Mark Scheme (Results) January 2007 GCE
GCE Mathematics Core Mathematics C4 (6666)
Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH
January 2007 6666 Core Mathematics C4 Mark Scheme Question Number
Scheme
Marks
** represents a constant 1.
−2
f(x) = (2 − 5x)
= ( 2)
−2
⎛ 5x ⎞ ⎜1 − 2 ⎟ ⎝ ⎠
−2
1 ⎛ 5x ⎞ = ⎜1 − 4⎝ 2 ⎟⎠
Takes 2 outside the bracket to give any of B1 (2)-2 or 41 .
−2
Expands (1 + * * x )−2 to give an M1 unsimplified 1 + ( −2)(* * x) ; ⎫
⎧ ( −2)( −3) ( −2)( −3)( −4) = 41 ⎨1 + ( −2)(* * x); + (* * x)2 + (* * x)3 + ... 2! 3! ⎭ ⎩
A correct unsimplified {..........} expansion A1 with candidate’s
(* * x )
⎧ ⎫ ( −2)( −3) − 5x 2 ( −2)( −3)( −4) − 5x 3 ( 2 ) + ( 2 ) + ...⎬ = 41 ⎨1 + ( −2)( − 25x ); + 2! 3! ⎭ ⎩
⎧ ⎫ 75x 2 125x 3 = 41 ⎨1 + 5x; + + + ...⎬ 4 2 ⎩ ⎭
Anything that cancels to 1 + 5x ; A1;
1 5x 75x 2 125x 3 = + + + ... ;+ 4 4 16 8
=
4
Simplified
75x 2 16
+
4
125x 3 8
A1
1 1 11 2 5 + 1 x; + 4 x + 15 x 3 + ... 4 4 16 8
[5] 5 marks
1
Question Number Aliter 1. Way 2
Scheme
Marks
f(x) = (2 − 5x)−2
or (2)−2 B1 Expands (2 − 5x)−2 to give an M1 unsimplifed −2 (2) + ( −2)(2)−3 (* * x) ; 1 4
⎧ −2 ⎫ ( −2)( −3) −4 −3 (2) (* * x)2 ⎪ ⎪(2) + ( −2)(2) (* * x); + ⎪ ⎪ 2! =⎨ ⎬ ( 2)( 3)( 4) − − − ⎪ ⎪ (2)−5 (* * x)3 + ... + ⎪⎩ ⎪⎭ 3!
A correct unsimplified {..........} expansion A1 with candidate’s
(* * x )
( −2)( −3) −4 ⎧ −2 ⎫ −3 (2) ( −5x)2 ⎪ ⎪⎪(2) + ( −2)(2) ( −5x); + ⎪ 2! =⎨ ⎬ ( 2)( 3)( 4) − − − ⎪ ⎪ (2)−5 ( −5x)3 + ... + 3! ⎩⎪ ⎭⎪ ⎧⎪ 41 + ( −2)( 81 )( −5x); + (3)( 161 )(25x 2 )⎫⎪ =⎨ ⎬ + ( −4)( 161 )( −125x 3 ) + ... ⎪⎭ ⎪⎩
Anything that cancels to 1 + 5x ; A1;
1 5x 75x 2 125x 3 ;+ = + + + ... 4 4 16 8
=
4
Simplified
75x 2 16
+
4
125x 3 8
A1
1 1 11 2 5 + 1 x; + 4 x + 15 x 3 + ... 4 4 16 8
[5] 5 marks Attempts using Maclaurin expansions need to be referred to your team leader.
2
Question Number
Scheme 1 2
2. (a)
Marks 1 2
2
⎛ ⎞ π 1 1 Volume = π ⎜⎜ dx ⎟⎟ dx = 2 3 1 2x 9 + ( ) 1 2x + ( ) ⎠ − 41 ⎝ − 41
∫
⎛π⎞
=⎜ ⎟ ⎝9⎠
∫
−2
B1
Can be implied. Ignore limits. Moving their power to the top. (Do not allow power of -1.) Can be implied. M1 Ignore limits and 9π
1 2
∫ (1 + 2x )
∫
Use of V = π y 2 dx .
