Reveiwed by IonCube Khanz
Solids Processing Environmental Manager Reject
Feed
Modern Concepts
Membrane
Permeate
FIGURE 1. Crossflow filtration is demonstrated in this schematic
in
Makeup Water Treatment Technologies offer new alternatives for water treatment Brad Buecker Kiewit Power Engineers
W
ater and steam are vital components of virtually all plants in the chemical process industries (CPI). And, a very important operation is the treatment of makeup water to produce the purity required for certain applications, most notably for use in heat exchangers and steam turbines. An important consideration in water treatment is that many industrial facilities are, or will soon be, dealing with tightening restrictions on wastewater discharges. These may include cooling tower blowdown, rainwater runoff and other aqueous discharges. As with other technologies, the processes utilized to produce high-purity water have been greatly improved over the last decades. This article examines several of the most modern techniques for makeup water production. These technologies are also being employed to reduce wastewater volume and to recover pure water for reuse in the plant. (For more on reuse strategies, see Strategies for Water Reuse, Chem. Eng. September 2009, pp. 34–39.)
Think twice about a clarifier
Typically, the general makeup-treatment process involves: 1) large solids removal by screens or settling basins; 2) suspended solids removal; and 3) dissolved solids removal to produce the
52
FIGURE 2. The spiral-wound membrane is the most common configuration for RO membranes
water needed for the process. We will focus on the last two process steps. Clarification and media filtration were commonly used in the past for suspended solids removal. Where lime softening is needed to reduce raw water hardness, clarification is still a viable process. However, when the primary focus is removal of suspended solids only, micro- or ultra-filtration offers a very reliable alternative. My own personal experience is with microfiltration as a clarifier/filter replacement for makeup water pretreatment to an 800MW supercritical utility boiler [1]. All major microfilter designs utilize hollow-fiber membranes. A very common design uses pressurized systems, where thousands of spaghetti-like membranes are packed into pressure vessels. The number of pressure vessels then determines system production capabilities. This microfiltration process, like others of its type, operates in what can be thought of as a combination of crossflow and dead-end modes. Raw water flows parallel to the membrane surface in a crossflow pattern (Figure
CHEMICAL ENGINEERING WWW.CHE.COM NOVEMBER 2011
1), but unlike reverse osmosis (RO) where most impurities are carried away with the concentrated stream (called the reject or concentrate), suspended solids collect on the membrane. Water that passes through the membranes and is purified is known as permeate and, of course, is sent onward, while in many designs the reject returns to the unit inlet. So, this begs the question of how suspended solids are purged from the system. Typically, a regular backwash with an accompanying air scrub dislodges particulates and discharges them to a waste stream. One microfiltration system has, in five years of operation, consistently produced water with turbidity levels below 0.04 nephelometric turbidity units (NTU). The results on downstream RO operation have been predictable in the best sense of the word, where the frequency of cartridge filter replacements went from weeks to months; and where microfiltration combined with an improved chemical-treatment program corrected a microbiological fouling problem that once plagued the RO