BÀI TẬP CƠ CHẾ PHẢN ỨNG HÓA HỌC HỮU CƠ NÂNG CAO CÓ ĐÁP ÁN 演習で学ぶ 有機反応機構 by 福山 透

Page 1

BÀI TẬP CƠ CHẾ PHẢN ỨNG HÓA HỌC HỮU CƠ

vectorstock.com/28062440

Ths Nguyễn Thanh Tú eBook Collection

BÀI TẬP CƠ CHẾ PHẢN ỨNG HÓA HỌC HỮU CƠ NÂNG CAO CÓ ĐÁP ÁN

有機反応機構 by 福⼭ 透

演習で学ぶ

WORD VERSION | 2022 EDITION ORDER NOW / CHUYỂN GIAO QUA EMAIL TAILIEUCHUANTHAMKHAO@GMAIL.COM

Tài liệu chuẩn tham khảo Phát triển kênh bởi Ths Nguyễn Thanh Tú Đơn vị tài trợ / phát hành / chia sẻ học thuật : Nguyen Thanh Tu Group Hỗ trợ trực tuyến Fb www.facebook.com/DayKemQuyNhon Mobi/Zalo 0905779594


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


benzyloxycarbonyl 10-camphorsulfonic acid chlorosulfonyl isocyanate cyclohexyl 1,4-diazabicyclo[2.2.2]octane

methoxymethyl methanesulfonyl

MS n NBS

molecular sieves normal N-bromosuccinimide

NCS NMM

N-chlorosuccinimide N-methylmorphuline

IC IA L

Cbz CSA CSI Cy DABCO

MOM Ms

FF

aryl benzyl t-butoxycarbonyl butyl catalytic amount

m-chloroperbenzoic acid methyl (2-methoxyethoxy)methyl

O

Ar Bn Boc Bu cat

mCPBA Me MEM

NMO Ns o

N-methylmorpholine-N-oxide o-nitrobenzenesulfonyl, nosyl ortho

Ơ

acelyl acetylacetonate 2,2"-azobisisobutyronitrile aqueous

liquid meta

H

Ac acac AIBN aq

liq m

N

heat

dibenzylidenacetone 1,8-diazabicyclo[5.4.0]undec-7-ene N.N'-dicyclohexylcarbodiimide 2,3-dichloro-5.6-dicyano-1,4benzo-quinone

p Ph

para phenyl

Pr rt s

propyl room temperature secondary

DEAD DMAP DME DMF DMSO

diethyl azodicarboxylate 4-(dimethylamino)pyridine 1,2-dimethoxyethane N, N-dimethylformamide dimethyl sulfoxide

SET t

single electron transfer tertiary

TBAF TBS Tf

tetra-n-butylammonium fluoride t-butyldimethylsilyl trifluoromethanesulfonyl

dppb DPPE EDCI

1,4-bis(diphenylphosphino)butane 1,2-bis(diphenylphosphino)ethane 1-ethyl-3-(3-dimethylaminopropyl carbodiimide equivalent

TFA TFAA TfOH THF

trifluoroacetic acid trifluoroacetic anhydride trifluoromethanesullonic acid tetrahydrofuran

ẠY

M

Q

U

Y

N

dba DBU ICC DDQ

D

eq

Et HMPA hv i KHMDS

ethyl hexamethylphosphoramide photoirradiation iso potassium hexamethyldisilazide

LDA

lithium diisopropylamide

TIPS TMS

triisopropylsilyl triraethylsilyl

tol tolyl TosMIC p-toluenesulfonylmethyl isocyanide Tr triphenylmethyl, trityl Ts TsOH

p-toluenesulfonyl, tosyl p-toluenestdfonic acid


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


Provide reasonable arrow-push mechanisms for following recations

O

O

NaCN (cat) H

EtOH-H2O reflux

IC IA L

OH

benzoin condensation

FF

O

H O

O

O

H CN

H

Ơ

N

CN

O

O

OH

CN

Q

U

Y

N

H CN

M

OH

D

ẠY

CN

H O

O

OH

Adams, R; Marvel, C. S. Org. Synth., Coll. Vol.

1941, 94


Provide reasonable arrow-push mechanisms for following recations

A001 O2N

OMe

NaOH H2O, reflux

O O2N

OH

aq HCl

A002 O

H2SO4(cat) OH

OEt

O

EtOH reflux

O

SOCl2

Ơ

Me

N

A003 O

Me

Cl

N

H

OH

A004

Y aq NH4Cl

PhMgBr Et2O o 0 C to rt

M

A005

OEt

Q

Me

PhMgBr (2 eq) Et2O o 0 C to rt

U

O

CN

Ph Ph Me

OH

O MeO

Ph

aq H2SO4

ẠY

MeO

A006

D

O H MgBr

Me N Me (DMF)

Et2O o 0 C to rt aq HCl

FF

O

O H

IC IA L

O


A007 N C N (DCC) O OH EtO

O

EtO

Me Me OH Me CH2Cl2, rt

FF

O

O

O

Me Me Me O

IC IA L

Me N N Me (DMAP)

O

O

O

Ơ

HO

(TsOH, cat) benzene reflux

N

H

+

OH

N

A008

A009

OMe

Y

O

Q

BnO

U

H

OMe

HC(OMe)3 MeOH reflux

BnO

Br2 HBr, (cat)

O

OH

O

O

O

Br

o

0 C

ẠY

M

OH

A010

(TsOH, cat)

D

A011

NaCN, NH4Cl Et2O-H2O 0oC to rt

O Me

H

aq HCl reflux

H3N CO2H Me

H


A012 O

DMF, POCl3 0oC then

H

H2O

Me2N

A013 (HCHO)n Me2NH, HCl

O Me

O NMe2

FF

EtOH reflux

2) Ac2O, reflux

MeO

CN

N

H

MeO

MeO

N

H

1) NH2OH-HCl NaOH Et2O-H2O, rt

Ơ

O

O

A014

MeO

IC IA L

Me2N

A015

A016

M

Q

OMe

O

H2O

MeMgBr Et2O, -40oC

H

NC

O

Me

aq H2SO4

ẠY

EtO

O

Et2O, 5oC

U

N OH

Y

PCl5

D

A017

Me

H2NNH2 O Me

Me

Me

Me

K2CO3 triethlene glycol reflux

Me Me

Me


A018

N H

CO2Et

H +

CO2Et

benzene reflux

CO2Et

IC IA L

O

CO2Et

H

+

2) H2O, acetone reflux

O

O

OH

N H

HN

N

Me

1) NaOAc Ac2O, reflux

O

O

FF

A019

Ơ

Me

O +

NaOH

H

EtOH-H2O rt

NaH DMSO, rt

M

A021

Q

U

Y

Me

O

N

O

H

A020

CO2Et CO2Et

KÈ ẠY

O

H3O+

CO2Et

A022

D

1) O

N H benzene reflux

O

O Me

2) Ac2O dioxane, rt; H2O, reflux

O

O

OH


A023

CO2Et EtO2C

IC IA L

Me

1) Br (1.02 eq) n-BuONa (1.0 eq) n-BuOH, reflux

Me

HO2C

FF

aq KOH, reflux; aq HCl 2) heat, 180oC

A024 O

O

Br2

Br

O

Me

AcOH 20oC

N

Br

Ơ

Br

H

A025 Br2, PCl3 70 oC

Me

N

OH O

Me

O Br

U

Y

H2O

OH

Q

A026 O Me

M

Me

H

Me

H

H

NaOH EtOH-H2O H3O+

Me H HO

ẠY

HO

O Me

I2 (3eq) pyridine, ;

D

A027

Br2

O O

Me

EtOH 10oC

OEt Br

OEt

H H

OH


A028 1) BH3-THF (0.33 eq) THF, rt Me 2) NaOH aq H2O2, rt

OH

A029 O3, CH2Cl2 -78 oC;

OAc C10H21

OAc

C10H21

OHC

Me2S, rt

OBn

FF

OBn

O

A030

Me

O

O

Me Me O

N

A031

Y

Hg(OAc)2 Et2O-H2O, rt;

OH Me

U

Me

Hg(OTf )2 (1 mol%) H2O

O

MeCN-CH2Cl2 rt

Me

ẠY

M

Q

NaBH4 aq NaOH, rt

A032

D

A033

MeO MeO

CHO 1) NH2

MeO I MgSO4, CH2Cl2, rt

2) CF3CO2H, benzene reflux

Me

O Me Me

H

Et2O, rt

O

Ơ

Me H2SO4

OH O

N

Me

HO

IC IA L

Me

NH

MeO I


A034 POCl3

MeO

toluene reflux

MeO

MeO Me

HN

MeO

N Me

IC IA L

O

A035 OH

OH

OH

aq NaOH

CHO

o

+

FF

CHCl3, 60 C

O

CHO

MeO

N

H

CH2Cl2 -78 oC to rt

O

A037

Y

HCl, NaNO2 H2O, 0 oC

U

NMe2 N

PhNMe2 0 oC

Q

NH2

N

CO2H

ẠY

M

CO2H

A038

O

Ơ

H2C CH2 , AlCl3

Cl MeO

N

A036

Me

Na, liq NH3

Me

Me

EtOH, Et2O -78 oC

Me

D

A039

OMe CO2H

1) Na, liq NH3 THF, -78 oC C7H15Br -78 oC to rt 2) aq HCl ClCH2CH2Cl reflux

O C7H15


A040 CO2Me

NaH

NO2

NO2

THF 0 to 60 oC

F

CO2Me CO2Me

IC IA L

MeO2C

A041 PBr3

Me

Me

OH

0 oC to rt

OH

CrO3, H2SO4

Br

Me

FF

Me

N

O

(COCl)2 Me

Me

Me

A

H

o

Q

CH2Cl2, -50 C;

OH

O

M

Et3N -50 oC to rt

Me

Me

Me

A

CH2Cl2 -50 oC

Y

O S

U

Me

N

H

Ơ

acetone-H2O rt

A043

O

A042

Me

ẠY

A044

D

O

O

NaIO4 aq NaHCO3

OH

OH O

2

O

CH2Cl2 rt

O

O CHO

A045 O

Me OH +

HO

CO2Et

EtO2C N NCO2Et Ph3P Benzene rt

Me

O O

CO2Et


A046 Me Me

Br

OH

aq H2SO4

Me

reflux

IC IA L

Br

A047 aq H2SO4

HO

reflux

OH

FF

O

Me

Me

H2SO4

N

Me

O

A048

Ơ

rt

Me

O

N

H

OH

A049 Me

M

A050

D

ẠY

H

Br

Y

Q

OH

PhCN

O

O

U

OH Me Me

Me

conc H2SO4

Me NC

Me Me

5 oC

Ph

Me

N N CN e e M M ca t) AIBN , ( n-Bu3SnH benzene reflux

H

N

H

O

H

A051 HO

1) NaH, THF, CS2; MeI

H

H Ph

;

2) n-Bu3SnH, AIBN toluene, reflux

N O

H

H Ph

N O


A052 O

O K2CO3, reflux

Cl

IC IA L

NH

1)

H2N

FF

2) H2NNH2, MeOH reflux

A053

N Ơ

H

2) aq H2O2 MeOH 3) heat 160 oC

O

1) HCHO, HCO2H H2O, reflux

NH2

M KÈ

Cl

U

O

O (mCPBA)

Q

O

O H

Y

N

A054

O O

CH2Cl2 rt

A055

OH

O 85% H2SO4

HN

D

ẠY

N

A056 O H OH

aq H2O2 NaOH H2O, 50 oC

OH OH


A057 MeO

NH2

MeO

NaOCl NaOH

MeO

H2O 50 oC

MeO

NH2

IC IA L

O

A058 O Ph

OH

Ph

N

C

O

FF

1) ClCO2Et, Et3N acetone, 0 oC; NaN3, H2O

O

2) toluene reflux

Me O

H

N2

dioxane Et2O-H2O

H

O

U

A060

ẠY

M

Q

Cl

A061

H

H HO

Y

HO

Me Me

H

H

N

Me

hv

Ơ

N

A059

O

NaOMe Et2O reflux

1) CHBr3, t-BuOK pentane -15 oC to rt 2) MeLi Et2O, -40 oC

D

OMe

A

A062 1) OH OMe

Br K2CO3 acetone, reflux

2) heat, reflux

OH OMe

H

CO2H


A063

TsOH (cat)

O

toluene,

O

IC IA L

O

A064 CO2Me

CO2Me

200 oC

O

CO2Me

O

A065 1) PhNHOH EtOH, rt

O

Ph

Ơ

2) PhHC CH2 60 oC

N Ph

N

CHO

FF

e O M O2C

H

Ph

N

A066

630 oC

O

Y

O

12 mmHg

U

Cl

Q

Me

M

A067

ẠY

+

O

O O O

O

o-C6H4Cl2 reflux

O

D

A068

Me

Me

Me

Me OAc

SeO2 t-BuOOH H2O CH2Cl2 0 oC

Me

Me

Me OAc

OH


A069 O

CH2

Ph3P CH2

IC IA L

Et2O reflux

A070 O Br

O (EtO)2P

(EtO)3P OEt

OEt

FF

reflux

O

O (EtO)2P

O OEt

N

O

O

A071

NaH

H

O

N

benzene rt to 200 oC

Ơ

OEt

A072 NH2

U

H2N

Y

S 1)

Q

CN

Cl

H2O, 70 to 100 oC

CN

HS

M

2) aq NaOH, 45 oC

A073

O

Me

1) NaH, THF, 0 oC PhSeCl, 0 oC

O

A074 O

1) Me3SiCH2MgBr Et2O, reflux 2) NaH, THF reflux

O Me

2) aq H2O2 CH2Cl2, rt

D

ẠY

O

CH2


A075 Me

CO2Me

Me

Pd(OAc)2 (cat) Ph3P (cat)

Br

Me

Me CO2Me

Me

Me

Me

IC IA L

Et3N, 150 oC Me

Pd(OAc)2 (cat) Ph3P (cat) Na2CO3

Br + (HO)3B

n-PrOH-H2O reflux

OHC

A077 Pd(OAc)2 (cat) CuCl (cat), O2

O

H

O

Ơ

N

O

OHC

FF

A076

Me

N

DMF-H2O, rt

Y

O

U

A078

Q

PCy3 Cl Ru Cl PCy3 Ph (cat)

D

ẠY

M

Boc N

CH2Cl2 reflux

Boc N


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


Provide reasonable arrow-push mechanisms for following recations

H2O, reflux

O

OH

FF

NH2

H

O

O

O

IC IA L

f uming H2SO4 MeCN-hexane 0 oC to rt

HN

Me

N

H2O

Ơ

-H+

O H2N

OH Me

+H+

U

OH

Y

N

H

OH

+H+

N C Me

M

Q

OH O

OH2

Me

NH2 -H+

+H+

N C Me

-H+

HO OH NH2

+H+

O H

Me

-AcOH

D

ẠY

OH

O HN OH

Me H2O

NH2

Jacobsen, E.N. Org. Synth, Coll. vol

2004. 29


Provide reasonable arrow-push mechanisms for following recations

B001 HO2C + MeNH2 +

O

CHO

MeN

H2O,

HO2C

B002 O

OH

FF

Al(i-OPr)3

O

i-PrOH reflux; aq HCl

OH

Ơ

NH2NH2 AcOH (cat)

N

B003 O

O

IC IA L

CHO

NaOH Na2HPO4 (pH 2.5-4.5)

O

N

H

EtOH, rt

B004

O

Y

1) aqH2O2, K2CO3 MeOH, 0 oC to rt

U

Ar =

2) ArSO2NHNH2 CH2Cl2-AcOT, rt aq K2CO3

Q

i-Pr

M

O

B005

i-Pr

O NaCN (cat)

CHO

+

CN

DMF 35 oC

N

ẠY

i-Pr

CN N

D

B006

Cl

Bn

Me N

H

Me O + O Me

HO

S (cat) Et3N, EtOH 80 oC

O Me

Me O


B007 1) KOAc, Ac2O reflux O

CO2H

O

2) aq HCl, reflux

IC IA L

H

O

B008 O N H

Me

Me

KOH (cat) MeOH, reflux

aq HCl

benzene reflux

O

O

O

O Me

FF

O

N

B009 LiOMe

CO2Me

+ MeO2C

OMe

H

MeOH reflux

CO2H

Y

N

H

O

Ơ

O

U

B010

O

Q

Me Ph

ẠY

Et2O, rt

Ph

O OMe

M

B011

OH

Me

H2C N N

OTs Li liq NH3

O

O

D

B012

CN Cl

NaNH2 liq NH3 -78 oC

CN


B013 NaNO2 aq HCl, 0 oC

NH2

Cl

IC IA L

CuCl2 (trace CuCl) 0 oC to rt

DCC, TFA pyridine OH

O Me

DMSO, rt

Me

H Me

HO

Ơ

N

B015

O

Me

FF

B014

Br

B016

U

OTs

t-BuOK

t-BuOH 40 oC

Q

H

Y

N

H2O, 0 oC

H

aq HBr

B017

O

M

OH

n-Bu3SnH AIBN (cat)

Me

Me Me

benzene reflux

ẠY

I

H Me

Me Me H

D

B018

O

O Ph

O O (cat)

Ph

CHCl3, reflux

CCl3

H


B019 O

Cl

Me Cl O o CH2Cl2, -7 C NH HCl

MeOH, reflux

IC IA L

Ph N

B020 C5H11

N

Me3SiI CH2Cl2, reflux

CO2Me

H N

C5H11

O

MeOH, rt

CO2Me

FF

OMe

O

Pd(dba)2, (cat) dppb, Et2NH

N

O

NH

N

H

THF, rt

EtO2C

Ơ

O

EtO2C

N

B021

B022

Y

Ph

NO2

U

PhSH KOH

MeO

M

Q

O O S N

CH3CN 50 oC

N H MeO

ẠY

B023

O

O BF3-Et2O O

Me Me

benzene

Me

CHO Me

Me Me

D

B024

O

Me

O Me S N O NO aq KOH, EtOH 10 to 20 oC

O

Ph


B025 NC Me Me

Me HMe

o-dichlorobenzene 180 oC

IC IA L

NC

B026 O

O

CH2Cl2 0 oC

H

O

SiMe3

FF

FeCl3

OH

Ơ

1) O2, hv acetone

N

B034

H

2) Et3N, CH2Cl2 reflux

N

O

Y

B035

1) O2, hv acetone 2) Ph3P benzene

M

Q

U

O

B041

ẠY

Me

PhCHO CrCl2 (2 eq) Br

OH Ph

THF, o 0 C to rt

Me

D

B042

H2, CO HRhCO(PPh3)2 (cat) n-Bu

benzene, rt

CHO n-Bu

CHO

+

n-Bu

Me


B045 S

KSCN Ph

dioxane-H2O 60 oC

H

IC IA L

O H Ph

B046 O Me

Me

MeOH Me2N

OMe

N N H

Y

N

NO2

2) Raney Ni, NH2NH2 THF-MeOH rt to 50 oC

H

Me

OBn

Ơ

1) Me2NCH(OMe)2 pyrrolidine DMF, 110 oC

O

B047

OBn

FF

MeO

O

Me2NH (1.1 eq)

Q

U

B048

O O S

NC

M

Me (TosMIC)

CN

t-BuOH, EtOH DME 5 to 40 oC

ẠY

O

D

B049

1) CBr4 (1 eq) Ph3P (2 eq) CH2Cl2, 0 oC

O n-C7H15

H

2) n-BuLi (2 eq) THF, -78 oCto rt H2O

n-C7H15

H


B050 O

2) n-BuLi (2.2 eq) THF, -78 oC to rt benzophenone 0 oC to rt

Me Me

Ph Ph

Me Me

i-Pr Ar =

OH

IC IA L

Me Me

1) ArSO2NHNH2 HCl, MeCN, rt

i-Pr

Me Me

O

CO2Na AcOH

+

MeOH-H2O 35 oC

NH OMe

Ơ

CO2Me NH2

OMe

N

H

HO

HO

N

MeO

HO

CO2Me

HO

O

MeO

FF

B051

i-Pr

O

U

O

Y

B052

(HCHO)n K2CO3

H

Q M

KÈ ẠY

CO2Me

+

OH OH

N N (DABCO, cat)

O Me

O

MeOH reflux

O

B053

O

H

OH Me

heat, rt

CO2Me

D

B054

O

N H s T OH xylene reflux

CO2Me Et2O, rt

1) aq HCl 60 oC 2) H2, Pd/Al2O3 MeOH, rt

O CO2Me


B055 O S N3 O

O

O

Ph

O

Et3N OEt

O

Ph

MeCN rt

OEt N2

O H3N

2) aq HCl, rt

Cl

S

N

S

O

N

1) t-BuOK EtOH-toluene 0 oC to rt

Ts

FF

B056

IC IA L

Me

Br2 NaHCO3

CO2Et

EtOH-Et2O reflux

N

Et2O, 0oC

Me

NaOEt

H

Me

Ơ

B057

U

Y

O

Q

B058

M

O

CO2Me

KOH DMF, 60 oC

I2

O

MeI, rt

MeCN-H2O rt

O O

OMe

D

ẠY

B059

H2C N N , 2 eq Et2O, rt

O

MeO2C

Cl

O MeO2C

HBr

B060 CO2H N Me

Ac2O reflux

N Me

O

Br


B061

OH + H2N

CO2t-Bu

Et3N DMF, rt

11

Me

OH O

H N

Me 11

Me

OH O

B062 PCl5 POCl3 100 oC

N

Cl

B063 O OMe

O

CH2Cl2

N

OH

O

Me

H

DDQ

Ơ

N

N O

Me

CN

O

NH2

FF

O

Y

OMe

U

B064

Q

1)

M

OMe

O Cl S N C O O (CSI) toluene, rt

CN OMe

2) DMF, rt OMe

ẠY

OMe

D

B065

NC CO2H NH2

O Br t-BuNO, H2O ClCH2CH2Cl reflux

N H

Br

CO2t-Bu

IC IA L

Me

O EtO P EtO CN


B066 OH 1) PhI(OAc)2 CF3CH2OH 2) NaHCO3 MeOH

O

N Cbz

H

CO2Me

FF

OH NHCbz

IC IA L

O

H

O

B067 MeO2C

CH2Cl2

cyclohexane CH2Cl2, rt

MeO2C

Ơ

N

Me TfOH (cat)

N Y

B068

CO2H

M

Q

U

t-BuOH, HCO2H H2SO4 CCl4, rt

B069

O

Ph

ẠY

Ph

n-BuLi

Ph

Ph

Et2O, rt

OH

D

B070

Ph Ph

CO2Me

N NaH

OH

DMF-dioxane rt

Ph

CO2Me O

OBn Me

H

OH

OH

DBU (cat) Cl3CCN


B071 S

N n-Bu3SnH AIBN (cat)

O O

Me

H

IC IA L

N

benzene, reflux OH Me

CH2Cl2, -15 oC H

t-BuOK

Me SO2CH2Br

t-BuOH-THF 0 oC to rt

H

B073

O

Br

hv

N

Me

Br

Ơ

Br

O O S

FF

B072

Br

+

KNH2 hv

N

Me

Me

THF, rt

Y

Me

O

Q

U

O

M

B074

S

N

N

Bu

hv BF3-Et2O THF, rt

ẠY

O

O

Bu N

N S

D

B075

Me Me

1) CHBr3, t-BuOK petroleum ether 0 oC t o r t 2) MeLi Et2O, 0 oC to rt

Me Me


B076 O Cl3C

Cl

OEt

NaOMe petroleum ether 0 oC to rt

IC IA L

Cl

B077

Ơ

N

2) MeLi, THF, -10 oC H3O+

O

CHO

FF

1) Cl3CCO2H, Cl3CCO2Na DMF, rt; Ac2O, rt Zn, AcOH, 60 oC

B078

SiMe3

N

H

BnNH2 aq HCHO TFA

OH

Y

H2O, 25 oC

NBn

Q

U

H

M

B079

Me Me

Me

H

Me H

Me

H

O O S HN NH2 NO2 EtO2C N N CO2Et Ph3P, NMM -30 oC to rt

H

ẠY

HO

Me Me Me

Me H

H

H

H

N H

CO2Et

H

D

B080

CHO

1) Ph3P CHCO2Et benzene, reflux

NO2

2) (EtO)3P 170 oC

Me


B081 NaNO2

CO2H H Me

Cl

aq HCl rt

CO2H H Me

IC IA L

H2N

B082 MeO

NaNO2 A NH2

FF

aq HCl, 0 oC

CO2Et

Me

Me

H

CO2Et

Y

N

B083

(C6H13)3B

O

U

N2

M

Q

Ph

B084

O

Me

THF-H2O reflux

ẠY

O C6H13

Ph

I2, AgNO3 HC(OMe)3 MeOH reflux; H2O

i-Bu

OMe O

i-Bu

B085

D

N H

Ơ

Et

2) aq HCl, EtOH 65 oC

MeO

N

O

O

1) KOH, EtOH-H2O A 0 oC

Me

Me

Me

Me

H2SO4 Me

O

Ac2O -20 oC to rt

O SO3H


B086 OMs Me

B2H6, THF

IC IA L

Me

aq NaOH reflux

B087 1) Br2, CHCl3-CH2Cl2 0 oC

O

O

2) t-BuOK, Et2O 65 oC

Ơ

N

B088

Me

O

Me

Me

FF

Me

N

toluene MS 4A reflux

N

U

Y

O

H

N N

N

+

N H

OH

M

N

Q

B089

+

CH2Cl2 0 oC

H

N O

aq NaOCl Et3N

ẠY

B090

Me

+

AcO

D

O2N

PhN C O (2eq) Et3N benzene rt to 80 oC

O

N

Me

AcO

B091 CH3C(OMe)3 EtCO2H (cat)

Me

138 oC

HO Me

Me EtO2C Me


B092 O Me

PhCHO CSA N H Me OMe

Ph

benzene reflux

N

IC IA L

Me

Me

B093

O

2) toluene, 110 oC; 1 N HCl, THF, rt

Ơ

N

OMe

Ph

Y

NaH THF rt

U

Me

N

O S

H

B094

decalin 150 oC

Me

CHO

ẠY

M

Q

OH

B095

OMe

HO2C

O

O

FF

1) TBSOTf , Et3N CH2Cl2 -78 to 0 oC

Br

1) 1,3-dithiane, 20 oC 2) n-BuLi, THF -78 oC 3) HgCl2, MeCN-H2O reflux

CHO

D

B096

Br

H N

CO2Et

CHO

K2CO3

Me

OH

DMF 20 oC

toluene reflux Dean-Stark trap

CO2Et

Me H

N H O


B097

Me H Me OH

2) hv , benzene, rt 3) THF-i-PrOH reflux

OAc

NO2

O

O

Ph

OH

Ơ

CCl4, rt

H Me OH

N

Ph

O

hv

Me

AcO

B098 O

IC IA L

AcO

AcO

FF

AcO

NOH

1) NaOCl, pyridine -78 oC

Me

H

B099

N

O Me P(OEt)2 n-BuLi

O

Me

O

THF -78 oC

PPh3 Br NaH CHO N H

Et2O reflux

N

D

ẠY

B100

M

Q

U

Y

O

B101 N3 Ph

Ph OH

Ph3P

H

toluene reflux

Ph

H N

H Ph

OAc


B102 Ph3P Se TFA

H Ph

CH2Cl2, rt

Ph

Ph

IC IA L

H Ph

O

B103 1) N OH

N

toluene, reflux Ph

2) (MeO)3P reflux

Ph

Ơ

Ph

O

Ph

N

N

HO

N

FF

S

H

B104 O

N

C8H17

CCl4, rt

C8H17

C8H17

U

Y

C8H17

Me3SiI (2 eq)

Q

B105

M

OMOM C6H13

H Si Me Me

ẠY

O

1) Pt[(H2C=CHSiMe2)2O]2 toluene, 60 oC

OMOM C6H13

2) 30% H2O2, aq KOH MeOH-THF, rt

OH OH

D

B106

Me Me

Me OH Me

PhSCl Et3N CH2Cl2 -78 oC to rt

Me Me

Me

Me SPh O


B107 O SmI2 (4 eq)

I

THF-HMPA 0 oC to rt

O

Me

O Me

IC IA L

MeO Me

HO

B108 MeO Me

OMe

MeO Me

MeNO2 0 oC

FF

Hg(OTf )2 (1% mol)

OMe

O

H Me

N

Me

Ơ

B109

H

PCy3 Cl Ru Cl PCy3 Ph (cat)

O

CH2Cl2 reflux

H

N

O

Q

U

Y

H

N

MeO2C

MeO2C

SMe2 I NaH

M

B110

CHO

N H

THF, 0 oC

NaN3

N3 N

H2O, 0 oC

OH

ẠY

B111

D

TfOH

O Me

Ph

O CH2Cl2 0 oC

N3

Me

N

(n = 1)

O n

Ph

TfOH CH2Cl2 0 oC

Me NHPh

(n = 3)


B112 O O S Tol S

O

Et3N

aq HCl

MeCN, reflux

50 oC

S

B113

t-BuOH-DMF rt

H

O Me

N

Me N Me

THF, 0 oC

O

toluene reflux

O

Q

U

CO2H

CSA (0.1 eq)

Y

OH

OSiMe3

CO2Et

toluene reflux

OSiMe3

M CO2Et

Na (4eq) Me3SiCl (4 eq)

KÈ ẠY

NAc

N

O

Ơ

B114

B115

FF

NAc

O

O

HN

O

O

AcN

Ph

t-BuOK PhCHO

S

IC IA L

N

O O S Tol S

D

B116

O3 MeOH-CH2Cl2 -78 oC; TsOH -78 oC to rt NaHCO3 neu tralize); ( Me2S

OMe MeO

CHO


B117 O3 e M OH-CH2Cl2 -78 oC;

OMe CHO

IC IA L

O

evaporation; Ac2O, Et3N 0 oC

n-Bu3SnCl (cat) NaBH3CN AIBN, t-BuNC

I

O

OEt O

O

OEt

FF

B118

N

t-BuOH, reflux

Ơ

CN

O

N

BF3-Et2O

O

Y

N3

N

H

B119

Q

U

CH2Cl2, rt

M

B120

Ph

N O

CH2Cl2 rt

ẠY

Cl

NOH

O

NMO, Et3N

D

B121

O

O

decalin 290 oC

Ph


B122 Me

Me

1) CH2N2, Et3N Et2O, 0 oC

O SO2Cl

Me

2) 95 oC

O

IC IA L

Me

B123

FF

PPh3Br

O

O

t-BuOK

N

THF, rt

Ơ

B124

1) CHCl3, reflux 2) PhSeCl, CH2Cl2 -78 oC

H

OTBS

Me

N

O Me

O H

Q

U

Y

3) aq H2O2, THF 0 oC

SH

Ph

M

B125

1) ClCH2COPh, K2CO3 THF, rt

Ph

ẠY

2) hv , cyclopentadiene CH2Cl2, rt

S

D

B126

AcO

Me

Me

O Me N2

rhodium(II) mandelate CH2Cl2 reflux

AcO Me O


B127 OMe Ph

OMe

Ph

Ph Cr(CO)3 Ph

n-Bu2O 45 oC

OH

Ti(Oi-Pr)4 (cat) EtMgBr (2 eq)

O OMe

Me

Et2O, rt

OH

D

ẠY

M

Q

U

Y

N

H

Ơ

N

O

Me

FF

B128

IC IA L

Cr(CO)5


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


Provide reasonable arrow-push mechanisms for following recations

Hg(OAc)2 AcOH, 70-75 oC

CO2Me

MeO2C CO2Me benzene, reflux

CO2Me

AcO

FF

H

OAc

IC IA L

+

OAc

O

OAc

N

H

H

Ơ

AcO

MeO2C

Y Q

HgOAc

U

H

OAc

M

H

AcO AcO

H

Hg OAc

ẠY D

O

CO2Me CO2Me

O

H

CO2Me

AcO

N

H

H

OAc Hg OAc

Me CO2Me

H O

OAc CO2Me

Me

AcO + AcO

O H AcO

OAc

Noller, C. R;Dinsmore, R. Org. Synth. Coll. vol

1943. 358


Provide reasonable arrow-push mechanisms for following recations

C001 O MeOH, rt

Me H

t-Bu

Me H

t-Bu

FF

C002 SO2 NH2

O2N O

Et3N, THF reflux

MeO

Ơ

N

MeO

CN

O

NO2

Cl

IC IA L

OMs

MeO OMe OH

NaOMe

H

C003

Me

H

N

Me

TiCl4

Me

O

MgBr THF, 0 oC

O

Cl

heat, 200 oC

U

CH2Cl2 -78 oC

Et Me O

Q

O

H

Y

Et

Me

Me

ẠY

M

C004

D

C005

1) TfOH, CH2Cl2, 0 oC

EtO2C

SiPh3

Me pyridine 2) toluene, reflux 3) TBAF, H2O2 DMF, 55 oC

OH Me

CO2Et OH OH


C006

O O

1) TsNHNH2 Et2O

OH

2) NaH DMF, 120 oC

H

N Ts

IC IA L

NHTs

C007

Me

O

CHO

FF

Me

O

O

t-Bu N C Ph

toluene -30 oC to rt

NH2

H N

N

Ph

O Me

Ơ

N

Me

Ph

O

Ph CO2H

OBn

H

C008

U OMe

OMe OMe

toluene 110 oC

OH O O

Q

O

BnO

Y

HO O

N

OMe OMe

ẠY

C009

M

Me

OH

D

O

F3C + F

KOH

N O

Ph

dioxane, rt H2O

O HO2C CF3 Ph NH O

Me

C010 PhI Pd(OAc)2 (cat) NaOAc, LiCl DMF, 100 oC

Ph

Me

t-Bu


C011 MeO2C

IC IA L

PhCl 190 oC

CO2Me

C012

FF

O

N

Et

N

Ac2O

Et

O

N H

85 oC

N H

O

OAc

Ơ

N

HO

N

H

C013

1) t-BuOOH, VO(acac)2 CH2Cl2, -30 oC

O

OMEM Me Me

Y

OH

OHC

H

MEMO

OH

o

U

2) toluene, 110 C

H MeMe

Q KÈ

M

C014

1) NOCl o pyridine, 0 C

ẠY

OH

OH

NH

Me

O

D

Me

2) hv , pyridine 3) TsCl, pyridine benzene, rt

C015 O Me

O

O N2

+

HO

1) Rh(OAc)2 (cat) CH2Cl2 2) SmI2 THF, 50 oC

O

O

H

H

O


C016 N2 1) Me3Si BuLi, DME-hexane

Me

Me O

O

Me

2) silica gel

HO

C017

H

N

OH

N

3) Ca(OCl)2 CH2Cl2-H2O, 10 oC 4) aq HCl THF-H2O, rt

N Tr

NH2

Cl

Ơ

N

N Tr

O

O

FF

1) H2C CHMgBr THF, -10 oC 2) DBU, Cl3CCN CH2Cl2, rt

Me

O

IC IA L

O

OH

1) EtMgBr, THF-H2O

OH

2) benzene, reflux

OMe OH Me

Me

Q

OMe

1) TsNH2, BF3-Et2O benzene, reflux

O H

2)

