Mark Scheme (Results) Summer 2008
GCE
GCE Mathematics (6666/01)
Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH
1
June 2008 6666 Core Mathematics C4 Mark Scheme Question 1. (a)
Scheme x y
e
or y
1
Marks
0
0.4
0.8
1.2
1.6
2
0
0.08
0.32
0.72
1.28
e2
e 1.08329 …
e
e
1.37713…
e
2.05443…
3.59664…
7.38906…
Either e0.32 and e1.28 or awrt 1.38 and 3.60 B1 (or a mixture of e’s and decimals) [1]
(b) Way 1
Outside brackets B1; 1 × 0.4 or 0.2 2 For structure of trapezium M1 rule [ ............. ] ;
1 Area ≈ × 0.4 ; ×⎡⎣ e0 + 2 ( e0.08 + e0.32 + e0.72 + e1.28 ) + e2 ⎤⎦ 2
= 0.2 × 24.61203164... = 4.922406... = 4.922 (4sf) Aliter (b) Way 2
Area ≈ 0.4 × ⎡ e ⎣
0
+ e0.08 2
+
e0.08 + e0.32 2
+
e0.32 + e0.72 2
+
e0.72 + e1.28 2
4.922
+
e1.28 + e2 2
A1 cao [3]
⎤ 0.4 and a divisor of 2 on B1 ⎦ all terms inside brackets. One of first and last ordinates, two of the middle ordinates inside M1 brackets ignoring the 2.
which is equivalent to: 1 Area ≈ × 0.4 ; ×⎡⎣ e0 + 2 ( e0.08 + e0.32 + e0.72 + e1.28 ) + e 2 ⎤⎦ 2
= 0.2 × 24.61203164... = 4.922406... = 4.922 (4sf)
4.922
A1 cao [3] 4 marks
1 Note an expression like Area ≈ × 0.4 + e0 + 2 ( e0.08 + e0.32 + e0.72 + e1.28 ) + e 2 would score B1M1A0 2
Allow one term missing (slip!) in the
(
)
brackets for
The M1 mark for structure is for the material found in the curly brackets ie ⎡⎣ first y ordinate + 2 ( intermediate 2 ft y ordinate ) + final y ordinate ⎤⎦
Question Number 2. (a)
Scheme
Marks
⎧⎪u = x ⇒ ddux = 1⎫⎪ ⎨ dv x x⎬ ⎪⎩ dx = e ⇒ v = e ⎪⎭
∫ xe
x
Use of ‘integration by parts’ formula in the correct direction. M1 (See note.) Correct expression. (Ignore dx) A1
dx = x e x − ∫ e x .1 dx
= x e x − ∫ e x dx = x ex − ex ( + c )
Correct integration with/without + c A1 [3]
(b)
⎧⎪u = x 2 ⇒ ⎨ dv x ⎩⎪ dx = e ⇒
= 2 x ⎫⎪ ⎬ v = e x ⎭⎪
du dx
Use of ‘integration by parts’ formula M1 in the correct direction. Correct expression. (Ignore dx) A1
2 x 2 x x ∫ x e dx = x e − ∫ e .2 x dx
= x 2 e x − 2 ∫ x e x dx Correct expression including + c. (seen at any stage! in part (b)) A1 ISW You can ignore subsequent working.
= x2e x − 2 ( x e x − e x ) + c
⎧⎪= x e − 2 x e + 2e + c ⎫⎪ ⎨ x 2 ⎬ ⎩⎪= e ( x − 2 x + 2 ) + c ⎭⎪ 2 x
x
[3]
x
Ignore subsequent working 6 marks
Note integration by parts in the correct direction means that u and ddvx must be assigned/used as u = x and ddvx = e x in part (a) for example + c is not required in part (a). i i di t (b)
3
Question Number 3. (a)
Scheme
From question,
Marks dA = 0.032 seen B1 dt or implied from working.