dx
− 41
1
−1 2 ⎛ π ⎞ ⎡ (1 + 2x) ⎤ = ⎜ ⎟⎢ ⎥ ⎝ 9 ⎠ ⎣⎢ ( −1)(2) ⎦⎥ − 1
Integrating to give ±p(1 + 2x)−1
M1
− 21 (1 + 2x)−1
A1
4
1 2 ⎛π⎞ = ⎜ ⎟ ⎡ − 21 (1 + 2x)−1 ⎤ 1 ⎦ −4 ⎝9⎠⎣
⎛ π ⎞ ⎡⎛ −1 ⎞ ⎛ −1 ⎞ ⎤ = ⎜ ⎟ ⎢⎜ ⎟⎥ ⎟−⎜ ⎝ 9 ⎠ ⎣⎢⎝ 2(2) ⎠ ⎝ 2( 21 ) ⎠ ⎦⎥
⎛π⎞ = ⎜ ⎟ ⎡⎣ − 41 − ( −1)⎤⎦ ⎝9⎠
=
(b)
From Fig.1, AB = As
3 4
Use of limits to give exact values of A1 aef π 3π or 36 or 224π or aef 12
π 12 1 2
− (−
1 4
)=
[5] 3 4
units
units ≡ 3cm
then scale factor k =
3
( 34 )
= 4. ⎛ π ⎞
Hence Volume of paperweight = ( 4 ) ⎜ ⎟ ⎝ 12 ⎠ 3
V=
3 ( 4 ) × (their answer to part (a)) M1
16π cm3 = 16.75516... cm3 3
16 π 3
or awrt 16.8
or 6412π or aef
A1 [2] 7 marks
Note:
π 9
(or implied) is not needed for the middle three marks of question 2(a).
3
Question Number Aliter
Scheme 1 2
2. (a)
Marks 1 2
2
⎛ ⎞ 1 1 Volume = π ⎜⎜ dx ⎟⎟ dx = π 2 + 3 1 2x ( ) + 3 6x ( ) ⎠ − 41 ⎝ − 41
∫
∫
∫
Use of V = π y 2 dx .
B1
Can be implied. Ignore limits.
Way 2 = ( π)
Moving their power to the top. (Do not allow power of -1.) M1 Can be implied. Ignore limits and π
1 2
∫ (3 + 6x )
−2
dx
− 41
Integrating to give ±p(3 + 6x)−1
1
⎡ (3 + 6x)−1 ⎤ 2 = ( π) ⎢ ⎥ ⎣ ( −1)(6) ⎦ − 1
− 61 (3 + 6x)
4
−1
M1 A1
1
2 = ( π ) ⎡ − 61 (3 + 6x)−1 ⎤ 1 ⎣ ⎦ −4
⎡⎛ −1 ⎞ ⎛ −1 ⎞ ⎤ = ( π ) ⎢⎜ ⎟ − ⎜ 3 ⎟⎥ ⎣⎢⎝ 6(6) ⎠ ⎝ 6( 2 ) ⎠ ⎦⎥
= ( π ) ⎡⎣ − 361 − ( − 91 )⎤⎦
=
Use of limits to give exact values of A1 aef π 3π or 36 or 224π or aef 12
π 12
[5] Note: π is not needed for the middle three marks of question 2(a).
4
Question Number 3. (a)
Scheme
Marks
x = 7 cos t − cos 7t , y = 7 sin t − sin7t ,
dx dy = − 7 sin t + 7 sin 7t , = 7 cos t − 7 cos 7t dt dt
Attempt to differentiate x and y with respect to t to give dx in the form ± A sin t ± B sin7t M1 dt dy dt
in the form ±C cos t ± D cos 7t Correct
∴
dy 7 cos t − 7 cos 7t = dx −7 sin t + 7 sin 7t
dx dt
and
Candidate’s
dy dt
A1
dy dt dx dt
B1 [3]
(b)
π 6
When t = , m(T) =
=
7 3 2
(
− − 7 23
)
dy 7 cos 6π − 7 cos 76π ; = dx −7 sin 6π + 7 sin 76π
7 3 = = − 3 = awrt − 1.73 −7
− 72 − 72
Hence m(N) =
−1
1
or
− 3
When t = 6π , x = 7 cos 6π − cos 76π = y = 7 sin − sin π 6
N: y − 4 =
N: y =
or 4 =
1 3
1 3
1 3
7π 6
=
7 3 2 7 2
( )=
− −
− (−
1 2
3 2
)=
8 2
8 3 2
=4 3
=4
y=
or
(4 3 ) + c
Hence N: y =
1 3
x
or 30o into their dy dx
expression;
M1
to give any of the four underlined expressions oe A1 cso (must be correct solution only)
(
The point 4 3, 4
)
or ( awrt 6.9, 4 )
A1
oe.