Ts N

CO2Et Ph3P (cat) benzene, reflux

Ph CO2Me

C020 CO2Et TBSO

Ti(OPr)4 i-PrMgCl (2 eq)

1) FeCl3 pyridine, DMF

Et2O

2) NaOAc, MeOH

O

TBSO

Me Me

Me

M KÈ Ph

D

ẠY

C019

OMe

MeO

U

Me

MeO

Y

MeO

N

H

C018


C021 Me Me N Li Me Me

Cl

Cl

O

+

Ph

n-BuLi

IC IA L

Ph

OH

Et2O-hexane

Et2O

FF

C022

CO2H

N

O

O

1) pyrrolidine toluene, reflux 2) (PhO)2P(O)N3 toluene rt then reflux

N

H

Ơ

3) KOH ethylene glycol reflux

Y

C023

Q CO2Me

N

Me

O

M

O

U

TMS

1) LiI, EtOAc reflux 2) Ac2O 70 to 125 oC

O

Me

N

D

ẠY

C024

1) PhSeBr, i-Pr2NEt MeCN, 0 oC

Me O

OH

2) NaIO4, NaHCO3 MeOH-H2O, rt 3) hexylamine, MgSO4 toluene, reflux

Me O O


C025 O HgCl2

AcO

H2O-caetone reflux

BnO

O

BnO

OMe

OH

OBn

OBn

C026

Ph

1) LiO-i-Pr (cat) Et2O, rt

O Me

+

Me

H

OH OH Ph

2) NaOH, MeOH reflux

Me

Me

O

Me

Me

FF

O

IC IA L

AcO

O

Ơ

BF3-Et2O ethylene glycol

O Me

O

Me

CH2Cl2, 20 oC

N

Me

OH

O

H

H

N

C027

Y

Me

Q

U

C028

O

MeN

M

O

MeO

Cl

Me Me

2,6-lutidine toluene, rt

3) MsCl, Et3N CH2Cl2, -78 oC 4) t-BuOK THF, reflux

ẠY

Me

O

1) MeAlCl2 CHCl3, rt 2) NaBH4 MeOH, 0 oC

NMe MeO Me

O

D

C029

BH2

H

Me

Et2O -20 oC

Me

H

B

1) CH3CHO Et2O, 0 oC 2) Cl2CHOCH3 t-BuOLi, Et2O 0 oC to rt 3) H2O2, NaOAc H2O, reflux

H

H

O


C030 PhNC Me3SnSnMe3 hv

N I

N

benzene 20 oC

OH O

Et HO

Me

O

C031 O

O

FF

Et

O N

IC IA L

O

OH Me

OH

Me

N Ơ

PhNEt2 230 oC

Me

Me

N

H

Me

Me

+

C032

Y

Me Me

Ph

S

O

S

N C N benzene, reflux;

Q

O

Ph

Ph

Ph

M

HO

Me

U

Me

D

ẠY

C033

OH

n-BuLi, THF -78 oC;

n-BuLi (1 eq) THF, -78 oC;

PhSCl -50 to 0 oC

Me

HO OHMe Me

OHMeCHO O

Me

O

O H (0.4 eq) aq NH4Cl, rt

Me Me

Me

O H

O

H O Me Me

S O

Ph


C034 OTBS

PCy3 Cl Ru Cl PCy3 Ph (cat)

IC IA L

OTBS

benzene rt, 4h

FF

Me

C035

OBoc

OEt

Et2O -78 oC to rt

O

Ơ

OBoc

N

PhMgBr

+

H

Ph

OEt

H

O

O

OBoc

N

C036

O

BnO BnO

O

NBS MeOH CH3CN

OBn O

BnO BnO

OBn

OMe

M

Q

OBn

U

Y

OBn

C037

ẠY

Me

Me

Me

Et2O -78 to 20 oC

H2O

O

Me Me

Me Me

D

S

Li

Me Cl Me HgCl2 (cat)

C038 O H

1) N3CH2CO2Me NaOH, MeOH, rt 2) cyclohezane, reflux 3) p-xylene, reflux

N H

CO2Me


C039 OLi 1) Li Me Et2O -78 oC to rt

O

2) H2SO4 MeOH 0 oC

Me Me

FF

Me

C040 Me

HO

OMe

PhI(OCOCF3)2

H

mesytilene 200 oC

O e OM O

Ơ

N

THF rt

Me

Me Me

O

OH

IC IA L

O

H

C041

N

O

hv NaBH4

MeO N

MeO

Y

MeO

N

MeO

H

U

MeOH 5 to 10 oC

O H

M

Q

H

C042

TMS

O

LDA

Me

ẠY

O TBSO

TBS

THF, -80 oC

(CH2)4CH3

THF -80 to 30 oC

TMS

D

C043

Me H

O

O

SmI2 HMPA t-BuOH THF 0 oC

HO Me H

H O

O

(CH2)4CH3


C044 O Me

NaOMe

H H

MeOH reflux

OTs

H

IC IA L

Me O

MeO

Me Me O

O

Me

FF

O O (Meldum's acid)

H

O

H

N

MeO

Ơ

H2NCH2CH2NH2 2AcOH (cat) Na2SO4, MeCN, 20 oC reflux

O

H

O

H

C045 Me

OEt

Y U Q M OMe

KÈ Me

N N

O

ẠY

Me

O

Me

O

Br Br

C046

Me

N

t-BuLi (4 eq), THF -78 to 0 oC

O

OH Me CO2Et

-78 oC

MeO2C

CO2Me

H toluene reflux

O

OMe

C047

D

1) NaH, Me DMF, 60 oC 2) LiAlH4, AlCl3 Et2O, 0 oC

MeO

O N H

Ph

CH2 Br

3) mCPBA, CH2Cl2, rt KCN (excess) DMF-H2O, 50 oC

MeO

CN N Ph

Me


C048 1) O S N CO2Me benzene, 0 oC 2) PhMgBr THF, -60 oC

H

3) (Me2N)3P -78 oC

H

IC IA L

NH O

O

Me

Me

2) O3, CH2Cl2, rt 3) H2, Pd/C, EtOH, rt

Me

Ơ

Me

Me Me OH

N

OMe

Me Me OH

Y

Br

CH2Cl2, rt

Br

OMe

O Br

H2N

O

OMe

N H

ẠY

M

CO2H

Ph3P CHCN EDCI

Br

OMe

benzene, 0 oC PhMgBr THF, -60 oC

U

Br

Q

Br

Pr

D

OH

+

H

C050

C051

OH

N

O

Me

O

1) LDA, TBSCl HMPA, THF

FF

C049

1) O

O

O

AcCl toluene, reflux

NH2 CO2Et

2) NaBH4, H2SO4 EtOH, -30 oC 3) Me3SiCH2MgCl (2 eq) CeCl3, THF; aq HCl

O Pr

H N


C052

CO2H

3) MeLi, THF, -78 oC 4) Mn(OAc3), Cu(OAc)2 EtOH, rt

IC IA L

1) (COCl)2, benzene 2) Et3N, toluene, reflux Me

O

FF

C053 TMSOTf (0.5 eq) MS 4A

CHO

Ph

+

O

OH Ph

CH2Cl2 -78 oC

O

Ph

Ơ

N

SiMe3

Ph

O O

N

Q M

C055

H N

Ts n-BuLi (1 eq)

O

OSii-Pr3

Ph Ts Me N

OTf Me

ẠY

O

hv ClCH2CH2Cl rt to reflux

U

i-Pr3SiCl

OSii-Pr3

OH

N2

O

Y

LiCHBr2, THF n-BuLi (2 eq) -78 to 25 oC

H

C054

Ph

I

Ph THF, reflux

D

C056

OBn

OBn

H

O OHC

H

1) NH3, CH2Cl2, 0 oC 2) NH4OAc, AcOH, 75 oC

HN


C057 H2 Lindlar catalyst quinoline CH2Cl2-MeOH 25 oC

OH

IC IA L

HO

H H OH

HO

O

O

Tol

S

Zn(Cu) Cl3CCOCl

Me

O

O

FF

C058

O

Cl

O

N

O STol N(Boc)2

Ơ H N

C059

Me

AlCl3

O

MeO

Me Me

CN

CN

N

CH2Cl2 0 oC

M

N

Q

S Me Me

MeO

S

U

Cl

Me

Y

O

Cl

Cl

ẠY

C060

D

O

Me

THF, -45 oC

N(Boc)2

Cl

Me

O

1) Pd2(dba)3-CHCl3 (2.5 mol%) DPPE, MECOCH2CO2Me THF, rt 2) silica gel

Me O Me

O OMe Me


C061 Me

MeCN 130 oC

Br

IC IA L

Me

Pd(OAc)2 Ph3P, Ag2CO3

O

O

Me3Si OH

TsOH decalin 175 oC

CH2Cl2 -78 oC

H OH

Ơ

benzene

O

O

EtAlCl2

N

O

OH

FF

C062

Ph

O

2) activated Zn i-PrOH-H2O reflux

O Me

OH O

BzO Me

Q

U

H

N

O

1) NBS, BaCO3 CHCl3, reflux

OMe OH

Y

H

H

C063

n-BuLi 330 oC

N NHTs

ẠY

M

C064

D

C065

NO2 SiMe3 TBSO

SO2NHNH2 DEAD, Ph3P

OH

THF -15 oC to rt

SiMe3 TBSO

C H

H


C066 BrMg (excess) Me

Me

N H

IC IA L

THF -40 oC

NO2

C067

+

O

Cl

Me

CH2Cl2, rt

Me

O

FF

N

Me

N

O

TiCl4-(THF)2 (cat) i-Pr2NEt

O

Me

O

N

sy n : anti = >99 : 1

Ơ

C068

N

H

1) Zn(Cu), Cl3CCOCl Et2O, reflux 2) Zn, HOAc, 85 oC S

O

3) HF, MeCN-H2O, 20 oC 4) CSA, hexane-CH2Cl2,

HS

O

Q

U

Y

TBSO

C069

Me

+

H

N Bn

ẠY

(OC)4Cr

M

OMe

1) ZnCl2, hv CO, THF

H

H I

N

2) I2, MeCN, rt

O

Me OMe

D

C070

Me Me OH OH

1) ClOC OAc e (2 q) e M CN

OH OH OH

2) NaOMe, THF

O

O OH


C071

NHBn

BF3-Et2O toluene, reflux

IC IA L

MS4A

CO2Me

N H

NBn

CHO

O

O

N H

CO2Me

FF

C072

H

N

3) mCPBA, CH2Cl2, 4) MeOH, heat 5) H2, Pd/C, MeOH

N

N H

O

1) H2C CHCN MeOH 2) H2C CHCH2Br NaH, THF

Me

H

Ơ

OH

N

C073

O

MeLi (cat) Ph2O, 180 oC

Y

O

O

TBAF

H

Q

U

OH

O

TMS

C074

M

H

O

+

O

1) NaOH, THF, rt S

N H

2) Rh2(OAc)4 benzene, reflux 3) Raney Ni, acetone

N

D

ẠY

N2

O

C075 O Me

OMe N2

1) Rh2(OAc)4 benzene, reflux

OH

O +

Me

Me

2) BF3-Et2O benzene, rt

Me H HO MeO

Me O

O

Me


C076 1) LiSnMe3, THF O Me , BF3-Et2O o -78 C

O

Me

O

IC IA L

O 2) Pb(OAc)4, CaCO3 benzene, reflux 3) H2, (Ph3P)3RhCl

FF

C077 H

n-BuLi

O

O

O

THF, -85 oC Me

Ơ

N

Me

Me

1) C6H11NHOH, NaHCO3 EtOH, rt

Me

Y

O O Me

Me

Q

U

Me

OAc Me

M

C079

OTBS Me

ẠY

HO O

D

OTBS

1) O2, hv rose bengal MeOH-CH2Cl2 Me2S 2) Ac2O, Et3N DMAp, CH2Cl2 3) DBU, toluene 110 oC

TBSO H O OTBS O

C080 O

O Cl

Et3N benzene reflux

hv CH2Cl2 O

Me Me

2) AcCl, Et3N, Et2O, 0 oC to rt 3) NaOAc, AcOH, rt

O O Me

OHC

N

CHO Me

H

C078


C081 O

O TiCl4

SiMe3 +

C

SiMe3

CH2Cl2 -75 to 0 oC

Me Me

Me Me

H

Me

C082

O Ph

Me

Ph2PCl, 0 oC

Me

Ơ N

MeO

H

1) KHDMS Et2O

Me

OMe

Cl

OMe

MeO

Y

2) O3, CH2Cl2 -78 oC; Ph3P TsOH benzene

O

U

H

Q

BnO

M

Bn

KÈ N

Bn

ẠY

N Ns

O Et

Ph

PhCO2H CH2Cl2, rt

C083

C084

O

Me

O

N

Et OH

Ph

O

n-BuLi THF, 0 oC

FF

Me

IC IA L

Me

O

Bn N C CO2H MeOH rt

toluene reflux

NHBn N Bn

NsHN O

D

C085

Me Me

Li

O H

Me

THF -70 oC to rt

SOCl2

Mg Et2O, rt; 60 oC

Et2O rt

H2C CHCHO -10 oC to rt

Me OH Me

MeH


C086 O P Ph Ph Ph

t-BuOK, THF, rt; ClO4

P

CO2Et

Ph

Ph Ph

EtO

IC IA L

reflux

CO, Pd(PPh3)4 K2CO3, n-Bu4NBr

FF

C087

O

O

I

O

MeCN, 70-80 oC

N Ts

C088 Li SPh

Me

Et2O, rt

THF, rt OH

U

Y

THF 0 oC

LiBH(s-Bu)3 MeLi, KOEt

H

Me

HBF4

N

O

Ơ

N

NHTs

Q

C089

M

Boc N

ẠY

O

1) LDA, Et2O 0 oC NBoc

2) KH, CS2; MeI THF, 0 oC 3) n-Bu3SnH, AIBN toluene, 100 oC

D

C090

Me

O MeN

N H

Me N

HO N

(HCHO)n Na2SO4 O

NMe

NMe N N

MeCN reflux O

Me


C091 Ph O

Me

SnCl4, CH2Cl2, -78 oC

Ph

NaHCO3

NiCl2/NaBH4

benzene reflux

EtOH, rt

HO

H2N Me

C092

Et2O -78 oC

dioxane 0 oC

FF

BF3-Et2O H2O

Me

BnO

Ơ

OH

Et3N

N

BnO

O

H

C093

HO

O Me4N CH2Cl2, 0 C

Y

Tf 2O pyridine

U

CH2Cl2 0 oC

M KÈ

C094

Me

ẠY

O

Br

o

H

2) benzene, 65 oC

O

Q

EtO2C

Me

(OC)5Mo

N

1)

D

Ph

O

ClSN Me

OH

IC IA L

NO2

Me

Me Me

1) t-BuOK, t-BuOH -5 oC to rt 2) O3, NaHCO3 MeOH-CH2Cl2, -70 oC

O

Me CO2Me

3) Ac2O, Et3N, DMAP benzene reflux

Me Me

C095 Me H

Me

Me O

H TMSOTf toluene rt

Me CO2Et

H Me

OSiMe3


C096 1) PhLi, Et2O; H3O+

H O

O OH

2) TsOH, H2O CH2Cl2

Me

Me

IC IA L

MeO

C097 1) Br2, CHCl3, rt 2) AgNO3, MeOH reflux

CO2Me

O

FF

Me3Si

CO2Me

3) TFAA, DMSO CH2Cl2 -78 oC to rt

O

CO2Me

N

CO2Me

Ơ

C098

H

1) NH2OH-HCl NaOAc MeOH, rt

N

O

Y

CN

N O

2) sealed tube toluene, 160 oC

CN

C099

M

TBS

Q

U

CN

NC

O

OH

O

H

TBS

SPh2 BF4 KOH, DMSO aq BF4, Et2O, rt

2) PhSSPh (excess) NaOMe, MeOH,

O PhS PhS

O O H

H

H

ẠY

H

1)

D

C100

Me

OTs CO2t-Bu N Boc

S CO2Me 1) Cl pyridine, CH2Cl2 2) mCPBA (2 eq) CH2Cl2 3) KOMe, THF-MeOH 4) SmI2, THF-MeOH

Me

CO2Me CO2t-Bu N oc B


C101 OMe S

toluene

IC IA L

hv

OMe

S

OSiMe3

BF3-Et2O CH2Cl2, -75 oC

OSiMe3

CH3CO2H -75 oC to rt

O

O

N

+

O

EtO OEt

FF

C102

1) NH2OH-HCl NaOAc, MeOH, rt 2) NaBH3CN, MeOH, rt

H

O

N

Me

3) (HCHO)n, MS4A toluene, reflux 4) MeOSO2F, ether, 0 oC LiAlH4, THF, rt

Me

HO

Q

U

H

Me H N

Y

H

Ơ

C103

M

C104

CO2Et

MeO

CO2H

reflux

ẠY

MeO

Ac2O (10 eq) NaOAc (2eq)

AcO

CO2Et

MeO OAc

MeO

D

C105

Me Me O Me

Me

1) hv acetone

O O

2) H2, Pd/C MeOH, rt

O

H H

H Me Me O

O


C106 H

Ph Ph

O

N N

O

toluene 110 oC

H

IC IA L

O

Ph H

OH

C107 210 oC

Cl

O

S

quinoline

FF

Cl Cl

N

C108

Ơ

1) KH (excess) 18-crown-6, THf , rt ClCO2Me (excess) o pyridine, -78 C to rt

H

H

OH

N

NH

2) KOH, MeOH-H2O, rt

O

U

Y

CN

OMe

N

O

D

ẠY

TBSO

M

Q

C109

1) mCPBA, CH2Cl2, 0 oC 2) aq HBF4, CH2Cl2, rt

Me TBSO

Me ,CeCl3 3) BrMg THF, -78 oC to rt 4) PdCl2(MeCN)2 (1 eq) DME, rt

Me O


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


A001 O O2N

OH O

O OH O2N

OMe

O2N

OMe

A

O

B

H C

O

O

O2N

aq HCl O2N

O

O

O2N

H

D

OH

FF

O

IC IA L

OH

Kamm, O.; Segur, J. B. Org. Synth. Coll. Vol.

1941, 391

A: Addition of hydroxide ion to the carbony group to form a tetrahedral intermediate. B : Elimination of

O

methoxide ion helped by the oxygen lone pair. C: Deprotonation. pKa AcOH = 4.8, H2 O = 15.7. +

Ơ

N

Protonation on work-up. pKa H 3O = -1.7.

D:

H

O

OH

H

N

O

H

A002

H HO O Et

OH

OH

OH

B

C

Y

A

HO OEt

-H+

Q

U

EtOH

+

+H

M

OH2

D

O

HO OEt

H

O +

-H2O

OEt

E

-H

OEt

F

Fischer, E.; Speier, A. Ber. Deut. Chem. Ges. 1895, 28, 3252

A: Acti vation of the carbonyl group by protonation. B: Additiono f EtOH to the activated carbony group.

ẠY

C: Deprotonation of the oxonium ion. D: Protonation makes a hydroxy group a good leaving group.

D

E: Elimination of water helped by the oxygen lone pair. F: Deprotonation

A003

O Me

Cl OH

O S

Cl

Cl A

Me

O

O S

Cl

OH

B


O Cl Me

S O

Cl H

O

-SO2 Me

OH

-H+

O Me

Cl

Cl

O

Cl

O Me

O S

O

Me

A

OH

Cl

C

Me

C

O

Cl H

FF

Me

Cl

O S

O

O Cl

O

O

O S

IC IA L

or

Me

D

Cl

N

Helferich, B.; Schaefer, W. Org. Synth., Coll Vol

1941, 147.

Ơ

A : Atack of a carboxylic acid to SOCl 2 forms a mixed anhydride. B: Addition of chloride ion to the

H

carbonyl group to form a tetrahedral intermediate. C: Formation of an acylium ion. D: Addition of

N

chloride ion to the acylium ion

Y

A004 O

O Ph

U

OEt

Q

Me

BrMg

A

Me

OEt

O -EtOMgBr B

KÈ Ph Ph

ẠY

Me

O MgBr

Ph

C

Ph MgBr

M

Ph MgBr

Me

aq NH4Cl

Ph Ph Me

O

H

Ph Ph Me

OH

Allen, C. F. H.; Converse, S. Org. Synth., Coll. Vol.

1941, 226.

D

A: Addition of PhMgBr to the carbonyl group of the ester to form a tetrahedral intermediate. B: Elimi-

nation of ethoxide ion to form a ketone. C: Addition of PhMgBr to the more reactive ketone to form a tertiary alkoxide.

A005


MeO

C

N

N MeO

H

Mg

N

aq H2SO4

MeO

Ph

A

Ph

Ph MgBr

MeO

H

H

N

N

MeO

Ph

H H2N O H e M O Ph

H Ph

B

-H+

+H+

MeO

H -H+ Ph

D

O

MeO

E

Ph

O

C

O

H3N OH MeO Ph

FF

H2O

H2N OH e M O Ph

IC IA L

H

1955, 562.

N

Moffett, R. B.; Shriner, R. L Org. Synth., Coll Vol.

A: Addition of PhMgBr to the nitrile forms an imine anion, B: Addition of water to the iminium ion gives

Ơ

a hemiaminal. C: Protonation occurs on a more basic amino group. pKa H3O+ = -1.7, EtNH3+ = 10.6.

N

H

D: Elimination of ammonia helped by the oxygen lone pair. E: Deprotonation.

A006 Me

A

M

MgBr

OH

H

Me

ẠY

N Me

H

H O MgBr Me N Me

U

N Me

Q

H

Y

O

C

OH H N Me Me

H O aq HCl

Me N Me

O

H H

D

B

O -H+

H

E

Olah, G. A; Surya Prakash, G. K.; Arvanaghi, M. Synthesis 1984, 228

D

A: Addition of PhMgBr to the carbonyl group. The resulting tetrahedral intermediate is relatively stable because the alkoxide anion cannot generate an amine anion ( pKa i-PrOH = 17, Et2NH = 36). B: +

+

Protonation on workup. C: Protonation of a more basic amino group. pKa H3O = -1.7, EtNH 3 =

10.6. D: Elimination of the amine helped by the oxygen lone pair E: Deprotonation.


A007 O

H

O

R' N C N

O

A

R

O

N C N R' H

B

EtO2C

N

O

R

Me Me

O

R H O

R'

Me Me Me

O

O R

Me N Me N

O

N

H

Me Me Me

N

N

N

N

R'

Ơ

N H

O

Me R' N N Me H

O

R' NH

O

D

N R'

R' NH

R'

N O

C

N R'

IC IA L

N

R

FF

O

Me N Me

N

O OEt

-DMAP F

Me R O

Q

E

O

U

Me Me

Y

Me N Me

Me Me

O Me

O 1990, 93.

M

Neises, B.; Steglich, W. Org. Synth., Coll. Vol.

A: Acti vation of DCC b y protonation. B: Addition of the carbo xylate to the protonated DCC. C:

Addition of DMAP to the carbonyl group. D: Elimination of a urea anion which then abstracts a proton from an alcohol.

E: Addition of the alkoxide anion to the carbonyl group to form a tetrahedral

ẠY

intermediate. F: Elimination of DMAP to form the product.

D

A008

O

H

O A

H

HO

HO H HO O

OH

B

H -H+ C

HO

HO O


HO +H+ H2O O

O

-H2O

O

OH

D

-H+

O H

O

O

E Daignault, R. A.; Eliel, E. L Org. Synth., Coll Vol.

1973, 303.

IC IA L

A: Activation of the carbonyl group by protonation. B: Addition of ethylene glycol to the activated carbonyl group. C: Proton transfer. D: Elimination of water helped by the o xygen lone pair. E:

FF

Intramolecular addition of the second hydroxy group.

A009 O

H A

B

BnO OH

MeOH

H

N

H2O OMe

+H+

H

O

-H2O

E

BnO

BnO OH

Q

OH

M

H MeO O Me H

D

ẠY

BnO

OMe

OMe -H

OMe BnO OH

H e M O O Me -MeOH

MeO OMe F

MeOH

+

OH

H

Me H

U

BnO

H

OH

D

Y

H

OH

C

H

OH

-H+

BnO

Ơ

BnO

HO OMe

H

N

H

H HO O Me

H

O

H

O

H

OMe

OMe H

OMe H2O

OMe H G

O H

OMe


H

H

OMe

+

-H

+H

OMe

HO

H

+

O

Me -MeOH OMe

HO

H H

I

OMe

O

H

-H+

OMe

O

Baker, R.; Cooke, N. G.; Humphrey, G. R.; Wright, S. H. B.; Hirshfield, J. J. Chem. Soc., Chem. Commun. 1987, 1102.

IC IA L

A: Acti vation of the carbonyl group by protonation. B: Addition of MeOH to the activated carbonyl

group. C: Proton transfer. D: Elimination of water helped by the oxygen lone pair. E: Addition of MeOH and protonation to form a dimethyl acetal. F: Trimethyl orthoformate serves as a scavenger of water to let the equilibrium to the product side. Protonation followed by elimination of MeOH.

G:

FF

Addition of water. H: Proton transfer. I: Elimination of MeOH followed by deprotonation to form

O

HCO2Me.

H O

O H

H

B

Br Br

C

U

O

Br

-HBr

O

O

Br

E

Q

D

O H Br

Y

OH Br

-HBr Br

OH

O

N

A

O

Ơ

O

OH

H

O

O

N

A010

M

Aben, R. W. M.; Hanneman, E. J. M.; Scheeren, J. M. Syn. Commun. 1980, 10, 821. A: Protonation. B: Cleavage of the dioxolane ring helped by the oxygen lone pair. C: Deprotonation

to form an enol ether. D: Bromination of the electron-rich enol ether. E: Intramolecular addition of the hydroxy group.

Opening of the dioxolane ring of the product is more difficult because of the

ẠY

electron-withdrawing bromine atom.

D

A011

H

O Me

H

O A

Me

H HO NH2

H H NH3

B

Me

H

H +

-H

HO NH2 Me

H

+H+ C


NH2

H2O NH2 -H O 2 Me

Me

H

H

D

N H2N C aq HCl

N H H3N C

Me

H

Me

NH

-H+

E

H

F

CN

R

G

OH2

O H

H

R

H

R

OH +H+

H

R

+H+ J

OH

R

K

O

H

N

R

I

H

OH OH2

-H+

H3N CO2H

Me

H

N

O H

OH

-NH3

O

R

H3N OH

-H+

+H+

O H

H H2N OH

H

NH2

IC IA L

R C N H

-H+

FF

NH

Ơ

Kendall, E. C.; McKenzie, B F. Org. Synth., Coll. Vol.

1941, 21

H

Strecker amino acid synthesis, A: Protonation of the carbonyl group. B: Addition of NH3 to the carbenyl group followed by deprotonation to form a hemiaminal.

C: Protonation followed by

N

elimination of water is helped by the nitrogen lone pair to form an iminium ion. D: Addition of a cyanide ion to form an aminonitrile. E: Acidic hydrolysis of the nitrile. The amino group is protonated

Y

throughout the reaction. F: Protonation of the nitrile to form a reactive nitrilium ion. G: Addition of

U

water to the nitrilium ion. H: Deprotonation and tautemerization. I: Protonation of the resulting amide

Q

followed by addition of water. J: Proton transfer. K: Elimination of NH 3 followed by deprotonation to

M

form theproduct.

A012

O Me

H

D

ẠY

O Cl P Cl Cl

N Me

A

Cl

O P Cl O Cl Me H N Me

Cl H Me2N

H

Me

N Me

C

Me2N

O P Cl O Cl Cl Me H N Me

B

Cl

Cl Me N Me

-H

+

Me2N

Me N Me


R

D

OH R

H2O

N Me

H +H+ Me

Me

R

N Me

OH

N Me

Me N H Me

R

R

-H+

Me

R

E

O

H

O

N Me

F

H

O

IC IA L

Me

H

H2O

-H+

H

H Me2N

1963, 331

FF

Campaigne, E.; Archer, W. L. Org. Synth., Coll. Vol.

Vilsmeier reaction. A: The electron-rich oxygen of D MF attacks POCl 3 (oxygen of amides is generally more reactive toward electrophiles under neutral conditions). B: Addition of chloride ion followed by

E: Addition of water to the iminium ion.

H

Ơ

nitrogen lone pair leads to the formation of an iminium ion F: Proton transfer followed by elimination of Me 2NH.

D: Elimination of chloride ion helped by

N

aromatic ring to Vilsmeier reagent followed by rearomatizatien

O

eation of a dichlorophosphate ion to form the Vilsmeier reagent. C: Addition of an electron-rich

N

A013 H

Y

Me

O

U

NH

H

Me

A

H e M 2N OH

H H

H

-H+

H

H

B

Q

H

O

M

H

Me2N OH

ẠY

H

Me2N OH2

+H+

H

H

H

H

O

D

H

H

H

O

H

Me -H2O

H

N

Me H

Me O

-H+

N

H

Me H

C H

D

O NMe2

-H+

O NMe2

Maxwell, C. E. Org Synth., Coll. Vol.

1955, 305.


Mannich reactien. A: Protonation of formaldehyde followed by addition of Me 2NH to the carbonyl group. B: Proton transfer followed by elimination of water to form an iminium ion. C: Tautomerization of the carbonyl goroup to form an enol. D: Attack of the electron-rich enol to the iminium ion.

Ar

A MeO

OH

Me

-H+

H

N

Ar

+H+

OH

Ac2O

H

N

H

O

N

Me

O

OH

H

N

N

Ar

H

O

C

H Me O O

Ar

H

O

Me

-H+

O

N

H

Ar

Y

O

D

Q

H

MeO

Me

O

N

U

Ar

H

-H2O

Ar

+H+ B

Ơ

Ar

H

NH2OH

H H2O N OH

HO NHOH

-H+

FF

H

O

MeO

H

H O NHOH

O

IC IA L

A014

CN

MeO Buck, J. S,; Ide, W. S. Org. Synth., Coll Vol.

1943, 622

M

A: Addition of NH 2OH to the aldehyde. B: Proton transfer followed by elimination of water to form an

oxime. C: Acetylation of the oxime. D: syn-Elimination of AcOH to form a nitrile.

D

ẠY

A015

N OH OMe

PCl4 Cl

H N O PCl4 A

B

OMe

OMe

Cl

CN OMe

-H+

OMe

Cl -POCl3

Cl N O PCl3

C

NC

OMe

H2O

R

Cl


H OMe

OMe

R

R

O H

OH2

-MeOH R

O

R

E

+H

NC

O

R

OH

H

-H+

H

+

Me OH

IC IA L

D

-H

H

H

OMe

+

O

Ohno, M.; Naruse, N.; Terasawa, I. Org. Synth., Coll. Vol.

1973, 266

FF

Beckmann fragmentation. A: Attack of the oxime to PCI5. B: Elimination of POCl 3 is helped by the oxygen lone pair of the methoxy group, causing the cleavage of the C-C bond. C: Addition of chloride

ion. D: Elimination of chloride ion followed by addition of water. E: Proton transfer followed by

N

O

elimination of MeOH.

O MgBr aq H2SO4 EtO Me

EtO

O

U

H

Y

Me MgBr

+H+

EtO

B

Me

Me

H2O

M KÈ ẠY D

H EtO HO

H EtO O H

EtO

OH2 Me

Q

OH Me

C

H

N

A

EtO

O Me

H

EtO

Ơ

A016

H Me

-H+

EtO HO

-H+

Me

D

-EtOH

H

O

Me

-H+

O

Me

Woods, G. F.; Griswold, P. H., Jr.; Armbrecht, B. H.; Blumenthal, D. I.' Plapinger, R J. Am. Chem. Soc. 1949, 71, 2028 A: 1,2-Addition of MeMgBr to the carbonyl group. B: Protonation followed by elimination of water helped by the oxygen lone pair of the ethoxy group. C: Addition of water. D: Proton transfer followed by elimination of EtOH.


A017 Me

H H N NH2 O Me H OR Me

Me O Me

Me

A Me

Me

N H

-H2O

+H+ B

Me

Me

B

Me

Me

Me

H OR

O

Me -N2

B

Me

FF

Me

H N H N

Me

Me

C

Me

Me

D Me

Me

Me

Me

Ơ

Me

Me

N

Me

Me

N H N

N Me

H N NH2 OH Me

H OR

H

Me

Me -H+

IC IA L

H2N NH2

H

Paquette, L. A.; Han, Y. K. J. Org. Chem. 1979, 44, 4014. Wolff-Kishner reduction

A: Addition of H 2NNH2 to the carbonyl group. B: Proton transfer followed by

Y

of N2, an extremely good leavlng group.

N

elimination of hydroxide ion to form a hydrazone. C: Deprotonation of the hydrazone. D: Elimination

O

Ph

M

H

A

H N O H

-H+

N OH

+ Ph +H B

H

HO

ẠY

N H

OEt

OEt

EtO2C

C

H

Ph

D

O

\

D

O

O EtO HO

Ph

N

H

EtO2C

-OH-

Ph

N H

Q

U

A018

N

Ph H CO2Et

H OH

O

-H+ +H+ E

EtO

N

H Ph CO2Et

EtO2C F

Ph CO2Et

Allen, C. F. H.: Spangler, F. W. Org. Synth., Coll. Vol.

1955, 37


Knoevenagel condensation

A: Addition of piperidine to the aldehyde. B: Proton transfer followed

byelimination of hydroxide ion to form an iminium ion. C: Deprotonation of a malonate to form an enolate ( pKa RO2CCH2CO2R = 13, H2O = 15.7). D: Addition of the enelate to the iminium ion. E: Profonation of the amine and deprotonation of the malonate. F: Elimination of piperidine.

O N H

O H O

Me

N H

O O

Me

B

O

N

HO OH O

-H

M

OAc

N

Q

Ph

D

ẠY

+H+ F

U

O O

Me

N

H

Ph

OAc H

N

Ph

E

OAc

O

H2O

O

Me

H2O

N Ph

O

+

-H

+H+

Me

OAc O C Ph

Me

Ph

N

O

Y

O

+

Me

O

O

O

N

D

H

O Me

Ơ

Ph

N

O

H

Me

C

O Me

A

O

O

OAc H

N

Me

O

O

O

Me

O

O Me -AcOH

O

FF

Me

O

OAc

O

Me

O

N H

O

Me

O

IC IA L

A019

N H

N Ph

OH OH

Ph O Me

Ph

H O C

N H

Me

acetone reflux

O O

N H

OH O

Ph N OAc

Herbst, R. M.; Shemin, D. Org Synth., Coll, Vol.

