C4 MS Jan 2010

Page 1

Mark Scheme (Results) January 2010

GCE

GCE Core Mathematics C4 (6666/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful. Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA022713 All the material in this publication is copyright Š Edexcel Ltd 2010


January 2010 6666 Core Mathematics C4 Mark Scheme

Question Number

Q1

Scheme

(a) (1 − 8 x ) 2 = 1 + ( 12 ) ( −8 x ) + 1

( 12 )( − 12 ) 2

Marks

( −8 x ) + 2

( 12 )( − 12 ) ( − 23 ) 3!

( −8 x )

3

+…

= 1 − 4 x − 8 x 2 ; − 32 x 3 − …

(b)

(1 − 8 x ) = =

A1; A1

8 ⎞ ⎛ ⎜1 − ⎟ ⎝ 100 ⎠ 92 23 23 = = 100 25 5

(4)

M1

¿

cso

(c) 1 − 4 x − 8 x 2 − 32 x3 = 1 − 4 ( 0.01) − 8 ( 0.01) − 32 ( 0.01) = 1 − 0.04 − 0.0008 − 0.000 032 = 0.959 168 2

23 = 5 × 0.959 168 = 4.795 84

GCE Core Mathematics C4 (6666) January 2010

M1 A1

A1

(2)

3

M1 M1

cao

3

A1

(3) [9]


Question Number Q2

Scheme

(a)

1.386, 2.291

Marks

awrt 1.386, 2.291

1 (b) A ≈ × 0.5 ( ... ) 2 = ... ( 0 + 2 ( 0.608 + 1.386 + 2.291 + 3.296 + 4.385 ) + 5.545 )

B1 B1 B1 M1

= 0.25 ( 0 + 2 ( 0.608 + 1.386 + 2.291 + 3.296 + 4.385 ) + 5.545 ) ft their (a) A1ft = 0.25 × 29.477 ... ≈ 7.37 cao A1

(c)(i)

x2 x2 1 ln x − ⌠ ⎮ × dx 2 ⌡ 2 x 2 x x = ln x − ⌠ ⎮ dx ⌡2 2 2 x x2 = ln x − ( +C ) 2 4

∫ x ln x dx =

(2)

(4)

M1 A1

M1 A1

4

⎡ x2 x2 ⎤ ⎛ 1⎞ (ii) ⎢ ln x − ⎥ = ( 8ln 4 − 4 ) − ⎜ − ⎟ 4 ⎦1 ⎝ 4⎠ ⎣2 15 = 8ln 4 − 4 15 = 8 ( 2 ln 2 ) − 4 1 = ( 64 ln 2 − 15 ) 4

GCE Core Mathematics C4 (6666) January 2010

4

M1

ln 4 = 2 ln 2 seen or implied M1 a = 64, b = −15

A1

(7) [13]


Question Number

Q3

Scheme

(a) −2sin 2 x − 3sin 3 y

(b) At x =

π 6

,

dy =0 dx dy 2sin 2 x =− dx 3sin 3 y ⎛ 2π cos ⎜ ⎝ 6

GCE Core Mathematics C4 (6666) January 2010

Accept

2sin 2 x −2sin 2 x , −3sin 3 y 3sin 3 y

π

3

⇒y=

π 9

2sin 2 ( π6 ) 2sin π3 dy 2 =− = − =− π π dx 3sin 3 ( 9 ) 3sin 3 3 2⎛ π⎞ =− ⎜x− ⎟ 9 3⎝ 6⎠ 6 x + 9 y − 2π = 0

y− Leading to

M1 A1

⎞ ⎟ + cos 3 y = 1 ⎠ 1 cos 3 y = 2

3y = ⎛π π ⎞ (c) At ⎜ , ⎟ , ⎝6 9⎠

Marks

π

5

A1

(3)

M1 A1

awrt 0.349 A1

(3)

M1 M1 A1

(3) [9]


Question Number Q4

Scheme

Marks

(a) A: ( −6, 4, − 1)

(b)

Accept vector forms B1

⎛ 4⎞ ⎛ 3⎞ 2 2 ⎜ ⎟⎜ ⎟ 2 2 2 2 ⎜ −1 ⎟ . ⎜ −4 ⎟ = 12 + 4 + 3 = 4 + ( −1) + 3 3 + ( −4 ) + 1 cos θ ⎜ 3⎟ ⎜ 1⎟ ⎝ ⎠⎝ ⎠ 19 awrt 0.73 cos θ = 26

(c) X: (10, 0, 11) ⎛ 10 ⎞ ⎛ −6 ⎞ (d) AX = ⎜⎜ 0 ⎟⎟ − ⎜⎜ 4 ⎟⎟ ⎜ 11 ⎟ ⎜ −1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 16 ⎞ ⎜ ⎟ = ⎜ −4 ⎟ ⎜ 12 ⎟ ⎝ ⎠

(e)

(3)

Accept vector forms

B1

(1)

Either order

M1

cao

A1

2

Do not penalise if consistent incorrect signs in (d)

A1

Use of correct right angled triangle AX = cos θ d 4 26 d = 19 ≈ 27.9 awrt 27.9

M1

(2)

l1

X 4 26

θ d

(2)