dA = 0.032 dt
2π x by itself seen B1 or implied from working
dA ⎫ ⎧ 2 = ⎬ 2π x ⎨A = π x ⇒ dx ⎭ ⎩
dx dA dA = ÷ = dt dt dx When x = 2cm ,
Hence,
(b)
( 0.032 )
⎧ 0.016 ⎫ ; ⎨= ⎬ 2π x ⎩ π x ⎭ 1
0.032 ÷ Candidate's
dx 0.016 = dt 2π
dx = 0.002546479... (cm s-1) dt
awrt 0.00255 A1 cso [4]
V = π x 2 (5 x) = 5 π x3
V = π x 2 (5 x) or 5π x3
B1
dV = 15 π x 2 dx B1 or ft from candidate’s V in one variable
dV = 15π x 2 dx ⎛ 0.016 ⎞ dV dV d x = × = 15π x 2 . ⎜ ⎟ ; {= 0.24 x} dt dx dt ⎝ πx ⎠ When x = 2cm ,
dA ; M1; dx
Candidate’s
dV = 0.24(2) = 0.48 (cm3 s −1 ) dt
dV dx × ; M1 dx dt
0.48 or awrt 0.48 A1 cso [4] 8 marks
4
Question Number
Marks
Scheme 3 x 2 − y 2 + xy = 4
4. (a)
( eqn ∗ )
Differentiates implicitly to include either
± ky ddyx or x ddxy . (Ignore
⎧ dy ⎫ dy ⎛ dy ⎞ = ⎬ 6x − 2 y + ⎜y + x ⎟= 0 ⎨ dx ⎜⎝ dx ⎟⎠ ⎩ dx ⎭
⎧ dy −6 x − y ⎫ = ⎨ ⎬ or x − 2y ⎭ ⎩ dx
Correct application
( 3x
⎧ dy 6x + y ⎫ = ⎨ ⎬ 2y − x ⎭ ⎩ dx
2
( )
(
dy dx
)
= )
M1
of product rule B1
⎛ dy ⎞ − y2 ) → ⎜ 6x − 2 y ⎟ and dx ⎠ ⎝
( 4 → 0)
A1
not necessarily required.
dy 8 −6 x − y 8 = ⇒ = dx 3 x − 2y 3
Substituting
dy 8 = into their M1 ∗ dx 3 equation.
giving −18 x − 3 y = 8 x − 16 y
giving
Attempt to combine either terms in x or terms in y together to give either dM1 ∗ ax or by.
13 y = 26 x
simplifying to give y − 2 x = 0 AG A1 cso
Hence, y = 2 x ⇒ y − 2 x = 0
[6] (b)
At P & Q, y = 2 x . Substituting into eqn ∗ gives 3 x 2 − (2 x) 2 + x(2 x) = 4 Simplifying gives, x 2 = 4 ⇒ x = ± 2
Attempt replacing y by 2x in at least one of the y terms in eqn ∗
M1
Either x = 2 or x = −2
A1
Both (2, 4) and (−2, − 4)
A1
y = 2x ⇒ y = ± 4 Hence coordinates are (2, 4) and (−2, − 4)
[3] 9 marks
5
Question Number
Scheme
Marks
** represents a constant (which must be consistent for first accuracy mark)
1 3x ⎞ −1 ⎛ −1 = (4 − 3 x) 2 = ( 4 ) 2 ⎜1 − ⎟ 4 ⎠ (4 − 3 x) ⎝
5. (a)
− 12
1 ⎛ 3x ⎞ = ⎜1 − ⎟ 2⎝ 4 ⎠
− 12
(4)
− 12
or
1 2
outside brackets B1
−1
Expands (1 + ** x) 2 to give a simplified or an un-simplified M1; 1 + (− 12 )(** x) ; (− 1 )( − 23 ) ⎡ ⎤ = 12 ⎢ 1 + (− 12 )(** x); + 2 (** x) 2 + ... ⎥ 2! ⎣ ⎦ with ** ≠ 1
=
(− 1 )(− 23 ) 3 x 2 ⎤ 1⎡ 1 + (− 12 )(− 34x ) + 2 (− 4 ) + ... ⎥ ⎢ 2⎣ 2! ⎦
A correct simplified or an unsimplified [ .......... ] expansion with candidate’s followed A1 through (** x )
Award SC M1 if you see (− 12 )(** x) +
1 2
= 12 ⎡⎣ 1 + 83 x ; +
27 128
x 2 + ... ⎤⎦
3 27 2 ⎧ 1 ⎫ x; + x + ...⎬ ⎨= + 256 ⎩ 2 16 ⎭
(b)
1 2
x+
+ 4 + 32 x + = 4 + 2 x; +
3 16 27 32
27 128
x 2 + ... ⎤⎦
27 2 ⎡⎣ ........; 128 x ⎤⎦
A1 isw A1 isw
Ignore subsequent working [5]
Writing ( x + 8) multiplied by candidate’s part (a) M1 expansion.