1943, 1

A: formation of a mixed anhydride. B: Intramolecular attack of the amide oxygen to the mixed anhydride to form an azlactone.

C: Facile deprotonation of the azlactone (aromatization).

D:

Addition the enolate to an aldehyde followed by acetylation. E: Deprotonation followed by elimination of an enolate anion. F: Hydrolysis of the azlactone


A020

H

Ph

A

O

O

OH

Ph

O

H

Ph

O

OH

Ph

Ph

Ph

B

Ph

Ph

Ph

OH

H O C

H H

D

Ph

Ph H

OH

O

O C Ph

C

O

H

HO

H OH

O

FF

Ph

O

OH

IC IA L

O

1941, 78

N

Kohler, E. P.; Chadwell, H. M. Org. Synth., Coll Vol.

Aldol reaction. A: Deprotonation of the ketone to form an enolate. B: Attack of the enolate to an C: Protonation and deprotonation followed by elimination of a h ydroxy ion. D: Newman

Ơ

aldhyde

U

Y

N

H

projection.

M

CO2Et H

Q

A021

O OEt

A

OEt O

B

H

OEt

ẠY

O

D

D

O H CO2Et

O

OEt

C

CO2Et

OEt

O CO2Et

H3O+

O CO2Et

Schaefer, J. P.; Bloomfield, J. J. Org. React. 1967, 15 14

Dieckmann condensation. A: Deprotonation of the ester to form an enolate. B: Intramolecular

addition of the enolate to the other ester, C: Elimination of ethoxide ion. D: pKa RCOCH2CO2R = 18. EtOH = 16.


A022 H O N

O

O N

Ac2O

Me

O

N

Me

O

D

O H

Me

O

FF

C

H O

N

aq HCl Me

Me

N

OAc

OH Me

F

H

O

H

-2H+

Me

N

O

+H+

HO

Me

H

N

H

O Me

Q

U

G

HO

H

Y

H N H O

N

H

Ơ

E

H2O

O

N

N

OH

H

+H+ B

A

N

N

HO N

-H+

IC IA L

N H

M

O

H

O

O Me

-H+

O Me

Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207.

ẠY

Stork enamine reaction. A: Addition of p yrrolidine to the ketone. B: Proton transfer followed by elimination of hydroxide ion. C: Deprotonation to form an enamine. D: Attack of the enamine to

D

acetic anhydride. E: Deprotonation to form a vinylogous amide. F: Protonation of the vinylogous amide. G: Addition of water to the resulting iminium ion. H: Proton transfer followed by elimination of

pyrrolidine.


A023

EtO

OEt

EtO

OEt

EtO

Br

n-C6H13

O

OH OEt

O

O

O

HO

D

R

+H+ E

R

O

OH

R

O

-H+

H

Ơ

HO

OH -CO2

OH

O

O

O

aq KOH

HO

+H+

R

H

H

work up O

R

O

O

R O

O

O

EtO

R

O

EtO

O

OH OEt

EtO

C

R

O

O OEt n-C7H15

B

On-Bu

O

O

O

A

H

O

O

FF

EtO

O

IC IA L

O

N

O

HO n-C7H15

H

Reid, E. E.; Ruhoff, J. R. Org. Synth., Coll. Vol

1943, 474.

N

A: Deprotonation of the malonate to form an enolate ( pKa ROH = 16, RO2CCH2CO2R = 13). B: Attack of the enolate to an alkyl bromide. C: Hydrolysis of the esters. D: Decarboxylation through a

A024

M

Q

U

Y

six-membered transition state. E: Tautomerization.

O

H

OH

OH H -H

Me

+

Br Br

ẠY

A Br

D

Br

O

H

Br

Br O Br

-HBr

Br

B Br

Br Langley, W. D. Org. Synth., Coll. Vol.

A: Acid-catalyzed formation of an enol. B: Bromination of the electron-rich enol.

1941, 127


A025 Cl P

Cl PCl2 R

OPCl2

H

O

R

Cl O R

OH

OH

Cl OH

Cl

H

R

OH

R

-HCl

OH

C

Br

Br

H2O

O

Br

HO Cl

-H+

A

+H+

FF

Cl Cl

R

Br Br

B

H2O

Cl

-HBr

OH

OH

R

O

Br

N

Cl

O P

R

O

R

Cl

IC IA L

Cl

O

Formattion of an electron-rich enol followed by bromination. C: Hydrolysis of the acid chloride.

N

24.

A: Formation of an acid chloride. B: pKa CH3COCl = 16, CH 3CO2R =

H

Hell-Volhard-Zelinsky reactlon

Me

Q

H

H

H

O

N

O

I

R

ẠY

I

I

O

R

M

HO

H

U

O Me

Y

A026

I

O

NaOH

O OH I

R

EtOH-H2O

I

I

R

O

I

R

A

I

B

I

R I

I

C

HO O Me

O

D

1941, 115

Ơ

Clarke, H. T.; Taylor, E. R. Org. Synth., Coll. Vol.

H

I

O

-CHI3

I I

R

workup O

Me

+H+

H

OH

H H

HO Bergmann, E. D.; Rabinovitz, M.; Levinson, Z. H. J. Am. Chem. Soc. 1959, 81, 1239. Idioform reaction. A Elimination of an iodoform anion.

-position of the ketone. B: Addition of hydroxide ion. C:


A027 EtOH

Et

-H+

-B Me

O

Et

O

r-

Br

A

H O

O

Br

OEt

OEt

Br

Br HOEt

O

H

OEt Br

O Me

-AcOH

Me

O

-H+

Et

O H

D

O

H O

B

Br

Me

O

C

Et

+H+

Br

Me

O

O

IC IA L

O

FF

Br Br

OEt

O

McElvain, S. M.; Kundiger, D, Org. Synth., Coll. Vol.

C: Proton transfer followed by

N

A: Bromination of the electron-rich enol ester. B: Addition of EtOH.

1955, 123

A028 H BH2 A

n-Bu

B R R

U O OH

B

M

aq H2O2

R

Q

NaOH

RO B OR RO

C6H13 B C6H13 C6H13

A

Y

n-Bu

n-Bu

BH2

N

H

H

Ơ

elimination of AcOH. D: Addition of EtOH.

R O OH -OH B R R C

RO B R R

aq NaOH Me

D

OH 1988, 919

Kono, H.;Hooz, J Org. Synth., Coll, Vol,

ẠY

A: H ydroboration through a four-membered transition state. B: Attack of a h ydroperoxide anion to the

D

borane to form an ate complex, C: Migration of an alkyl group. D: Hydrolysis of the borate.

A029 O O O

OAc

O

C10H21 A OBn

O

R

H

H

O B

O

O

O R


Me2S

C

O

Me2S

O

O

O

O

O R

D

R

Me S Me O

Me2S

O

R

OAc

H +

C10H21

OHC

+ H

O

O

IC IA L

O

OBn

Ko, K.-Y.; Eliel, E. L. J Org. Chem. 1986, 51, 5353

A: 1,3-Dipolar cycIoaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozenide. C:

D: Reductive

FF

Recombination of the resulting 1,3-dipole and the aldehyde to form an ozonide.

O

cleavage of the O-O bond of the ozonide with Me 2S.

N

A030

Me

H Me

A

Me

Me H

O O

O OH

Me

OH

O

O Me Me O

Me

Q

O

O

U

O

B

Me Me O

Y

Me Me -H+

OH

Me Me

N

HO

O

H

Me

Me O

Ơ

Me

McCloskey, A. L.; Fonken, G. S.; Kluiber, R. W.; Johnson, W. S. Org. Synth., Coll. Vol

1963, 261.

ẠY

esterication.

M

A: Protonation of isobutylene to form a stable tertiary carbocation. B: Attack of a carboxylic acid to the

D

A031

Me

OAc Hg OAc

H2O

A

Me Hg OAc

OH Me Hg OAc


OH Me

NaBH4

OH Me B

Hg OAc

OH Me

Hg H

C

R

Hg

HO Me

OH Me

-Hg

H

OH Me D

Hg

IC IA L

H

Jerkunica, J. M.; Traylor, T. G. Org. Synth., Coll. Vol.

1988, 766.

FF

A :Oxymercuration of the olefin. B: Reduction with NaBH 4 to form a Hg-H bond. C: Cleavage of the

Hg-H bond followed by extrusion of Hg to form a secondary carbon radical. D: Abstraction of a

Ơ

N

O

Hydrogen atom.

H

A032

N

OTf Hg OTf

HgOTf H2O

Q

U

Y

A

M

+H+ B

OTf

-Hg(OTf )2

KÈ D

ẠY

H

O

Hg

H

OTf

C

H +H+

O HgOTf

OH

-H+ +H+

O Me

Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 12.

A: Oxymercuration of the alkyne.

Hg(OTf)2.

-H+

HgOTf

HO

-H+

B: Tautomerization of the enol. C: Demercuration to regenerate


A033 MeO

MeO -H+

NH2

MeO

MeO

+H+

-H2O

NH

MeO

N

MeO

A

HO

I

O

CF3CO2H

MeO NH

MeO

+H+

MeO NH

MeO B

I

I

NH

MeO

H

I

FF

MeO

IC IA L

I

I

O

Whaley, W. M.; Go vindachari, T. R. Org, React. 1951, 6, 151.

N

Pictet-Spengler reaction. A: Formation of an imine. B: Addition of an electron-rich aromatic ring to

H

Ơ

the iminium ion followed by aromatization.

N

A034 MeO Me

HN

MeO

Y

MeO

U

A

HN

MeO

Q

O Cl Cl Cl P O

MeO

M

MeO

Me Cl Cl O Cl P O

HN

ẠY

MeO

D

MeO

HN

MeO

Cl

C

Me

MeO N

MeO

Cl Me

MeO N

B

Me

MeO

D

-H+

Cl Me Cl O Cl P O

E

MeO

MeO N H

N

MeO

Me

Me

Brossi, A: Dolan, L. A.; Teitel, S. Org. Synth., Coll Vol. Bischler-Napieralski reaction. A: Attack of the o xygen atom of the amide to POCl 3.

1988 1

B: Addition of

chloride ion followed by elimination of dichlorophosphate ion. C: Deprotonation. D: Elimination of chloride ion to form a nitrilium ion. E: Attack of an electron-rich aromatic ring to the nitrilium ion.


A035

H

HO

Cl Cl Cl

A

O

Cl C Cl

H

O

OH

C B

H OH O CCl2

H

OH

O

CHCl2

O

O

H

E

OH

Cl

O

F

O

OH

OH O

H

H

Cl

workup +H+

H

N

G

O

Cl

D

C

Cl

FF

H

O

O

Cl Cl

IC IA L

Cl Cl Cl

reaction.

A: Deprotonation

of CHCl 3

-elimination

to

form di-

H

Reimer-Tiemann

Ơ

Wynberg, H.; Meijer, E. W. Org. React. 1982, 28, 1.

chlorocarbene ( pKa CHCl 3 = 13.6, H2O = 15.7). B: Formation of phenoxide ion ( pKa PhOH = 10).

N

C: Attack of the phenoxide ion to dichlorocarbene. D: Protonation. E: Aromatization. F: Elimination of chloride ion helped by the o xygen lone pair of the phenoxide ion. G: Conjugate addition of

U

Y

hydroxide ion. H: Elimination of chloride ion.

H2C CH2

Q

A036

O

A

C

MeO

O O MeO

B

MeO

O

H2C

O MeO

H

D

ẠY

MeO

M

Cl AlCl3 -AlCl4-

or

H2C CH2 Cl AlCl3 -AlCl4-

MeO

O

A

O O MeO

B

MeO

H2C


O O D

E

MeO

MeO

O MeO

H

Sims, J. J.; Selman, L. H.; Cadogan, M. Org. Synth, Coll. Vol.

1988, 744

IC IA L

Intramolecular Friedel-Crafts acylation. A: Formation of an acylium ion. B: Addition of ethylene to

the aeylium ion. C: Attack of the aromatic ring to the resulting primary carbocatian. D: Attack of the aromatic ring at the para position of the methoxy group to the primary carbocation. E: 1,2-Alkyl shift.

H

O

NH2

HCl

O

H N

+H+ C

CO2H

N

OH -H+

+H+

CO2H

N

N

H N

OH

N

N

U

D NMe2

Q

CO2H

OH

H2 N

N

O

B

CO2H

O

-H+

N

N

N

N

Ơ

H2O

O

H

A H

O

N

O

N

O

N

OH2

CO2H NMe2 N

N

H CO2H

N

CO2H

NMe2

Y

HO

N

FF

A037

E OH2

N

CO2H

Clarke, H. T.; Kimer, W. R. Org. Synth., Coll. Vol.

1941, 3. 4,

M

A: Formation of nitrous anhydride. B: Addition of the aniline to nitrous anhydride. C: Proton transfers fallowed by elimination of water to form a diazonium salt. D: Addition of electron-rich dimethylaniline

to the diazonium salt. E: Aromatization.

A038

D

ẠY

Na/NH3

e

H OEt Me

Me

Me

Me

Me

A Me

B


H H Me

Me

Me

Me

Me

Me

Me > C

Me

Me

Me

Me

FF

Me

IC IA L

H OEt

e

Paquette, L. A.; Barrett, J. H. Org. Synth., Coll. Vol.

1973, 467.

Birch reduction. A: Single electron transfer (SET) from Na to the aromatic ring to form a radical anion.

Ơ

N

O

B: Protonation. C: More substituted olefins are formed because alkyl groups destabilize a carbanion.

OMe O

H

A039 OMe O H

OMe O

N

O

NH2

O

Y

H NH2

U Q C7H15Br

ẠY

CO2H C7H15

H

O

H2O

CO2H C7H15

E

O CO2H C7H15

-H+

H

O

O O C7H15

e

H CO2 C7H15

D

OMe

D

H

C6H13 Br

OMe

H H

OMe CO2

C

O B

OMe

M

CO2

O

A

e

OMe

OMe O

-H+ +H+ F

H HO O Me CO2H C7H15

H -H+ +H+ I

H

G

O C7H15

H

H3O+

C7H15


Taber, D. F.; Gunn, B. P.; Chiu, I.-C. Org. Synth., Coll Vol Birch reduction

1983, 249.

A: Single electron transfer (SET) to form a radical stabilized by the carboxylate. B:

Protonation of the radical anion, C: SET to form a dianion species. D: Alkylation of the dianionic species. E: Protonation of the electron-rich enol ether. F: Addition of water followed by proton transfer. G: Elimination of MeOH. H: Decarboxylation through a six-membered transition state.

IC IA L

I: Tautomerization.

A040 Na H

O O

A

OMe

O

MeO

F

O

H

MeO

FF

O

O N

OMe

C

N

F MeO2C

H

O N

O B

Ơ

N

O

O MeO2C

O N

CO2Me

Y

CO2Me

U

Selvakumar, N.; Reddy, B. Y.; Azhagan, A. M.; Khera, M. K.; Babu, J. M.; Iqbal, J

Q

Tetrahedron Lett. 2003, 44, 7065

A: Deprotonation of the malonate to form an enolate ( pKa RO2CCH2CO2R = 13, H2 = 35), B:

M

Nucleophilic addition of the enolate to the electron-deficient aromatic ring. C: Elimination of fluoride

ẠY

ion.

D

A041

Br Me

Me

H O

P Br

Br

Me A

Me Br

H O

Me P Br

Br B

Me

Noller, C. R.; Dinsmore, R. Org. Synth., Coll. Vol. A: Attack of the alcohol to PBr3.

B: SN2 reaction.

Br

1943, 358


A042

O OH

O

A

OH Cr OH O

OH r C OH O

H

-H2O

O

B

H

+H+

H2O

O

O

Cr

O

Cr

O

OH

O OH

O C

OH

IC IA L

Cr O

FF

O

1973, 310.

B:Attack of the alcohol to H2CrO4. C: Elimination of H2CrO3.

Ơ

N

Jones oxidation. A: Hydration of CrO3.

O

Eisenbraun, E. J. Org. Synth., Coll. Vol

A043

N Y

O

Me

U

Me

O S

Cl

O Me

-CO2 -CO

Cl Cl S Me Me

A

Cl

Q

Me

O

Cl

Cl O S

H

O

M

Cl Cl S Me Me R

ẠY

O H

D

C

H R

B

CH3 S Me O

H

Me Me S O Cl

-HCl R

O

S

Me

H

-Me2S D

R

NEt3

R

O

LeopoLd, E. J. Org. Synth., Coll. Vol.

1990, 258.

Swern Oxidation. A: Attack of D MSO to (COCl)2 to form a chlorosulfonium ion with generation of CO and CO2.

B: Attack of an alcohol to the chlorosulfonium ion. C: Formation of a sulfur ylide. D:

-Elimination of Me 2S.


A044

O

O

H O

O

H O O O I O O R

HO R

O

O O HO I O HO O

-H+ +H+

R

Me Me Me Me

O

O O I O O

O A

2

B R

H

O H

O

R

R

O

FF

-H2O

R

IC IA L

HO

O O I O O

Me Me

O

Schmid, C. R.; Bryant, J. D. Org. Synth., Coll. Vol

1995, 450

N

A: Formation of a cyclic intermediate. B: Cleavage of the C-C bond to form two molecules of the

Ơ

aldehyde,

H

A045 CO2Et N N

A

B

Y

EtO2C

CO2Et O N N H Ph3P O

N

EtO2C

Q

U

Ph3P

M

EtO2C CO2Et N NH Me Ph3P

D

ẠY

O H

Ph3P

EtO2C CO2Et N NH Me

CO2Et

C

Ph3P

O Me O

O

O H

EtO2C CO2Et - HN NH

CO2Et

Me

O - Ph3P O

O

CO2Et

CO2Et

Mitsunobu, O. Synthesis 1981 1 Mitsunobu reaction. A: Conjugate addition of Ph 3P to DEAD to form a zwitter ion. B: Deprotonation to the most acidic proton in the reaction system. C: Attack of the alcohol to the activated reagent followed by deprotonation. D: Attack of the carboxylate with inversion of configuration.


A046 Br

Br

O H

A

Me Me

Br

Me H Me O H

IC IA L

Me Me

Me

Me

Br

B

Br

C

H

FF

Zhong, G.-F.; Schlosser, M. Synlett. 1994, 173

Wanger-Meerwein rearrangement. A: Protonation of the alcohol. B: Elimination of water assisted by

O

cleavage of the C-C bond to form a stable tertiary carbocation C: Deprotonation to form an olefin.

H

H

H

-H2O

N

A

OH

O

H

HO

Ơ

N

A047

OH

OH

Y

-H+

U

B

O

Q

OH

M

Walter, C. R., Jr. J. Am. Chem. Soc. 1952, 74, 5185.

pinacol rearangement. A: Protonation of the alcohol followed by elimination of water to form a tertiary

center. B: 1,2-Alkyl shift helped by the oxygen lone pair of the hydroxy group.

D

ẠY

A048

Me

Me

Me

Me A

O

Me B

O H

H

O H

Me

Me +

-H D

C Me

H OH

Me OH

Me


Waring, A J.; Zaidi, J. H.; Pilkington, J. W. J. Chem. Soc., Perkin Trans.

1981, 1454.

Dienone-phenol rearrangement. A: Protonation of the ketone. B: 1,2-Alkyl shift to form a stable tertiary carbocation. C: 1,2-Alkyl shift to form a stable tertiary carbocation. D: Aromatization by

A049 Me

Me

Me Me

A OH

Me Me

C Ph

H

-H+

Ph

Me Me

Me

O N

Ph

H

C

N

N C Ph

N

O

B

O

Me

OH N

Me Me

OH2

Me

Me Me

OH

Ơ

Me Me

OH

FF

OH

Me

IC IA L

deprotonation.

Tillmanns, E.-J.; Ritter, J. J. J. Org. Chem. 1957, 22, 839

N

Ritter reaction. A: Protonation of the tertiary alcohol followed by elimination of water to form a more stable tertiary carbocation.

B: Attack of PhCN to the carbocation to form a nitrilium ion.

C

Q

U

Y

Intramolecular addition of the hydroxy group to the nitrilium ion.

M

A050 Me

Me

N N

NC

Me

ẠY

Me

CN

-N2 A

H

Me H SnBu3

NC Me

B Bu3Sn

H

O

H

O

Br

H

O

D

D

C

H

H

Bu3Sn H Hamon, D. P. G.; Richards, K. R. Aust. J. Chem. 1953, 36, 2243 A: Thermal decomposition of AIBN to gi ve the stable tertiary radicals. B: Abstraction of a hydrogen atom from Bu 3SnH. C: The resulting tin radical reacts with a halide to form a carbon radical. D: Abstraction of a hydrogen atom from Bu 3SnH to continue the radical chain reaction.


A051

H

O

S I CH3

H

A

O

Bu3Sn

S O

H Ph

Bu3SnH

H

N

S

MeS

H

N O

O

O

H

H Ph

N O

H

F

H

E N O

H Ph

N

H Ph

O

H Ph

O

Bu3Sn H

Bu3Sn

D

AIBN C

N

O

S

MeS

H

H Ph

N

MeS

B

N

H Ph

H

Ơ

H Ph

N

O

IC IA L

O

FF

H

S

S C S

O

H

N O

Y

Comins, D, L.; Abdullah, A. H. Tetrahedron Lett. 1985, 26, 43.

U

Barton-McCombie deoxygenation. A: Deprotonation of an alcohol. B: Addition of the alkoxide ion to

Q

CS2 followed by methylation to form a xanthate. C: Generation of a tin radical. D: Attack of the radical to the sulfur atom of the xanthate to form a stable carbon radical. E: Cleavage of the C-O bond

M

to form a secondary carbon radical. F: Abstraction of a hydrogen from Bu 3SnH.

A052

O

D

ẠY

N H

O

B

O

N

A

N

B Cl

O

O O H2N NH2

H2NNH2 N Ph O

O O +

-H

+H+ C

O

NH NH2 NH Ph

-H+ +H+ D


O

O NH NH NH2

O

NH NH

H2N

+

O

Ph Manske, R. H. F. Org. Synth., Coll. Vol.

1943, 83.

IC IA L

Gabriel synthesis. A: pKa RCONHCOR = 9.6,

HCO3-

= 10.3. B: Afkylation, C: Addition of H 2NNH2

to the imide to form a hydrazide. D: Intramolecular addition of the amino group of the hydrazide to the

FF

amide carbonyl to release benzylamine.

A053

H

O

H

OH2

-H+

NH2

HN

N Me

aq H2O2

-CO2 B

N Me D

O NMe2

H

O NMe2 E

M

Q

OH H O NMe2

U

Y

C

O

HO OH

Me

N

HN Me

H

Me

H

HN CH2

Ơ

N

+H+ A

-H2O

O

O

H

Cope, A, C.; Bumgardner, C. L.; Schweizer. E. E. J. Am. Chem. Soc. 1957, 79, 4729

Eschweiler-Clarke methylation (A-C)and Cope elimination (E). A: Addition of the amine to formaldehyde followed by dehydration to form an immium ion. B: Hydride transfer from a formate and

ẠY

to the iminium ion with generation of CO2.

C: Iteration of the same steps. D: Oxidation of the tertral

amine to form an N-oxide. E: syn-Elimination.

D

A054


H

H

O

Cl

O O -H+

O OH

A

O H O

B

O O

O

O O

C

IC IA L

Cl

+

HO

FF

Cl

Krow, G. R. Org. React. 1993, 43, 251.

O

Baeyer-Villiger oxidation. A: Acti vation of the carbonyl group by protonation. B: Addition of mCPBA

N

to the carbonyl group. C: 1,2-Alkyl shift helped by the o xygen tone-pair with cleavage of the peroxide

Ơ

to form a lactone.

H

OH

N

OH2

Y

N

N

H

A055

OH

N B O

-H+

N

M

-H+

Q

U

A

H2O

HN

+H+

Eck, J. C.; Marvel, C. S. Org. Synth., Coll. Vol.

1943, 76.

Beckmann rearrangement. A: Protonation of the oxime. B: Migration of the alkyl substituent with

ẠY

simultaneous cleavage of the N-O bond.

D

A056

O

O H

O H

A O H

OH

B O

O OH

H O OH O

C


O H

O

O D O

O

OH

workup

O

+H+

E

O

OH

O

OH

Dakin. H. D. Org. Synth., Coll. Vol.

1941, 149.

IC IA L

Dakin reaction. A: Deprotonation of the phenol ( pKa PhOH = 10, H2O = 15.7). B: Addition of

hydroperoxide ion to the carbonyl group. C: Attack of the electron-rich aromatic ring to the peroxide oxygen with cleavage of the O-O bond to form an epoxide. D: Cleavage of the epoxide to restore the

FF

aromaticity, E: Hydrolysis of the resulting formate.

A057 O

O

MeO

A

Ar

NH

Ar

D

Y

O H

Ar

Cl OH

HO H Ar

E

OH

N

O OH

H OH -CO2 O

H N

MeO

NH2

F

O

OH

Q

O

N H

N

Ar

U

Ar

N Cl

H N

O C N

Ar

B

H

O C

O

OH

H

N

N H

Cl OH

Ơ

MeO

O

MeO

Buck. J. S.; Ide, W. S. Org. Synth., Coll. Vol.

M

1943, 44

Hofmann rearrangement. A: pKa RCONH 2 = 17, H2O = 15.7. B: Chlorination of the amide anion.

C: Deprotonation. D: The anion on the nitrogen atom induces migration of the aromatic ring with cleavage of the N-Cl bond to form an isocyanate.

E: Addition of hydroxide ion to the isocyanate. F:

ẠY

Decarboxylation.

D

A058

O Ph

O

O O H

NEt3

Ph A

O

Cl

O OEt

Ph

O O

OEt Cl


O

N

N O N Ph

O

Ph

O

OEt

O O

OEt

B

O Ph

O Ph

N N N

-N2

N N N

Ph

C

IC IA L

N N N

N

O

C

1988, 910.

FF

Kaiser, C.; Weinstock, J. Org. Synth., Coll. Vol

Curtius rearrangement. A: Formation of a mixed anhydride. B: Addition of azide ion to the mixed anhydride occurs at the more electron-deficient carbonyl group to form an acyl a zide. C: Migration of

O

the carbon atom to the nitrogen proceeds with retention of configuration as N 2, an extremely good

Ơ

N

leaving group, departs from the molecule.

Me O H

N N

Me O

H

A H

Y

H

-H+ H H

H

Me

-H+

Me

O C H2O

H

CO2H

H

+

+H

H

H

H

HO

+H C

OH

M

+

H

HO

Q

Me

H

H

B

U

HO

Me

N

Me

-N2

H

A059

Wheeler, T. N.; Meinwald, J. Org. Synth., Coll. Vol

1988, 840.

Wolff rearrangement. A: Photo-induced generation of a carbene. B: Insertion of the carbene to the

ẠY

C-C bond results in a ring contraction to form a ketene. C: Addition of water to the ketene.

D

A060

O MeO

H

O Cl

O Cl

A

OMe B


O OMe

OMe H

O

OMe D

C

Goheen, D. W.; Vaughan, W. R. Org. Synth., Coll. Vol

1963, 594.

Favorskii rearrangement. A: Deprotonation to form an enolate. B: Formation of a cyclopropanone.

IC IA L

C: Addition of methoxide ion to the carbonyl group. D: Cleavage of the cyclopropane ring with simultaneous protonation.

MeLi Me

A

Br Br

Br Br

B

Br Br

O

Ot-Bu

N

H

Br Br Br

Br

C

D

E

Ơ

Br Br Br

FF

A061

H

Skattebel, L,; Solomon, S. Org. Synth., Coll. Vol. A: Generation of a dibromocarben

N

-elimination of HBr,

A

1973, 306,

B: Insertion of the carbene to the olefin

toform a cyclopropane. C: Halogen-lithium exchange. D: Generation of a carbene. E: Insertion of

Q

U

Y

the carbene to the C-C bond to form an allene.

A062 H

M

B

O

O

O OMe

Br

OMe A

O

D

ẠY

OMe

O OMe A

H

OH - + OMe H +H+ B

Allen, C. F. H; Gates, J. W., Jr, Org. Synth., Coll. Vol. A: Allylation of the phenol. Aromatization.

OMe

1955, 418

B: [3,3] Sigmatropic rearrangement (Claisen rearrangement).

C:


A063 H O

+H+

O

A

H O B

IC IA L

O

H -H+ O

O

O

D

C

1973.25

FF

Howard, W. L.; Lorette, N. B. Org, Synth., CoIl Vol.

A: Protonation of an oxygen atom of the acetal. B: Elimination of allyl alcohol helped by the oxygen lone pair of the acetal. C: Deprotonation to form an enol ether. D: [3,3] Sigmatroplc rearrangement

N

O

(Claisen rearrangement).

Ơ

A064 O

H

CO2Me

O

O

N

A CO2Me

B CO2Me

CO2Me

Y

O

CO2Me

CO2Me

U

Ziegler, T,; Layh, M.; Effenberger, F. Chem. Ber. 1987, 120, 1347.

M

Q

A: Diels-Alder reaction. B: Retro Diels-Alder reaction.

A065

O

O

H

ẠY

Ph

D

A

NH OH

N O

Ph

Ph

N H OH

Ph Ph H

OH

N O

OH

-H+ +H+ B

Ph

Ph

N OH

Ph

Ph Ph

Ph Ph

N O

-H2O

Ph C

Ph N O Ph

Brüning, I.; Grashey, R.; Hauck, H.; Huisgen, R.; Seidl, H, Org. Synth., Coll. Vol.

1973, 1124

A: Addition of a hydro xylamine to the aldehyde. B: Proton transfer followed by elimination of water to form a nitrone cycloaddition).

C: 1,3-Dipolar cycloaddition of the nitrone to stvrene (electronically, [4+2]


A066 Cl O H

O H

A

O

-HCl

O

B

C

or Cl

Cl OH

OH

A

D

-HCl E

O

FF

O H

Cl

IC IA L

Cl

Schiess, P.; Barve, P. V.; Dussy, F E.; Pfiffner, A. Org. Synth., Coll. Vol. A: Isoerization to form an o-quinodimethane.

B: Elimination of HCl to form a ketene.

N O

N

O

O

H

O H

Ơ

A067

O

U

Y

O

M

A068

ẠY D

Rondestvedt, C. S., Jr. Org. Synth., Coll. Vol. /V 1963, 766

Q

Ene reaction.

OH H Se O OH

C: 4e

O

Elimination of hydrogen chloride to form a ketone.

Me

1998, 28.

Me

H2O + O Se O

Me

HCl OAc

HO Se O HO

Me

-H2O

Me

R

A HO

Se OH OH

R O

Se

OH


Me

Me

O

O

O Se

Me OAc

R

C

Se OH

Me

O Ot-Bu H

OH

H O Se

D

O

Se

IC IA L

R

B

Me

-Se O

O H

O Se O Ot-Bu

Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526. B: [2,3] Sigmatropic rearrangement.

C:

FF

A: Ene reaction occurs on the least hindered olefin.

Elimination of the alcohol. D: Oxidation of SeO with TBHP to regenerate SeO2.

PPh3 CH2

O PPh3

O PPh3 - Ph P O 3

Ơ

O

N

O

A069

B

C

H

A

CH2

N

Wittig, G.; Schoellkopf, U. Org. Synth., Coll. Vol

1973, 751.

Wittig reaction. A: Addition of the ylide to the carbonyl group to form a betaine. B: Attack of the

U

Y

alkoxide to the phosphonium cation to form an oxaphosphetane. C: Irreversible elimination of Ph 3PO.

Q

A070 O

M

Br

Br Me

OEt

A

O (EtO)2P

O

-EtBr OEt

B

O (EtO)2P

O OEt

P(OEt)3

van der Klei, A.; de Jong, R. L. P.; Lugtenburg, J.; Tielens, A. G. M. Eur. J. Org. Chem. 2002, 3015.

ẠY

Arbuzo v reaction. A: Attack of P(OEt) 3 to the reacti ve bromoacetate to release bromide ion (SN2 reaction). B: Attack of the resulting bromide ion to the ethyl group in an SN2 fashion to form a

D

phosphonate.

A071 O (EtO)2P

O

O (EtO)2P

OEt H

A H Na

O

O O P(OEt2)

OEt O Na

OEt C

B O

OEt O


Wadsworth, W. S., Jr.; Emmons, W. D. Org. Synth., Coll. Vol.

1973, 547.

Horner-Wadsworth-Emmons reaction. A: Deprotonation of the phosphonate. B: Addition of the phosphonate ion to the ketone. C: Attack of the alkoxide to the phosphonate followed by elimination of a phosphate ion to form an olefin.

IC IA L

A072 OH2 H

Cl

H2N H2N

S

N

H2N

A

H

NH CN

S

H2N

H2N

CN

S

H2N

B

Ơ

H OH N S

+

+H

N

OH

workup

CN

H

H2N

+

CN

S OH

N

OH

H

N

O

NaOH

H

N

FF

CN H

CN

S

NH2

H2N

O

+

CN

HS

Gerber, R, E.; Hasbun, C.; Dubenko, L. G.; King, M. F.; Bierer, D. E. Org. Synth., Coll. Vol.

2002, 475

Y

A: Attack of the more reactive sulfur atom of thiourea to the alkyl chloride to form an isothiourea (SN2

Q

U

reaction). B: Hydrolysis of the isothiourea.

Na

M

A073 O

O

H

Me

O

ẠY D

O

HO OH

O Me SePh

B

aq H2O2

PhSe Cl

O Me SePh

O Me

A

Na H

O

O

O Me SePh O H

C

O

O

H

Me SePh O

O D

Me

HO Renga, J. M: Reich, H. J. Org. Synth., Coll. Vol.

A

O

-diketone ( pKa RCOCH 2COR = 9, H2 = 35). B

C: Oxidation of the selenide to form a selenoxide. D

-Elimination.

1988.23 -position.


A074 BrMgO

O MgBr

SiMe3

OH SiMe3

workup +H+

A

H2C SiMe3

O

NaH

H

Na

H SiMe3

O

SiMe3

IC IA L

Na

-Me3SiO-

B

C

FF

Ager, D. J. Org. React. 1990, 38, 1.

Peterson olefination. A: Addition of Me3SiCH2MgBr to the ketone. B: Exchange of the counter cation from Mg to Na. C: Elimination of a silanol ion via a four-membered transition state.

A

N

B

CO2Me

U

Me Br

Me

Me

E

Me

Me CO2Me

Pd(0)Ln

H

Me

D

ẠY

Me

M

D

Me

PdLn

Q

Me

-Elimination. C: Reductive

N Me Br

Y

Me

Pd(0)Ln

C

Reduction of Pd(OAc) 2 to Pd(0) using Et3N. A: Ligand exchange. B elimination of AcOH.