B1
Finding an equation of a normal with their point and their normal M1 gradient or finds c by using y = (their gradient)x + " c " .
(x − 4 3 )
x
π 6
Uses m(T) to ‘correctly’ find m(N). Can be ft from “their tangent gradient”.
= awrt 0.58
3
Substitutes t =
3 3
Correct simplified EXACT equation of normal. A1 oe This is dependent on candidate using correct 4 3 , 4
x or 3y = 3x
(
)
⇒ c=4−4 = 0
or y =
3 3
x or 3y = 3x
[6] 9 marks 5
Question Number Aliter 3. (a) Way 2
Scheme
Marks
x = 7 cos t − cos 7t , y = 7 sin t − sin7t ,
dx dy = − 7 sin t + 7 sin 7t , = 7 cos t − 7 cos 7t dt dt
Attempt to differentiate x and y in the with respect to t to give dx dt form ± A sin t ± B sin7t M1 dy in theform ±C cos t ± D cos 7t dt A1 Correct dx and dy dt dt
dy 7cos t − 7 cos7t −7( −2 sin 4t sin3t) = = = tan 4t dx −7 sin t + 7 sin7t −7(2cos 4t sin3t)
Candidate’s
dy dt dx dt
B1 [3]
(b)
Substitutes t =
π dy When t = , m(T) = = tan 46π ; dx 6
=
2
( ) (1) 3 2
2 ( − 21 ) (1)
Hence m(N) =
1
or
− 3
3
When t = 6π , x = 7 cos 6π − cos 76π =
y = 7 sin 6π − sin 76π =
N: y − 4 =
N: y =
or 4 =
1 3
1 3
1 3
7 3 2
7 2
3 2
− ( − 21 ) =
8 2
8 3 2
Uses m(T) to ‘correctly’ find m(N). Can be ft from “their tangent gradient”.
=4 3
=4
y=
or
(4 3 ) + c
Hence N: y =
1 3
x
(
The point 4 3, 4
)
or ( awrt 6.9, 4 )
A1
oe.
B1
Finding an equation of a normal with their point and their normal M1 gradient or finds c by using y = (their gradient)x + " c " .
(x − 4 3 )
x
expression; M1
to give any of the three underlined expressions oe A1 cso (must be correct solution only)
= awrt 0.58
( )=
− −
or 30o into their dy dx
= − 3 = awrt − 1.73
−1
π 6
3 3
Correct simplified EXACT equation of normal. A1 oe This is dependent on candidate using correct 4 3 , 4
x or 3y = 3x
(
)
⇒ c=4−4 = 0
or y =
3 3
x or 3y = 3x
[6] 9 marks 6
Beware: A candidate finding an m(T) = 0 can obtain A1ft for m(N) → ∞ , but obtains M0 if they write y − 4 = ∞(x − 4 3 ) . If they write, however, N: x = 4 3 , then they can score M1. Beware: A candidate finding an m(T) = ∞ can obtain A1ft for m(N) = 0, and also obtains M1 if they write y − 4 = 0(x − 4 3 ) or y = 4.
