C3 MS Jan 2009

Page 1

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6665/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


January 2009 6665 Core Mathematics C3 Mark Scheme Question Number

1

Scheme

Marks

)

(

1 d d √ ( 5 x − 1) ) = ( 5 x − 1) 2 ( dx dx 1 −1 = 5 × ( 5 x − 1) 2 2

(a)

M1 A1

dy 5 −1 = 2 x √ ( 5 x − 1) + x 2 ( 5 x − 1) 2 dx 2 At x = 2 ,

(b)

dy 10 10 = 4√9 + = 12 + dx 3 √9 46 = 3

M1 A1ft

M1

Accept awrt 15.3

d ⎛ sin 2 x ⎞ 2 x 2 cos 2 x − 2 x sin 2 x ⎜ ⎟= x4 dx ⎝ x 2 ⎠

A1

M1

(6)

A1+A1 A1 (4) [10]

Alternative to (b) d sin 2 x × x −2 ) = 2 cos 2 x × x −2 + sin 2 x × ( −2 ) x −3 ( dx ⎛ 2 cos 2 x 2sin 2 x ⎞ = 2 x −2 cos 2 x − 2 x −3 sin 2 x ⎜ = − ⎟ x2 x3 ⎠ ⎝

6665/01 GCE Mathematics January 2009

2

M1 A1 + A1 A1

(4)


Question Number

2

Scheme

2x + 2 x +1 2x + 2 x +1 − = − x − 2 x − 3 x − 3 ( x − 3)( x + 1) x − 3

(a)

2

2 x + 2 − ( x + 1)( x + 1) ( x − 3)( x + 1)

=

(b)

Marks

=

( x + 1)(1 − x ) ( x − 3)( x + 1)

=

1− x x−3

M1 A1 M1

Accept −

x −1 x −1 , x −3 3− x

d ⎛ 1 − x ⎞ ( x − 3)( −1) − (1 − x )1 ⎜ ⎟= 2 dx ⎝ x − 3 ⎠ ( x − 3)

=

− x + 3 −1 + x

( x − 3)

2

=

A1

(4)

M1 A1

2

( x − 3)

2

cso

A1

(3) [7]

Alternative to (a)

2 ( x + 1) 2x + 2 2 = = 2 x − 2 x − 3 ( x − 3)( x + 1) x − 3

M1 A1

x + 1 2 − ( x + 1) 2 − = x −3 x −3 x−3 1− x = x−3 Alternatives to (b) 1− x 2 −1 1 = −1 − = −1 − 2 ( x − 3 ) f ( x) = x −3 x−3 −2 f ′ ( x ) = ( −1)( −2 )( x − 3)

=

2

2

( x − 3) −1 f ( x ) = (1 − x )( x − 3) −1 −2 f ′ ( x ) = ( −1)( x − 3) + (1 − x )( −1)( x − 3) − ( x − 3) − (1 − x ) 1 1− x =− − = 2 2 x − 3 ( x − 3) ( x − 3) =

2

2

( x − 3)

6665/01 GCE Mathematics January 2009

M1 A1

M1 A1

cso

A1

3

(3)

M1 A1 A1

2

(4)

(3)


Question Number

Scheme

Marks

3 (a)

( 3, 6 )

y

( 7, 0 )

O

Shape ( 3, 6 )

B1

( 7, 0 )

B1

Shape ( 3, 5 )

B1

( 7, 2 )

B1

B1 (3)

x

(b) y

( 3, 5)

( 7, 2 )

6665/01 GCE Mathematics January 2009

4

(3) [6]

x

O

B1


Question Number

Scheme

Marks

x = cos ( 2 y + π )

4

dx = −2sin ( 2 y + π ) dy dy 1 =− dx 2sin ( 2 y + π ) At y =

π 4

dy 1 1 =− = 3π 2 dx 2sin 2

,

y−

π

1 x 4 2 1 π y = x+ 2 4 =

M1 A1

dx dy before or after substitution

Follow through their

A1ft

B1

M1 A1

(6) [6]

6665/01 GCE Mathematics January 2009

5


Question Number 5

Scheme

Marks

g ( x) ≥ 1

(a)

B1

( ) = 3e

f g ( x ) = f ex

(b)