-AcOH

AcO Pd H

H

Et3N

NEt2

Ơ

Me H AcO Pd NEt2

AcO Pd OAc

Me

H

H

O

A075

PdLn Br

Me Me

Me

F CO2Me

G HBr

Br H PdLn Me

Me


Patel, B. A.; Ziegler, C. B.; Cortese, N. A.; Plevyak, J. E.; Zebovitz, T. C. Terpko, M.; Heck, R. F. J. Org. Chem. 1977, 42, 3903. Heck reaction. D: Oxidative addition. E: Carbopalladation. F

-Elimination to form the product. G:

Reductive elimination of HBr.

Pd(OAc)2 + 2Ph3P

AcO

OAc

AcO

Pd Ph3P

IC IA L

A076 OAc

AcO

Pd PPh3

Ph3P

PPh3

Ph3P

Ơ

Reduction of Pd(OAc)2 to Pd(0) using Ph 3P.

OH

(HO)3B

H

(HO)2B

N

Activation of boronic acid,

Br

U

Y

OHC

O PPh3 Ph3P Pd(0) + Ac2O

O

Ph3P

O O Pd PPh3

N

AcO

PPh3

FF

Me OAc AcO Pd PPh3 Ph3P

OAc

Pd

M

Q

A

ẠY

Pd(0)Ln

D

OHC

OHC

B

C OHC

Br PdLn

(HO)3B

PdLn

BrB(OH)3 Huff, B. E.; Koenig, T. M.; Mitchell, D.; Staszak, M. A. Org. Synth., CoIl Vol.

2002, 122

Suzuki-Mi yaura coupling. A: Oxidative addition. B: Transmetallation. C: Reductive elimination.


A077 O

2HCl + 1/2O2 H2O

PdCl2

2CuCl2 D

IC IA L

2CuCl

A

Cl

FF

O

C

N

O

Pd(0)

O

O

Cl H

B

Ơ

O

H

Pd

H

Pd Cl

H

Me

N

O

H

O

Tsuji, J.; Shimizu, I.; Yamamoto, K. Tetrahedron Lett. 1976, 34, 2975.

Y

Wacker oxidation, A: Olefin complexation. B: Oxypalladation. C: Hydride shift. D: Oxidation of Pd(0) with CuCl 2 to regenerate PdCl 2.

Q

U

E: Oxidation of CuCl with O2 to regenerate CuCl 2.

A078

Boc N

M

Boc N

D

ẠY

LnRu

R

RuLn

A

R

Boc N

- H C RuLn 2

R B

Boc N RuLn

Boc N

D

C RuLn

Ferguson, M. L.; O'Leary, D. J.; Grubbs, R. H. Org. Synth. 2002, 80, 85. Ring closing metathesis (RCM). A: C ycloaddition of a ruthenium carbene complex to the olefin to from a metallacyclobutane.

B: Retro cycloaddition.

C: Intramolecular cycloaddition of the ruthenium

carbene complex. D: Retro cycloaddition to regenerate a ruthenium carbene complex.


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


B001 OH -H+

H

OH

NHMe

NH2 +H+ Me

-H+ +H+ A

CHO

H

O

OH2

+H+ N Me

N Me

OH

OH

IC IA L

O

HO2C OH CO2H +

-H

MeN

+H+ B

N Me

O CO2H +H+

MeN

MeN

OH C CO2H

O H O

H

MeN

OH CO2H

H MeN

OH

D

Q

O

N

MeN

-CO2

Y

+H+

O H CO2H

CO2H

U

-H+

O H -CO 2 O D

N

-H+

MeN

Ơ

-H+

-H2O

CO2H

H2O

OH

O

O

-H2O

CO2H

FF

HO2C

-H+

MeN

+H+

O

H

Cope, A. C: Dryden, H. L.: Howell, C. F Org. Synth., Coll. Vol. A: Formation of a cyclic hemiaminal.

B: Mannich

reaction

C:

M

Robinson-Schöpf reaction.

1963, 816

Intramolecular Mannich reaction. D: Decarboxylation through the six-membered transition state.

i-PrO Oi-Pr Al O O Ph Me H Me

Al(Oi-Pr)3

O A

D

ẠY

B002

Ph

O

Al(Oi-Pr)2 H

O Me

Me B

OH aq HCl

Wilds, A. L. Org. React. 1944, 2. Meerwein-Ponndorf-Verley reduction. A: Formation of an ate complex. B: H ydride transfer via a six


membered transition state with formation of acetone.

B003 H

O

NH2NH2

+H+

O

O

-H+

O

N

-H+

N

-H2O

H2N

N H

O H

O

H

H -N2 B

N

A

N

O

+H+

H2N

O

FF

H2O NHNH2

-H+

H HO NHNH2

IC IA L

H

O

OH

Ơ

OH

Wharton rearrangement.

H

Wharton, P. S.: Bohlen, D. H. J. Org. Chem. 1961, 26, 3615. A: Cleavage of the epoxide helped by the nitrogen lone pair of the

Y

N

hydrazone. B: Elimination of N 2 (an extremely good leaving group).

M

HOO

Q

U

B004

ẠY

O

-OHO

A O

ArSO2NHNH2

O

aq K2CO3

O

-H2O

D

HO

N NH SO2Ar

O

-N2 -ArSO2-

D

E N N O

S Ar O

O O

B H N N SO2Ar

O


Reese, C. B.; Sanders, H. P. Synthesis 1981, 276. Eschenmoser fragmentation. A: Michael addition. B: Formation of an epoxide (the O-O bond is activated). C: Formation of a hydrazone. D: pKa HCO3- = 10.3, ArSO 2NH2 = 8.5. E: Fragmentation involving a loss of N2 and a sulfinate ion.

O

O

OH

H CN

H

IC IA L

B005

CN

CN A N

H

O CN

CN

-CNCN

CN

C N

CN

D

N

N

O

O

O

B

N

FF

CN

N

N 1988, 866

Ơ

Stetter, H.; Kuhlmann, H.; Lorenz, G. Org. Synth., Coll Vol.

H

A: Formation of the less favored cyanohydrin carbanion. B: Michael addition. C: Regeneration of the

N

cyanide ion (cyanohydrin is unstable under basic conditions).

Bn H

S

M KÈ

ẠY

HO

D

O

N

Me Bn

Me

O

N

Me

OH

S

O H

Me

O

Bn

S

HO

C

S

O

H

Me Me Bn

O Bn

Me

N S

HO

H

Me

Me

Me

HO

N S

A

NEt3

Bn

Me

N

HO

Me

B

Bn

Me

U

Cl

N

Q

Me HO

Y

B006

O

N O

D

HO

S

+ Me

Me O

Me Stetter, H.; Kuhlmann, H.; Haese, W. Org. Synth., Coll. Vol Stetter reaction. A: pKa thiazolinium ion = 10, (

HNEt3+

1993. 52

= 10.7. B: Generation of a stabilized carbanion

ref B005). C: Michael addition. D: Regeneration of the thiazolinium ion.


B007

O

O Me

O

H

OAc

O

O

Me

A

Me

O

O

O

OAc

H

O

O

Me

C

O

O

H2O

Me

O

Me

-AcOH

O

O

N

O

O

O

O

O

OH

Ơ

D

aq HCl

B

O

AcO

O Me

O

O O Me

O

OAc O

O

O

O

O

H

O

O O

O

O

IC IA L

O

FF

Me

O

O

O

Me

1955, 425.

H

Rajagopalan, S.; Raman, P. V. A. Org. Synth., Coll. Vol.

N

Perkin reaction. A: pKa (CH 3CO)2O = 13.5, AcOH = 4.8 (a small amount of the acetic anhydride anion can be formed).

B: Intramolecular acyl transfer.

C: Formation of a mixed anhydride.

U

Y

Base-catalyzed elimination of acetic acid.

Me

H

O

M

HO

Q

B008

Me

KÈ ẠY

O

O Me

Me O

Me

O

B Me

O

O Me

N H benzene reflux

O Me

MeO H

O

A

O

D

O

O

Me

O

O

-H+ N H

+H+

D:


O Me HO N

Me

O Me C

N

O

O Me

H

N

O

O

O Me

N

O Me

HCl

H

O Me

N

HO N

N

O

H

Y

+H+

-H+

O Me

H2O

Ơ

N

O Me

O Me

H

N

-H+

N

OH

aq HCl

H

FF

H

O Me

O

O

HO

N

N

O Me

IC IA L

OH

1973, 486

U

Ramachandran, S.; Newman, M. S. Org. Synth., Coll. Vol.

Q

Robinson annulation. A: pKa RCOCH 2COR = 9, H2 O = 15.7. B: Michael addition. C: Formation of

B009

M

an enamine followed by an intramolecular addition to the ketone.

O

MeO2C

OMe A

D

ẠY

H

B

MeO2C

OMe

O

O

H

O

Ph Ph H

OMe OMe

Ph

O OMe O

O

H

OMe

Ph H

H

O

O

OMe

O O

Ph OMe O O

O

H CO2Me


O

O OMe O

Ph C

workup +H+

OMe

Ph

CO2H

OMe Johnson, W. S.; Daub, G. H. Org. React. 1951. 6

IC IA L

Stobbe condensation. A: pKa CH3CO2R = 24, MeOH = 15.5. B: Formation of a five-membered lactone. C: Elimination of the carboxylate occurs by avoiding the steric repulsion between the phenyl

B010 Me

A

O OMe

H

Ph

Ph

H3C N N

O

N

Me

-N2

H2C N N

O

H

O

O

Ơ

Ph

B

Me

O

FF

and the methoxycarbonyl groups.

Black, T. H. Aldrichimica Acta 1983, 16, 3

Y

N

A: pKa CH3CO2H = 4.8, CH 3N2 = 10.2. B: The SN2 reaction occurs in a solvent cage.

U

B011

M

O

O

O

OTs

OTs

Q

OTs

ẠY D

O

e

e

Li/NH3

OTs

workup O

+H+

O

O H

Stork, G.; Tsuji, J. J. Am. Chem. Soc. 1961, 83, 2783. Two successive SET reactions followed by cyclopropane formation.


B012 CN Cl

CN A

H

CN B

Cl NH2

H

CN

IC IA L

NH2

CN

FF

H NH2

Skorcz, J. A.; Kaminski, F. E. Org. Synth., Coll. Vol.

1973.263

A: pKa CH 3CN = 25, NH3 = 35. B: Formation of benzyne followed by an intramolecular nucleophilic

N

O

addition.

B013

NH2

N N

N N

H

A

CuCl

Ơ

NaNO2 HCl

U

Y

N

e

CuCl2 B -CuCl D

C

Cl CuCl

Ropp, G. A.; Coyner, E. C. Org. Synth. Coll, Vol

1963. 27

M

Q

Cl

Meerwein arylation. A: Formation of a diazonium salt ( ref A037). B: SET induces a loss of N 2 to form

a phenyl radical. C: Addition of the phenyl radical to butadiene to form a stabilized radical. D:

ẠY

Recycle of CuCl to continue the radical chain reaction.

D

B014

H

Cy N C N Cy A

H O N C N Cy S Cy Me Me

CyHN CyN

Me O S Me Me H

O

Me


Me Me

CyHN

-H+

O +

+

+H B

CyHN

O

S Me

Me

-Me2S

Me H

O

C

Me H

B

Me Me

S

O H

IC IA L

or Me Me

Me

O

H

Me

S CH2 H

C

Me

-Me2S

O

Me

H

FF

B

Tidwell, T. T. Org. React. 1990, 39, 297. Pfitzner-Moffatt o xidation. A: Activation of DCC by protonation. B: Nucleophilic substitution at the -Elimination of dimethyl sulfide might proceed either by 1) direct deprotonation with a

O

sulfur atom. C

Ơ

N

base or 2) formation and collapse of a sulfur ylide.

H

B015 H2O

N

H HO

H

-H2O Br

H

U

Y

A

H

M

H

Q

Br

B

Br

Ferreri, C.; Ambrosone, M. Syn. Commun. 1995, 25, 3351.

A: Generation of a carbocation stabilized by a cyclopropyl group. B: Cleavage of the cyclopropane ring occurs by avoiding the steric repulsion to form the trans -product.

D

ẠY

B016

H

O

OTs

H

O

H

OTs H O

Ot-Bu Wharton, P. S.; Hiegel, G. A. J. Org. Chem. 1965, 30, 3254. Grob fragmentation. This Grob fragmentation can occur when the orbitals of the breaking C-C o-bond and C-

-bond overlap on the same plane (antiperiplanar interaction).


B017 Me Me Me n-Bu3Sn

A

Me Me

I

H

Me Me

Me

B

Me

IC IA L

AIBN

n-Bu3SnH

C H

n-Bu3Sn H H Me Me Me H

H

H Me

H

O

D

Me Me

-n-Bu3Sn

FF

H

H

N

Weinges, K.; Reichert, H.; Huber-Patz, U.; Irngartinger, H. Lieb igs Ann. Chem. 1993, 403. A: Generation of a tin radical ( ref A050). B: Attack on the iodide to initiate the radical chain reaction. 5-exo-dig Radical cyclization.

Ơ

C: 5-exo-trig Radical cyclization. D:

N

H

B018 O

Ph

O

Ph

A

Ph

H CCl3

O

M

Q

U

O O

Y

O

CCl3

B

CCl3

CCl3

CCl3 -CCl3

C Cl3C H Dowbenko, R. Org. Synth., Coll Vol.

1973, 93.

A: Homolytic cleavage of dibenzoyl peroxide. B: Generation of a trichloromethyl radical which then

ẠY

adds to 1,5-cyclooctadiene. C: Transannular radical cyclization.

D

B019

Ph

Cl

Ph N Cl

A Me

O O

Cl

N

Me

O O

Cl

-PhCH2Cl B

N

Me

O O

Cl


-Cl-

MeOH N O

N H

N

C

Cl

O

N

D

OMe

O

O

Me

+H+

HOMe

-CO2

Me

O

Me

O

O

NH HCl

E

IC IA L

reflux

-H+

OH

Yang, B. V.; O'Rourke, D.; Li, J. Synlett. 1993, 195.

A: Acylation of a tertiary amine. B: Attack of chloride ion on the benzylic position. C: E1 elimination

FF

ofthe chloride followed by addition of methanol, D: Elimination of the carbamic acid helped by the oxygen lone pair of the methoxy group. E: Decarboxylation.

O

B020

Me CO2Me

N

C5H11

I

Me

-MeI

CO2Me

B

N

A

H

O

Ơ

Me

N

C5H11

Me Me Si O O

N

Me I Si Me Me O

N

-Me3SiOMe CO2Me

Y

M

C5H11

Me Me Si O O e MeOH M OH N C5H11 CO2Me C Me

U

Me Me Si O O

Q

Me

OH

O

N

CO2Me

ẠY

C5H11

-CO2

H N

C5H11

CO2Me

Laurent, P.; Braekman, J.-C.; Daloze, D. Eur. J. Org. Chem. 2000, 2057.

D

A: Sil ylation of the electron-rich oxygen of the carbamate. B: Demethylation by SN2 reaction. C: Methanolysis of the silyl carbamate.

B021 O

EtO2C N

PdLn O

O

EtO2C N

O

PdLn

A


NHEt2

O

EtO2C N

O Pd Ln

-PdLn -CO2

H

O

EtO2C N

B

Et N Et

+

O

LnPd

EtO2C +

NEt2

IC IA L

NH

Genet, J. P.; Blart, E.; Savignac, M.; Lemeune, S.; Lemaire-Audoire, S.; Bernard, J. M. Synlett 1993, 680.

-allylpalladium complex. B: Attack of Et2

-allylcomplex.

FF

A

Ph

O

B022 Ph

O O O O N S N S Ph

- PhS

Ơ

N

O O O O N S N

O2N

B

H

A

MeO

PhS H

PhS

U

B

Y

N

MeO

Ph

Ph

Q

Ph

M

O S

O

N

H SPh

N

MeO

O S

O H

-SO2

MeO

NH

MeO

ẠY

Kurosawa, W.; Kan, T.; Fukuyama, T. Org. Synth., Coll. Vol.

2004, 482.

A: Addition of a thiolate ion to the electron deficient aromatic ring to form a Meisenheimer complex. B:

D

Elimination of an amidosulfurous acid anion which, upon protonation and extrusion of SO2 , gi ves an amine.

B023 O

O BF3-Et2O

Me Me

O Me

Me Me

O BF3 Me


BF3 O

O A

O B

Me Me

CHO Me

Me Me

Me

Ryerson, G. D.; Wasson, R. L.; House, H. O. Org. Synth., CoIl Vol

1963, 957.

IC IA L

A: Cleavage of the epoxide to form the more stable tertiary carbecation (formation of a carbocation next

FF

to a carbonyl group is unusually difficult). B: Wagner-Meerwein-type rearrangement.

B024

O

H2C N N

B

N

Me N N OH

Ơ

O Me S N A O N O H OH OH

Me

OH H H2C N N

O H2C N N

-N2

N N

N

C

O

H

O

Y

de Boer, T. J.; Backer, H. J. Org. Synth., Coll Vol

1963, 225.

U

A: H ydrolysis of N-methyl-N-nitrososulfonamide. B: Formation of diazomethane. pKa CH3N2 = 10.2,

Q

H 2O = 15.7. C: Addition of diazomethane to a ketone followed by ring expansion (cf. Tiffeneau-

M

Demjanov rearrangement).

B025

D

ẠY

NC

Me CN

Me Me

A

Me Me

Me

NC H CN

B

Kametani, T.; Kondoh, H.; Tsubuki, M.; Honda, T. J. Chem. Soc., Perkin Trans.

Me M H e 1990, 5.

A: 4e Conrotatory electrocyclic reaction to form an o-quinodimethane. B: Intramolecular Diels-Alder

reaction.


B026 FeCl3 O

O

FeCl3

O

FeCl3

A SiMe3

SiMe3

O FeCl3

O FeCl3 B

C

H

SiMe3

O

X

O

H

H

H

Ơ

N

workup

FF

SiMe3

O FeCl3

IC IA L

SiMe3

Jones, T. K.; Denmark, S. E. Helv. Chim. Acta 1983, 66, 2397.

N

Silicon-directed Nazarov reaction. A: Acti vation of the carbonyl group with FeCl 3, a Lewis acid. B: 4e

U

Y

Conrotatory electrocyclic reaction. C: Desilylation to form the olefin regioselectively.

Q

B034

hv 1O 2

A

M

3O 2

O O

ẠY D

O O

1O 2

Et3N

B

O O

O

OH +H+

H Et3N

C O

O Balci, M. Chem. Rev. 1981, 81, 91.

A: Generation of singlet oxygen. endoperoxide.

B: Diels-Alder reaction.

C: Base-induced cleavage of the


B035 hv

O O

1O 2

A

O O

1O 2

O O

Ph3P

B

Ph3P

O

O

- Ph3P O

FF

C PPh3

O

O

IC IA L

3O 2

N

Balci, M. Chem. Rev. 1981, 81, 91

A: Generation of singlet oxygen. B: Diels-Alder reaction. C: Reductive cleavage of the endoperoxide D: Formation of an epoxide via SN2' reaction with elimination of

Ơ

with triphenylphosphine.

Y

N

H

triphenylphosphine oxide.

Br

CrCl2

CrCl2

Me

Ph

KÈ ẠY D

O

H

H OCrCl2

Me H

O CrCl2

A

Me

Ph

Ph

CrCl2

Me

M

Me

Q

U

B041

Ph Me

O CrCl2 OH

workup +H+

B

Ph Me

Okude, Y.; Hirano, S.; Hi yama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.

A: Since CrCl2 is a single electron reductant, two molecules of CrCl 2 are needed to convert an alkyl bromide to the corresponding organochromium species. B: Addition to an aldehyde via a chair-like six-membered transition state.


B042 O n-Bu HRh(CO)L2

A

E O H L2 Rh H CO

H L2 Rh CO

n-Bu B

IC IA L

n-Bu

n-Bu

n-Bu

L2 Rh CO O

D

CO L2 Rh CO

n-Bu L2 Rh CO

H2

C

n-Bu

CO

FF

H

O

Hallman, P. S.; McGarvey, B. R.; Wilkinson, G. J. Chem. Soc. (A) 1968, 3143.

Ơ

N

Hydroformylation. A: Complexation of the catalyst with an olefin. B: Hydrometallation. C: Insertion

H

B045

N

N C

O

O

A

Y

H Ph

H

O

S B

S

H Ph

Ph

U

SCN

N

M

Q

N C O

H

S

H

Ph S C

O C N

Ph

S Ph H

Guss, C. O.; Chamberlain, D. L., Jr. J. Am. Chem. Soc. 1952, 74, 1342.

ẠY

A: Cleavage of the epoxide by SN2 reaction at the less hindered position. B: Migration of the cyano

D

group. C: Intramolecular SN2 reaction with inversion of configuration.

B046 O

-H+ Me

MeO

HO NMe2

OMe

Me

HN Me

Me

+

+H

MeO

OMe

Me HO

H MeO

N

Me Me

OMe


Me

N

Me

Me -MeO-

Me

N

Me

Me

N

-H+ Me

Me Me

A

B OMe

Me

N

-

-MeO

MeO

Me Me

O

HO NHMe2

OH2 - + H

-

-MeO

Me

+

+H

Me

+

-H

Me2N

Me2N

FF

Me2N

NMe2

MeO

Me HN Me

IC IA L

MeO

Kozmin, S. A.' He, S.; Rawal, V. H. Org. Synth., Coll. Vol.

2004, 301.

A: Formation of an enamine to eliminate methoxide ion. B: Conjugate addition of dimethylamine to the

O

-unsaturated iminium ion.

N

-MeO-

OMe

OMe

H N

A

-H+

OMe

N

+H+

H OMe

N

B

Q

U

Y

MeO

N

Ơ

Me

H Me N

Me

N

Me

Me

H

Me

N

B047

OBn

M

OBn H

N O

OBn H

ẠY

H

C

O

N O

N

OMe NO2

OBn N

Raney Ni NH2NH2

D

MeO H OBn N

E

D NO2

NH2

NO2

OBn H -

-MeO

-MeO-

N

O

-H+

N

OBn

OMe

OBn

OBn +

-H

N

+H+

F NH2

N H H

N

N H

H N


OBn

N H

-

OBn H

+

-H

G N H

N H Batcho, A. D.; Leimgruber, W. Org. Synth., Coll. Vol

1990

IC IA L

Leimgruber-Batcho indole synthesis. A: Generation of an iminium ion under thermal conditions. B:

Replacement of dimethylamine with pyrrolidine. C: Generation of a benzylic carbanion stabilized by o-nitro group. D: Formation of an enamine. E: Reduction of the nitro group. F: Protonation of the

enamine to form the reactive iminium ion. G: Elimination of pyrrolidine helped by the nitrogen lone

O

FF

pair.

B048 ArO2S

NC

N

ArO2S

Ơ

NC

H

H A

O

N

Q OEt

O

SO2Ar H OEt

N Ar

SO2Ar C

S O O

-ArSO2-

Oldenziel, O. H.; Wildeman, J; van Leusen, A. M. Org. Synth., Coll. Vol

D

ẠY

N

N

OEt

KÈ O

O

SO2Ar

H

B

H

OEt

M

N H SO2Ar

U

Y

H OEt O

SO2Ar

N

t-BuO K

C N

O

O

CN

1988, 41.

TosMIC (p-toluenesulfonylmethyl isocyanide). A: Deprotonation of an active methylene compound.

B: Intramolecular addition to the isocyanide to form an oxazoline anion. C: Loss of the activated formyl

group with a concomitant elimination of a toluenesulfinate ion ( pKa PhSO2H = 1.5).


B049 Ph3P Br

O

O Br Br

Br Br C Br

A

O Br Br

n-C7H15

H

Br Li

PPh3 B

Br

Br

FF n-C7H15

n-C7H15

H

D

workup

n-C7H15

Li

+H+

H

Ơ

N

Br

n-Bu

n-C7H15

H

D

Li

O

C

-LiBr

n-C7H15

Br

H n-C7H15

Br

n-C7H15

Ph3P

Li

n-Bu

BuLi

Br

n-C7H15

n-C7H15

IC IA L

Ph3P

Br Br C Br Br

N

Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769

Corey-Fuchs reaction. A: Generation of a stable carbanion (cf. pKa CHCl 3 = 13.6). B: E2 elimination

Y

(triphenylphosphine oxide is an extremely good leaving group). C: Halogen-lithium exchange follow by -

M

Q

U

-elimination to generate an alkylidene carbene. D: C-H insertion of the carbene. E: pKa n-Bu = 50,

B050 Me Me

ArSO2NHNH2

O

ẠY

Me Me

D

Me Me

N

Me Me

N

-H2O A

N

N H

SO2Ar BuLi

Me Me

Me Me

Me Me O O N S N Ar

Me Me

SO2Ar

N

-SO2Ar

N H

SO2Ar

n-Bu Li

Me Me

N

N

B H Me Me n- u B Li

-N2

Me Me

C Me Me

Me Me

O Ph

Ph

Me Me

Me Me Ph Ph

Me Me

O

workup +H+

Me Me

Ph Ph

Me Me

OH


Rupert, K. C.; Liu, C. C.; Nguyen, T. T.; Whitener, M. A.; Sowa, J. R.. J, Organometallics 2002, 21,144 Shapiro reaction. A: Formation of a hydrazone. B

-position of the hydrazone

anion. C: Elimination of a sulfinate ion ( pKa RSO2H = 1.5). D: Loss of N 2 to form an alkenyl anion.

Ar

+H+

+H+

H

Ar

+

-H+

CO2Me

C

N

HO

H

B

HO

+H+

NH2

HO

HO

OH

CO2Me H2O

HO

O

Ar

A

H

N

HO

CO2Me H

Ar

CO2Me

HO HO

NH Ar

N

Ar

OH

Ar

O

-H+

OH

H

N

OH

Ơ

Ar

-CO2 -H+

H O O

H

O

H O O

O

FF

H

IC IA L

B051

Konda, M.; Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1975, 23, 1025

Y

A: Generation of a stabilized benzyl cation.

B: Decarboxylation to form an enol, an aldehyde

Q

U

equivalent. C: Pictet-Spengler reaction ( ref A033).

O

H

OMe

O

H H

M

B052

H

O

O

A

O

D

ẠY

O

MeO H

O O

H

O

H H

O

H

H H

O

O

-HCO2Me O

O

C O

O

O

B

O

O

O

O

HO

H

+H+ O

O

OH OH

MeO Shimada, K.; Kaburagi, Y.; Fuku yama, T. J. Am. Chem. Soc. 2003, 125, 4048.

A: pKa MeOH = 15.5, CH 3CHO = 16.7. (Cannizzaro-type reaction).

B: Aldol reaction.

C: Intramolecular hydride transfer


B053 O O

OMe

OMe Me

A N

O B

N N

OH O -H+

Me

OH O Me

OMe

+H+

OMe

H

N

N

O

H

IC IA L

N

O Me

OMe

C

FF

N N

1993, 420.

O

Brown, J. M.; Evans, P. L.; James, A. P. Org. Synth., Coll. Vol.

N

Morita-Baylis-Hillman reaction. A: Michael addition of DABCO. B: Aldol reaction. C: Elimination of

Ơ

DABCO.

H

B054

N

CO2Me

N O

Y

O

N

N H

U

-H2O A

B

Q

OMe

M

N

N

OMe

ẠY

CO2Me C

O

A

N

CO2Me

N

N CO2Me aq HCl

N

+ CO2Me -H

CO2Me

D

OH2

+H+

H

-

NH OH CO2Me

N H -H+

O CO2Me

H2 Pd/Al2O3 MeOH

O CO2Me


Burpitt, R. D.; Thweatt, J. G. Org. Synth., Coll. Vol.

1973, 277.

A: Formation of an enamine. B: A stepwise formation of the four-membered ring by means of Michael addition. C: Cleavage of the cyclobutene to release the ring strain.

B055

OEt

Ph

A

H

OEt

H

O

O

-TsHN-

Ph

OEt

C

O

O

Ph

OEt N N N Ts H

OEt N N N Ts

FF

O

O Ph

Ph

B

N N N Ts

NEt3

O

O

N N

OEt

N N

N

O

Ph

O

O

IC IA L

O

O

Lall, M. S.; Ramtohul, Y. K.; James, M. N. G.; Vederas, J. C. J. Org. Chem. 2002, 67, 1536.

Ơ

Regiz Diazo transfer reaction. A: pKa RCOCH 2CO2R = 11, HNEt3+ = 10.7. B: Attack on the less

H

hindered, electrophilic nitrogen. C: pKa PhSO2NH2 = 8.5:

Ts

Y

N

N

U

H

t-BuO

N

B056

N

OEt

A

S

Q

S

OEt

N

M

H OEt

HN

D

ẠY

S

-H+

OEt aq HCl S

H2N

S

O

S

OH

H3N

OH2

OEt H2N

+H+ B

H EtO OH

H

Et

S

-H+

H3N

O H3N

+H+ S

S

S

Dijkstra, D.; Rodenhuis, N.; Vermeulen, E. S.; Pugsley, T. A.; Wise, L. D.; Wikstrm, H. V. J. Med. Chem. 2002, 45, 3022. Neber rearrangement. A: Generation of a nitrene to form the azirine, which then undergoes addition of ethanol. B: Acidic hydrolysis of the ethoxyaziridine.


B057 Me

Me

Me

Me

OEt H

NaOEt Br

O

O Br

Br Br

O

Br

Br

Br Me

Me

O

O

Br

OEt

OEt

O

Br

Br

CO2Et

B

O

Br

Me

FF

Me

A

Br

IC IA L

O

A: Favorskii rearrangement ( ref

A069).

N

Marx, J. N.; Norman, L. R. J. Org. Chem. 1975, 40, 1602. B: Cleavage of the strained cyclopropanone with a

B058 O

O

O

I

ẠY D

O O

I A

O OMe

Me O OH H

O

I

I B

O O

O

O

OH

OH O

O H3C I

OH H

I O H2O

O

O

O

O

HCl

O

O

O

OMe

O

M

CO2Me

Q

I

U

I

I

Y

N

H

Ơ

concurrent elimination of the bromide (formation of the thermodynamically more stable trans -ester).

O O

O

O O

OMe

Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem. Int. Ed. 2002, 41,319; A: Iodolactonization. B: Hydrolysis of the lactone followed by formation of the epoxide.


B059 O MeO2C

O MeO2C

Cl

N

N H

H2C N N

FF

N

MeO2C

N

N

O

MeO2C

O

HBr

N

ClCH3 + N2

H3C N N

Cl

O

IC IA L

H2C N N

MeO2C

N

-N2

N

O Br

MeO2C

Ơ

O

N

H

H

Br

N

Nair, V.; Jahnke, T. S. Tetrahedron 1987, 43 4257.

Q

U

Y

Excess diazomethane is needed to scavenge HCI.

B060

O

M

O

OH N Me

D

ẠY

O

N Me H

O O

Me

Me

O

H

A

N Me H

O Me

O

Me H O

Me N Me H

B

O

O O

C

Me

O

N

O O

O

O

-AcOH

Me N O e M H

OAc

D N Me

O

Rueppel, M. L.; Rapoport, H. J. Am. Chem. Soc. 1978, 92, 5781. A: Formation of a mixed anhydride. B: pKa (CH 3CO)2O = 13.5. C acylation is faster than intermolecular one.

-Elimination. D: Intramolecular


B061

Me

O 11

Me

O EtO P EtO CN

NEt3 H

R

O

CN O P(OEt)2 OH O O

R A

OH O

R

CN

-HCN

CO2t-Bu

H2N

H N

Me

B

11

Me

OH O

IC IA L

OH O

OH O

CO2t-Bu

Shioiri, T.; Terao, Y.; Irako, N.; Aoyama, T. Tetrahedron 1998, 54, 15701.

FF

A: Formation of a mixed anhydride. B: Formation of the reactive acyl cyanide.

B062 O

N O

Cl4P Cl

Cl PCl4

N O

O

B

Q

NH2

U

-HCl

Y

O

Cl

Cl H

PCl3 Cl

N

Cl4P Cl

N

-HCl -POCl3

N

A

NH2

H

N O

NH2

Ơ

NH2

O

O

O

N

Cl PCl3

-HCl -POCl3

NH

CN N

Cl

Cl 1963, 166.

M

Taylor, E. C., Jr.; Crovetti, A. J. Org. Synth., Coll. Vol.

A: Activation of the N-oxide with PCl 5. B: Dehydration of the amide.

B063

D

ẠY

Cl

Cl

O

O

NC

H

CN

O Me

OH

O OMe

A Cl O NC

Me Cl O CN

OH

OMe


O -H+

Me

O OMe

OH

-H+

Me

O

B OMe Crimmins, M. T.; Siliphaivanh, P. Org. Lett. 2003, 5, 4641. A: Transfer of two electrons from the starting material to DDQ by forming a charge-transfer complex.

IC IA L

B: Deprotonation to form a p-quinonemethide-type intermediate.

N O S Cl O

OMe

O H

H N O S Cl O O

OMe DMF

Me

OMe B

H

OMe

Ơ

OMe

Me O N O Me O S N O

Me O N O Me O S N O -SO3 OMe -DMF

N

H

Me O N O Me O S HN O

N Me

N

A OMe

O

O

O Cl S N C O O

FF

B064

U

OMe

Q

C

Y

-H+

OMe

OMe

OMe

OMe

OMe

Lohaus, G. Chem. Ber. 1967, 100, 2719.

M

OMe

CN

A: Electrophilic substitution of an electron-rich aromatic compound. B: Attack on the oxygen of DMF.

C: Cyclization followed by fragmentation to form the nitrile.

ẠY

B065

O

D

CO2H NH2

t-BuO N O

CO2H A N N O H

O

+

-H

+H+

O

H

N N OH

O N N OH2


O C N

O

C N

B

C

N N

Br

Br

OH

IC IA L

H OH

HO

O

N

-H+

N

N H

+H+

D Br

Br

FF

Br

Rigby, J. H.; Laurent, S. J. Org. Chem. 1998, 63, 6742. A: Formation of a diazonium salt ( ref A037). B: Formation of a benzvne with a loss of CO2 and N2.

Ơ

N

O

C: Nucleophilic addition of the isocyanide. D: Addition of water to the nitrilium ion.

H

B066 OAc I Ph OH

AcO

U

-AcOH

Y

N

OAc I Ph O

Q

O

OH NHCbz

O

O

ẠY

M

OH NHCbz

O

CbzHN

D

O

H

O

O

-AcOH

NaHCO3

-PhI A

MeOH O CbzHN O

H

H -H+

+H+

+H+

B

OH OMe

CbzN

O

N H Cbz

CO2Me

O

MeO Wipf, P.; Li, W. J. Org. Chem. 1999, 64, 4576.