7
Question Number 4. (a)
Scheme
Marks
2x − 1 A B ≡ + (x − 1)(2x − 3) (x − 1) (2x − 3)
Forming this identity. NB: A & B are not assigned in M1 this question
2x − 1 ≡ A(2x − 3) + B(x − 1)
Let x = 32 ,
2 = B ( 21 )
⇒ B=4
Let x = 1,
1 = A ( −1)
⇒ A = −1
either one of A = − 1 or B = 4 . A1 both correct for their A, B. A1
−1 4 + (x − 1) (2x − 3)
giving
[3] (b) & (c)
∫
∫
dy = y
(2x − 1) dx (2x − 3)(x − 1) −1
Separates variables as shown B1 Can be implied
∫ (x − 1) + (2x − 3) dx
Replaces RHS with their partial fraction to be integrated. M1
∴ ln y = − ln(x − 1) + 2ln(2x − 3) + c
At least two terms in ln’s M1 At least two ln terms correct A1 All three terms correct and ‘+ c’ A1
=
4
[5] c = ln10
y = 10, x = 2 gives c = ln10
B1
∴ ln y = − ln(x − 1) + 2ln(2x − 3) + ln10 ln y = − ln(x − 1) + ln(2x − 3)2 + ln10
Using the power law for M1 logarithms
⎛ (2x − 3)2 ⎞ ln y = ln ⎜ ⎟ + ln10 or ⎝ (x − 1) ⎠ ⎛ 10(2x − 3)2 ⎞ ln y = ln ⎜ ⎟ ⎝ (x − 1) ⎠
y=
Using the product and/or quotient laws for logarithms to obtain a M1 single RHS logarithmic term with/without constant c.
10(2x − 3)2 (x − 1)
y=
10(2x − 3)2 or aef. isw A1 aef (x − 1)
[4] 12 marks
8
Question Number Aliter 4. (b) & (c) Way 2
Scheme
∫y
dy
Marks
(2x − 1)
∫ (2x − 3)(x − 1) dx
=
=
∫
Separates variables as shown B1 Can be implied
−1 4 + dx (x − 1) (2x − 3)
Replaces RHS with their partial M1 fraction to be integrated. At least two terms in ln’s M1 At least two ln terms correct A1 All three terms correct and ‘+ c’ A1
∴ ln y = − ln(x − 1) + 2ln(2x − 3) + c
decide to award B1 here!! B1
See below for the award of B1
Using the power law for M1 logarithms
ln y = − ln(x − 1) + ln(2x − 3)2 + c
Using the product and/or quotient laws for logarithms to obtain a M1 single RHS logarithmic term with/without constant c.
⎛ (2x − 3)2 ⎞ ln y = ln ⎜ ⎟+c ⎝ x −1 ⎠ ⎛ A(2x − 3)2 ⎞ ln y = ln ⎜ ⎟ x −1 ⎠ ⎝
or e
ln y
y =
=e
⎛ (2x − 3)2 ⎞ +c ln⎜ ⎜ x − 1 ⎟⎟ ⎝ ⎠
=e
where c = ln A ⎛ (2x − 3)2 ⎞ ln⎜ ⎜ x − 1 ⎟⎟ ⎝ ⎠
ec
A(2x − 3)2 (x − 1)
y = 10, x = 2 gives A = 10
y=
A = 10 for B1
10(2x − 3)2 (x − 1)
y=
award above
10(2x − 3)2 or aef & isw A1 aef (x − 1)
[5] & [4]
Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.
9
Question Number Aliter (b) & (c)
Scheme
∫y
dy
(2x − 1)
∫ (2x − 3)(x − 1) dx
=
Way 3 =
Marks
∫
Separates variables as shown Can B1 be implied
−1 2 + dx (x − 1) (x − 32 )
Replaces RHS with their partial M1 fraction to be integrated. At least two terms in ln’s M1 At least two ln terms correct A1 All three terms correct and ‘+ c’ A1
∴ ln y = − ln(x − 1) + 2ln(x − 32 ) + c
[5] y = 10, x = 2 gives c = ln10 − 2ln ( 21 ) = ln 40
c = ln10 − 2ln ( 21 ) or c = ln 40
B1 oe
∴ ln y = − ln(x − 1) + 2ln(x − 32 ) + ln 40
ln y = − ln(x − 1) + ln(x − 32 )2 + ln10
Using the power law for M1 logarithms
⎛ (x − 32 )2 ⎞ ln y = ln ⎜ ⎟ + ln 40 or ⎝ (x − 1) ⎠ ⎛ 40(x − 32 )2 ⎞ ln y = ln ⎜ ⎟ ⎝ (x − 1) ⎠ y=
Using the product and/or quotient laws for logarithms to obtain a M1 single RHS logarithmic term with/without constant c.
40(x − 32 )2 (x − 1)
y=
40(x − 32 )2 or aef. isw A1 aef (x − 1)
[4]
Note: Please mark parts (b) and (c) together for any of the three ways.