2

= x 2 + 3e x

( fg : x a x

2

x2

+ lne x

2

+ 3e x

2

)

(c)

fg ( x ) ≥ 3

(d)

2 2 d 2 x + 3e x = 2 x + 6 x e x dx

(

) 2

2

A1

(2)

B1

(1)

M1 A1

M1 A1

6 x − x2 = 0 x = 0, 6

6665/01 GCE Mathematics January 2009

M1

2

2x + 6x ex = x2 ex + 2x 2 ex ( 6 x − x2 ) = 0 ex ≠ 0 ,

2

(1)

A1 A1

6

(6) [10]


Question Number 6

(a)(i)

Scheme

Marks

sin 3θ = sin ( 2θ + θ )

= sin 2θ cos θ + cos 2θ sin θ = 2sin θ cos θ .cos θ + (1 − 2sin 2 θ ) sin θ

M1 A1

= 2sin θ (1 − sin 2 θ ) + sin θ − 2sin 3 θ

M1

= 3sin θ − 4sin 3 θ (ii)

(b)

cso

8sin 3 θ − 6sin θ + 1 = 0 −2sin 3θ + 1 = 0 1 sin 3θ = 2 π 5π 3θ = , 6 6 π 5π θ= , 18 18

√3

(4)

M1 A1 M1

A1 A1

sin15° = sin ( 60° − 45° ) = sin 60° cos 45° − cos 60° sin 45°

1 1 1 − × 2 √2 2 √2 1 1 1 = √ 6 − √ 2 = (√ 6 − √ 2) 4 4 4 =

A1

(5)

M1

×

M1 A1

cso

A1

(4) [13]

Alternatives to (b) 1 sin15° = sin ( 45° − 30° ) = sin 45° cos 30° − cos 45° sin 30° 1 √3 1 1 × − × √2 2 √2 2 1 1 1 = √ 6 − √ 2 = (√ 6 − √ 2) 4 4 4

M1

=

M1 A1

cso

A1

(4)

2 Using cos 2θ = 1 − 2sin 2 θ , cos 30° = 1 − 2sin 2 15°

2sin 2 15° = 1 − cos 30° = 1 − sin 2 15° =

2−√3 4

√3

2 M1 A1

2

1 2−√3 ⎛1 ⎞ ⎜ ( √ 6 − √ 2 ) ⎟ = ( 6 + 2 − 2 √ 12 ) = 4 ⎝4 ⎠ 16 1 Hence sin15° = ( √ 6 − √ 2 ) 4

6665/01 GCE Mathematics January 2009

7

M1

cso

A1

(4)


Question Number 7

(a)

Scheme

f ′ ( x ) = 3e x + 3 x e x

M1 A1

3e x + 3 x e x = 3e x (1 + x ) = 0 x = −1 f ( −1) = −3e −1 − 1

M1 A1 B1

x1 = 0.2596 x2 = 0.2571 x3 = 0.2578

B1

Choosing ( 0.257 55, 0.257 65 ) or an appropriate tighter interval.

M1

(b)

(c)

Marks

(5)

B1 B1

(3)

f ( 0.257 55 ) = −0.000 379 ... f ( 0.257 65 ) = 0.000 109 …

Change of sign (and continuity) ⇒ root ∈ ( 0.257 55, 0.257 65 ) ( ⇒ x = 0.2576 , is correct to 4 decimal places) Note: x = 0.257 627 65 … is accurate

6665/01 GCE Mathematics January 2009

8

A1

cso

A1 (3) [11]


Question Number 8

(a)

(b)

Scheme

R 2 = 32 + 42 R=5 4 tan α = 3 α = 53 ... ° Maximum value is 5

Marks M1 A1 M1

awrt 53°

A1

ft their R

B1 ft

At the maximum, cos (θ − α ) = 1 or θ − α = 0

θ = α = 53 ... ° (c)

(d)

(4)

M1

ft their α

A1 ft

(3)

f ( t ) = 10 + 5cos (15t − α ) °

Minimum occurs when cos (15t − α ) ° = −1

M1

The minimum temperature is (10 − 5 ) ° = 5°

A1 ft

15t − α = 180 t = 15.5

6665/01 GCE Mathematics January 2009

awrt 15.5

9

M1 M1 A1

(2)

(3) [12]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.