A: Oxidative lactonization of N-Cbz tyrosine. conjugated dienone.

B: Intramolecular Michael addition to the cross-


B067 O

H

N C CCl3 O

H

B

N

O

O

CCl3

CO2Me

NH

-H+

O

CCl3

B

O

+H+

Me + NH2

H

N

TfOH CCl3

CO2Me

O

Me H

FF

HO

O

IC IA L

A

O

CCl3

N

White, J. D.; Reddy, G. N.; Spessard, G. O. J. Am. Chem. Soc. 1988, 110, 1624. A: Addition of benzyl alcohol to electron-deficient Cl 3CCN with a help of catalytic amount of base. B:

N

H

B068 H OH

Q

U

Me

+H+

O

H

ẠY

OH

Me H

-H+

OH2

Me

O H

A

Me

-H2O

H

O H

Me H

-

-H2O

Me

O

H

M H

Me Me

Y

Me Me

D

Ơ

Ftherification of alcohols under acidic conditions.

Me

Me Me

-H+ B

Me

O C

O C

Me

C

OH2 C O

OH D O

Koch, H.; Haaf, W. Org. Synth., Coll. Vol.

1973, 20.

A: Formation of a stable t-butyl cation. B: Generation of CO by dehydration of formic acid. C: Hydride abstraction from the bridgehead of adamantane. D: Addition of CO to form an acylium ion.


B069 t-BuO

Ph

O

Ph

A

Ph

Ph

B

Ph

+

C

Ph

O

-H+

Ph

Ph

Ph

O

Ph

O

+H

OH

Ph

IC IA L

Ph

H

OH

Hauser, C. R.; Kantor, S. W. J. Am. Chem. Soc. 1951, 73, 1437.

[1,2] Wittig rearrangement. A: pKa PhCH 3 = 41, n-BuH = 50. B: Homolytic cleavage to form a radical

FF

anion. C: A facile radical recombination in a solvent cage.

O

B070 Ph

N

N

H H

Ph

OMe -PhCN Ph B

CO2Me

O

Y

O N

N

O C H

N

O

A

H

Ph

O

Ơ

Ph

OMe

O

+H+

Ph

CO2Me O

U

Ph

workup

Q

Gómez, V.; Perez-Medrano, A.; Muchowski, J. M. J. Org. Chem. 1994, 59, 1219

n-Bu3SnH

n-Bu3Sn

S

n-Bu3SnS

N

N

N

N

O

AIBN

D

ẠY

B071

M

A: Michael addition of an oxime anion. B: Intramolecular deprotonation to cause fragmentation.

O O

O

n-Bu

n-Bu Me

A

O n-Bu

B

O

C

H Me

OH


Me

H

n-Bu3Sn H

H

- n-Bu3Sn

Me

D OH

OH

Rawal, V. H.; Newton, R. C.; Krishnamurthy, V. J. Org. Chem. 1990, 55, 5181. A: Barton-McCombie deoxygenation ( ref A051).

B: Cleavage of the strained epoxide ring. C:

IC IA L

Intramolecular abstraction of a hydrogen via a six-membered transition state. D: 5-exo-trig Radical cyclization.

FF

B072

Br SO2CH2Br

Me

hv

Br

Me

A

B

Br

Me

Br

t-BuOK

H

-SO2CH2Br

Ơ

N

SO2CH2Br

O

O r B S O

H

SO2CH2Br

U

-SO2

Q

M

Br

D

Ot-Bu

Ot-Bu H CH2 S O O

SO2CH2Br

Me

Y

H

SO2CH2Br

N

C

H

S O O Block, E.; Aslam, M. Org. Synth., Coll. Vol.

1993, 212.

A: Photo-induced homolytic cleavage to form a sulfinyl radical. B: Addition to the olefin to form a

ẠY

stable tertiary radical. C: Attack on the bromide of the reagent (radical chain reaction). D: Elimination

D

of HBr followed by vinylogous Ramberg-Bäcklund reaction.

B073 Me

Me KNH2

Me

Br +

O

O

hv A

Me

Br +

O


Br

IC IA L

B

Me

Br

O

O

FF

Me D

C

O

Me

Ơ

H

Br

N

O

N

Rossi, R. A.; Bunnett, J. F. J. Org. Chem. 1973, 38, 3020.

SRN1 reaction. A: SET to bromobenzene to form a radical anion. B: Fragmentation of the radical

Y

anion to form a phenyl radical. C: Addition to enolate to form a radical anion. D: SET to continue the

Q

B074

M

O

Bu

hv

S

U

radical chain reaction.

A

O

N

ẠY

N

Bu N F3B

O O

N

-CO2

Bu

Bu F3B

B

N

C

O N

F3B Bu N CH2

D

D

O

N

Bu

S

E

CH2

N F3B Bu O N N

F3B Bu

O

N

Bu

F3B Bu N

S F

N S

workup

Bu N

N S


Newcomb, M. Ha, C. Tetrahedron Lett. 1991, 32, 6493. A: Photo-induced homolytic cleavage. B: Decarboxylation to form an aminyl radical. C: Acti vation of the aminyl radical by Lewis acid. D: Kinetically fa vored 5-exo-trig radical cyclization.

E: Group

transfer reaction.

H CBr3

t-BuO

-Br-

CBr2 Br

A

CBr2

B

Me C

Br Br

Me Me

Me

Me

-Br-

Me

H

Me Me

Ơ

Br

MeLi

D

O

Me

Me

Br Br

N

CBr2

Me

FF

Me

IC IA L

B075

Me

Me E

B

1990, 200.

-Elimination to form dibromocarbene. C: Cyclopropanation of the more

N

A: pKa CHCl 3 = 13.6.

H

Taylor, R. T.; Paquette, L. A. Org. Synth., Coll. Vol

Me

electron-rich, tetrasubstituted olefin. D: Halogen-

-elimination to

Y

form a carbene. E: C-H insertion of the carbene (the corresponding allene cannot be formed due to

Q

U

the excessive ring strain. ref A061).

M

B076

Cl

O

D

Cl Cl

OEt

Cl

ẠY

Cl Cl

C

O OEt

OMe

OMe Cl

A

Cl Cl

Cl

B

Cl Cl

Cl

-Cl-

Cl

Cl D Cl

Cl

Jefford, C. W.; Gunsher, J.; Hill, D. T.; Brun, P.; Gras, J. L.; Waegelt, B. Org. Synth., Coll Vol.

1988, 142.

A: pKa CHCl 3 = 13.6. B: Generation of dichlorocarbene. C: Cyclopropanation from the sterically less hindered exo-side. D: 2e Disrotatory electrocyclic reaction to form an allyl cation.


B077 O -CO2

O

Cl Cl

A

Cl

O

OH

O

H Cl

Cl

OAc

Cl Cl

Cl

OAc

Ac2O Cl

Zn

Cl Cl

B

Cl

Cl Cl

Cl Cl

MeLi

Cl

C

Cl

FF

Zn

H

O

OMe

Cl

Cl

Ơ

OMe

N

Cl

CCl3

IC IA L

Cl Cl

H

O

O

workup

H

H

H

+H+

N

Wang, Z.; Campagna, S.; Xu, G.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 4007.

Y

A: pKa CHCI3 = 13.6. B: Reduction with Zn to form a gem-dichloroolefin. C: Corey-Fuchs-type

Q

B078 H

M

O

-H+

H

H2O

H

U

alkynylation ( ref B049).

+

+H

H N

SiMe3 H N

Bn

D

ẠY

H2N Bn

Me3Si

O

OH2 H NHBn

H

OH2

-H2O NBn

NHBn

A

Bn

H

NHBn

B

SiMe3

OH2

-H+ +H+

-H+

NBn

OH

NBn

C H

NBn H


Larsen, S. D.; Grieco, P. A.; Fobare, W. E J. Am. Chem. Soc. 1986, 108, 3512. A

-carbocation). B:

Desilylation to form an olefin. C: Olefin-iminium ion cyclization to form a stable tertiary carbocation.

B079 O O S N NH2 NO2 H CO2Et N N EtO2C PPh3

HO

O O S N NH2 NO2 O PPh3

- Ph3P O

O

CO2Et HN N EtO2C

N

O PPh3

O S N O NH2

N N

-N2 D H

H

Myers, A. G.; Zheng, B. Tetrahedron Lett. 1996, 37, 4841.

Q

U

Y

C

N

-ArSO2H

O2N

H

Ơ

H

B

FF

A

IC IA L

CO2Et N N EtO2C Ph3P

CO2Et HN N EtO2C PPh3

A: Mitsunobu reaction ( ref A045). B: Deprotonation of the more acidic proton. C: Elimination of a

B080

M

sutfinate ion. D: Elimination of N2 via a concerted mechanism.

PPh3

H

O

PPh3

O

CO2Et NO2

NO2

CO2Et NO2

PPh3 CO2Et

CO2Et

A

D

ẠY

O

NO2

CO2Et

P(OEt)3 N O

O

B P(OEt)3


CO2Et

CO2Et

N O O P(OEt)3

N

O

CO2Et C N

P(OEt)3

O

P(OEt)3

D

H

N H

CO2Et

CO2Et

CO2Et A

FF

N

N

H CO2Et

N H

O

N

N

CO2Et

CO2Et

N

N

IC IA L

CO2Et

Ơ

Mali, R. S.; Yadav, V. J. Synthesis 1984, 862.

H

A: Wittig reaction. B: [4+2] Cheletropic reaction and elimination of a phosphate to form a nitroso intermediate. C: Deoxygenation of the nitroso compound to form a nitrene. D: Formation of the

N

indole could be interpreted as a result of either 1) a direct C-H insertion or 2) formation of the azirine

U

Y

followed by homolytic cleavage and recombination of the resulting diradical.

M

OH

OH2

-H

ẠY D

-H2O

O N

+

+H+

H2N

N N

OH

O N

O N

Q

B081

H Me

O

O N

H

CO2H H Me

+

-H

+H+

N HN

O

O

-N2

H

A Cl

H O

-H+

CO2H H Me

+H+

OH2 CO2H H Me

H

O Me

Cl B

CO2H H Me

Koppenhoefer, B.; Schurig, V. Org. Synth., Coll. Vol A

N N

-lactone via a diazonium salt. B

1993. 119 -lactone with

-position is retained as a result of the double inversion.


B082 O CO2Et

Me MeO

NaNO2

Et

HCl A

NH2

KOH

N N

IC IA L

MeO

O MeO

CO2Et

Me

MeO

OH Me O

O

Et N N

B

HO H MeO

N N H

aq HCl

Ơ

MeO

MeO

CO2Et

Q M

KÈ ẠY

+

-H+ +2H+

CO2Et N H NH3

-NH3

Me

MeO

-H

N H

CO2Et

CO2Et

Zhao, S.; Liao, X.; Wang, T.; Flippen-Anderson, J.; Cook, J. M.

D

N H

CO2Et

Me

MeO

+2H+

Me H

D

Me

-H

NH NH2 2

MeO

+

-H+

H

Y U CO2Et

CO2Et

NH NH

N

N N H H

MeO

H

H

Me

Me

N N H H

CO2Et EtOH 65oC

C

Me

H

O

Et

N

MeO

Et OEt

FF

N N

Japp-Klingemann reaction and Fischer indole synthesis.

Addition of the enolate to the diazonium salt. C D: Fischer indole synthesis ( ref B031).

J. Org. Chem. 2003, 68, 6279. A: Formation of a diazonium salt.

B:

-ketoester to form a hydrazone.


B083 O N

N Ph

N

A C6H13

C6H13

B(C6H13)2

Ph

O Ph B(C6H13)2

Ph C6H13

C

-N2 B

B(C6H13)2

O

(C6H13)2B

O

workup

O

C6H13

IC IA L

N

C6H13

+H+

Ph

Kono, H.; Hooz, J. Org. Synth., Coll. Vol.

B: Elimination of N2 with a

FF

A: Attack of a diazoketone to B(n-hexyl)3 to form an ate complex.

1988, 919.

simultaneous migration of n-hexyl group. C: Formation of a boron enolate.

O

H2O OMe

+

-H

Me

+H+

i-Bu

Ơ

Me

i-Bu

-H+ H

i-Bu MeOH

N

H

HOMe

OMe

N

H

O

B084

Y

MeO OMe Me

U Q

OMe

ẠY

i-Bu

MeO

OMe

A i-Bu

i-Bu

HOMe

HOMe OMe C

i-Bu

MeO OMe I AgNO3

I -H+

OMe

B

D

i-Bu

I

M

I

-MeOH

i-Bu

OMe

-H+

OMe MeO OMe

i-Bu OH2

H2O +H+ D

OMe i-Bu

MeO OMe H

OMe i-Bu

OMe

-H+ +H+


OMe

OMe

HO OMe H

i-Bu

O

i-Bu

Oppolzer, W.; Rosset, S.; Brabander, J. D. Tetrahedron Lett. 1997, 38, 1539. A: Iodination of the enol ether with concomitant formation of a dimethyl acetal. B: Activation of the iodide with a silver ion to form a phenonium ion. C: Restoration of the aromaticity causes a cleavage

IC IA L

of the electron-rich cyclopropane ring. D: The orthoester thus formed undergoes a facile hydrolysis to give the ester.

Me

Me

Me

Me

O S O O

Me

Ơ

Me

N

Me

O -AcOH AcO S OH A O

O

O HO S OH O

O AcO

FF

B085

B

Me

H

Me

Me

Me

U

Y

Me

O

N

O

H

Me

H

OH

Me

Me

-H+

C

M

Q

OH O S OH O

O SO3H

OH SO3H

Bartlett, P. D.; Knox, L. H. Org. Synth., Coll Vol

1973, 194.

A: Generation of SO3. B: Wagner-Meerwein-type rearrangement. C: Sulfonation of the olefin to form

ẠY

a stable tertiary carbocation.

D

B086

OMs Me

OMs Me A

H2B

H

OMs Me

NaOH H2O

H2B

H

(HO)3B

H


H Me

H (HO)3B

OMs H

H

Me

B

H

H Marshall, J. A.; Bundy, G. L. J. Am. Chem. Soc. 1966, 88, 4291.

B087 Br Br

Me Br

O

Br

O

A Me

t-BuOK

O

Me

Br

O

O C

Me

Me

N

H

H

B Me

Me

Me

O Br

O

Me

N

H

Ơ

t-BuO

Br

Me

Br

Me

FF

Me

IC IA L

A: Hydroboration from the less hindered side. B: Grob fragmentation ( ref B016).

t-BuO

Y

Paquette, L. A.; Barrett, J. H. Org. Synth., Coll. Vol

1973, 467.

U

A: Bromination of the olefin. B: Dehydrobromination to form a diene. C: 6e Disrotatory electrocyclic

M

Q

reaction (valence isomerism).

B088

-H+

N H

H N

+H+

O

N N N

N

OH

ẠY D N

N N

-H+

N

A N

-N2 B N

H

N

C N

Golka, A.; Keyte, P. J.; Paddon-Row, M. N. Tetrahedron 1992, 48, 7663. A: Inverse electron demand Diels-Alder reaction. B: Retro Diels-Alder reaction. C: Aromatization.


B089 N

NEt3

O H H

H OH

N

Cl

H

A

O

N O

O

N Cl

B

NEt3

Cl

Cl OH

N

O H

IC IA L

Cl O

O

N

D

FF

C

Lee, G. A. Synthesis 1982, 508.

O

A: Chlorination of an oxime. B: Elimination of chloride ion is facilitated by the formation of an oxime

N

anion. C: Generation of a nitrile oxide. D: 1,3-Dipolar cycloaddition.

O A

H

H

Me

O N

Me

N

O

O N

Ơ

B090

O

N Ph

O

Y U

Me

C

M

AcO

D

ẠY

O

O N

Ph

N H

O C

H

O

Me

AcO

O Me

N

N Me

H

+H+ O

D

N

H

or Me

N Ph

O

O

N

Q

O

Me

B

O C NPh

Et3N

O N

-CO2

Ph N C O Ph NH2

-H+ +H+

O Ph

N H

N H

Ph

Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339. A: pKa CH 3NO2 = 10.2,

+ HNEt3

= 10.7. B: Addition of the nitronate to PhNCO. C: Formation of the

nitrile oxide might proceed either by 1) syn-elimination of the carbamate ion or 2) elimination of the carbamate ion followed by deprotonation. D: 1,3-Dipolar cycloaddition.


B091 Me

EtO EtO H

+H+

A

H3C OEt

Me

CH3

O H

Me

H EtO

O

O

B

Me

Me

EtO

EtO R

O

EtO

Me

N

Me

Me

O

O

Me

Me

R

O C

O

Me

-H+

-EtOH

Me EtO

OEt

FF

-H+

OEt -EtOH H3C OEt OEt H

+H+

IC IA L

OEt H3C OEt OEt

Ơ

Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J,; Li, T.-t. J. Am. Chem. Soc. 1970, 92, 741.

H

Claisen-Johnson rearrangement. A: Acid-catalyzed ether exchange of the orthoester. B: Formation of the mixed ketene acetal is effected by removal of ethanol from the reaction system by distillation. C:

Y

N

[3,3] Sigmatropic rearrangement via a chair-like transition state to form an (E)-olefin.

U

B092 H

-H+

HN n-Pr Me OMe

+H+

Ph

M

Ph

OMe Me

OH2

Q

O

N n-Pr Me OMe

ẠY D

B

Ph

N n-Pr

-H+ OH2

+H+

N n-Pr

H O H MeO Me

MeO

Me

Ph

Ph

OMe Me A

Ph

O -H+ -MeOH

Me Ph

N n-Pr

N n-Pr

N n-Pr

Overman, L. E.; Kakimoto, M.; Okazaki, M. E.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6622.

A: Aza-Cope rearrangement. B: Intramolecular Mannich reaction.


B093 t-Bu

OTf Si Me Me

O

Me Me Si t-Bu O

Et3N H

O

OTBS

O

O

OMe

OMe OMe H B

TBSO

OMe H

H

O

OMe

O

Me HO t-Bu Si Me O H2O

OMe

OMe

Ơ

HO2C

H

H3O

N

O

OSBT

+

OMe

TBSO

FF

O

IC IA L

A

N

Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583.

Claisen-lreland rearrangement. A: Formation of a ketene silyl acetal. B: [3,3] Sigmatropic

Q

U

Y

rearrangement via a boat-like transition state.

M

B094 Me

Me

O

O

H

H Me

ẠY

workup

O S

D

+H+ O

O S

Me Ph

C

A O

150oC

Me

Ph

O

Me B

O S

Me

H

O S

Ph

Ph

CHO

O Saito, M.; Kawamura, M.; Ogasawara, K. Tetrahedron Lett. 1995, 36, 9003. A: Conjugate addition to the vinyl sulfoxide. B: syn-Elimination. C: Claisen rearrangement.


B095 Br S

Br

n-BuLi

S

S

A

A

S

H

S

S

S

HgCl2

S S

S

H2O C

S

S

S

CHO

N

S Hg Cl

OH

Ơ

H2O

S Hg Cl

HgCl S

+

O

-H

S

FF

Cl Hg Cl

S

IC IA L

n-Bu

H

Hunt, E.; Lythgoe, B. J. Chem. Soc., Chem. Commun. 1972, 13, 757. A: Formation of a sulfonium ion. B: Deprotonation to form a sulfur ylide, which undergoes [2,3]

Y

N

sigmatropic rearrangement. C: Hydrolysis of the thioacetal.

U

B096 H

B

Me O

D

ẠY

Me

H N

CO2Et

CHO Br

O

M

O

CHO

Q

CHO

H N

O

CO2Et

CO2Et Me -H+

H

OH

+H+

O

O

CO2Et Me

N

H

CO2Et Me

OH

CO2Et

Me

N

A O

N

H

N H

B O

O

Bashiardes, G.; Safir, I.; Mohamed, A. S.; Barbot, E; Laduranty, J. Org. Lett. 2003, 5, 4915. A: Formation of an azomethine ylide. B: Intramolecular 1,3-dipolar cycloaddition.


B097

Me

AcO

H Me O

OAc

hv

O C

-H

D

+H+ E

H Me OH

AcO

OAc

H

OAc

Me

H Me OH

Ơ

Me

AcO

N

AcO

O

NOH

+

AcO

H

FF

H

OAc

N O

OH

AcO AcO Me

O N

H

H Me O

O N

H

B

Me

AcO

OAc

N O

N O

AcO AcO Me

Me

AcO Me

AcO

A

H Me O H Cl

Me

AcO

IC IA L

Me

AcO

Murai, A.; Nishizakura, K.; Katsui, N.; Masamune, T. Tetrahedron Lett. 1975, 16, 4399.

N

Barton reaction. A: Formation of a nitrite. B: Homolytic cleavage. C: Abstraction of a hydrogen atom via a six-membered transition state. D: Recombination of ,NO with the resulting radical.

U

Y

Tautomerization.

Ph

O

+

N

O

N

O

HO

O

O

Ph

B

OH

O C

O

O O

N

O

D

ẠY

O

O Ph

Ph

A

H

O

hv

O

N

M

O

O

Q

B098

Ph

E:

Ph

O N O

N

O

O

OH -H+ +H+ D

O

H

Barltrop, J. A.; Plant, P. J.; Schofield, P. Chem. Commun. 1996, 822. Photo-cleavable protecting group for acids.

A: Photo-activated formation of a diradical.

B:


Intramolecular abstraction of a hydrogen atom. C: Recombination of the diradical. D: Elimination of benzoic acid.

B099

O

A O P(OEt)2

O

Me

Me

O

O

H

O O

O O P(OEt)2

O

IC IA L

O

O P OEt)2 H2C (

P(OEt)2 O

O P(OEt)2

Me

O

O

FF

B

Altenbach, H.-J.; Holzapfel, W.; Smerat, G.; Finkler, S. H. Tetrahedron Lett. 1985, 26, 6329.

O

A: Addition to the reactive enol lactone. B: Intramolecular Horner-Wadsworth-Emmons reaction ( ref

N

A071 ).

Ơ

B100

CHO

A

B

N

N

H

U

Y

O N

PPh3 Br

H

CHO N H

Q

O PPh3

N

C

PPh3

N

M

Schweizer, E. E.; Light, K. K. J. Org. Chem. 1966, 31, 870.

A: pKa of the parent indole NH = 17, H 2 = 35. B: Addition to the vinylphosphonium salt to form an ylide.

C: Intramolecular Wittig reaction.

B101

D

ẠY

N N N

Ph

Ph

Ph

N

-N2

Ph

H

H Ph

H Ph Ph3P O

NH2 H Ph

PPh3 N

HO Ph

H Ph

H

OH

Ph3 P H OR NH O Ph

PPh3 Ph

B

OH

-H+ +H C

Ph

A

OH

+

N N N PPh3

PPh3

-Ph3P=O D

H Ph

H N

H Ph


Pöchlauer, P.; MüIler, E. P.; Peringer, P. Helv. Chim. Acta 1984, 67, 1238. Staudinger reaction (A-B).

A: Cheletropic reaction.

B: Formation of an iminophosphorane. C:

Migration of the phosphorus group. D: Intramolecular SN2 reaction.

B102

O

H Ph

+ H +H Ph

H Ph

O

H

HO

H Ph

Ph

H Ph

A

Ph3P HO Se

IC IA L

H

H Ph

Se PPh3

SeH

Ph

Ph

H Ph

Ph3P O

H

C

Se H -Se Ph D

H Ph

N

H Ph

H

-H+ -Ph3P=O

+H+ B

Ph

O

PPh3 O SeH

H

-H+

FF

Ph3P Se

Ph

Ph

Clive, D. L. J.; Denyer, C. V. J. Chem. Soc., Chem. Commun. 1973, 253. B: Migration of the

Ơ

A: Acid-catalyzed cleavage of the epoxide with inversion of configuration.

H

phosphorus group. C: Intramotecular SN2 reaction with inversion of configuration to form a cis-

N

episelenide. D: Spontaneous extrusion of selenium.

HO

OH N

N

Ph

HO

+H+

N

NH

N

N HO

O

Ph

Ph

Ph

M

Ph

-H+

Q

N

N

S N

U

S

N

Y

B103

HN

-H+

D

ẠY

+H+

N

S

O

O

Ph

S O

P(OMe)3

O

O

A Ph

Ph

Ph

Ph

Ph

S P(OMe)3 O Ph

O Ph

O B

Ph

or

O Ph

-CO2 C

Ph

O Ph

P(OMe)3

S O

S

Ph


P(OMe)3 O

P(OMe)3

O

Ph

O C

Ph

-CO2 -P(OMe)3

O

Ph

Ph

Ph

Ph

Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677.

IC IA L

Corey-Winter olefination. A: Formation of a thionocarbonate. B: Reductive desulfurization of the thionocarbonate to generate a carbene.

C: The resulting carbene might undergo a direct

fragmentation to form the cis-olefin. Alternatively, it would react with a phosphite to form an ylide,

FF

which then collapses to give the product.

B104 SiMe3 O A

H C8H17

C

B

Ơ

C8H17

H C8H17

C8H17

I

I

H C8H17 I

H

SiMe3 H Me3Si O

C8H17

N

C8H17

Me3Si

Me3Si O

N

O C8H17

O

I SiMe3

C8H17

D

C8H17

Y

I

U

Denis, J. N.; Magnane, R.; Eenoo, M. V.; Krief, A. Nouv. J. Chim. 1979, 3, 705.

Q

A: Silylation of the epoxide. B: SN2 reaction with inversion of configuration. C: Silylation of the silyl

M

ether. D: E2 elimination.

B105

OMOM

C6H13

O

H

PdLn A

O

D

ẠY

O

Si Me Me

Pd

Si Me Me

-PdLn C

Me Ln Si O Pd H

C6H13

Si Me Me

Ln MOMO Pd H C6H13

Me

OMOM H Ln

MOMO H C6H13 O

Si Me Me

B C6H13

H OMOM

OMOM

H2O2 KOH C6H13 O

OOH Si Me Me

D


OMOM

OMOM

C6H13

OMOM

C6H13 O

Si O OH Me Me

workup O

O Si Me Me

E

C6H13 OH OH

+H+

Tamao, K.; Nakagawa, Y.; Arai, H.; Higuchi, N.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 3712.

IC IA L

Tamao oxidation (D-E). A: Oxidative addition to the Si-H bond. B: Intramolecular diastereoselective

silametallation to the olefin. C: Reductive elimination. D: Formation of a silicate ion. E: Migration of the Si-C bond.

NEt3

N

Me

Me Me SPh

A

Me

Me

B Me

Me

SPh O

SPh O

U

Y

Me

Me Me

A

N

Me O

H

Me Me

Me O

O

Me O H Me

PhS Cl

Me Me

Ơ

Me Me

FF

B106

Q

Okamura, W. H.; Peter, R.; Reischl, W. J. Am. Chem. Soc. 1985, 107, 1034.

M

A: [2,3] Sigmatropic rearrangement of the propargyl sulfenate. B: 6e Disrotatory electrocyclic reaction.

B107

O

MeO Me

I

ẠY

O

D

I2Sm

O

OMe

SmI2

O MeO Me

A

O Me

O

I2Sm

SmI2

O

O Me

MeO Me

I O

SmI2

O

SmI2

B

O O Me


I2Sm

SmI2

O

I2Sm

SmI2 HO

O

O

workup

O

Me

Me

O

+H+

Me

Me

Molander, G. A.; Harris, C. R. J. Org. Chem. 1997, 62, 2944

IC IA L

A: Since Sml 2 is a single electron reductant, two molecules of Sml 2 are needed to convert an alkyl

iodide to the corresponding organosamarium species. B: SET to the ketone followed by radical

FF

cyclization.

OMe

MeO Me

A

Ơ

TfO Hg TfO

H

TfOHg

N

Me

OMe

TfO Hg

M

Me

TfO TfO Hg

MeO Me

OMe

H

C

Q

TfO Hg

U

B

Me

MeO Me

Y

MeO Me

OMe

H Me MeO Me

OMe

D H Me

H Me

H Imagawa, H.; lyenaga, T.; Nishizawa, M. Org. Lett. 2005, 7, 451.

D

ẠY

OMe

N

MeO Me

O

B108

A: Coordination of Hg(OTf)2 to the alkyne.

B: 6-endo-dig cation cyclization to form a stable

tertiarycarbocation. C: Attack of the electron-rich aromatic ring to the carbocation.

of the C-Hg bond to regenerate the catalyst.

D: Protonolysis


B109

H

MeO2C

A

H

RuLn

RuLn

Ph

Ph

MeO2C

MeO2C

MeO2C LnRu

O

H

B

- Ph

O

H

LnRu

O

N

LnRu

H

N

H

O H

N

+

RuLn R

N

R

O

O

MeO2C

MeO2C

O

N

FF

R

LnRu

IC IA L

MeO2C

O

Ơ

Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356.

H

Intramolecular enyne metathesis ( ref A078). A: Intermolecular alkene metathesis. B: Intra-

N

molecular alkyne metathesis.

U

Y

B110 CHO

A

Q

N H

O CHO

B

N

N

SMe2

SMe2

M

H

Na3N

O

N

C

D

N

N

O

O

E

D

ẠY

SMe2 N3

N

N3

+H+

N O

N3 N

O

OH

Wang, Y.; Zhang, W.; Colandrea, V. J.; Jimenez, L. S. Tetrahedron 1999, 55, 10659. A: pKa indole NH = 17, H 2 = 35.

B: Addition of the vin ylsulfonium salt to form an ylide.

C:

Intramolecular addition to the aldehyde (reversible). D: Intramolecular SN2 reaction to form an epoxide. E: Cleavage of the epoxide helped by the indole nitrogen lone pair.


B111 n=1

O

N

Me

N

OH A

Ph

Me

N

N

Ph

N

N

-N2

N

O Me

Ph

Me

N HN

O Me

N

-N2

+H+ C

O

Ph

N

FF

H N

O

N

Me

B

n=3

N

Ph

O

IC IA L

H

N

N

OH

NH Me

N

Me

N

H

NHPh

D

H

Me

O

N

O

H

Ơ

H

Wrobleski, A.; Aube, J. J. Org. Chem. 2001, 66, 886.

Y

Intramolecular Schmidt reaction. A: Acti vation of the carbonyt group by protonation followed by

U

intramolecular addition of the azide (six-membered ring is easy to form). B: Ring contraction. C: The D:

Q

formation of a phenonium ion is preferred over the formation of the eight-membered ring.

M

Intramolecular Mannich reaction.

O Tol S S O

ẠY

N

B112

N

STs

N

S H

A

STs

S O S O Tol

D

NEt3

N

Et3N H

N

S S

N

S

aq HCl H S

C

S

S

H2O S

N

B

S S


N

H2O

S

O

+

-H

N H S

-

+H+

S

O

N H

S

-H+

S

S

Woodward, R. B.; Pachter, I. J.; Scheinbaum, M. L. Org. Synth., Coll. Vol.

1988, 1014.

IC IA L

A: pKa PhSO2H = 1.5. B: Formation of an easy to form six-membered ring. C: Hydrolysis of the enamine.

Ph

A

NAc

t-BuO H

NAc

Me N

N U

Ph O

M KÈ

A

Ph H Ot-Bu O NAc

O

H O

O

HN

C

OAc

NAc

AcO

B

NAc

Ph

Ph H N

Q

HN

O

HN

NAc

O

AcO

O

O

Y

O

Ơ

O

N

Ph

O

O

O

O

N

O

NAc

O

Ph Me O

O

H

O

O H

AcN

N

O

AcN

Ph

O Me

O

Ot-Bu

H

FF

B113

NAc

O

Gallina, C.; Liberatori, A. Tetrahedron Lett. 1973, 1135.

-position of an imide (more acidic than amides). B: Aldol reaction followed by

an intramolecular acyl transfer via a five-membered ring transition state. C: Elimination of the acetoxy

ẠY

group.

D

B114

O Me

H

O

R

O

OH

O Me

N Me

Me A

C

O C

Me

N Me

O

R Me

H C

Me2N

O

O R

-H+ +H+


Me N Me O

O

O

Me

O

O

B

R O

R

O

O

O

O

C H

O

H

O Me N Me

Me

+

O

Me N Me

OH Me

O

O

toluene

R

Me N Me

OH Me

CSA

IC IA L

O

Me

Me N Me

O

Me N Me

FF

Me

Me N Me

Me

OH

O

O

O

O

N

Gais, H. J. Tetrahedron Lett. 1984, 25, 273. A: Protonation of the carbonyl group followed by addition of the carboxylate to the iminium ion. B:

Ơ

Intramolecular acyl transfer to form a vinylogous anhydride. C: Acti vation of the vin ylogous anhydride

N

H

by protonation resulted in the formation of the macrocyclic lactone.

B115 OEt

Y

OEt

e

Q

A

ẠY D

O

O

O

O

O SiMe3

e

O

e O

O

B

O

EtO

OEt

OEt

O

O O

OEt

M

OEt

OEt

U

O O

OEt

e

O

Me3Si Cl

C O

O

O SiMe3

O SiMe3

O

O

D

O

Me3Si Cl

Bloomfield, J. J.; Nelke, J. M. Org. Synth., CoIl Vol. Acyloin condensation.

OSiMe3 OSiMe3 1988, 167.

A: Single electron transfer (SET) to the carbonyl group followed by

lactonization. B: SET followed by a ring contraction. C: SET followed by silylation. D: SET to form an enolate followed by silylation.


B116 O

O

A

O HO

O

MeOH H O

TsOH H

HO

D

O

H

OMe

O O

MeOH OMe

OMe

O

HO

+H+ F

Me2S E

O

OMe

NaHCO3

OMe

-MeOH

R

HO

N

-H+

O

OMe

Ơ

HO

R

O

OMe

R

OMe

OMe Me2S

H

O

FF

R

H

-H+

+H+

OMe MeOH

-H+

+H+ C

B

O

IC IA L

O O

-H+

O

O

OMe

H

H

Claus, R. E.; Schreiber, S. L. Org. Synth., CoIl Vol.

1990, 168.

N

A: 1,3-Dipolar cycloaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozonide. C: Trapping the dipole with methanol. D: Formation of a dimethyl acetal from the aldehyde (protonation

Y

of the less electron-dense hydroperoxy group is more difficult). E: Neutralization to kill TsOH. F:

Q

U

Reduction of the hydroperoxide with dimethyt sulfide.