10
Question Number
Scheme sin x + cos y = 0.5
5. (a) ⎧ dy ⎫ =⎬ ⎨ ⎩ dx ⎭
dy cos x − sin y =0 dx
Marks ( eqn ∗ ) Differentiates implicitly to include ( eqn # )
± sin y
dy . (Ignore dx
dy cos x = dx sin y
(
dy dx
)
= .)
cos x sin y
M1
A1 cso [2]
(b)
Candidate realises that they need to solve ‘their numerator’ = 0 …or candidate sets ddyx = 0 in their M1 (eqn #) and attempts to solve the resulting equation.
dy cos x =0 ⇒ = 0 ⇒ cos x = 0 dx sin y
giving x = − 2π or x =
both x = − 2π ,
π 2
When x = , sin (
π 2
) + cos y = 0.5
x=
Substitutes either their or x = − 2π into eqn ∗ M1 2π 3
or − 23π or 120o
or −120° or awrt -2.09 or awrt 2.09
( 2π , 23π ) and ( 2π , − 23π )
A1
π 2
Only one of y =
⇒ cos y = 1.5 ⇒ y has no solutions ⇒ cos y = − 0.5 ⇒ y = 23π or − 23π
In specified range ( x, y ) =
or x = ±90o or
awrt x = ± 1.57 required here
When x = − 2π , sin ( − 2π ) + cos y = 0.5 π 2
π 2
Only exact coordinates of
( 2π , 23π ) and ( 2π , − 23π )
A1
A1
Do not award this mark if candidate states other coordinates inside the required range. [5] 7 marks
11
Question Number
Scheme
6.
y = 2x = e x ln 2
(a)
dy = ln 2.e x ln2 dx
Marks
dy = ln 2.e x ln2 dx
M1
Way 1 dy = ln 2.(2x ) = 2x ln 2 dx
Hence
2x ln 2 AG A1 cso
AG
[2] Aliter (a)
( )
ln y = ln 2x
Takes logs of both sides, then uses the power law of logarithms…
leads to ln y = x ln 2
Way 2
M1 … and differentiates implicitly to give 1y dy = ln 2 dx
1 dy = ln 2 y dx dy = y ln 2 = 2x ln 2 dx
Hence
2x ln 2 AG A1 cso
AG
[2]
(b)
y=2
2
(x )
Ax 2 ( x
dy ⇒ = 2x. 2 ( x ).ln 2 dx 2
2
)
M1
2
2x. 2 ( x ).ln 2
or 2x. y.ln 2 if y is defined dy dx ( x2 ) which is of the form ± k 2
A1
Substitutes x = 2 into their When x = 2,
dy = 2(2) 2 4 ln 2 dx
or Ax 2 ( x dy = 64 ln 2 = 44.3614... dx
2
M1
)
64ln 2 or awrt 44.4 A1
[4] 6 marks
12
Question Number Aliter 6. (b)
Scheme
( )
ln y = ln 2x
2
Marks
leads to ln y = x 2 ln 2
Way 2 1 y 1 y
1 dy = 2x.ln 2 y dx
dy = Ax.ln 2 dx dy = 2x.ln 2 dx
dy dx ( x2 ) which is of the form Âą k 2
M1 A1
Substitutes x = 2 into their When x = 2,
dy = 2(2) 2 4 ln 2 dx
or Ax 2 ( x dy = 64 ln 2 = 44.3614... dx
2
M1
)
64ln 2 or awrt 44.4 A1
[4]
13
Question Number 7.