3 27 2 ⎛1 ⎞ ( x + 8) ⎜ + x + x + ... ⎟ 2 16 256 ⎝ ⎠ =
3 ⎣⎡ 1 + 8 x ; ... ⎦⎤
SC: K ⎡⎣ 1 + 83 x + 1 2
(− 12 )(− 23 ) (** x) 2 2!
Multiply out brackets to find a constant term, two x terms and two x 2 terms.
x 2 + ..... x 2 + .....
M1
Anything that cancels to 33 2 A1; A1 4 + 2 x; x 32
33 2 x + ... 32
[4] 9 marks
6
Question Number 6. (a)
Scheme
Marks
Lines meet where:
⎛ −9 ⎞ ⎛2⎞ ⎛3⎞ ⎛3⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 0 ⎟ + λ ⎜ 1 ⎟ = ⎜ 1 ⎟ + µ ⎜ −1⎟ ⎜ 10 ⎟ ⎜ −1⎟ ⎜ 17 ⎟ ⎜5⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Any two of
i : − 9 + 2λ = 3 + 3µ j: λ =1 − µ k : 10 − λ = 17 + 5µ
(1) – 2(2) gives:
(2) gives:
⎛ −9 ⎞ ⎛2⎞ ⎜ ⎟ ⎜ ⎟ r = ⎜ 0 ⎟ + 3⎜ 1 ⎟ ⎜ 10 ⎟ ⎜ −1⎟ ⎝ ⎠ ⎝ ⎠
−9 = 1 + 5µ
(1) (2) (3)
Need any two of these correct equations seen anywhere in part M1 (a). Attempts to solve simultaneous equations to find one of dM1 either λ or µ
⇒ µ = −2
Both λ = 3 & µ = − 2
λ =1−− 2 = 3
Substitutes their value of either λ or µ into the line l1 or l2 respectively. This mark can be ddM1 implied by any two correct components of ( −3, 3, 7 ) .
⎛3⎞ ⎛3⎞ ⎜ ⎟ ⎜ ⎟ or r = ⎜ 1 ⎟ − 2 ⎜ −1⎟ ⎜ 17 ⎟ ⎜5⎟ ⎝ ⎠ ⎝ ⎠
⎛ −3 ⎞ ⎜ ⎟ ⎜ 3 ⎟ or −3i + 3 j + 7k ⎜7⎟ ⎝ ⎠
⎛ −3 ⎞ ⎜ ⎟ Intersect at r = ⎜ 3 ⎟ or r = −3i + 3 j + 7k ⎜7⎟ ⎝ ⎠
Either check k: λ = 3 : LHS = 10 − λ
Either check that λ = 3 , µ = − 2 in a third equation or check that λ = 3 , B1 µ = − 2 give the same coordinates on the other line. Conclusion not needed.
= 10 − 3 = 7
(As LHS = RHS then the lines intersect.)
d1 = 2i + j − k ,
A1
or ( −3, 3, 7 )
µ = − 2 : RHS = 17 + 5µ = 17 − 10 = 7
(b)
A1
[6]
d 2 = 3i − j + 5k
⎛2⎞ ⎛3⎞ ⎜ ⎟ ⎜ ⎟ As d1 • d 2 = ⎜ 1 ⎟ • ⎜ −1⎟ = (2 × 3) + (1 ×− 1) + (−1 × 5) = 0 ⎜ −1⎟ ⎜ 5 ⎟ ⎝ ⎠ ⎝ ⎠ Then l1 is perpendicular to l2.
7
Dot product calculation between the two direction vectors: (2 × 3) + (1 ×− 1) + (−1 × 5) M1 or 6 − 1 − 5 Result ‘=0’ and A1 appropriate conclusion
[2]
Question Number 6. (c)
Scheme Equating i ;
− 9 + 2λ = 5
Marks
⇒ λ=7
⎛ −9 ⎞ ⎛ 2 ⎞ ⎛ 5⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ r = ⎜ 0 ⎟ + 7⎜ 1 ⎟ = ⎜ 7⎟ ⎜ 10 ⎟ ⎜ −1⎟ ⎜ 3 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ uuur ( = OA. Hence the point A lies on l1.)