B117 O

M

O O

O

O O

A

KÈ ẠY

O

H

D O OMe

O O

R O

D

O

H

OMe

NEt3 Me

O

H

Et3N

+H+ C

NEt3

O

Ac2O OH

OMe

O

R

O O

MeOH

O

Me

B

O

-H+

H

O

OMe

or

O O

O Me

E

H

O OMe


R

H

O

O

R

Me

E

OMe

NEt3

H O

O

O O

H

OMe

OMe

H R MeO

Me

O O

IC IA L

or O

O

O

H

E

OMe

1990, 168

FF

Claus, R. E.; Schreiber, S. L. Org. Synth., CoIl VoL

A: 1,3-Dipolar cycloaddition of ozone to the olefin. B: Heterolytic cleavage of the initial ozonide. C: Trapping the dipole with methanol. D: Acetylation. E: Elimination of acetic acid might proceed either

O

by 1) deprotonation with triethylamine, 2) Baeyer-Villiger-type 1,2-hydride shift, or 3) thermal eliminatior

Ơ

N

via a six-membered transition state.

H

B118 A

AIBN

Y

H X=Cl or I

n-Bu3SnH

N

n-Bu3Sn X

U

OEt

I

OEt

OEt

O

O -t-Bu

C

ẠY

O B

OEt

O

D

OEt

Snn-Bu3 -n-Bu3SnI

M

Q

O

n-Bu3Sn

H C N

C N

CN

Me Me Me

t-Bu

Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303.

A: Reduction of Bu 3SnX with NaBH3CN to form a low concentration of Bu 3SnH to avoid the premature reduction of the radical intermediates. B: 5-exo-trig Radical cyclization. C: Addition to the isocyanide followed by elimination of a stable t-butyl radical.


B119

N N N

F3B O

N

N N OBF3

A

N

-N2

N

N

OBF3

B

IC IA L

N

N O

O

D

BF3

N

E

O

FF

C

BF3

Lang, S.; Kennedy, A. R.; Murphy, J. A.; Payne, A. H. Org. Lett. 2003, 5, 3655.

O

A: Generation of a stable benzylic carbocation. B: Intramolecular attack of the azide. C: formation

Ơ

N

ofan aziridine. D: Restoration of the aromaticity. E: 1,2-Alkyl shift.

Ph

N

H

B120

Ph

Ph

Y

N O H

O Me N

N O

Cl

A

U

Cl

NEt3

N

C

O Ph

O

ẠY

O

O Me

O

B

Q

N

M

Ph

N O

N

N O

D O

Ph

O

Quadrelli, P., Mella, M.; Invernizzi, A. G.; Caramella, P. Tetrahedron 1999, 55, 10497.

A: Elimination of chloride ion is facilitated by the formation of an oxime anion. B: Addition of NMO to

D

the nitrile oxide. C: Generation of an acylnitroso compound. D: Hetero-Diels-Alder reaction.

B121 H O

H

-H+ +H+ A

O

O B

H


H O

-H+

O

+H+ A

B

Drouin, J.; Leyendecker, F.; Conia, J., M. Tetrahedron. 1980, 36, 1203.

IC IA L

A: Tautomerization. B: Oxy-ene reaction.

B122 Me

Me

Me

Me

Me

Me

O

A

OO

S

N N

Cl Me

Me

Me

SO2

Me

Ơ

Me

N N

N

NEt3 Me

B

O S O CH2 O

C

O

O

H

FF

-N2

H

95oC

Me

Me

-SO2

D

O

SO2

N

SO2

O

O

O

SO2 1973, 877.

B: 1,3-Dipolar cycloaddition of diazomethane to the sulfene.

U

A: Generation of a sulfene.

Y

Fischer, N.; Opitz, G. Org. Synth., Coll. Vol.

ẠY

M

B123

Q

Extrusion of N 2 to form an episulfone. D: Ramberg-Bäcklund reaction.

PPh3Br A

H t-BuO K

O

D

PPh3

O PPh3

O PPh3

B

PPh3 C

H

D

C:


Ph + PPh3

Ph

E

Ph

O

Ph

IC IA L

O

O

Dauben, W. G.; Ipaktschi, J. J. Am. Chem. Soc. 1973, 95, 5088. A: Generation of an ylide.

B: Michael addition.

C: Regeneration of a phosphorus ylide.

D:

Intramolecular Wittig reaction (irreversible). E: The unstable diene was trapped as the Diels-Alder

FF

product.

O

B124 OTBS

Cl SePh

O

Me O

N

A

OTBS

H

OTBS

PhSe

N

PhSe

Me

Y

O Sit-BuMe2

OH

Q

Cl

M

H Ph O Se Me

H

Me

aq H2O2

O H

Ph O Se Me

Me

H H

O

PhSe

Me

O

B

HO OH

H

U

H

Me O

Ơ

Me

PhSeCl

O

-PhSeOH

O

C H

H

ẠY

Curran, D. P.; Rakiewicz, D. M. Tetrahedron 1985, 41, 3943,

A: Claisen-lreland rearrangement. B: Selenolactonization. C: syn-Elimination of the selenoxide.

D

B125

Ph Ph

S H B

O

S

Ph

O hv

Ph

Cl O

Ph

S

Ph

S

Ph


A

Ph

O

H Ph

Ph

HO B

S

Ph

Ph

S S

S

C

Ph

Vedejs, E.; Eberlein, T. H.; Ma zur, D. J.; McClure, C. K.; Perry, D. A.; Ruggeri, R.; Schwartz, E.; Stults, J. S.; Varie, D. L.; Wilde, R. G.; Wittenberger, S. J. Org. Chem. 1986, 51, 1556. A: n-

B: Intramolecular abstraction of a hydrogen atom

IC IA L

Norrish type II reaction.

followed by fragmentation to form a highly reactive thioaldehyde. C: Hetero-Diels-Alder reaction.

B126 Me

Me

O

O

AcO

RuLn

Me

O

N N

AcO

Me

Ru

Me

Ln

Me

AcO

C

Me O

N

1991, 2565.

Y

B: C yclopropanation of the aromatic ring. C: 6e

U

Disrotatory electrocyclic reaction.

A

AcO

Kennedy, M.; McKerve y, M. A. J. Chem. Soc., Perkin Trans. A: Formation of a rhodium carbene complex.

-N2

Me

H

AcO

O

B

Ơ

O

N

-RuLn

Me RuLn N N

FF

Me

Q

B127

-CO

OMePh

OMe

Ph

ẠY

(CO)4Cr

OMe Ph

A

OMe

OMe Ph

Ph

D

OMe Ph

B (OC)3

Cr

Ph C O

OMe

O

C

Ph Cr(CO)3 Ph

Ph

(CO)4Cr

(CO)4Cr

M

Cr(CO)5

Ph

(OC)3

Ph O

OMe

OMe

Ph Cr(CO)3 Ph

D H

C Cr

O

Ph Cr(CO)3 Ph OH


Dötz, K. H. Angew. Chem. Int. Ed. Engl. 1975, 14, 644. Dötz reaction. A: Alkyne metathesis of Fischer carbene complex. B: Insertion of CO. C: Reductive elimination to form a ketene. D: 6e Electrocyclic reaction.

B128 Et MgBr Et

H Ti(Oi-Pr)2

A

B

H Ti(Oi-Pr)2

-EtH C

Ti(Oi-Pr)2

MeO

O D

Ti(Oi-Pr)2

MeO OMe Ti(Oi-Pr)2

Me

Ti(Oi-Pr)2 O 2EtMgBr

Me

Ơ

O

Ti(Oi-Pr)2

E

O

OMe Ti(Oi-Pr)2

OMgBr workup Me

F

N

H

Me

Me

O

O

Me

N

Me

FF

Et MgBr OMe

Ti(Oi-Pr)2

IC IA L

Et

i-PrO Ti Oi-Pr)2 i-PrO (

+

OH

+H+

Et Ti(Oi-Pr)2 Et

A: Substitution of the isopropoxide with EtMgBr.

U

Kulinkovich reaction.

Y

Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234.

a titanium

Q

Reductive elimination to form

B

-Elimination.

C:

ethylene complex (or a titanocyclopropane).

D:

D

ẠY

M

Carbotitanation. E.: Formation of a cyclopropane. F: Regeneration of the active reagent.


D

ẠY M

KÈ Y

U

Q H

N Ơ N

IC IA L

FF

O


C001 H OMe O

MeO O

OMe OMs

Me H

A

H OMs

t-Bu

Me H

IC IA L

t-Bu

O MeO

Me

t-Bu MeO

OMe

MeO OMe OH

B

Me H

t-Bu

t-Bu

FF

OH

Me H

O

Yamauchi, T.; Hattori, K.; Nakao, K.; Tamaki, K. Bull. Chem. Soc. Jpn. 1987, 60, 4015.

N

A: Formation of an epoxide by intramolecular SN2 reaction of a hemiacetal. B: E1-like cleavage of the

Ơ

reactive epoxide.

C002

NO2

N

H

NO2

NEt3

M

NO2

O2N

KÈ N H

Ar

N H

OMe

NO2 O

O

O2S

Cl O2S

U

N H

H

Q

O2S

O2N

Y

O2N

O

N O O2S

NO2 O

O A N

Ar

N O OO S N Ar O H

ẠY

NEt3

O2N

D

NC

O2N

-SO2

+

O O2N O

N S

Ar

OH

OMe

O2N

O Huber, V. J.; Bartsch, R. A. Tetrahedron 1998, 54, 9281.

Smiles rearrangement. A: Addition-elimination process via a Meisenheimer complex.


C003

Me

Me

Et Me

Et

Me

O TiCl 4

H

Me

H

Me

Cl4TiO

workup

Et

Me

Me Et

H

Me O TiCl4

H

Me

H

Me

Et

Me O

FF

H

H

IC IA L

O TiCl4 Me

Me

H

Me

Bender, J. A.; Arif, A. M.; West, E G. J. Am. Chem. Soc. 1999, 121, 7443.

O

Cation-olefin cyclization initiated by Nazarov reaction ( ref B026).

Ơ

BrMg

O A

Cl

OMgBr

OMgBr +H+

C

U

O workup

Y

OH

BrMg

B

N

Cl

O

H

O

N

C004

Q

H

Kato, T.; Kondo, H. ; Nishino, M.; Tanaka, M.; Hata, G.; Miyake, A.

M

Bull. Chem. Soc. Jpn. 1980, 53, 2958.

A

-substituent. B: 1,2-Alkenyl

shift. C: Anion-accelerated oxy-Cope rearrangement via a chair-like transition state.

ẠY

C005

D

EtO

O

TfO

Ph Ph Si

EtO A

H

Me

OH

O

Ph Ph Si OTf

EtO

prydine

Ph Ph Si H

O Me

OH

Ph Ph Si OTf

EtO O

-H+

EtO2C Me

120oC SiPh2 O


Me

H

H

H

SiPh2 O

EtO2C Ph Ph H Me Si H O

B

TBAF H2O2 C

H

Me

SiPh2 F OH

CO2Et F O SiPh2F

Me

OOH

F

CO2Et O OH SiPh2

Me

OH

+H+

CO2Et OH

Me

OH

FF

CO2Et

+H+

EtO2C Ph Ph Me Si O

IC IA L

EtO2C

OH

O

Sieburth, S. M.; Lang, J. J. Org. Chem. 1999, 64, 1780.

N

A: Protodesilylation to form a silyl triflate. B: Intramolecular Diels-Alder reaction. C: Tamao-Fleming

N

H

Ơ

oxidation.

Y

C006

NHTs

U

NHTs TsNHNH2

N

ẠY

NTs

D

N

N

N

N Ts

H

NTs

O

-ArSO2

A

B N

N

H

O

O

Ts

H

O

NHTs

M

O

NaH

O

Q

O

TsN H

O

Ts

N N S

R

O

O

N H Ts

N H Ts

H

N Ts

O O

-N2 H

N N

N N

H

N Ts


O

OH N Ts

H

N Ts

H

Kim, S. H.; Fuchs, P. L. Tetrahedron Lett. 1996, 37, 2545.

IC IA L

A: Cleavage of the epoxide helped by the hydra zone anion. B: Conjugate addition of the sulfonamide

FF

anion.

O

C007 O H

-H

O

Me

N H

+H+

NH2

-H2O

Ph

Ph

O

Y Me

O

Q

Me

Ph

O

A

KÈ -H+

D

ẠY

+H+ B

Ph

Ph

N

Ph

Me Me

O O

Me

Ph

H N t-Bu

O

t-Bu H N O

M

N H

Ph

H

O

N

O

Ph

O

U

t-Bu N C

N

O

N

Me

O

Me

H

Ph

OH Me

+

Me

Ơ

Me

N

O

O

O Me

Ph

Me

H N

N Ph

t-Bu

O Me

Semple, J. E.; Wang, P. C.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 7505.

Ugi reaction (four-component condensation, 4CC). A: Most likely, addition of the isocyanide to the iminium ion and addition of the benzoate ion to the ensuing nitrilium ion takes place simultaneously. B:

Intramolecular acyl transfer reaction (the benzoyl group is activated).


C008 OMe OMe

OBn OMe OMe

OBn OMe OMe OMe

HO O

A

OMe

O

OMe B

OH O O

OH O O

Me

Me

BnO

OMe H

OMe

O O

OMe

-2H+

OMe

+H+ Me C

H

O O

Me

O

OMe

OH O O

Me

Ơ

O

BnO

Me

FF

Me OMe

O

O

N

H

BnO

IC IA L

OBn

H

Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. Org. Lett. 2004, 6, 2503.

U

Y

N

A: 4e Electrocyclic reaction. B: 6e Electrocyclic reaction. C: Aromatization.

O

O

OH

M

H O

Q

C009

O

ẠY

H

CF3 N

D

O

O

Ph

-H+ +H+

F3C

F3C F

Ph

O

O

A

CF3 N

Me O

N

O

N

O

+H+

O

Ph

B

O HO2C CF3 Ph NH

C Ph

O

O

O

Me

OH Burger, K.; Gaa, K.; Geith, K.; Schierlinger, C. Synthesis 1989, 850.

A: ipso-Substitution of the electron-deficient oxazole. B: Claisen rearrangement. C: H ydrolysis of the azlactone.


C010 Ph Pd I

Ph

A Ph

Ph

I H Pd

H Ph

Ph

FF

Pd I

H

LnPd

O

-HI

Ph

D

C

Pd H I

B

IC IA L

Pd(0)

I

Ph

I Pd

Ph

Ph

N

E

Ơ

Larock, R. C.; Tian, Q. J. Org. Chem. 2001, 66, 7372.

H

A: Oxidative addition followed by carbopalladation to an alkyne. B: Oxidative addition to the aromatic C-H bond. C: Reductive elimination. D: Oxidative addition to another aromatic C-H bond.

N

Reductive elimination to form the C-C bond.

E:

MeO2C

MeO2C

Q

U

Y

C011

M

A

B

CO2Me

D

ẠY

H

MeO2C

H MeO2C C

C

Grissom, J. W.; Calkins, T. L.; Egan, M. J. Am. Chem. Soc. 1993, 115, 11744. Masamune-Bergman cyclization. A: Radical cyclization of an endiyne. B: Kinetically favored 5-exotrig radical cyclization. C: Abstraction of a hydrogen atom from 1,4-cyclohexadiene.


C012 N

N H

Me

-AcOH O

Et Me O

O

A

O

Me

O

Et

IC IA L

O

O

Et

N

FF

Et

N H

OAc

O

N H OAc

Et

N

O N

B O

HO

N H

O

N

N H

N

Harley-Mason, J.; Atta-ur-Rahman Tetrahedron 1980, 36, 1057. A: Formation of a mixed anhydride. B: Acylation of the tertiary amine followed by cleavage of the C-N

Ơ

bond assisted by the nitrogen lone pair of the indole.

H

C013 O

OH O

A

Y

OMEM

t-BuOOH VO(acac)2

N

OH

O

R OH

B

R OH

Q

U

Me Me

OH

O -H+

-H+

+H+ C

OMEM

ẠY

O Me Me

MEMO

O Me Me

O

HO H

H

H H

OHC

-H+

O

H

D

MEMO

O

O

M

OH

R

D

HO

OH

O Me Me

+H+

H

O

MEMO

OH H MeMe

Richter, E; Maichle-Mossmer, C.; Maier, M E. Synlett. 2002, 1097. Achmatowicz reaction (A-C).

A: Epoxidation directed by the h ydroxy group.

B: Cleavage of

theepoxide followed by the ring opening to form a cis-enal. C: C yclization to form a lactol. D: Intramolecular Diels-Alder reaction.


C014

N O

N O n-Bu O

H

O O

n-Bu B

n-Bu H

C

OH N O

n-Bu

pyridine

n-Bu E

OH

N

OH

N HO

workup

n-Bu

NH

OH

OH

O

Ơ

N TsO

+H+ D

n-Bu

N

TsCl

-H+

OH

N O

N

A

O

IC IA L

Cl

H

n-Bu

hv

O

O

n-Bu

-HCl

FF

n-Bu

H

OH2

Corey, E. J.; Arnett, J. E; Widiger, G. N. J. Am. Chem. Soc. 1975, 97, 430.

N

Barton reaction (A-D, ref 097). A: Photo-induced homolytic cleavage of the nitrite. B: Abstraction of a hydrogen atom via a six-membered transition state. C: Recombination of .NO with the resulting

U

Y

radical. D: Tautomerization to form an oxime. E: Beckmann rearrangement ( ref A055).

Me

O

N

O

N

M

O

Q

C015

A

O N

Me

Me H

O H

RhLn

Me

O O

O

Me H

SmI2

O O

H I2Sm

O

H

Me H

O D

H

O

O

B

RhLn

O

C

Me

Me

O RhLn

D

ẠY

Me

O

O

RhLn

RhLn

O

-N2

N

O O H SmI2 H

O


SmI2 O H O

SmI2 H O

O E

H

O

+H+

F O SmI2

HO

workup

O SmI2

H

O

H

H

IC IA L

Padwa, A.; Sandanayaka, V. P.; Curtis, E. A. J. Am. Chem. Soc. 1994, 116, 2667. A: Formation of a rhodium carbene complex.

B: Formation of a carbonyl ylide.

C: 1,3-Dipolar

O

FF

cycloaddition. D: SET to form a ketyl radical. E: Homolytic cleavage of the C-O bond. F: SET.

N2 H

Me

Me

A

N

n-Bu

Me O

O

U

Q

O

Me O

-N2

Me

O

Me O

H O

Me

H

silica gel

D

ẠY

+H+

O

Me

Me O

O

O

B

O

Me HO

Me O Me

+

H Me OH

Me O

Me

H

Me

M

Me

Me O

Y

N N C

N N C

Me3Si N2 O

O

H

Me3Si

N2

Ơ

Me3Si

N

C016

-H O

Me

HO

O

Me

Walker, L. F.; Connolly, S.; Wills, M. Tetrahedron Lett., 1998, 39, 5273.

A: Peterson olefination ( ref A074) followed by elimination of N 2 to form an alkylidene carbene. B: C-H insertion.


C017 Cl3C C N

MgBr

H

N

workup

N Tr

N

-H+ A

N Tr

CCl3

N Tr

CCl3

N

O

O

DBU Cl3CCN

NH

O

H OR

N

CCl3

N

N

N Tr

CCl3

N B

Cl

N Tr

+H+

Y

NH2

Q

M

Cl

Cl

N Tr

CCl3

U

O

-H+

N

-H+

N

+H+

O

HO CCl3 O

NH

O

N

N Tr

aq HCl

H

N

N Tr

N

O

CCl3

H2O

N

NH

O

N Tr

Ơ

CCl3

Ca(OCl)2 H2O

O

N Tr

NH

O

FF

N

OH

IC IA L

O

N

N Tr

OH

NH2

N

Cl

N Tr

NH2 Cl

Commercon, A.; Ponsinet, G. Tetrahedron Lett. 1990, 31, 3871.

A: Formation of a trichloroacetimidate followed by aza-Claisen rearrangement. B: While formation of five-membered rings is kinetically favored, acti vation by the imidazole ring directed the cycli zation to

ẠY

form a six-membered ring.

D

C018

MeO

H O

Et MeO

O benzene

Me OMe OH Me

R OMe OH

reflux


MeO

O

O

MeO

H

R

R

OMe OH

OH R

A

OMe

OMe

OMe

MeO

MeO OH MeO

MeO

R

O

IC IA L

MeO

OMe

OH

FF

B R OMe

Me

Me

OMe

Me

O

Me

N

Tatsuta, K.; Tamura, T.; Mase, T. Tetrahedron Lett. 1999, 40, 1925.

H

Ơ

A: Restoration of the aromaticity. B: Hetero-Diels-Alder reaction.

H2N Ts +

-H

U

Ph

H

+H+

Ph

C

OMe

A

ẠY D

Ph

H

Ph

Ts N

Ph

Ph OMe

Ph3P

CO2Me

O

O

Ts N

NTs

NTs

M

PPh3

H Ts F3B O NH

Y

O

Q

F3B

N

C019

PPh3

Ts N

-H+

Ph

Ts N

Ph

+

B Ph3P

+H HCO2Me C

Ph3P

H CO2Me

CO2Me

Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031. A: Conjugate addition of Ph3P to the allenyl ester to form an enolate. B: 5-endo-trig Cyclization to form an ylide. C: Proton transfer followed by elimination of Ph 3P.


C020 Me i-PrO i-PrO

+2i-PrMgCl

Ti(Oi-Pr)2

-2Oi-Pr-

Me

Me

H Ti(Oi-Pr)2

Me

H Ti(Oi-Pr)2

Me

Me

Me

Me A

OEt

Ti(Oi-Pr)2 B

O

+H+

FeCl2

TBSO

M

TBSO

Cl

O

MeOH

O

OAc

H

TBSO

NaOAc

U Q

Cl

O FeCl2

O

Y

O

TBSO

D

Ti(OR)3 FeCl3

N

TBSO

O

Ơ H

workup

Ti(Oi-Pr)2

TBSO

OH

OTi(OR)3

O

TBSO

C

O

OEt Ti(Oi-Pr)2

TBSO

TBSO

Ti(Oi-Pr)2

TBSO

O

E

OEt O

N

TBSO

Ti(Oi-Pr)2

Ti(Oi-Pr)2

Me CO2Et

Me

FF

Me

IC IA L

Me -

TBSO

Cl

Cl

TBSO

ẠY

Hanazawa, T.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2001, 42, 5455.

A: Formation of a titanium-propylene complex or a titanacyclopropane derivative ( ref B128). B:

D

Olefin exchange. C: Intramolecular insertion of the carbonyl group to the titanium complex.

Formation of a cyclopropane. E: Oxidative cleavage of the cyclopropane ring.

C021 B

Ph

H Cl

O

Cl

Cl

O

Cl A

H

O

Cl

D:


Ph

Ph

Ph O

B

Cl

O

O

C

D

Ph

IC IA L

n-Bu Ph

workup O

OH

Danheiser, R. L.; Martinez-Davila, C.; Morin, J. M., Jr. J. Org. Chem. 1980, 45, 1340. -Elimination to form a carbene. B: Cyclopropanation. C

anion.

-Elimination to form a cyclopropanol

FF

A

D: Anion-accelerated vinylcyclopropane rearrangement (homolytic cleavage followed by

N

O

recombination of the diradical).

H

Ơ

C022

Y

-H2O A

U O P(OPh)2

M KÈ

O N N P(OPh)2 N N

B

-N2

O N P(OPh)2 N

C

KOH

D

D

ẠY

N N N

N3

O P(OPh)2

O N P(OPh)2 N N N

Q

N

N

N

N H

O

Hamada, Y.; Shioiri, T. Org. Synth., Coll. Vol.

CO2H

1990, 207

A: Formation of an enamine. B: 1,3-Dipolar cycloaddition. C: Cleavage of the N-N bond.

Tiffeneau-Demjanov-type ring contraction.

D:


C023 TMS

TMS I O

O

H O

Me

+H

N

O

O

Me

TMS Me

O

O

O

HO

O

Me

O

O B

O

O

O

Me

O

N

TMS

Ơ

N

N

N

IC IA L

Me Ac2O

Me

O

TMS

workup

O

+

A

N

O

O

FF

O

Me

CH3 O

O

O

Li O

TMS

TMS

H

O Me

O H

O

O

N

N

Me

-CO2 Me

Q H OAc E

N

D

AcO O

TMS

M

O

TMS

Me

Me

O

H SiMe 3 N

O

O N

C

U

Me

O

O

O

Y

O

N

O

N

Me

Nayyar, N. K.; Hutchison, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62, 982.

ẠY

A: Demethylation via an SN2 process. B: Cycli zation of the mixed anhydride followed by formation of a E: Protodesilylation.

D

1,3-dipole. C: Intramolecular 1,3-dipolar cycloaddition. D: Decarboxylation.

C024 Me

Me O

OH PhSe Br

A

-H+ O

PhSe

OH

Me O

B

O PhSe


NaIO4 Me O

Ph

Se

Me

Me

toluene

O

reflux C

O H

D

O

O

O

O Petrzilka, M. Heir. Chim. Acta 1978, 61, 3075.

A: Selenation of the electron-rich enol ether. B: Intramolecular acetal formation. C

IC IA L

the selenoxide. D: Claisen rearrangement.

OMe

OMe OBn

O AcO

HgCl

ClHg AcO

BnO

O

O

H

O

BnO

H

N

H

BnO

OMe OBn O

AcO

+H+ B

BnO

OBn

OH OBn

Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S. J. Chem. Soc., Chem. Commun. 1989, 436.

U

Y

OBn

+H+

HgCl

O

N

OBn

-H+

-H+

O

BnO

A

HO

AcO

O

AcO

O

BnO

HgCl

Ơ

AcO

H2O

FF

C025 Cl Hg Cl

-Elimination of

Q

Ferrier rearrangement. A: Oxymercuration of enol ether. B: Intramolecular aldol reaction of the

M

mercury enolate with the aldehyde.

O

C026

O

O

Me

ẠY

Ph

O Me

Ph

Me

Me

Me

Oi-Pr

D

O

Me

H

Ph

H

Me

O Me Ph

i-Pr O H i-Pr

OLi O A

O Li O

i-Pr

H

O

Ph Me

O i-Pr Me

Me

OH O

workup +H+

Ph Me

i-Pr Me Me


OH

O i-Pr Me

OH O

NaOH Ph

MeOH

Me

OH OH Me

Ph

Me

Me

OH OH

workup +H+

Me

Me

Ph Me

Me

Mascarenhas, C. M.; Duffe y, M. O.; Liu, S.-Y.; Morken, J. P. Org. Lett. 1999, 1, 1427. A: Intramolecular hydride transfer (Cannizzaro-type reaction) through a

IC IA L

Tishchenko reaction.

FF

chair-like transition state.

C027

H

F3B

O

H

+

-H O

Me

Me

H OH

O

Q

Me

M

Me

Me

HO

HO

HO

O

O

-H2O

Me

O

ẠY

H2O

D

Me

Me

Me

HO OH OH Me

OH2

B Me

Me

-H+

Me

HO

+H+

+H+

HO

+H

HO

+

O

+

Me

HO

-H

U

Me

+

Y

OH

HO

-H

Me

F3B H O H

O

-H+

Me

Me

N

F3B H

O

H

Me

+H+

Ơ

A

H

O

N

O

O

O

H

F3B

BF3

O

Me

Me

OH

O Me

Nagumo, S.; Suemune, H.; Sakai, K. J. Chem. Soc., Chem. Commun. 1990, 1778. A: Intramolecular acid-catalyzed aldol reaction. B: Grob-type fragmentation.


C028 O hv

Me3Sn SnMe3

O

N

N

I

Me3Sn

N

OH O

C

Et

OH O

IC IA L

Et

O

O

N

N

N

N Et HO

FF

A

Et HO

O

O

O

H

H

Ơ

N

I

N Et HO

O

O

N

Et HO

N

H

B

R I

O

N

O N

O

N

Y

-HI

U

N

Q

Et HO

O

M

Curran, D. P.; Ko, S.-B.; Josien, H. Angew. Chem. Int. Ed. 1995, 34, 2683.

A: Radical addition of an isocyanide to form an imidoyl radical. B: Atom transfer reaction.

D

ẠY

C029

Me Me O

MeO

O

O

Me

O Ar

Cl

A NMe

O

Me

N Me

Me Me

H

O Ar

O B

O

Me

N Me

Me Me O


Me Me Me

Ar

O

N Me

Me

NMe

AlCl2 Me

B Me

Me AlCl2 O

H O -H+

NMe

workup

O

MeO

Me

Me

NMe

Ơ

t-BuOK

O

MeO

MeO

N

OMs Et3N MsCl

MeO

H

Me

NaBH4

O

O

MeO

NMe

OH

FF

H

OMs NMe

Me H

O

N Y MeO

O

Me

O Me

NMe Me

M

MeO

Q

NMe

NMe

t-BuO

U

OMs

C

O

MeO

IC IA L

O

O

AlCl2Me

AlCl2 O

O

Fuchs, J. R.; Funk, R. L. Org. Lett., 2001, 3, 3923.

A: Acylation of the imine to form an enamide. B

-amidoacrolein. C:

ẠY

Intramolecular conjugate addition of the electron-rich aromatic ring to the amidoacrolein.

D

C030

H H BH Me

CH3CHO

H B

A Me

H

Me

H

B

H

B O H

Me

H Me


Me -

H

B

H

B OEt

H

B OEt H Cl O Me

Cl OMe

IC IA L

Cl Cl OMe

H

H

B H OEt Cl O Me

OEt -MeOH H B Cl -EtOH MeO H

N

H

Ơ

O B OH

O

H

H Cl

OOH

H

OOH OH

O OH H B Cl HO OH

OH H Cl B HO

FF

H

H

NaOAc aq H2O2

O

OMe

H

Cl

B H EtO

Cl Cl t-BuO

H

Brown, H. C.; Mahindroo, V. K.; Dhokte, U. P. J. Org. Chem. 1996, 61, 1906. B: H ydride transfer via a six-membered

N

A: Sequential hydroboration to form a trialkylborane.

U

Y

transition state. See Meerwein-Ponndorf-Verley reduction ( ref B002).

Me Me Me

Me

Q

C031

Me

M

N C N H O

O

Ph

S

O

Me

A

Me

HN Me

O

N Ph Me

Ph

Me

HN O

O

S

Me Ph

O N

Me

O H Ph

O Ph

S

B

ẠY

O

O

D

Ph

S

O Ph

O Ph C

S

Ph

Ph D

S

S

Ph

Ph

E Ph

Sponholtz III, W. R.; Trujillo, H. A.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 1687. A: Acti vation of the carboxyl group as an O-acylisourea. B: Generation of a 1,3-dipole. C: 1,3-Dipolar cycloaddition. D: Decarboxylation to form a 1,3-dipole. E: Intramolecular 1,3-dipolar cycloaddition.


C032 O

O

H

H

-H+

Me

Me

+H+

A

Me H O

Me

Me

O

Me

H

Me

OH Me

Me

H

C

Me

Me

FF

Me

B

IC IA L

Me

O

Fukuyama, T.; Li, T.; Peng, G. Tetrahedron Lett. 1994, 35, 2145. Abnormal Claisen rearrangement.

A: Claisen rearrangement followed by tautomerization.

B:

N

O

Intramolecular oxy-ene reaction to form a cyclopropane. C: Retro oxy-ene reaction.

O

H n-Bu

Y

n-BuLi RCHO

U

Ph

O S

C

M

H

PhS Cl

Q

O S

O S

ẠY D

R

E

Ph

Ph

D

OH

B

S Ph

O S

Ph H R

aq NH4Cl

O S

O

A

N

O

H

Ơ

C033

R

Ph

O

O

O R S Ph

OH

OH R Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186.

A: Formation of a sulfenate. B: [2,3] Sigmatropic rearrangement. C: Deprotonation followed by addition to the aldehyde (pKa D MSO = 35).

D: [2,3] Sigmatropic rearrangement of the sulfoxide. E:

[2,3] sigmatropic rearrangement of the sulfenate.


C034 OTBS

OTBS

RuLn

OTBS RuLn

RuLn

A

R

R Me

Me

OTBS

OTBS

RuLn

OTBS

RuLn

Me

Me

Me

N

OTBS

Ơ

OTBS

LnRu

Me

OTBS

LnRu

N

H

RuLn

Ru Ln

O

Me

FF

B

IC IA L

Me

Me

Me

Y

OTBS

C Me

M

Ru Ln

RuLn

Q

U

-

OTBS

Zuercher, W. J.; Scholl, M.; Grubbs, R. H. J. Org. Chem. 1998, 63, 4291.

Domino intramolecular enyne metathesis. A: Alkene metathesis at the terminal olefin. B: Sequential intramolecular alkyne metathesis to form a kinetically favored, six-membered intermediates.

ẠY

Intramolecular alkene metathesis.

D

C035

OBoc

OBoc

OBoc O

OBoc O

H

Ph

O Ph

O

Ot-Bu

O

A Ph

O O

Ot-Bu

C:


OBoc

OBoc

O

B Ph

O

C Ph

OEt

OEt

Jones, R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2002, 67, 6911

IC IA L

A: Intramolecular acyl transfer (pKa PhOH = 10, t-BuOH = 19). B: Generation of o-quinonemethide C: Hetero-Diels-Alder reaction to form an endo-adduct.

C036 N Br

OBn O

O

O

O

O

HO Me

A

OBn

-H+

O

BnO BnO

OBn

OBn

N

OBn

BnO BnO

Ơ

OBn

O

BnO BnO

OBn

N

Br

OBn

Br

O

BnO BnO

O

O

OBn

OBn

H

BnO BnO

FF

O

OMe

Fraser-Reid, B.; Konradsson, P.; Mootoo, D. R.; Udodong, U.

Y

J. Chem. Soc., Chem. Commun. 1988, 823.

Q

U

A: Bromination of the olefin causes the formation of a five-membered oxonium ion.

C037

M

Me

Me

ẠY

S

Me Me

Me

B

Me Me

C

Me

Me

SMe Me

C

C

Me Me

C

C

Me

S

Cl Hg Me Cl

Me

Me Me ClHg

OH2

Me Me

Me HS OH Me

-H+

Me

+H+

Me Me HgCl

Me

H

O

Me

OH

Me Me Me HgCl

C Me Me

Cl

H

-H+

O

Me Me

Me

Me

Me

S Me

D

HgCl2

S

A

Me Cl Me

Me Me

Me Me


Michelot, D.; Linstrumelle, G.; Julia, S. J. Chem. Soc., Chem. Commun. 1974, 3, 10. A: Generation of an alkylidene carbene. B: Formation of a sulfur ylide (carbene is electrophilic). C:

C038 O OMe

CO2Me

H

OMe

N3

A

OMe

N3

O

N3

OH -H2O

CO2Me

N

N

N

H

CO2Me N

B

N

Ơ

N3

MeO

-N2

CO2Me

N

CO2Me N3

O

O

H

H OMe

O

FF

H

IC IA L

[2,3] Sigmatropic rearrangement.

Y

C

NH2

N H

CO2Me

Q

U

H

CO2Me

or

M

CO2Me

CO2Me

D

ẠY

N

C

N H

N H

N

CO2Me

CO2Me Knittel, D. Synthesis 1985, 186.