(a)
Scheme
Marks
uuur uuur a = OA = 2i + 2 j + k ⇒ OA = 3 uuur uuur b = OB = i + j − 4 k ⇒ OB = 18 uuur uuur BC = ± ( 2i + 2 j + k ) ⇒ BC = 3 uuur uuur AC = ± ( i + j − 4 k ) ⇒ AC = 18 uuur c = OC = 3i + 3 j − 3k
3i + 3 j − 3k
B1 cao [1]
(b)
⎛ 2⎞ ⎛ 1 ⎞ uuur uuur ⎜ ⎟ ⎜ ⎟ OA • OB = ⎜ 2 ⎟ • ⎜ 1 ⎟ = 2 + 2 − 4 = 0 ⎜ 1 ⎟ ⎜ −4 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ −1⎞ ⎛ 2 ⎞ uuur uuur ⎜ ⎟ ⎜ ⎟ BO • BC = ⎜ −1⎟ • ⎜ 2 ⎟ = −2 − 2 + 4 = 0 ⎜ 4 ⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠
or…
or…
⎛ 1 ⎞ ⎛ 2⎞ uuur uuur ⎜ ⎟ ⎜ ⎟ AC • BC = ⎜ 1 ⎟ • ⎜ 2 ⎟ = 2 + 2 − 4 = 0 or… ⎜ −4 ⎟ ⎜ 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ −2 ⎞ ⎛ 1 ⎞ uuur uuur ⎜ ⎟ ⎜ ⎟ AO • AC = ⎜ −2 ⎟ • ⎜ 1 ⎟ = −2 − 2 + 4 = 0 ⎜ −1⎟ ⎜ −4 ⎟ ⎝ ⎠ ⎝ ⎠
and therefore OA is perpendicular to OB and hence OACB is a rectangle.
An attempt to take the dot product uuur uuur between either OA and OB uuur uuur uuur uuur M1 OA and AC , AC and BC uuur uuur or OB and BC Showing the result is equal to zero. A1
perpendicular and A1 cso OACB is a rectangle Using distance formula to find M1 either the correct height or width. Multiplying the rectangle’s M1 height by its width. exact value of A1
Area = 3 × 18 = 3 18 = 9 2
3 18 , 9 2 , 162 or aef
[6] (c)
uuur OD = d =
1 2
( 3i + 3 j − 3k )
1 2
( 3i + 3 j − 3k ) B1 [1]
14
Question Number
Scheme using dot product formula
(d)
uuur DA = ± ( 21 i + 21 j + 52 k ) & uuur or BA = ± (i + j + 5k ) &
Marks
uuur DC = ± ( 32 i + 32 j − 32 k ) uuur OC = ± ( 3i + 3 j − 3k )
Identifies a set of two M1 relevant vectors Correct vectors ± A1
Way 1 ⎛ 0.5 ⎞ ⎛ 1.5 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 0.5 ⎟ • ⎜ 1.5 ⎟ 3 3 15 + − ⎜ 2.5 ⎟ ⎜ −1.5 ⎟ ⎝ ⎠ ⎝ ⎠ 4 4 4 = (±) 1 cos D = ( ± ) = (±) 27 3 27 27 . 4 2 2
Attempts to find the correct angle D ddM1 rather than 180° − D .
⎛ 1⎞ D = cos−1 ⎜ − ⎟ ⎝ 3⎠
109.5° or A1 awrt 109° or 1.91c
D = 109.47122...o
Aliter (d)
Applies dot product formula on multiples of these vectors. Correct ft. application of dot product formula
using dot product formula and direction vectors uuur
d BA = ± (i + j + 5k )
&
uuur
d OC = ± (i + j − k )
[6] Identifies a set of two M1 direction vectors Correct vectors ± A1
Way 2 ⎛ 1 ⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎟ • ⎜ 1⎟ ⎜ −1⎟ ⎜ 5 ⎟ 1+ 1− 5 1 cos D = ( ± ) ⎝ ⎠ ⎝ ⎠ = ( ± ) = (±) 3 3 . 27 3 . 27
Applies dot product formula on multiples dM1 of these vectors. Correct ft. application of dot A1 product formula. Attempts to find the correct angle D ddM1 rather than 180° − D .
⎛ 1⎞ D = cos−1 ⎜ − ⎟ ⎝ 3⎠
109.5° or A1 awrt 109° or 1.91c
D = 109.47122...o
[6]
15
Question Scheme Number using dot product formula and similar triangles Aliter (d)
uuur dOA = ( 2i + 2 j + k )
&
uuur
d OC = (i + j − k )
Marks Identifies a set of two M1 direction vectors Correct vectors A1
Way 3 ⎛ 2⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ 2⎟ •⎜ 1 ⎟ ⎜ 1 ⎟ ⎜ −1⎟ 2+ 2−1 = cos ( 21 D ) = ⎝ ⎠ ⎝ ⎠ = 9. 3 9. 3
Applies dot product formula on multiples dM1 of these vectors. Correct ft. application of dot A1 product formula.
