C2 MS Jan 2005

Page 1

January 2005 6664 Core Mathematics C2 Mark Scheme Question Number 1.

Scheme

Marks

 5 5 (3  2 x) 5  (35 )   3 4  (2 x)   33 (2 x) 2     1   2  243,810 x,1080 x 2

M1 B1, A1, A1 (4) (4 marks)

2.

3.

5  13  1  11 (a) ( , ),  (9,5) 2 2

M1, A1 (2)

(b) r 2  (9  5) 2  (5  1) 2 ( 52) or r 2  (13  9)2  (11  5)2 ( 52) (or equiv.) Equation of circle: ( x  9) 2  ( y  5) 2  52 (or equiv.)

M1 M1 A1ft A1 (4) (6 marks) M1

(a) log 3  log 5 log 5 or x log3 = log5 x log 3  1.46 x

A1 A1 cao (3)

(a) log 2 (

2x  1 )2 x

M1

2x  1  2 2 or 4 x 2x  1  4x 1 x  or 0.5 2

M1 M1 A1

(4) (7)

4.

(a) 5(1  sin x)  3(1  sin x)

M1

2

5  5 sin 2 x  3  3 sin x 0  5 sin 2 x  3 sin x  2 

A1 cso (2)

(b) 0  (5 sin x  2)(sin x  1) 2 sin x  , -1 5 2  x  23.6 sin x  5 , 156.4

M1 (both) (   23.6 or 156.4) (180-  )

A1 cso B1 M1 B1

sin x  1  x  270

(ignore extra solutions outside the range)

(5) (7)


Question Number 5.

Scheme

(a)

Marks

f (2)  1  8  2  4  2a  b  1 f (1)  28  1  2  a  b  28 2 a  b  1  solving    a  10, b  21  a  b  31

(b) f (3)  27  18  3a  b  27  18  30  21  0

M1 A1 M1 A1 M1 A1 (6)

 ( x  3) is a factor

M1 A1 c.s.o (2) (8)

6.

5.832 ( 0.81) 7.2 r  0.9

(a) ar  7.2, ar 3  5.832  r 2 

(b) a 

7.2 , 8 (a)

(c) s50 

M1 A1 (2) M1, A1 (2)

8(1  (0.9) 50 ) 1  0.9

M1

 79.588 (3dp)

A1 c.a.o (2) 8 ( 80) 1  0.9 s  s50  80  (c)  0.412

(d) s 

7.

M1 A1

(2) (8)

(a) r  8  0.7,  5.6(cm)

M1, A1

(b) BC  8  11  2  8  11 cos 0.7  BC  7.098  Perimeter = (a)  (11  8)  BC ,  15.7(cm)

(2) M1 A1 M1, A1cao (4)

2

2

2

1 1 (c)   ab sin c  11 8  sin 0.7,  AWRT 28.3 2 2 1 2 1 2 Sector  r  ,  8  0.7 2 2 Area of R  28.345.....  22.4  5.9455  5.95(cm 2 )

M1, A1 M1, A1 A1

(5) (11)


Question Number 8. (a) x 2  6 x  10  3x  20

Scheme

 x  3x  10  0 ( x  5)( x  2)  0 so x ,5 or 2 sub a value for x to obtain a value for y in y  3x  20, y  5 or 26

Marks

M1

2

(b) line – curve =, 10  3x  x 2 3 2 x3 2 ( 10  3 x  x ) dx  10 x  x   2 3

M1, A1 M1, A1 (5) M1, A1 M1 A2/1/0

2

 3 2 x3  3 8 3 125 10 x  x    (20   4  )  (50   25  )  2 3  5 2 3 2 3  1 5 1  11  45  57 3 6 6 ALT (b)

3

x (-1 each incorrect term)  3x 2  10 x 3 125 use of limits  ( 8  12  20)  (  75  50)  (51 1 3 ) 3 3 1 Area of Trapezium  (5  26)(2  5)  (108 1 2) or 46 - - 62.5 (from integration) 2 343 Shaded area = Trapezium -   108 1 2  51 1 3  57 1 6 or or 57.16 6

 (x

2

 6 x  10)dx 

M1 A1 (7) (12) M1 A2/1/0

M1 B1 M1 A1 (7)


Question Number 9. (a) Perimeter  2 x  2 y  x  80

Scheme

Marks

B1

1  A  2 xy  x 2 2 80  2 x  x and sub in to A y 2 1  A  80 x  2 x 2  x 2  x 2 2

Area

i.e. A  80 x  (2 

B1 M1

A1 c.s.o (4)

)x 2 

2 dA  (b)  80  2(2  ) x or 80  4x   x (or equiv.) dx 2 40 dA  80 so x , or or Awrt 11.2  0  40  (2  ) x  dx 2 4  2 2 2 d A (c)  4   dx 2  0  A is Max

(d) Max Area  80(b)  (2  = 448(m 2 )

2

)(b) 2

M1, A1 M1, A1 (4)

M1 A1

(2)

M1 (448 only for A1)

A1 cao (2)

(12)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.