A: Claisen-Schmidt reaction. B: Formation of an azirine. C: Cleavage of the azirine ring to form

either 1) a nitrene which undergoes C-H insertion or 2) a diradical that recombines to form, upon aromatization.an indole.


C039 OLi OLi

Me

O

OLi workup Me

+H+

Me

OH2

-H+

Me +H+

OMe

C

Me Me H

OMe

Me

Me

Me OMe H

-H+

A Me Me

O

H3O+

Me Me

Me Me

N

Me

H

FF

Me H

OMe

-H+

O

OH

Me MeOH

Me

MeOH OH2

OH H SO 2 4

IC IA L

Me

OH

Ơ

Hiyama, T.; Shinoda, M.; Nozaki, H. J. Am. Chem. Soc. 1979, 101, 1599.

H

A: Nazarov reaction ( ref B026).

Ph I O OCOCF3 OMe

Y

OCOCF3 I Ph OCOCF3

O

U

OH

N

C040

OMe

Me

HO

Q

OMe

Me

M

A

Me

Me

O

D

ẠY

-H

OMe

+

O

O

Me

B

OMe O

Me Me

Me Me O

mesitylene 200oC

O

Me

Me Me

OMe O

O C

Me Me

OMe O

Me Me H O e OM O

Hsiu, P.-Y.; Liao, C.-C. J. Chem. Soc., Chem. Commun. 1997, 1085. A: Oxidation of the phenol to form a mixed o-quinone monoacetal. B: Intramolecular Diels-Alder


reaction. C: Cope rearrangement.

C041 MeO N

MeO

O

MeO N

MeO

O

N

MeO

A

O

IC IA L

MeO

H OMe

H

MeO N

MeO

O H

H

MeO

B

O H

H

N

O

H

N

FF

MeO

H

Ơ

Naito, T.; Tada, Y.; Nishiguchi, Y.; Ninomiya, I. Heterocycles 1981, 16, 1137.

N

H

A: 6e Electrocyclic reaction. B: Reduction of the acyliminium ion from the convex face.

C042 O

Y U

H

Q

B

O

O

TBS

R

M

R A R TMS

O

R C TMS

TBSO

ẠY

TMS

O

B

D

O u e t B M 2Si

TBSO

O

workup

R TMS

O TBSO

TBSO

O

+H+

D TMS

R

TMS

R

Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400. A: 1,2-Addition of the enolate to the acylsilane. B: Brook rearrangement. C: Cyclopropanation. D: Anion-accelerated divinylcyctopropane rearrangement.


C043

H

O

Me

Me H

A

O

O

O

SmI2

I2SmO Me

SmI2

H

I2SmO Me

I2SmO Me

B

C O

I2SmO Me

HO Me

workup

H

+H+

D H

H

O

O

FF

H

O

H

SmI2

H

H

N

H

O

IC IA L

Me

SmI2 O

H

O

Ơ

O

Chem. Commun. 1998, 1875.

B: 5-exo-trig Radical cyclization to form a radical at a cyclopropylcarbinyl position which

N

A: SET.

H

Boffey, R. J.; Santagostino, M.; Whittingham, W. G.; Kilburn, J. D.

induces cleavage of the cyclopropane ring (cf. radical clock). C: 5-exo-dig Radical cyclization. D:

U

Y

SET.

Q

C044

O

M

Me O

OMe

Me

H

H

H

H2N

Me O

NH2

+H+

A

+H+

OTs H

D

ẠY

MeO

Me Me H

NH2

O

O

Me NH

-H+ O

H

HO

O

Me Me

+H+ B

Me

O

O

Me

NH2

O NH2

H

H

O

O

Me Me


O

H2O

Me Me O

O

Me

O

H

IC IA L

Me OH

O

+

-H

O

H

O

+

+H

H

H

H O

O

+H+

H

Me

O

Me

-H+

O

D

H -CO2

O

Me

O

C

O C

H

FF

MeO

Tietze, L. F.; WöIfling, J.; Schneider, G. Chem. Ber. 1991, 124, 591. A: Grob-type fragmentation. B: Knoevenagel reaction ( ref A018). C: Intramolecular hetero-Diels-

O

Alder reaction. D: Retro Diels-Alder reaction to generate a highly reactive acylketene.

Ơ

N

C045

Me

Me

OEt

Br Br

N

O O

OEt

Br

t-Bu

Me CO2Et

A

U

Y

t-Bu

Q

O

Me

C

Me O

O

Me

Me O

CO2Et

O

D

Me O

O

O

Me

M

B

ẠY

Me

OH

H

O

OEt

Me O

O

Me

Me

O

O

H

-CO2

Me Me

workup

Me

+H+ O

O Me O

EtO Me

C

OH


Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2001, 66, 7818. A: Formation of an ynolate. B: Addition of the ynolate to the ketone leads to the formation of a strained -lactone enolate. C: Claisen condensation followed by aromatization with decarboxylation.

C046

Me

CO2Me

OMe

O N N

CO2Me

-N2

O

O -

O

Me

Me

O MeO

H B

OMe

H

OMe

C O

H

O

OMe

Ơ

O

MeO2C

O

O

N

MeO

OMe

FF

A

IC IA L

Me

H

Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Belanger, F. J. Am. Chem. Soc. 2004, 126, 9926.

N

A: Fragmentation to form a dialkoxycarbene. B: Cyclopropanation. C: Cleavage of the cyclopropane

Y

ring.

Q

U

C047

MeO

O MeO

M

O

N

Ph

N H

Me

MeO

Ph N

Me Br

Ph

ẠY

H

Me

MeO

MeO mCPBA

D

LiAlH4 AlCl3

Me

O

O N

N Ph

Ph

A


MeO

Me

C

H

MeO

Me

Me

MeO +

N

O

N

B

Ph

-H

O

Ph

Ph MeO

-H

N

+H+

Me OH

N Ph

FF

Ph

MeO N

Me

Ph

N

Ph

O

CN

Me

N

Me OH

KCN

CN

O H

IC IA L

MeO +

MeO

N

+H+

Ơ

Makisumi, Y.; Takada, S. Chem. Pharm. Bull. 1976, 24, 770.

N

H

A: [2,3] Sigmatropic rearrangement of the N-oxide. B: [3,3] Sigmatropic rearrangement.

Y

C048 O S N CO2Me

M

Q

A

U

N

ẠY

CO2Me workup S O Ph

PhMgBr

CO2Me

S O

B

Ph NHCO2Me

HMPT EtOH 80oC

H N

NHCO2Me D O SPh

N

S O

Ph S O

C

D

CO2Me

O

Ph S O

NHCO2Me

H NH

O

OMe

H

O

O

P(NMe2)3 Anderson, G. T.; Chase, C. E.; Koh, Y-H.; Seien, D.; Weinreb, S. M. J. Org. Chem. 1998, 63, 7594.

A: Hetero-Diels-Alder reaction. B: Cleavage of the S-N bond by SN2 attack of Ph MgBr.

C: [2,3]

Sigmatropic rearrangement (reversible process). D: Irreversible cleavage of the S-O bond by attack of a thiophile (P(NMe2)3) generates an alkoxide ion which then cyclizes to give an oxazolidinone.


C049 Me t-Bu Si Cl Me

Me B

O

O

Me

Me

Me O

O O OTBS Me

B Me

Me

H

O O

Me

O

D

Me

OH

+

Me Me OH

H Me Me

C

Me

OH

H

H Me Me

Me

H2 Pd/C

H

+

O

O

Me

O O

Me

N

Me

Me

Me

O O OTBS

Me

Me

O

Me

OTBS

A

Me Me OH

Ơ

Me

O3

FF

H

Me

IC IA L

Me

Casey, M.; Culshaw, A. J. Synlett

N

A: Formation of a silyl enol ether. B: 1,3-Dipolar cycloaddition of O3 followed by cleavage of the ozonide to form a 1,3-dipole (carbonyl oxide). C: 1,3-Dipolar cycloaddition. D: Reductive cleavage of

U

Y

the O-O bond.

Q

C050

Ar

O

M

O

Ar Et

CN O

A

ẠY Ar

O

O N R

N C N H R

D

Ar

PPh3

B

NHEt

R

PPh3 H

N

CN NHEt

O

Ar

O

O

O

Ar

O3 O

PPh3 CN

O

PPh3 CN

C

O

Ph3 P O NC O O


Br Br

Br

Ar

OMe

O O H2N

O

N H

O

CN

IC IA L

D

Br

OMe

OMe

Wasserman, H. H.; Wang, J. J. Org. Chem. 1998, 63, 5581. A: Acti vation of the carboxylic acid as an O-acylisourea. B: Acylation of the stabilized ylide. C: 1,3-

FF

Dipolar cycloaddition of O3 to the ylide. D: Fragmentation to generate an acyl cyanide.

C051 Me

-H+

OH O

CO2Et

A

N

Pr

CO2Et

O

N

ẠY D

O

-H+

M

CO2Et

N

O

Pr

Ơ OH

O NH O CO2Et

O

+H+

CO2Et

OH2

N

CO2Et

Pr

O

N

TMSCH2MgCl CeCl3

OEt

Pr

O

OEt

O

OEt

Pr

C O

N

OEt

Cl2Ce CH2SiMe3

OEt

Pr

O

N Pr

O

N

Pr

Pr

EtOH B

Q

HOEt

O

N

-AcOH

NaBH4 H2SO4

O

Me

O

Y

O

Pr

U

Pr

O

NH O CO2Et

H

+H+

NH2

Cl

O

O

N

O

O

SiMe3

Cl2Ce CH2SiMe3

OEt

O

N

SiMe3 O

Pr SiMe3

OEt SiMe3


aq HCl O N + +H Pr C

H OEt

O SiMe3

H

O

N SiMe3

Pr

N

D Pr

Chalard, E; Remuson, R.; Gelas-Mialhe Y.; Gramain J.-C.; Canet I. Tetrahedron Lett. 1999, 40, 1661.

IC IA L

A: Formation of a succinimide via a mixed anhydride. B: Partial reduction of the imide. C: Peterson

olefination ( ref A074) to form an allylsilane. D: Intramolecular addition of the allylsilane to the

FF

acyliminium ion.

C052 CO2H (COCl)2

H

O Cl

O

Et3N

C

O

A

Ơ

N

Et3N

Me OH

Me O

H

MeLi

O

Cu(OAc)2 Mn(OAc)3

Mn(OAc)2

Cu(OAc)2

Q

Me O

U

Y

N

B

D

M

C

H

E

CuOAc O

Me

O

Me

ẠY

H

D

Me

O

Me

O

Snider, B. B.; Vo, N. H.; Foxman, B. M. J. Org. Chem. 1993, 58, 7228.

A: Formation of a ketene. B: Intramolecular [2+2] cycloaddition. C: Generation of an oxygen radical.

D: Cleavage of the cyclobutane ring to form a stable tertiary carbon radical. E: 5-e xo-trig Radical cyclization followed by oxidation with Cu(OAc)2.


C053 Me3Si Me3Si OTf

H O SiMe3

O

Ph

H -H+

O Ph

+H+

OH

H

Ph

O Ph SiMe3

IC IA L

Ph SiMe3

Ph

O

Si Me Me Me

H

O

Ph

O

Ph

FF

Ph

N

Roush, W. R.; Dilley, G. J. Synlett. 2001, 955

Ơ

Intramolecular Hosomi-Sakurai-type reaction.

O O

O

O

M

KÈ N2

ẠY

O

O

D

Br

Li Br n-Bu

O

i-Pr3SiCl

O

O

O

O

U

Br

Q

Br

O

Br

Br

Y

A

H Br

n-Bu

N

O

H

C054

i-Pr3SiO OSii-Pr3

O

H

hv O

B

C

O O

O C

i-Pr3SiO

i-Pr3SiO

O O

O i-Pr3SiO

D OSiPr3

O

OSii-Pr3 C

OH

OSii-Pr3

-H+ OSii-Pr3

+H+ E

O

OSii-Pr3

Danheiser, R. L.; Trova, M. P. Synlett. 1995, 573.


A

-elimination followed by insertion of the carbene into the C-

C bond (Kowalski reaction).

B: Wolff rearrangement.

C: [2+2] Ketene cycloaddition.

D: 4e

Electrocyclic reaction. E: 6e Electrocyclic reaction followed by aromatization.

C055

N

Ts

Ts N

OTf Ts Me

I Ph

A

Ph

Ph

Ts N

Me

B

Ph Ts Me N

Ph Ts Me N

O

Ts N

Me

FF

Ph

IC IA L

H N

n-Bu

Me

Ph

Ơ

N

C

H

Ph

N

Feldman, K. S.; Mareska, D. A. J. Org. Chem. 1999, 64, 5650. A: Addition of a sulfonamide ion to the electron-deficient acetylene to form an alkylidene carbene. B:

Q

U

Y

Cyclopropanation. C: Homolytic cleavage of the strained cyclopropylidene ring.

C056 H

NH3

O

M

OBn

ẠY

OHC

D

H

H

N

OBn H

HO

H

HO

HN

H OH

OBn

H

N OH

OBn H

-H2O N

OH

OBn

OBn NH4OAc AcOH 75oC

H

H

N


OBn

OBn

OBn

H H A

H B

HN

H

-H+

HN

HN

IC IA L

Heathcock, C. H.; Stafford, J. A. J. Org. Chem. 1992, 57, 2566. A: Aza-Diels-Alder reaction. B: Cation-olefin cyclization.

H2 Lindlar catalyst A HO

O

OH

FF

C057

N

HO

HO

C

HO

N

OH

H H OH

Ơ

H

H

H

B

OH

Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J.

Y

J. Am. Chem. Soc. 1982, 104, 5555.

U

A: Partial reduction of the alkynes to form a tetraene. B: 8e Conrotatory electrocyclic reaction. C: 6e

Q

Disrotatory electrocyclic reaction.

M

C058

Zn

O

Cl

A

ẠY

Cl

Cl Cl

O A Cl O

Cl O

Cl

Cl

O

O

S

O

Tol

S

Tol

R

Me

N(Boc)2

D

N(Boc)2

Cl H Cl R

O o S T l O

Cl H Cl B R

O o S T l O

O

O

Cl

Cl O

Me C

O STol N(Boc)2


Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. J. Am. Chem. Soc. 2002, 124, 13398. A: Generation of dichloroketene.

B: [3,3] Sigmatropic rearrangement.

C: Cyclization of the

carboxylate to the sulfenium ion.

C059

IC IA L

O Me

Cl3Al Cl

Me

O S Me Me

MeO

MeO A

CN

N R

MeO

O

HS

Me Me

R'

N R

R'

CN

N

N

N R

O

MeO

H

C

Me

S

O

Ơ

Me

N

Me

MeO

B

R'

O

Cl

Cl3Al Cl S

Cl

FF

N

S

Y

Cl

U

Chung, J. Y. L.; Reamer, R. A.; Reider, P. J. Tetrahedron Lett. 1992, 33, 4717.

Q

A: FriedeI-Crafts acylation at the indole 3-position. B: Cleavage of the strained four-membered ring by

M

chloride ion. C: Intramolecular electrophilic substitution by the resulting sulfenyl chloride.

C060

O

A C

PdLn

O

Me

Me

OMe H

O

PdLn

D

ẠY

Me

O

O Me C PdLn

Me OH

Me

O OMe

-H+ +H+ B

O OMe

O Me

C PdLn

HO


O

Me

OMe PdLn

O

O

Me

-Pd(0)Ln

OMe

O

Me

Me

Me

H

Minami, I.; Yuhara, M.; Tsuji, J. Tetrahedron Lett. 1987, 28, 629.

IC IA L

A: Formation of an allenylpalladium species. B: Addition of the acetoacetate anion to generate a -allylpalladium complex. C

-allylpalladium complex.

C061 Me

Me

A

Br LnPd

Br PdLn B

N

Br O

O

O

H

Ơ

O

Br LnPd Me

O

Pd(0)Ln

FF

Me

Me

Y

-

Me

PdLn Br C

O

O

U

O

H

H PdLn Br

N

BrMe LnPd

Q

Me yer, R E.; Parsons, P. J.; de Meijere, A. J. Org. Chem. 1991, 56, 6487.

M

A: Oxidative addition. B: Sequential intramolecular carbopalladation. C

C062 O

OH

O

O

H O

D

ẠY

+H+

O

H

-H+ SiMe3

HO

O Me3Si

O

OH2 O

+H+

SiMe3

O

H

-Elimination.

Me3Si

decalin 170oC A

H O Me3Si

O


Me3Si

Me3Si EtAlCl2

O

Me3Si O

O

O

O

O Cl2EtAl

Me3 Si Cl - e M 3SiCl

O B

workup

O

+H+ H OAlEtCl

H OAlEtCl

IC IA L

AlEtCl2

O

H OH

FF

Paquette, L. A.; Ladouceur, G. J. Org. Chem. 1989, 54, 4278.

O

A: Claisen rearrangement via a boat-like transition state. B: Intramolecular Hosomi-Sakurai reaction.

O H

O

N

O Me

U B

M

Ph Br

OMe OH

Q

O

O

Br

O

H

O

BrZn Zn

ẠY D

-H

D

BzO Me

H

O

Ph

Br N

O

OMe OH

O

O Me O Br

O

OMe OH

O Me

H

O C

Ph

O

OMe OH

ZnX O

O OH

OH

BzO Me

OZnX O

OMe OH

O Me

ZnX2

BzO Me

+

Ph

A

Y

O

H

O Me

H

Ph

H

O

N

N Br

OMe OH

O

Ơ

H

O

N

C063

BzO Me

OH workup +

+H

BzO Me

O

Holt, D. J.; Barker, W. D.; Jenkins, P. R. J. Org. Chem. 2000, 65, 482. A: Radical bromination of the benzylic position. B: Formation of a stable carbocation. C: SN2 reaction. D: 1,2-Alkyl shift.


C064

A N NTs H

B

N N Ts

N N

N N

IC IA L

n-Bu

D

FF

C H

Bian, N.; Jones, M., Jr. Tetrahedron Lett., 1993, 25, 3967. A: Formation of a diazoalka

O

-elimination. B: Elimination of N 2 to form a carbene. C: Insertion

Ơ

N

of the carbene to the C-C bond. D: Retro Diels-Alder reaction.

H

C065 NH2 Ns N H

N

SiMe3

TBSO

OH

Y

CO2Et N N EtO2C PPh3

A

SiMe3 -H+

PPh3

Q

U

CO2Et N NH EtO2C

M

ẠY D

O

Ph3P

SiMe3

HN H

SiMe3 TBSO

N

H

O S O O2N

N

N

H

SiMe3

-N2 C

TBSO

+H+

TBSO

B

Ns N NH2

TBSO

C

H

H Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.

A: Mitsunobu reaction ( ref A045). B: Elimination of a sulfinic acid. C: Sigmatropic elimination of N2 (stereospecific delivery of a hydride via a concerted mechanism).


C066 BrMg O A Me

MgBr

O

N O

N

O

Me

Me

BrMg H

H O N MgBr

Me

OMgBr

N

OMgBr

N

Me

Me

FF

C

O N MgBr

B

IC IA L

Me

N O

BrMg H

O

workup +H+

N MgBr

Ơ

Me

N

N Me

N H

Me

H

Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chem. Soc., Perkin Trans. 2 1991, 657.

N

Bartoli indole synthesis. A: Reduction of the nitro group by means of addition of CH 2=CHMgBr and elimination of an enolate to form a nitroso compound. B: Addition of CH2=CHMgBr to the nitroso

Q

U

Y

group. C: [3,3] Sigmatropic rearrangement.

O

H

Cl4Ti

M

C067

Cl

A

ẠY

Me

Me

D

Me

O

Cl4Ti

Me

O O C

Me N

TiCl4 B

N

Me

TiCl4

O

O Me

N O

Me

O

Me

TiCl4 N

Me

O N

O Me

O

Yoon, T. P.; Dong, V. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 1999, 121, 9726. A: Formation of a ketene. B: Aza-Claisen rearrangement through a chair-like transition state.


C068 S

S TBSO

Cl O A

O

S HO

IC IA L O

FF

O HO

+H+ B

S

HO

SH

-H+

O H

workup

S

-H+

+H+

O

HS

O

Ơ

+H+

H t-Bu O Si O e e M M F

O

CSA

Cl Cl

O

HF

S

AcOH

O

Cl

Cl

TBSO

TBSO

A

Cl

N

TBSO

Zn

S

H

Vedejs, E.; Buchanan, R. A. J. Org. Chem. 1984, 49, 1840.

N

A: [3,3] Sigmatropic rearrangement. B: Intramolecular acyl transfer reaction.

A

(OC)4Cr

Q

Me

N Bn

Me

Me

O

O A (CO)4Cr OMe

D

ẠY

M

(OC)4Cr C O

H

OMe

U

OMe

Y

C069

Me

N Bn O

I

I2 N Bn O

OMe

N Bn O

B

I

H Me OMe

H I

N C Ph

Me OMe

O

N Bn O

H Me OMe

Me OMe

H I

N O

Me OMe

I eur, C. J.; Miller, M. W.; Hegedus, L. S. J. Org. Chem. 1996, 61, 2871. A: Photo-induced insertion of CO to form a ketene. B: Aza-Claisen rearrangement. C: Intramolecular


iodoamidation followed by debenzylation in an SN2 fashion.

C070 OH OH R Me Me

O O

Me

+

-H

O

A

O

Cl

R

OH Me Me

O

O Me

+H+ B

IC IA L

Me

O O

O

O OH

Me

-H

OH +H+ Me Me C

R

O

H OMe

R

D

Cl

O

E

Cl

O

O

R

R

N

R

Me

O

NaOMe

O

R

O Me

O

OH e O MeM

O

O

O

Me

O

N

O

+

FF

O

O

Me

Ơ

R

Me Me

Cl

Cl

Y

Schreiber, S. L.; Sammakia, T.; Uehling, D. E. J. Org. Chem., 1989, 54, 15.

U

A: Activation by cyclization. B: Formation of an orthoester followed by cleavage of the five-membered

Q

lactone. C: Intramolecular interception of the stable carbocation by the secondary alcohol.

M

Cleavage of the resulting orthoester. E: SN2 reaction at the less hindered carbon with chloride ion.

C071

F3B

F3B

O

N H

H

-H

+

NHBn N H

D

ẠY

O

R

Bn

O

N H

CO2Me

NBn

O

BF3

R CO2Me

NBn -H+ H

A N H

R CO2Me

N H

R CO2Me

D:


NBn

NBn

NBn H

R CO2Me

N H NBn

NBn

-H+

H

B

R CO2Me

O

N H

CO2Me

FF

N H

R CO2Me

N H

IC IA L

R CO2Me

N H

Parsons R. L.; Berk J. D.; Kuehne M. E. J. Org. Chem. 1993, 58, 7482.

O

A: Mannich reaction followed by [3,3] sigmatropic rearrangement. B: Mannich reaction.

N

C072

Br

N OH

O O

A

U

N

Y

mCPBA

MeOH

N OH

O H

H

N O

O

O Me

H

H

H2, Pd/C

N

B

M

Q

NC

O

NC

H

NC

N

NaH

OH

N

N H

Ơ

CN

N Me O'Neil, I. A.; Cleator, E.; Ramos, V. E.; Chorlton, A. P.; Tapolczay, D. J.

ẠY

Tetrahedron Lett. 2004, 45, 3655.

A: Cope elimination. B: Retro Cope elimination.

D

C073 O

TMS

O

O

TMS H OR

O

O H

Me

TMS

O

O

O A

O


O

O TMS B H

O

F H

workup

H

+H+

H

O

OTMS

O

O

H

O SiMe3

H

H

O

O

H

C

O

O

TBAF

H

IC IA L

O

O

H SiMe3

FF

O

O

O

O

O

N

Ovaska, T. V.; Roses, J. B. Org. Lett. 2000, 2, 2361. A: 5-exo-dig Cyclization of the alkoxide ion. B: Claisen rearrangement. C: Migration of the silyl group

Ơ

to form a silyl enol ether.

S

S

N H

N

N

H

C074

Y

N2

U

N2

Q M

Rh2(OAc)4

N2

RhLn S

N

N

N

ẠY

N

S

RhLn N

C

O RhLn

S

O

N

O

D D

S

O

N

S

RhLn N N

N B

O

S

H

A

H OH

N

O

N

O

OH

S

S

O

SH O

O N

Raney Ni E

O N

Fang, F. G.; Prato, M.; Kim, G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 3625. A: Conjugate addition of a thiolactam anion. B: Formation of a rhodium carbene complex. C: Attack of the sulfur atom to the rhodium carbene complex followed by formation of a thiirane. D: Cleavage of


the thiirane assisted by the nitrogen lone pair. E: Desulfurization.

C075 O O

Me

OMe N N

RhLn

O

O

Me

Me

O Me

OH O Me

MeO

Me

D

MeO

OMe

F3B

Me O

O

Me

or

Me

MeO

O

Me

MeO

Me O Me OH

H

N

BF3

O

Me H HO

O Me O

E

MeO

Me O

O

Me

Q

Me

F2B

Y

O

Me

O

U

H

BF3-Et2O

Me

O Me OH

O

HO Me

Me

Me

Me

O

Me

O

Me

B

O

N

Me

-H+

OH

Me

OMe

O

MeO

RhLn

O

HO

C

OMe

OMe N RhLn N

+H+ OMe

Me

Ơ

Me LnRh

Me

A

O

IC IA L

O

FF

O

O

Drutu, I.; Krygowski, E. S.; Wood, J. L. J. Org. Chem. 2001, 66, 7025.

M

A: Formation of a rhodium carbene complex. B: Addition of an alcohol to the carbene complex. C: Formation of an (Z)-enol. D: [3,3] Sigmatropic rearrangement via a chair-like transition state. E: 1,2-

Migration through a synperiplanar transition state.

ẠY

C076

F3B O O

F3B O

D

O

O

Me

Me O

SnMe3 SnMe3

A

SnMe3

workup +H+


AcO Me

Me

H O

Pb(OAc)4

O

OAc Pb O AcO O

Me

OAc O

O

SnMe3

SnMe3

Me

AcO

-H

O

+H+ B

SnMe3

+

HO

-H+

O

AcO

OAc Pb

Me

O

O

(Ph3P)3RhCl

O Me

A

O

O

FF

SnMe3

IC IA L

O

H O

Posner, G. H.; Wang, Q.; Halford, B. A.; Elias, J. S.; Maxwell, J. P. Tetrahedron Lett. 2000, 41, 9655.

O

A: Attack to the epoxide takes place from the less hindered side to form the trans-product. B:

N

Formation of a hemiacetal. C: Oxidative fragmentation induced by Pb(OAc)4.

n-Bu

H

O

O A

N

O

H

Ơ

C077

Me

Me H

U

HO

Y

Me

B

Q

workup

M

Me

O

+H+ Me

Sayo, N.; Kimura, Y.; Nakai, T. Tetrahedron Lett. 1982, 23, 3931.

A: [2,3] Wittig rearrangement. B: Oxy-Cope rearrangement.

ẠY

C078

D

CHO

R

-H2O

O

C6H11 N R

O Me

R

B

A O Me

Et3N AcCl

C6H11 N AcO H

O O Me

Me

O O Me

Me


C6H11 N

-H+

Me

C6H11 N

O

R

OAc R

NaOAc OHC OAc aq AcOH R

O

O

O

O Me

O Me

Me

O Me

Me

Me

IC IA L

O

Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Angew. Chem. Int. Ed. 1999, 38, 971. A: Formation of a nitrone. B: Acetylation followed by [3,3] sigmatropic rearrangement.

OTBS Me

B SMe2

O O OTBS Me

O

M

AcO

H O

R

O

DBU

O OTBS

Y

U Q

OTBS Me

O

OTBS Me

OTBS O

H

C

AcO

N

O

+H+ D

O O O SMe2

H

Ac2O Et3N

HO

-H+

-DMSO

R

N

OTBS

R

OH

Ơ

O O O

A

OH

O

OH

HO O

FF

C079

toluene 100oC

O

OTBS Me

OTBS Me

O

O

E OTBS

OTBS

OTBS

O

O

ẠY

TBSO H O

D

F

OTBS O

Bauta, W. E.; Booth, J.; Bos, M. E.; DeLuca, M.; Diorazio, L.; Donohoe, T. J.; Frost, C.; Magnus, N.; Magnus, P.; Mendoza, J.; Pye, E; Tarrant, J. G.; Thom, S.; Ujjainwalla, F. Tetahedron. 1996, 52, 14081.

Achmatowicz reaction (A-D). A: Diels-Alder reaction of singlet oxygen.

B: Reductive cleavage of the

endoperoxide with Me 2S. C: Elimination of DMSO to form cis-enal. D: C yclization to form a lactol. E: Generation of a pyrylium ion (or a carbonyl ylide). F: 1,3-Dipolar cycloaddition.


C080 H

O

O

O

C

O hv

Cl A O

O

B

C

C O

O

O -CO D O

O -CO

E O

O

O

O

FF

O

IC IA L

Et3N

1973, 297

N

Turro, N. J.; Leermakers, P. A. Vesley, G. E Org. Synth., Coll. Vol

A: Formation of a ketene. B: [2+2] Head-to-tail dimerization of a hindered ketene. C: Norrish type I

Ơ

cleavage of the ketone followed by decarbonylation to form a diradical. D: Recombination of the

N

H

diradical.

U

Y

C081 TiCl4 Me

O

M

Q

O

KÈ ẠY D

Me SiMe3 C

Me

O

TiCl4

Me

Me

TiCl4

O

Me Me

Me Me

SiMe3 Me

A

SiMe3 Me

H

Danheiser, R. L.; Fink, D. M.; Tsai, Y.-M. Org. Synth., Coll. Vol.

1993, 347.

Danheiser annulation. A: Conjugate addition of the allenylsilane to form a carbocation stabilized by the silicon atom.


C082

Et O

Et O H Ph

O

Ph2P Cl

n-Bu

Me

Ph

Me

Et O PPh2 Ph

A

Me

Me

Me O

Me O Ph2P Et O

Ph

Ph2P Et O

O Me

Me

Me O

+

O O PPh2

OH

Ơ

Me

Ph

N

O Et Ph

Me

O

O Ph

OH

FF

Ph

Me

Ph

C

O

O

B

H O

IC IA L

Me

O

H

Me

Mukaiyama, T.; Shintou, T.; Fukumoto, K. J. Am. Chem. Soc. 2003, 125, 10538.

N

A: Formation of a phosphinite ester. B: Addition of the phosphinite to the electron-deficient quinone.

Q

U

Y

C: SN2 reaction with inversion of configuration.

M

C083

Me

OMe

MeO

D

ẠY

BnO

OMe MeO

Cl H

Cl

A TMS N TMS

BnO

OMe

OMe

MeO

O3

MeO B H

BnO

Me

Me

Me

BnO

Ph3P C


O

OMe

MeO

MeO

TsOH

Me MeO

-H2O D

O

O

BnO

Bn

A

IC IA L

Taber, D. E; Neubert, T. D. J. Org. Chem. 2001, 66, 143.

-Elimination to form an alkylidene carbene. B: C-H insertion at the kinetically favored position. C:

C084

O

Bn

Bn

A

N

N

N Ns Bn N C

O

Ơ

N Ns

O

O

H

H N

FF

Ozonolysis. D: Intramolecular aldol reaction.

O

O

Y

N Ns

ẠY

O

N Ns

N Bn

N Bn O

O

NHBn

+

-H+

-H

N Bn

H

+H+

+H+

O

O

NHBn

NHBn

-H+ N Bn

NsHN

+H+

N Bn NsHN

O

O Paulvannan, K. J. Org. Chem. 2004, 69, 1207

A: Ugi reaction ( ref C007). B: Intramolecular Dielsrelease the ring strain.

O

NHNs

HO

D

NHBn N Bn

O

O

U

M

O Ns H N

B

N

+H+

Q

N Ns N Bn

-H+

BnHN

H

BnHN

Bn NH O

-elimination to


C085 Me Me

Me

Me Me

Li

O

workup

Me

Me Me HO

+H+

O

Me

Me Me HO Cl S O Cl

Me

Me Me

Cl

Me A

O S Cl O

Me 60 C

Me Me Me

C

H

Ơ

O Me

MeH

Me

OHC

H

MgCl

Me workup

OMgCl

Me

OH

+H+

Me

N

Me

Me

MgCl

N

Me

MgCl

O

o

MgCl Me

Me

Me

Mg B

Me

Cl

FF

SOCl2

IC IA L

Me

MeH

MeH

MeH

Y

Oppolzer, W.; Bättig, K. Tetrahedron Lett. 1982, 23, 4669.

U

A: Formation of an allyl chloride via SN2' reaction.

B: Formation of a Grignard reagent.

C:

Q

Magnesium-ene reaction through a chair-like conformation.

O

D

ẠY

Ph Ph

Ph Ph Ph

Ot-Bu

Ph H

P

P

H

M

C086

OEt

A

Ph Ph

O OEt

O

Ph P B

P

Ph Ph

O

EtO C

Ph P Ph

Ph

OEt O EtO Ph

Ph P Ph EtO

O P Ph Ph Ph

Fujimoto, T.; Kodama, Y.; Yamamoto, I.; Kakehi, A. J. Org. Chem. 1997, 62, 6627.


A: Conjugate addition of an ylide.

B: Intramolecular proton transfer to generate an ylide.

C:

Intramolecular Wittig reaction.

I

I PdLn

I B

NTs

PdLnI

NTs

NTs

O

N

O PdLnI B

NTs

C

H

NTs

Ơ

O A

CO

FF

H

O C PdLnI

O

N Ts

Pd(0)

IC IA L

C087

O

N

O CO

PdLnI

NTs

Y

PdLnI O

NTs

U

NTs

LnPd

D

M

Q

O

I

O

O

O

-Pd(0) E

N Ts

N Ts

von Seebach, M.; Grigg, R.; de Meijere, A. Eur. J. Org. Chem. 2002, 3268.

A: Pd-mediated carbonylation to form an acylpalladium species. B: Carbopalladation to a strained -Carbon elimination. D: Intramolecular carbopalladation to the resulting strained olefin. E:

ẠY

olefin. C

D

Reductive elimination of the palladacycle.

C088 O

O Me SPh

Me SPh

workup +H+

HO

Me SPh

HBF4 +H+


H H O

Me

Me SPh

H2O

Me

SPh

-H+ +H+

A SPh

LiBH(s-Bu)3 MeLi, KOEt

Me

Me

B O

O

C

H Bs-Bu3

OH

FF

Me

Me

Me

Me workup

O

+H+ O

OH

N

OH

OH S Ph H

IC IA L

Me

Me

Ơ

Danheiser, R. L.; Martinez-Davila, C.; Sard, H. Tetrahedron. 1981, 37, 3943.