Substitutes candidate’s λ = 7 into the line l1 and finds 5 i + 7 j + 3k . B1 The conclusion on this occasion is not needed. [1]
(d)
uuur Let OX = − 3i + 3 j + 7k be point of intersection Finding the difference between uuur their OX (can be implied) and uuur OA . ⎛ ⎛ −3 ⎞ ⎛ 5 ⎞ ⎞ M1 uuur ⎜⎜ ⎟ ⎜ ⎟⎟ AX = ± ⎜ ⎜ 3 ⎟ − ⎜ 7 ⎟ ⎟ ⎜⎜ 7 ⎟ ⎜ 3⎟⎟ ⎝⎝ ⎠ ⎝ ⎠⎠
⎛ −3 ⎞ ⎛ 5 ⎞ ⎛ −8 ⎞ uuur uuur uuur ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ AX = OX − OA = ⎜ 3 ⎟ − ⎜ 7 ⎟ = ⎜ −4 ⎟ ⎜ 7 ⎟ ⎜ 3⎟ ⎜ 4 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
±
uuur uuur uuur uuur uuur OB = OA + AB = OA + 2 AX ⎛ 5⎞ uuur ⎜ ⎟ OB = ⎜ 7 ⎟ + ⎜ 3⎟ ⎝ ⎠
⎛ −8 ⎞ ⎜ ⎟ 2 ⎜ −4 ⎟ ⎜ 4⎟ ⎝ ⎠
⎛5⎞ ⎜ ⎟ ⎜7⎟ + ⎜ 3⎟ ⎝ ⎠
⎛ ⎞ uuur ⎟ ⎜ 2 ⎜ their AX ⎟ ⎜ ⎟ ⎝ ⎠
⎛ −11⎞ ⎜ ⎟ ⎜ −1 ⎟ or −11i − j + 11k ⎜ 11 ⎟ ⎝ ⎠
⎛ −11⎞ uuur ⎜ uuur ⎟ Hence, OB = ⎜ −1 ⎟ or OB = −11i − j + 11k ⎜ 11 ⎟ ⎝ ⎠
dM1
A1
or ( −11, − 1, 11) [3] 12 marks
8
Question Number 7. (a)
Scheme
Marks
2 2 A B ≡ ≡ + 2 4− y (2 − y )(2 + y ) (2 − y ) (2 + y )
Forming this identity. NB: A & B are not assigned in M1 this question
2 ≡ A(2 + y ) + B(2 − y ) Let y = −2,
2 = B ( 4) ⇒ B =
1 2
Let y = 2,
2 = A( 4) ⇒ A =
1 2
giving
1 2
(2 − y )
+
Either one of A =
1 2
1 2
(2 + y )
(2 − y )
(If no working seen, but candidate writes down correct partial fraction then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)
9
+
1 2
or B = 1 2
(2 + y )
1 2
A1
, aef A1 cao [3]
Question Number 7. (b)
Marks
Scheme
∫
2 dy = 4 − y2
∫
∫
1 2
(2 − y )
Separates variables as shown. Can be implied. Ignore the B1 integral signs, and the ‘2’.
1 dx cot x
+
1 2
(2 + y )
dy =
∫
tan x dx ln(sec x) or − ln(cos x) Either ± a ln(λ − y ) or ± b ln(λ + y )
∴ − 12 ln(2 − y ) + 12 ln(2 + y ) = ln(sec x) + ( c )
B1 M1;
their ∫ cot1 x dx = LHS correct with ft
for their A and B and no error A1 with the “2” with or without + c
y = 0, x =
π 3
{0 = ln 2 + c
⇒ − ln 2 + 1 2
1 2
ln 2 = ln
( ( )) + c 1 cos π3
Use of y = 0 and x = π3 in an integrated equation containing c M1* ;
}
⇒ c = − ln 2
− 12 ln(2 − y ) + 12 ln(2 + y ) = ln(sec x) − ln 2 Using either the quotient (or product) or power laws for M1 logarithms CORRECTLY.