1 3
⎛ 1 ⎞ D = 2 cos−1 ⎜ ⎟ ⎝ 3⎠
Attempts to find the correct angle D by doubling their angle ddM1 for 21 D .
D = 109.47122...o
109.5° or A1 awrt 109° or 1.91c
[6] Aliter (d) Way 4
using uuur cosine rule DA = 21 i +
uuur DA =
1 2
uuur j + 52 k , DC = 32 i +
27 , 2
uuur DC =
3 2
uuur j − 32 k , AC = i + j − 4 k
uuur AC = 18
27 , 2
Attempts to find all the lengths of all M1 three edges of ∆ ADC
All Correct A1 2
2
⎛ 27 ⎞ ⎛ 27 ⎞ ⎜⎜ ⎟ +⎜ ⎟ − 18 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ ⎝ cos D = ⎛ 27 ⎞ ⎛ 27 ⎞ 2 ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎝ 2 ⎠⎝ 2 ⎠
(
)
2
=−
1 3
Using the cosine rule formula with correct dM1 ‘subtraction’. Correct ft application of the cosine rule A1 formula Attempts to find the correct angle D ddM1 rather than 180° − D .
⎛ 1⎞ D = cos ⎜ − ⎟ ⎝ 3⎠ −1
109.5° or A1 awrt 109 or 1.91c
D = 109.47122...o
°
[6]
16
Question Scheme Number using trigonometry on auuur right angled triangle Aliter uuur uuur 5 1 1 DA = 2 i + 2 j + 2 k OA = 2i + 2 j + k AC = i + j − 4 k (d) Way 5
Attempts to find two out of the three M1 lengths in ∆ ADX
Let X be the midpoint of AC uuur DA =
27 , 2
uuur DX =
(hypotenuse),
sin( 21 D) =
18 2 27 2
1 2
uuur 3 , OA = 2
(adjacent)
cos( 21 D) =
,
⎛ eg. D = 2 tan−1 ⎜ ⎜ ⎝
18 2 3 2
uuur AX =
,
3 2 27 2
1 2
uuur AC =
1 2
18
(opposite)
tan( 21 D) =
or
Marks
Any two correct A1 Uses correct dM1 sohcahtoa to find 21 D Correct ft application A1 of sohcahtoa
18 2 3 2
Attempts to find the correct angle D by doubling their angle ddM1 for 21 D .
⎞ ⎟ ⎟ ⎠
109.5° or A1 awrt 109° or 1.91c
D = 109.47122...o
[6] Aliter (d) Way 6
using trigonometry on auuur right angled similar triangle OAC uuur uuur OC = 3i + 3 j − 3k
uuur OC =
OA = 2i + 2 j + k
uuur OA = 3 ,
27 ,
(hypotenuse), (adjacent),
uuur AC =
AC = i + j − 4 k
Attempts to find two out of the three M1 lengths in ∆ OAC
18
(opposite) Any two correct A1
sin( 21 D) =
18 27
,
cos( 21 D) =
3 27
tan( 21 D) =
or
18 3
Uses correct dM1 sohcahtoa to find 21 D Correct ft application of sohcahtoa A1 Attempts to find the correct angle D by doubling their angle ddM1 for 21 D .
⎛ 18 ⎞ eg. D = 2 tan−1 ⎜⎜ ⎟⎟ ⎝ 3 ⎠
109.5° or A1 awrt 109° or 1.91c
D = 109.47122...o
[6]
17
Question Number Aliter 7. (b) (i)
Marks
Scheme uuur c = OC = ± ( 3i + 3 j − 3k ) uuur AB = ± ( −i − j − 5 k )
Way 2 uuur OC =
As
(3) + (3) + ( −3) = 2
uuur uuur OC = AB =
2
2
uuur (1) + (1) + ( −5) = AB 2
2
2
27
then the diagonals are equal, and OACB is a rectangle.
A complete method of proving that the diagonals are equal.
M1
Correct result.