H

A: Pinacol-type rearrangement. B: Reduction of the ketone. C: Anion-accelerated vinylcyclobutane-

N

cyclohexene rearrangement.

C089 Boc N

U

O

O

Q

A

H

S C S

M

O

OH

+

+H

Boc N

Boc N S H3C I

O S

SMe

O

S

SMe S

SnBu3

Boc N

Boc N O

S

SnBu3

Boc N NBoc

D H SnBu3

SMe

O

Boc N

C

D

workup

B

Boc N

ẠY

Bu3SnH AIBN

O

Boc N

H

Boc N

KH

Boc N

Y

Boc N


Hodgson, D. M.; Maxwell, C. R.; Wisedale, R.; Matthews, I. R.; Carpenter, K. J,; Dickenson, A. H.; Wonnacott, S. J. Chem. Soc., Perkin Trans. 1 . 2001, 3150. A

-Elimination of the epoxide to form a carbene.

B: C-H insertion.

C: Barton-McCombie

deoxygenation of a xanthate ( ref A051). D: Formation of a radical at a cyclopropylcarbinyl position

IC IA L

induces cleavage of the cyclopropane ring (cf. radical clock).

C090 Me -H+

H

H

N OH2

+H+ HO

HO

O

HO R

R

Me

R

N

OH

N

FF

N

Me

Ơ

H

Me

Me

H

A

B

N

N

O

O

R

Me

Q

U

Y

HO

N

N

R

R

Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W., Jr.; Overman, L. E

M

J. Am. Chem. Soc. 1993, 115, 3966

A: Aza-Cope rearrangement. B: Mannich reaction.

C091

ẠY

Cl3Sn Cl

D

O

N

Cl3SnO

O

Me

N

O RO A

Me Ph

Cl3SnO

N

O

N

O

Ph

OR

O NaHCO3

Me Ph

OR

Me

Ph

workup

O

benzene reflux

N

O

Me

OR A

Ph


N O O Me

NiCl2 NaBH4

H Ph

H2N Me

HO

O

-ROH

OR

B

H

HO

O H

HO

Ph

HO

O workup

H H2N Me

Ph

H2N Me

H

+H+

OH

IC IA L

Ph

H2N Me

Ph

Ph

FF

Denmark, S. E.; Dixon, J. A. J. Org. Chem. 1998, 63, 6178. A: In verse electron demand hetero-Diels-Alder reaction. B: 1,3-Dipolar cycloaddition. C: Reductive

O

cleavage of the N-O bonds.

Me

BnO

A

Et3N

S N

O

BF3-Et2O

Q

Me

H2O

N

O

N

S N

S

O

O

Me

OH2

-SO2

BnO

M

BnO

BnO

B

O

U

Cl

O

N

O

H

Y

O

BnO

H

BnO

Me

Me

Ơ

Me

N

C092

H

S O BF3

O

S

C

Me BnO

O

Baudin, J.-B.; Julia, S. A. Tetrahedron Lett. 1988, 29, 3251.

ẠY

A: Formation of a morpholinesulfenate. B: [2,3] Sigmatropic rearrangement. C: Extrusion of SO2 through a six-membered transition state.

D

C093 HO

Tf 2O pyridine

OTf

A

O EtO2C Me

Mo(CO)5

CO2Et


Me

O

B

Mo O (CO)5 Me

Mo(CO)5 Me

CO2Et

H H

H Mo O (CO)5 Me

C

CO2Et

CO2Et

IC IA L

O

Mo(CO)5

H

D

E O

Me

Me CO2Et

FF

CO2Et

O

CO2Et

Harvey, D. E; Brown, M. F. J. Org. Chem. 1992, 57, 5559.

O

A: Formation of a Fischer carbene complex. B: Intramolecular alkyne metathesis. C: Intramolecutar D: Reductive elimination to form a cyclopropane.

Ơ

rearrangement ( ref A042) via a boat-like transition state.

Ot-Bu

H

Me

O

N

Me

H

C094

O

O

Y

Me Me

Br

Me

Me Me Me

O

M

Me

Me

Me

MeOH

Me

O A

Me

O

Me O O

Me

O

ẠY

O Me

O Me

+

-H

O

Me

O O O

Q

O

Me

MeO +

+H

O HO

Me

O3

Me

U

Br

D

E: Divinylcyclopropane

N

alkene metathesis.

Et3N Ac2O

Me

MeO O

Me

MeO

O

O

O

OMe O

Me


O

Et3N

O

Me

H

Me

MeO

O

Me

Me CO2Me

Me

MeO B

Me

O

AcO

AcO

Me

O

Me Me

IC IA L

Srikrishna, A.; Anebouselvy, K.; Reddy, T. J. Tetrahedron Lett. 2000, 41, 6643.

A: Ozonolysis of the less hindered olefin in MeOH to form a hydroperoxide ( ref Bl16, Bl17). B:

FF

Grob-type fragmentation.

C095 H

O

Me

Me O

Me

Me H

Me

Me

Me

OSiMe3

Me H

H

H

OSiMe3

OSiMe3

Me

U

OSiMe3

Y

N

H

H

Me

H

Me

H

SiMe3

H

Ơ

Me3Si OTf

O

Me

N

H

Q

Fujita, T.; Ohtsuka, T.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1982, 23, 4091

M

Wagner-Meerwein rearrangements.

C096

MeO

MeO

MeO

MeO

H

Ph

D

Me

H3O+

MeO

O

A

ẠY

O

Me

OMe

H OH Me

C

OH2 OH Me

OH

OH

B

Me

Me

H MeO OH OH Me

O OH Me


TsOH H2O

O

O

OH2

-H2O

O -H+

OH

D

OH2 Me

Me

Me

Dechoux, L.; Agami, C.; Doris, E.; Mioskowski, C. Eur. J. Org. Chem. 2001, 4107. A

-Elimination of the epoxide to form a carbene. B: Cyclopropanation. C: Cleavage of the electron-

IC IA L

rich cyclopropane ring. D: Cleavage of the cyclopropane ring.

C097 Me3Si

Me3Si

Me3Si

A

CO2Me

OMe

Br

O

N

O

MeOH

Y

Q

M

O O S Me CF3

Me

H

OH

S O

Me O CO2Me

CO2Me

TFAA DMSO C

CO2Me

CO2Me

ẠY

O

CO2Me

U

CO2Me

OH

O

O

O

Me

CO2Me B

O

H

O

O CH3 Br

CO2Me

Ơ

AgNO3 A g MeOH

O

N

Me3Si CO2Me

CO2Me

O

O

Me3Si Br

Br

CO2Me

Br

FF

CO2Me

Br Br

CO2Me

CO2Me

CO2Me

Fleming, I.; Michael, J. P. J. Chem. Soc., Perkin Trans 1 .1981, 159. B: Wagner-Meerwein rearrangement followed by desilylation.

C: Swern

D

A: Bromolactonization.

oxidation.

C098 HO

O

CN

NH2OH CN

-H2O

CN

N

CN


HO

A

H O

N

160oC

N

N

CN

CN

CN O

N

N

NC

CN

N O

CN

FF

B

IC IA L

A

CN

O

N

CN

O

Stockman, R.A. Tetrahedron Lett. 2000, 41, 9163.

Ơ

B: Intramolecular 1,3-dipolar cycloaddition.

C099

TBS

O

N

O

OH

O

O

B

Ph2S

Y

H

HBF4

OH

H

H

H

H

Q

U

H

O

OH

A

Ph2S

TBS

H

TBS O

-unsaturated nitrile.

N

A

M

TBS

H O

O

OH

H

ẠY

H

D

MeO

O

O

O

OH

TBS O

PhSSPh NaOMe

+

-H

OH H

PhS SPh

TBS

O

TBS

H

OH H

H

TBS O

TBS O

O

O

PhS

H

OH H

OH H

H

OH H

H

H


TBS

O PhS PhS

O

O

TBS O

O

PhS PhS

H O

TBS workup

O

+

MeO

H

H

H

+H C

H

O

PhS PhS

O H H

H

IC IA L

Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 1880.

A: 1,2-Addition of the sulfur ylide followed by formation of an epoxide in an SN2 fashion. B: Cleavage

of the epoxide induces 1,2-migration to form a cyclobutanone via a stable tertiary carbocation. C: Ring

FF

opening of the cyclobutanone by the proximal alkoxide is facilitated by formation of the sulfur-stabilized carbanion.

O

C100 CO2Me

S Cl

H Y KOMe

D

B

SmI2

Me

CO2t-Bu N oc B Cl

-SO2

Cl

O

H

OTs

Me

CO2t-Bu N Boc

M ẠY

Me H

SO2 OTs

Me

KÈ O2 S

CHO2Me

Cl

SO2

CO2t-Bu N Boc

Cl

CO2t-Bu N oc B

CO2Me

H

O2 S

Me H

O H

CO2t-Bu N Boc

SmI2

Cl Me H

Me

CO2t-Bu N oc B

C

H

D N Boc

Me

CO2t-Bu

workup +H+

Me

O2 S

m O S I2 H

Me

CO2t-Bu N oc B

m O S I2

Me H

OTs

Me

N

OTs

Me

Cl

U

SO2

Q

mCPBA

S

CO2t-Bu N oc B

B

CO2Me

Cl

Me

A

CO2t-Bu N oc B

CO2Me

Cl

OTs

Ơ

OTs

Me

CO2Me

N

Cl S

CO2Me CO2t-Bu N Boc


Bachi, M. D.; Melman, A. J. Org. Chem. 1997, 62, 1896. A: Formation of an episulfonium salt followed by attack of chloride ion at the less hindered carbon. B: Cyclization proceeds by an SN2 mechanism. C: SET. D

-Cleavage followed by extrusion of SO2

and elimination of a chloride radical.

MeO

MeO

H

H

H

A S

B

C

S

S

FF

MeO

IC IA L

C101

OMe

O

hv D S

S

N

OMe

Ơ

Wu, J.-Y.; Ho, J.-H.; Shih, S.-M.; Hsieh, T.-L.; Ho, T.-I. Org. Lett. 1999, 1, 1039. B: Thermally allowed suprafacial

H

A: Photo-induced 6e conrotatory etectrocyclic reaction.

N

1,9-hydrogen shift. C: 6e Electrocyclic reaction. D: Photoisomerization of the (Z)-olefin.

C102

Y

Me3SiO

BF3 EtO OEt

Me3SiO

M

Q

U

OEt

ẠY

Me3SiO EtO

D

Me3SiO

Me3SiO EtO

O

CF3CO2H

A Me3SiO Et O H O

+H+

X e M 3Si O

O

X O SiMe3

O

O

B Nakamura, E.; Kuwajima, I. Org. Synth., Coll. Vol.

A: Mukaiyama aldol reaction. rearrangement).

O

1987, 17.

B: Preferential migration of the carbonyl carbon (Pinacol


C103

Me

H

H

HCHO

N

N

F S O O

FF

Me

O

N

MeOSO2F

Me

O

Me

H

Me N

Me

Me

O

Me

H

O

B

-H2O A

OH

HN H

NaBH3CN

-H2O

Me

H

O

H

NH2OH

OH

O

H

N

IC IA L

O

LiAlH4

Me H N

Me

N

HO

B: 1,3-Dipolar cycloaddition.

C104 CO2Et

AcO

Ar

O

U

O

CO2Et

H

O

O Me

O

OAc

Q

MeO

Y

MeO

N

H

A: Formation of a nitrone. ref A065.

Ơ

Oppolzer, W.; Petrzilka, M. J. Am. Chem. Soc. 1976, 98, 6722.

M

OAc

Ar

ẠY D

CO2Et

OAc

H

AcO

B

CO2Et Ar

A

O

O

AcO

AcO

CO2Et

O

Me

CO2Et

MeO

O

Ar

C

OAc

MeO

OAc


O H AcO

OEt OAc

Ar

C

OEt OAc

C Ar

O

O

CO2Et

CO2Et

Ar H

AcO

D

O

Ar C O

AcO

AcO Ar

E

MeO

OAc

OAc

MeO

Ơ

OAc

CO2Et

O

Me

O

AcO

CO2Et

N

O

FF

H AcO AcO Ar

CO2Et

F

O

AcO H AcO AcO Ar

CO2Et

AcO

OAc AcO

IC IA L

AcO

OH

H

Serra, S.; Fuganti, C. Synlett. 2002, 1661.

A: Generation of a ketene via a mixed anhydride. B: Benzannulation. C: Michael addition. D:

N

Formation of a ketene. E: 6e Electrocyclic reaction. F: Michael addition.

Me

U

Me Me O

O

Me

D

Me

H2 Pd/C B

Me

O

ẠY

Me

O

Me

O

O

O

Me Me O

Me Me O

O

A

M

O

O

Q

Me Me O

Y

C105

O

Me

Me Me O O

O

H H

H Me Me O

O

H H

H Me Me O

O Singh, V.; Prathap, S.; Porinchu, M. J. Org. Chem. 1998, 63, 4011.

Oxa-di- -methane rearrangement. A: nring.

B: Reductive cleavage of the cyclopropane


C106 Ph

Ph

Ph

Ph O

N N

O

-N2 A

N N

O

O

B

N N

O O

IC IA L

H H

Ph

Ph

O

Ph

O

O

D

O

E

OH

OH

H

FF

C

Ph H

OH

OH

O

Lee, H.-Y; Kim, Y. J. Am. Chem. Soc. 2003, 125, 10157.

N

A: Thermal decomposition of an a ziridinylimine to form a diazoalkane. B: Cleavage of the epoxide followed by elimination of N 2 to form an alkylidene carbene. C: C yclopropanation. D: Homolytic

Ơ

cleavage of the strained cyclopropylidene ring to form a trimethylenemethane diradical. E: Radical

N

H

addition.

H

A

Q

Cl Cl

U

Y

C107

KÈ S

Cl

Cl

S

S

M

S

Cl

-H+

-S B

Cl

S

C

Cl

ẠY

Parham, W. E.; Koncos, R. J. Org. Chem. 1961, 83, 4034.

D

A: 2e Electrocyclic reaction. B: 6e Disrotatory electrocyclic reaction. C: Spontaneous loss of S.

C108 O H

O

NH CN

N H

CN

O N

H H

CN


H

OH

H ClCO2Me

A

N

O

N

H

H

H OMe

OMe

N

O

N

N

O

H

FF

OMe

O

OMe

O

O

OMe

N

O

OMe

N

O

O

KOH

O O

OMe

Cl OMe

O

H

N

O

IC IA L

N

O

O

Ơ

H OMe

H

Earley, W. G.; Jacobsen, E. J.; Meier, G. P.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3781.

U

Y

N

A: Anion-accelerated aza-Cope rearrangement.

Q

C109

M

mCPBA

ẠY

TBSO

-H+

BrMg

TBSO

Cl Pd

Cl PdCl

TBSO

Me

OH PdCl2

Me

workup

C

Me

O H

TBSO

O OH

B

D

O HBF4

TBSO

A

TBSO

OH

TBSO

TBSO D

Me O


H

Me O

H PdCl Me O

TBSO

E

H

TBSO

F

Cl H Pd Me O

Me O

Me TBSO

FF

TBSO

-HCl -Pd(0)

G

IC IA L

ClPd

Nemoto, H.; Miyata, J,; Yoshida, M.; Raku, N.; Fukumoto, K. J. Org. Chem. 1997, 62, 7850.

O

A: Epo xidation of the strained olefin. B: Cleavage of the epoxide to form a stable benzylic cation. C:

of the olefin with PdCl 2.

N

1,2-Migration to form a cyclobutanone ( ref A099). D: Ring expansion reaction initiated by o xidation E: Intramolecular carbopalladation.

F

-Elimination.

D

ẠY

M

Q

U

Y

N

H

Ơ

hydropalladation and 6-elimination process to give the more stable endocyclic olefin.

G: Reversible


IC IA L FF O N Ơ N

H

+

M

Q

U

Y

NaOEt)

+

Na

OEt

Na

Br

+

H3C OEt

ẠY

Br CH3

D

+

Brønsted

.

H+


+

R'

O O

O R'

R

R

R

R

O C

H R

R

O C

H R

IC IA L

R

O C

B 2.0

C 2.5

N 3.0

Na 0.9

Mg 1.2

Al 1.5

Si 1.8

P 2.1

K 0.8

Ca 1.0

O 3.5

F 4.0

O

Be 1.5

S 2.5

Cl 3.0

Br 2.8 I 2.5

Q

U

Y

N

H

Ơ

N

Li 1.0

FF

H 2.1

A-

+ H2O A

-

+ H3O+

HA

HA

M

HA

ẠY

PKa

D

p Ka

log Ka

A-

H3O + HA

PK B (HA)

HB PKa

B-

+

HB Keq

pKa


+ B-

HA

pKeq

A-

log

A

HB

HA B

+ HB

pKa HA

pKa HB

PKa pKa = 13)

(NaOEt,

O

EtO

O +

OEt

EtO

O

FF

O

EtOH 0) pKa = 16)

IC IA L

EtO2CCH2CO2Et;

EtO

OEt

EtOH

O

H

+

pKa EtOH =13 16=-3

Ơ

Keq=103

N

pKeq=pKa malonate

N

H

Keq

50 LDA

Y

(LDA

npKa = 36

U

PKa

. n-

M

Q

LDA

pKa = 24

PKa

pKa = 17

D

ẠY

pKa = 4.8 f

i-Pr

PKa

n-BuLi

i-Pr

N H i-Pr

N Li i-Pr

(LDA)

PKa=


LDA; PhCHO;

O EtO

OH Ph

EtO

AcOH

i-Pr2NH

IC IA L

n-Bu

CH3

O

36

O n-BuH

i-PrN

EtO

50

CH3 24

i-Pr2NH

EtO

O

FF

O H

CH2

Ph

O

O

O

EtO

Ơ

N

O

AcOH 4.8

OH AcO

Ph

EtO

pKa pKa

U

Y

N

H

pKa

Ph

pKa = -6

0) pKa

M

Q

(pKa = 15.7

R

D

ẠY

HO

MeSO2Cl Et3N CH2Cl2

O Me S O O

NuR

O Me S O O

+

Nu

pKa ([H2O]

pKa 55.5 pKa

pKa

R


O HO S O O

OH

O Cl

R

H

O e M S OH O

H r A O R

Y OH

OH

O ClH2C

OH

Ph

OH

OH

PhOH

H3O

H2O

HO OH

Ar

NH2

O

O

EtOH

Me

Me

OH

O C O HO PhO HO O

Me NOH

Me

O

Ph

O

EtOH2

NH2

ClH2C O

R O R

Ar

O

O

O

Me

O

O S

O HO P O OH

Ar O R

OH

Ph

O

O HO P OH OH

HO C O HO

H R O R

F3C

O O S O O

O

R

NH2

O HO S O O

U

Q

M

OH

O S

Ơ

O e M S O O

N

ArOH

R

OH

N

O r A S O O

ArOH2

OH

ẠY

Ph

R

R

O

O

R

R

O r A S OH O

D

F3C

H

O

OH R

O

O

OH R

NH2

R

FF

R

Cl

O N O O O

OH

H

R

O N OH O

IC IA L

O HO S OH O

NO Me


A

aminonitrile

A011

abnormal Claisen rearrangement C032 acetal A008, A009, A010, A063, B084, B 116 Achmatowicz reaction C013, C079 acid chloride A003, A025

Arbuzov reaction ate complex

acyl azide A058 acyl cyanide B061, C050 acyl transfer B007, Bl13, Bl14, C007, C035, C068 acylation B060, C012, C029, C050

azirine azlactone

acyliminium ion acylium ion acylnitroso compound acyloin condensation acylpalladium species

Bartoli indole synthesis Barton reaction

B033, B038, C028 B101, Bl19 C 106

IC IA L

atom transfer reaction aziridine aziridinylimine

FF

B056, B080, C038 A019, C009

A054

C066 B097, C014

N

O

B Baeyer-Villiger oxidation

Ơ

Barton-McCombie deoxygenation A051, B071, C089 Beckmann fragmentation A015

H

C041, C051 A003, A036, B068 B120 Bl15 C087

A070 A028, B002

Beckmann rearrangement benzannulation

A008, A010, A021, A049, A052, B008, B012 to carbonyl group A001, A002, A003, A004 to electron-deficient aromatic ring A040, B022

bromination A010, A024, A025, A027, B087, C036, C063

addition-elimination C002 aldol reaction A020, B052, B053, Bl13 aldol reaction intramolecular C025, C027, C083 1, 2-alkyl shift

Cannizzaro-type reaction B052, C026 carbamate-type protective group for amines

ẠY D

A036, A047, A048, A054, B119, C004, C063 allene A061, B028 allenylpalladium species C060 allenylsilane C081 rc-allylpalladium complex allylsilane

B021, B040, C060 B078, C051

A055, C014 C 104

benzyne B012, B065 Birch reduction A038, A039, B011 Bischler-Napieralski reaction A034

Brook rearrangement

M

Q

U

Y

N

addition 1,2A016, C042, C099 conjugate B046, B094, C006, C019, C086, C029 intramolecular

C042 C

B019, B020, B021 carbanion B006, B047, B049, C099 carbene A059, A061, B075, B103, C021, C064, C089, C096 alkylidene B036, B049, C016, C037, C054, C055, C083, C106 dialkoxyC046 dibromodichlorocarbocation

A061, B075 A035, B076


A030, A036, A046, A047, A048, A049, B015, B023, B051, B068, B078, B085, B108, Bl19, C063, C070, C081, C099, C109

of S--N bond of S-O bond of thiirane

C048 C048 C074

carbon monoxide carbonyl oxide carbonylation carbopalladation carbotitanation

of c~-lactone oxidative

B081 A044

IC IA L B092, C090, C108 C004, C077

FF

Corey-Fuchs reaction B049, B077 Corey-Winter olefination B103 CSI (chlorosulfonyl isocyanate) B064

O

Curtius rearrangement cyanohydrin cyclization 5-endo-trig 5-exo-dig

[2 + 2] cycloaddition cyclobutane

C052, C054, C080 A066

U

Y

N

azaC017, C067, C069 Claisen-Ireland rearrangement B093, B124 Claisen-Johnson rearrangement B091 Claisen-Schmidt reaction C038 cleavage B004, B070, B103, C046, C076

A029, B 116, B 117 B018, B038, B039, B069, B080, B097, C055, C106 C038 C012

M

Q

heterolytic homolytic

of azirine ring of C-N bond

D

ẠY

of C-S bond B044 of cyclobutane ring C052 of cyclobutene B054 of cyclopropane ring A060, B015,B084, C020, C043, C046, C089, C096

of cyclopropanone B057 of endoperoxide B034 of epoxide B003, B023, B051, B071, B102, Bl10, C001, C006, C013, C099, Ct06, C109 of four-membered ring of N-N bond

C059 C022

A058 B005 C019 C073

H

cheletropic reaction B030, B080, B101 chlorination B089 Claisen condensation C045 Claisen rearrangement A062, A063, B094, C009, C024, C062, C073

azaoxy-

N

cation cyclization B108 cation-olefin cyclization C003, C056 C-H insertion B036, B049, B075, B080, C016, C038, C083, C089 charge-transfer complex B063

reductive A029, B035, C079, C091, C105 Cope elimination A053, C072 Cope rearrangement C040

Ơ

B042, B068, B127, C069 C049 C087 A075, C010, C087 B128

cyclobutanone C099, C109 cyclopropanation C106, B075, B076, B126, C021, C042, C046, C055, C096 cyclopropane cyclopropanone

A061, B128, C020, C093 A060 D

Dttz reaction

B127

Dakin reaction A056 Danheiser annulation C081 DCC (N,N'-dicyclohexylcarbodiimide) A007, B014 decarboxylation A023, A039, A057, B001, B019, B051, C023 dehydration deprotonation desulfurizatio diazo coupling diazo transfer reaction diazoalkane

B062 A002, A019 B103, C074 A037 B055 C064, C106


B083 B010, B024, B059, B122 A037, B013, B065, B081, B082 A021 A064, B027 C056

Dieckmann condensation Diels-Alder reaction aza hetero

A014, A053, B037, B090, B094, B124 A061, B049, B075, C021, C064, C089, C096 A073, A075, B060, B128, C021, C024, C061, C084, C109 C087 C029

-carbon enamide

IC IA L

diazoketone diazomethane diazonium salt

B120, B125, C018, C035, C044, C048, C091 intramolecular B025, B027, B028, C005, C013, C040, C044, C084 inverse electron demand B088, C091

enamine A022, B008, B046, B047, B054, B112, C022

retro A064, B027, B088, C044, C064 dienone-phenol rearrangement A048 1, 3-dipolar cycloaddition C022, C031, C079, C091 intramolecular

oxyenol

B034, B035, C079 A067, A068 C085

FF

endoperoxide ene reaction Magnesium-

N

O

B121, C032 A013, A024, A025, A032

enol lactone enolate

B099

U

Y

N

B029, B096, C023, C098 of azomethine ylide B096 of carbonyl ylide C015 of diazomethane B122 of nitrile oxide B089, B090

A027

A010, A039, A063, C024, C025

H

Ơ

enol ester enol ether

A018, A019, A020, A021, A023, A060, C019 episelenide B102 episulfide B044

episulfone episulfonium salt

double inversion E1 elimination E2 elimination electrocyclic reaction 2e

B104, C076, C089, C096 Eschenmoser fragmentation B004

D

ẠY

M

Q

of nitrone A065, B029, C098, C103 of ozone A029, Bl16, Bll7, C049, C050 diradical C021, C038, C080 divinylcyclopropane rearrangement C042, C093

4e 6e

8e

B081 B019 B044, B049, B104 B076, C107

B122 C100

epoxidation C013, C109 epoxide A056, B003, B004, B023, B040, B045, B058,

Eschweiler-Clarke methylation A053 ester A001, A002, A007 esterification A002, A007

A066, B025, B026, C008. C054 B087, B106, B126, B127, C008, C041, C054, C057, C101, C104, C107 C057

elimination syn-

F~H Favorskii rearrangement Ferrier rearrangement Fischer carbene complex Fischer indole synthesis fragmentation

A060, B057 C025 B127, C069, C093 B031, B082


B004, B070, B 103, C046, C076 Friedel-Crafls acylation A036, C059 Gabriel synthesis A052

hypobromite

Gilbert reagent Grignard reagent

B036 A004, A005, A006, A016, A074,C066, C085 Grob fragmentation B016, B086, C027, C044, C094

imide iminium ion

group transfer reaction B074 Heck reaction A075 Hell-Volhard-Zelinsky reaction A025 hemiacetal C001, C076 hemiaminal A005, A011, B001

insertion of carben

Hofmann rearrangement A057 Hofmann-Lrffler-Freytag reaction B033 Horner-Wadsworth-Emmons reaction A071, B036, B099 Hosomi-Sakurai-type reaction C053, C062

intramolecular carbopalladation C061, C087, C 109

B038 I~K B113 A005,A011, A012, A013, A018,

A059, A061, C054. C064

FF

of carbon monoxide

C101 B043 A025 A019, C009

D

ẠY

1,9hydrogenation hydrolysis of acid chloride of azlactone

of borate A028 of ester A001, A023 of N-methyl-N-nitrosulfonamide B024 of nitrile A011 hydrometallation B042, B043 hydropalladatio hydroperoxide

C109 C094

N

A045, B040. B109 A026. B084 A026

Ơ

inversion iodination iodoform reaction

H

Y

U

M

Q

A053, B002, B052, C026, C030 hydroboration A028, B086, C030 hydroformylation B042 hydrogen shift 1, 5B027, B030

B042, B127. C069 C026

O

of carbonyl group

ipso-substitution isocyanate isocyanide Jones oxidation ketene

N

hydrazone A017, B003, B004, B031, B050, B082, C006 hydride abstraction B068 hydride shift A077 hydride transfer

IC IA L

A033. A053, B046, B047, B078, B114, C007 iminophosphorane B100 indole B031, B047, C038. C066

C009 A057, A058 B048, B065. B118,. C007 A068 A059, A066, C052, C067 L~N

lactam lactol lactone macrocyclic lactonization bromoiodo-

A055 C013, C079 A054. B058 B111 B114 C045 B066, B115 C097 B058

selenoB124 leaving group A002, A017, A058 Leimgruber-Batcho indole synthesis B047 lone pair A001, A002 malonate A018, A023, A040 Mannich reaction


A013, B001, B092, B111, C071, C091 Masamune-Bergman cyclization C011 Meerwein arylation B013

oxazoline oxidation of alcohol

Meerwein-Ponndorf-Verley reduction B002, C031 Meisenheimer complex B022. C002 mercury(II) triflate A032. B108 metathesis

of palladium (0) oxidative addition

IC IA L

B089, B120, C014, C098 A002, C036

oxymercuration oxypalladation ozonide

A031, A032, C025 A077 A029

FF

oxonium ion

O

ozonolysis A029, B116, B117, C049, C083, C094 P

palladacycle

C087

H

migration A028, A055, A057, C075, C099, C102, C109 Mitsunobu reaction A045, B079, C065 mixed anhydride

A077

A076, B042, B043, C061, A075, B105, C010 oxime A014, A015, A055, B070,

N

B066, B070, B123, C098, C104

A042, A043, B014

Ơ

alkene A078, B 109, C034, C093 alkyne B109, B127, C034, C093 enyne B109, C034 Michael addition B004, B005, B006, B008, B053, B054,

B048

palladium-mediated reaction A075, A076, A077, C010,

Neber rearrangement B056 nitrene B080, C038 nitrile A005, A014, A015, B062, B064 nitrile oxide B089, B090, B120 nitrilium ion A011, A034, A049, B065

peroxide Peterson olefination

nitrite B097, C014 nitrone A065, B029, C078, C098, C103 Norrish type I reaction C080 Norrish type II reaction B125 N-oxide A053, B062

phosphonate A070, A071 photo-cleavable protecting group B098

D

ẠY

M

Q

U

Y

N

A003, A019, A058, B007, B060, B061, C012, C023., C051, C104 Morita-Baylis-Hillman reaction B053 Mukaiyama aldol reaction C102 Nazarov reaction B026, C003, C039

O organochromium species organosamarium species orthoester

B041 B107 B084, B091, C070

orthoformate oxa-di- -methane rearrangement

A009 C105

partial reduction Perkin reaction

C060, C061, C087, C109 C051, C057 B007

Pfitzner-Moffatt oxidation phenonium ion phosphinite ester

A054, A056, B018 A074, C016, C051 B014 B084, B111 C082

photo-induced homolytic cleavage B072, B074, C014 photoreaction B032, B033, B097, B125, C014, C041, C080, C105 Pictet-Spengler reaction A033, B051 pinacol rearrangement A047, C088 protodesilylation proton transfer

C005, C023

A008, A009, A011, A012, A013, A014


protonation A001, A002, A005, A006, A008, A009, A011, A054, A063 Pummerer rearrangement pyrylium ion

Robinson annulation Robinson-Schöpf reaction ruthenium carbene complex

B037 C079

B008 B001

A078, B109, C034

Q~R

samarium(II) iodide A066, B025

B111 A068

FF

selenoxide A073, B124, C024 Shapiro reaction B050 [2, 3] sigmatropic rearrangement

A068, B095, B106, C033, C037, C047, C048, C092

[3, 3] sigmatropic rearrangement A062, A063, B031, B091, B093, C047, C058, C066, C068, C071, C075, C078

H

radical A031, A050, A051, B013, B017, B018, B032, B033, B038, B039, B071, B072, B073, B097, B107, Bl18, C011, C028, C043, C052, C063 radical addition C028, C106

Schmidt reaction selenimn dioxide

O

B030 C082 C040 C035 B063

N

azaquinone o-quinone monoacetal o-quinonemethide p-quinonemethide

B107, C015, C043, C100

Ơ

o-quinodimethane

IC IA L

S

silametallation silicate ion

B105 B105

silyl enol ether single electron reduction single electron transfer

C049 B041

U

Y

N

radical anion A038, A039, B069, B073 radical chain reaction A050, A051, B013, B017, B018, B032, B033, B038, B071, B072, B073, B074, B 118, C028, C(163

M

Q

radical cyclization B107, C011 5-exo-dig B017, C043 5-exo-trig B017, B071, B074, BllS, C011, C043, C052 transannular B018

D

ẠY

Ramberg-Bäcklund reaction B072, B122 RCM (ring closing metathesis) A078 reductive elimination A075, A076, B042, B043, B105, B127, B128, C010, C087, C093 Reimer-Tiemann reaction retro-Cope elimination rhodium carbene complex B126, C015, C074, C075 ring contraction ring expansion Ritter reaction

A035 C072

B111, B 115 B024, B054, C109 A049

A038, A039, B011, B013, B073, B107, Bl15, C015, C043 singlet oxygen B034, B035, C079 Smiles rearrangement C002 SN 2 reaction A041, A052, A070, A072, B010, B019, B020, B059, B104, C023, C063, C082, C100 intramolecular B045, B101, B102, Bl10, C001 SN 2' reaction SRM reaction

B035, C085 B073

Staudinger reaction Stetter reaction Stobbe condensation

B101 B006 B009

Stork enamine reaction Strecker amino acid synthesis

A022 A011

sulfenate

C033


B122 B048, B050, B079 C065

sulfonation sulfoxide Suzuki-Miyaura coupling Swern oxidation

B085 B037, C033 A076 A043, C097

Wittig reaction A069, B080 intramolecular B100, B123, C086 [1, 2] Wittig rearrangement B069 [2, 31 Wittig rearrangement Wolff rearrangement

C077 A059, C054

Wolff-Kishner reduction xanthate ylide

A017 A051, C089 B103, C050

T~Y

azonmthine carbonyl

Tamao oxidation B105 Tamao-Fleming oxidation C005 tautomerization A011, A013, A023, A032, A066

FF

N

O

A043, B014, B095, B 110, C037, C099 ynolate C045, C054

Ơ

B006 B095 B125 B103 C048

U

Y

N

thiourea A072 Tiffeneau-Demjanov-type rearrangement B024, C022 Tishchenko reaction C026 titanacyclopropane B128, C020

M

Q

TosMIC (p-toluensulfonylmethyl isocyanide) B018 transmetallation A076 trimethylenemethane diradical Cl06 Ugi reaction C007, C084

D

ẠY

Vilsmeier reaction A012 vinylcyclobutane-cyclohexene rearrangement C088 vinylcyclopropane rearrangement C021 vinylogous amide A022 vinylphosphonium salt B100 vinylsulfonium salt B110 Wacker oxidation A077 Wagner-Meerwein rearrangement A046, B023, B085, C095, C097 Wharton rearrangement Wilkinson complex

B003 B043, C076

B096 C015, C079

phosphorus A069, B100, B123, C019, C086 sulfur

H

thiazolinium ion thioacetal thioaldehyde thionocarbonate thiophile

IC IA L

sulfene sulfinate ion sulfinic acid


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.