1 ⎛ 2+ y⎞ ⎛ sec x ⎞ ln ⎜ ⎟ = ln ⎜ ⎟ 2 ⎝2− y⎠ ⎝ 2 ⎠ ⎛2+ y⎞ ⎛ sec x ⎞ ln ⎜ ⎟ = 2ln ⎜ ⎟ ⎝ 2 ⎠ ⎝2− y⎠ ⎛2+ y⎞ ⎛ sec x ⎞ ln ⎜ ⎟ = ln ⎜ ⎟ ⎝ 2 ⎠ ⎝2− y⎠
Using the log laws correctly to obtain a single log term on both dM1* sides of the equation.
2
2 + y sec 2 x = 2− y 4 Hence,
sec 2 x =
8 + 4y 2− y
sec 2 x =
8 + 4y 2− y
A1 aef [8] 11 marks
10
Question Number 8. (a)
Scheme At P (4, 2 3) either 4 = 8cos t
or 2 3 = 4sin 2t
⇒ only solution is t = π3 where 0 „ t „
Marks
4 = 8cos t or 2 3 = 4sin 2t
t = π3 or awrt 1.05 (radians) only
π 2
stated in the range 0 „ t „
π
M1
A1
2
[2]
x = 8cos t ,
(b)
dx = − 8sin t , dt
y = 4sin 2t
Attempt to differentiate both x and y wrt t to give ± p sin t and M1 ± q cos 2t respectively
dy = 8cos 2t dt
Correct
At P,
( )
−1
Uses m(N) = −
1 3
A1
1 . dM1* their m(T)
Uses y − 2 3 = ( their mN )( x − 4 ) or finds c using x = 4 and dM1* y = 2 3 and uses y = (their m N ) x + " c " .
N: y − 2 3 = − 3 ( x − 4 )
or
dy dt
You may need to check candidate’s substitutions for M1* Note the next two method marks are dependent on M1*
⎧ ⎫ 8 ( − 12 ) 1 ⎪ ⎪ = = = awrt 0.58 ⎨ ⎬ 3 3 ⎪ ( −8 ) 2 ⎪ ⎩ ⎭
N: y = − 3 x + 6 3
and
Divides in correct way round and attempts to substitute their value of t (in degrees or M1* radians) into their ddyx expression.
dy 8cos ( 23π ) = dx −8sin ( π3 )
Hence m(N) = − 3 or
dx dt
y = − 3x + 6 3
AG
A1 cso AG
2 3 = − 3 ( 4) + c ⇒ c = 2 3 + 4 3 = 6 3
so N: ⎡⎣ y = − 3x + 6 3 ⎤⎦ [6]
11
Scheme
Question
3
A = ∫ y dx = ∫ 4sin 2t. ( −8sin t ) dt π
0
2
π
π
3
A = ∫ −32sin 2t.sin t dt = π
2
∫
dx dt M1 dt correct expression A1 (ignore limits and dt )
attempt at A =
π
4
8. (c)
Marks
3
∫ −32 ( 2sin t cos t ) .sin t dt π
2
y
Seeing sin 2t = 2sin t cos t M1 anywhere in PART (c).
π
A=
3
∫ −64.sin
2
t cos t dt
Correct proof. Appreciation of how the negative sign affects the limits. A1 AG Note that the answer is given in the question.
π
2
π
A=
2
∫ 64.sin
2
t cos t dt
π
3
[4] (d)
{Using substitution u = sin t ⇒ ddut = cos t } {change limits: when t = π3 , u = 23 & when t = π2 , u = 1 } π
⎡ sin 3 t ⎤ 2 A = 64 ⎢ ⎥ ⎣ 3 ⎦ π3
or
⎡ u3 ⎤ A = 64 ⎢ ⎥ ⎣3⎦
k sin 3 t or ku 3 with u = sin t M1 Correct integration A1 ignoring limits.
1
3 2
Substitutes limits of either ( t = π2 and t = π3 ) or
( u = 1 and u = )
⎡ 1 ⎛ 1 3 3 3 ⎞⎤ A = 64 ⎢ − ⎜⎜ . . . ⎟⎟ ⎥ ⎣⎢ 3 ⎝ 3 2 2 2 ⎠ ⎥⎦
3 2
subtracts the correct way round.
64 −8 3 3
64 ⎛1 1 ⎞ A = 64 ⎜ − 3⎟ = −8 3 3 ⎝3 8 ⎠
(Note that a =
64 3
and dM1
A1 aef isw [4] Aef in the form a + b 3 , with awrt 21.3 and anything that cancels to a = 643 and b = − 8.
, b = − 8) 16 marks
12