A1
diagonals are equal and OACB is a rectangle
A1 cso
[3] uuur uuur a = OA = 2i + 2 j + k ⇒ OA = 3 uuur uuur b = OB = i + j − 4 k ⇒ OB = 18 uuur uuur BC = ± ( 2i + 2 j + k ) ⇒ BC = 3 uuur uuur AC = ± ( i + j − 4 k ) ⇒ AC = 18 uuur uuur c = OC = ± ( 3i + 3 j − 3k ) ⇒ OC = 27 uuur uuur AB = ± ( −i − j − 5 k ) ⇒ AB = 27
Aliter 7. (b) (i)
(OA)2 + ( AC )2 = (OC )2 or (BC )2 + (OB )2 = (OC )2 or (OA)2 + (OB )2 = ( AB )2 or (BC )2 + ( AC )2 = ( AB )2
or equivalent
Way 3 ⇒ (3)2 + ( 18)2 =
(
27
)
A complete method of proving that Pythagoras holds using their values. Correct result
2
M1
A1
and therefore OA is perpendicular to OB or AC is perpendicular to BC and hence OACB is a rectangle.
perpendicular and OACB is a rectangle
A1 cso
[3] 14marks
18
Question Number
Scheme
Marks
8. (a) x
0
1
y or y
e1
e2
2 e
3 7
e
4
10
e
5
13
e4
2.71828… 7.38906… 14.09403… 23.62434… 36.80197… 54.59815… Either e 7 , e 10 and e 13 or awrt 14.1, 23.6 and 36.8 or e to the power awrt 2.65, 3.16, 3.61 (or mixture of decimals and e’s) At least two correct B1 All three correct B1 [2]
1 × 1 B1; 2 For structure of trapezium rule {.............} ; M1
(b)
{
(
1 I ≈ × 1 ; × e1 + 2 e2 + e 2
=
7
+e
10
+e
13
Outside brackets
)+e } 4
1 × 221.1352227... = 110.5676113... = 110.6 (4sf) 2
110.6
A1 cao [3]
Beware: In part (b) candidates can add up the individual trapezia:
(
(b) I ≈ 21 .1( e1 + e2 ) + 21 .1 e2 + e
7
) + .1( e 1 2
7
+e
19
10
) + .1( e 1 2
10
+e
13
) + .1( e 1 2
13
+ e4
)
Question Number
Scheme 1
t = (3x + 1) 2 ⇒
(c)
dt = dx
− 21
dt =3 dx
dt 3 3 = = 1 dx 2.(3x + 1) 2 2t
∫
∴I = e
∴I=
∫
2 3
(3 x +1)
A(3x + 1)
.3.(3x + 1)
1 2
… or t 2 = 3 x + 1 ⇒ 2t
so
Marks
∫
dx = et
⇒
3 2
dx 2t = dt 3
(3x + 1)
− 21
dt =A dx dt or 2t =3 dx
− 21
or t
M1 A1
Candidate obtains either dt or dx in terms of t … dx dt
∫
dx 2t . dt = e t . .dt dt 3
… and moves on to dM1 substitute this into I to convert an integral wrt x to an integral wrt t.
∫
t et dt
2 3
t et
A1
changes limits x → t so B1 that 0 → 1 and 5 → 4
change limits: when x = 0, t = 1 & when x = 5, t = 4 4
Hence I =
∫
2 3
tet dt ; where a = 1, b = 4, k =
2 3
1
[5] (d)
Let k be any constant for the first three marks of this part.
du ⎪⎧u = t ⇒ dt = 1 ⎪⎫ ⎨ dv t t⎬ ⎩⎪ dt = e ⇒ v = e ⎭⎪
(
∫
∫
k t et dt = k t e t − e t .1 dt
(
= k t et − et
4
∴
∫ 1
2 3
tet dt =
{(
)
Use of ‘integration by parts’ formula in the M1 correct direction. Correct expression with a A1 constant factor k.
)
Correct integration with/without A1 a constant factor k
+c
) (
2 4e4 − e4 − e1 − e1 3
Substitutes their changed limits into the integrand dM1 oe and subtracts oe.
)}
= 32 (3e4 ) = 2e 4 = 109.1963...
either 2e4 or awrt 109.2 A1 [5] 15 marks
• •
Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark ddM1 denotes a method mark which is dependent upon the award of the previous two method marks. 20