012, A013, A014
protonation A001, A002, A005, A006, A008, A009, A011, A054, A063 Pummerer rearrangement pyrylium ion
Robinson annulation Robinson-Schöpf reaction ruthenium carbene complex
B037 C079
B008 B001
A078, B109, C034
Q~R
samarium(II) iodide A066, B025
B111 A068
FF
selenoxide A073, B124, C024 Shapiro reaction B050 [2, 3] sigmatropic rearrangement
A068, B095, B106, C033, C037, C047, C048, C092
[3, 3] sigmatropic rearrangement A062, A063, B031, B091, B093, C047, C058, C066, C068, C071, C075, C078
H
radical A031, A050, A051, B013, B017, B018, B032, B033, B038, B039, B071, B072, B073, B097, B107, Bl18, C011, C028, C043, C052, C063 radical addition C028, C106
Schmidt reaction selenimn dioxide
O
B030 C082 C040 C035 B063
N
azaquinone o-quinone monoacetal o-quinonemethide p-quinonemethide
B107, C015, C043, C100
Ơ
o-quinodimethane
IC IA L
S
silametallation silicate ion
B105 B105
silyl enol ether single electron reduction single electron transfer
C049 B041
U
Y
N
radical anion A038, A039, B069, B073 radical chain reaction A050, A051, B013, B017, B018, B032, B033, B038, B071, B072, B073, B074, B 118, C028, C(163
KÈ
M
Q
radical cyclization B107, C011 5-exo-dig B017, C043 5-exo-trig B017, B071, B074, BllS, C011, C043, C052 transannular B018
D
ẠY
Ramberg-Bäcklund reaction B072, B122 RCM (ring closing metathesis) A078 reductive elimination A075, A076, B042, B043, B105, B127, B128, C010, C087, C093 Reimer-Tiemann reaction retro-Cope elimination rhodium carbene complex B126, C015, C074, C075 ring contraction ring expansion Ritter reaction
A035 C072
B111, B 115 B024, B054, C109 A049
A038, A039, B011, B013, B073, B107, Bl15, C015, C043 singlet oxygen B034, B035, C079 Smiles rearrangement C002 SN 2 reaction A041, A052, A070, A072, B010, B019, B020, B059, B104, C023, C063, C082, C100 intramolecular B045, B101, B102, Bl10, C001 SN 2' reaction SRM reaction
B035, C085 B073
Staudinger reaction Stetter reaction Stobbe condensation
B101 B006 B009
Stork enamine reaction Strecker amino acid synthesis
A022 A011
sulfenate
C033
B122 B048, B050, B079 C065
sulfonation sulfoxide Suzuki-Miyaura coupling Swern oxidation
B085 B037, C033 A076 A043, C097
Wittig reaction A069, B080 intramolecular B100, B123, C086 [1, 2] Wittig rearrangement B069 [2, 31 Wittig rearrangement Wolff rearrangement
C077 A059, C054
Wolff-Kishner reduction xanthate ylide
A017 A051, C089 B103, C050
T~Y
azonmthine carbonyl
Tamao oxidation B105 Tamao-Fleming oxidation C005 tautomerization A011, A013, A023, A032, A066
FF
N
O
A043, B014, B095, B 110, C037, C099 ynolate C045, C054
Ơ
B006 B095 B125 B103 C048
U
Y
N
thiourea A072 Tiffeneau-Demjanov-type rearrangement B024, C022 Tishchenko reaction C026 titanacyclopropane B128, C020
KÈ
M
Q
TosMIC (p-toluensulfonylmethyl isocyanide) B018 transmetallation A076 trimethylenemethane diradical Cl06 Ugi reaction C007, C084
D
ẠY
Vilsmeier reaction A012 vinylcyclobutane-cyclohexene rearrangement C088 vinylcyclopropane rearrangement C021 vinylogous amide A022 vinylphosphonium salt B100 vinylsulfonium salt B110 Wacker oxidation A077 Wagner-Meerwein rearrangement A046, B023, B085, C095, C097 Wharton rearrangement Wilkinson complex
B003 B043, C076
B096 C015, C079
phosphorus A069, B100, B123, C019, C086 sulfur
H
thiazolinium ion thioacetal thioaldehyde thionocarbonate thiophile
IC IA L
sulfene sulfinate ion sulfinic acid