M1

= 416 = 16 × 26 = 4 26 ¿

A

M1 A1

A1

AX = 162 + ( −4 ) + 122

(f)

(1)

Y

l2

M1 A1

(3)

26

[12]

GCE Core Mathematics C4 (6666) January 2010

6


Question Number

Q5

Scheme

(a)

Marks

⌠ 9 x + 6 dx = ⌠ ⎛ 9 + 6 ⎞ dx ⎮ ⎮⎜ ⎟ ⌡ x x⎠ ⌡⎝ = 9 x + 6 ln x ( +C )

⌠ 1 ⌠ 9 x + 6 dx ⎮ 13 d y = ⎮ ⌡ x ⌡y −1 ⌠ 9x + 6 ∫ y 3 d y = ⎮⌡ x dx

(b)

M1 A1

(2)

Integral signs not necessary B1

2

y3

= 9 x + 6 ln x ( +C )

± ky 3 = their ( a )

3 23 y = 9 x + 6 ln x ( +C ) 2

ft their ( a )

2 3

y = 8, x =1

3 23 8 = 9 + 61n 1 + C 2 C = −3 2 2 y 3 = ( 9 x + 6 ln x − 3) 3

y 2 = ( 6 x + 4 ln x − 2 )

3

2

M1 A1ft

M1 A1

( = 8 (3x + 2 ln x − 1) ) 3

A1

(6) [8]

GCE Core Mathematics C4 (6666) January 2010

7


Question Number

Q6

Scheme

dA = 1.5 dt dA A = π r2 ⇒ = 2π r dr When A = 2 2 2 = π r2 ⇒ r =

π

Marks

B1 B1

( = 0.797 884 ... )

M1

d A d A dr = × dt dr dt dr 1.5 = 2π r dt

M1

dr 1.5 = ≈ 0.299 dt 2π π2

awrt 0.299

A1 [5]

GCE Core Mathematics C4 (6666) January 2010

8


Question Number Q7

Scheme

(a)

Marks

y = 0 ⇒ t ( 9 − t 2 ) = t ( 3 − t )( 3 + t ) = 0 t = 0, 3, − 3

Any one correct value B1

At t = 0 , x = 5 ( 0 ) − 4 = −4 2

Method for finding one value of x

M1

At A, x = −4 ; at B, x = 41

Both

A1

dx = 10t dt

Seen or implied

B1

At t = 3 , x = 5 ( 3) − 4 = 41 2

( At t = −3,

)

x = 5 ( −3) − 4 = 41 2

(b)

⌠ ⌠ dx 2 ⎮ y dx = ⎮ y dt = ∫ t ( 9 − t )10t dt d t ⌡ ⌡

(3)

M1 A1

= ∫ ( 90t 2 − 10t 4 ) dt =

90t 3 10t 5 − 3 5

( = 30t

( +C )

3

⎡ 90t 3 10t 5 ⎤ 3 5 ⎢ 3 − 5 ⎥ = 30 × 3 − 2 × 3 ⎣ ⎦0

A = 2∫ y dx = 648

GCE Core Mathematics C4 (6666) January 2010

( units ) 2

3

− 2t 5 ( +C ) )

( = 324 )

A1 M1

A1

(6) [9]

9


Question Number

Q8

Scheme

(a)

Marks

dx = −2sin u du

B1

⌠ 1 1 ⌠ dx = ⎮ × −2sin u du ⎮ 2 2 2 2 ⌡ x 4− x ⌡ ( 2 cos u ) 4 − ( 2 cos u ) −2sin u ⌠ du =⎮ ⌡ 4 cos 2 u 4sin 2 u 1 1 =− ⌠ du ⎮ 4 ⌡ cos 2 u 1 = − tan u ( +C ) 4

x = 2 ⇒ 2 = 2 cos u ⇒ u = x = 1 ⇒ 1 = 2 cos u ⇒ u =

π

M1

Use of 1 − cos 2 u = sin 2 u

M1

1 ±k ⌠ du ⎮ ⌡ cos 2 u

M1

± k tan u

M1

π 4 M1

3

π

1⎛ π π⎞ ⎡ 1 ⎤4 − tan u ⎢⎣ 4 ⎥⎦ π = − 4 ⎝⎜ tan 4 − tan 3 ⎠⎟ 3

=−

(b)

⌠ V =π⎮ ⎮ ⌡1

2

(

1 1− 3 4

)

⎛ 4 ⎜ 1 ⎜ x ( 4 − x2 ) 4 ⎝

⎛ 3 −1 ⎞ ⎜⎜ = ⎟ 4 ⎟⎠ ⎝

A1

(7)

2

⎞ ⎟ dx ⎟ ⎠

M1

2

1 ⌠ dx = 16π ⎮ ⌡1 x 2 4 − x 2 ⎛ 3 −1 ⎞ = 16π ⎜⎜ ⎟⎟ ⎝ 4 ⎠

16π × integral in (a) M1 16π × their answer to part (a)

A1ft

(3) [10]

GCE Core Mathematics C4 (6666) January 2010

10


GCE Core Mathematics C4 (6666) January 2010

11


Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email publications@linneydirect.com Order Code UA022713 January 2010 For more information on Edexcel qualifications, please visit www.edexcel.com/quals Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.