FP2 MS Jan 2010

Page 1

Mark Scheme (Results) January 2010

GCE

Further Pure Mathematics FP2 (6675)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful. Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA022799 All the material in this publication is copyright Š Edexcel Ltd 2010


January 2010 6675 Further Pure Mathematics FP2 Mark Scheme

Question Number Q1

Scheme

(a) Using “ b 2 = a 2 ( e 2 − 1) ”

x2 y2 − =1 4a 2 a 2 a 2 = 4a 2 ( e 2 − 1)

e=

Leading to

M1 A1

√5

A1

2

2a a x= "x = "⇒ e e ex 5 5 a= = 2 2

(b)

ρ=

Q2

At s = 0 , ψ =

Marks

π 4

ft their e

(2) [5]

ds = tanψ dψ

B1

s = ∫ tanψ dψ = ln secψ

( + A)

0 = ln √ 2 + A ⇒ A = − ln √ 2

⎛ ⎛ secψ ⎞ ⎞ ⎜ s = ln ⎜ 2 ⎟ ⎟ ⎝ √ ⎠⎠ ⎝

GCE Further Pure Mathematics FP2 (6675) January 2010

M1 A1ft

(3)

M1 A1 M1 A1

(5) [5]

1


Question Number

Q3

Scheme

(a)

(b)

Marks

⎛ e x − e − x ⎞⎛ e x + e − x ⎞ 2sinh x cosh x = 2 ⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠ e 2 x − e −2 x = 2 = sinh 2x

M1

cso

x=0 2sinh x cosh x = 6 sinh 2 x + 7 sinh x 2cosh x = 6sinh x + 7 e x + e − x = 3e x − 3e − x + 7 2 e2 x + 7 e x − 4 = 0 ( 2 e x − 1)( e x + 4 ) = 0 ex =

(2)

B1 M1 M1 A1 M1

1 2

A1

x = − ln 2

GCE Further Pure Mathematics FP2 (6675) January 2010

A1

accept ln

2

1 2

A1

(7) [9]


Question Number Q4

Scheme

Marks

I n = ∫ 1. ( ln x ) dx n

(a)

= x ( ln x ) − ⌠ ⎮ x.n ( ln x ) ⌡ n

= x ( ln x ) − n ∫ ( ln x ) n

n −1

n −1

1 × dx x

M1 A1 A1

dx

= n ( ln x ) − nI n − 1 n

cso

I 3 = x ( ln x ) − 3I 2 3

(b)

(4)

M1

(

= x ( ln x ) − 3 x ( ln x ) − 2 I1 3

A1

2

)

M1

= x ( ln x ) − 3 x ( ln x ) + 6 I1 3

2

= x ( ln x ) − 3 x ( ln x ) + 6 ( x ln x − I 0 ) 3

2

= x ( ln x ) − 3 x ( ln x ) + 6 x ln x − 6 x 3

2

M1 A1

With the limits 1 and e I 3 = e − 3e + 6e − 6e + 6 = 6 − 2e

M1 A1

(6) [10]

If I1 is integrated directly I 3 = x ( ln x ) − 3I 2 3

(b)

M1

(

= x ( ln x ) − 3 x ( ln x ) − 2 I1 3

2

)

= x ( ln x ) − 3 x ( ln x ) + 6 I1 3

2

M1

1 I1 = ∫ 1.ln x dx = x ln x − ⌠ ⎮ x × dx = x ln x − x ⌡ x

(I

= x ( ln x ) − 3x ( ln x ) + 6 x ln x − 6 x 3

3

2

With the limits 1 and e I 3 = e − 3e + 6e − 6e + 6 = 6 − 2e

GCE Further Pure Mathematics FP2 (6675) January 2010

3

Allow if quoted

M1 A1

)

M1 A1

(6)


Question Number

Q5

Scheme

(a)

Marks

dy = 3sinh 3 x − 4 dx 3sinh 3x − 4 = 0 4 sinh 3 x = 3 4 3 x = arsinh 3 1 4 x = arsinh 3 3 1 ⎡ 2 = ln ⎢ 43 + √ ( 43 ) + 1 3 ⎣

(

(b)

∫ ( cosh 3x − 4 x ) dx = 1

ln 3

⎡ sinh 3 x ⎤3 A=⎢ − 2x2 ⎥ ⎣ 3 ⎦0

M1

M1

)⎤⎥⎦ = 13 ln 3

A1

sinh 3 x − 2x2 3

sinh ( ln 3) 2 ( ln 3 ) = − 3 9

=

M1 A1

M1 A1 2

M1 A1

3 − 13 eln 3 − e − ln 3 − …= − … 6 6

4 2 ( ln 3) = − 9 9 2 2 = ⎡ 2 − ( ln 3) ⎤ ⎣ ⎦ 9

(5)

M1

2

GCE Further Pure Mathematics FP2 (6675) January 2010

4

cso

A1

(6) [11]


Question Number

Q6

Scheme

x=

(a)

Marks

a dx a ⇒ =− 2 u du u

⌠ 1 ⌠ = x d ⎮ ⎮ 2 2 ⌡ x √ (a − x ) ⎮a ⎮u ⌡

⎛ a⎞ ⎜ − 2 ⎟ du ⎛ 2 a2 ⎞ ⎝ u ⎠ ⎜a − 2 ⎟ u ⎠ ⎝ 1

1⌠ 1 =− ⎮ du a ⌡ √ ( u 2 − 1) 1 = − arcosh u ( + A ) a 1 ⎛a⎞ = − arcosh ⎜ ⎟ ( + A ) a ⎝x⎠

(b)

B1

⌠ 1 1 ⎛5⎞ dx = − arcosh ⎜ ⎟ ⎮ 2 5 ⎝ x⎠ ⌡ x √ ( 25 − x )

M1 A1

M1 M1 A1

(6)

M1

4

⎡ 1 1⎛ ⎛ 5 ⎞⎤ ⎛5⎞ ⎛ 5 ⎞⎞ ⎢ − 5 arcosh ⎜ x ⎟ ⎥ = 5 ⎜ arcosh ⎜ 3 ⎟ − arcosh ⎜ 4 ⎟ ⎟ ⎝ ⎠⎦ 3 ⎝ ⎠ ⎝ ⎠⎠ ⎣ ⎝ 1 = [ ln 3 − ln 2] 5 1 3 = ln 5 2

M1 A1

M1 A1

(5) [11]

Alternative for part (a) x=

a dx sinh u ⇒ =− cosh u du cosh 2 u

⌠ ⌠ ⎮ 1 ⎮ dx = ⎮ ⎮ 2 2 ⎮ x √ (a − x ) ⎮ a ⎮ ⎮ cosh u ⌡ ⌡

⎛ a sinh u ⎞ ⎜− ⎟ du 2 ⎛ 2 ⎛ a ⎞2 ⎞ ⎝ cosh u ⎠ ⎜⎜ a − ⎜ ⎟ ⎟ ⎝ cosh u ⎠ ⎟⎠ ⎝ 1

1 1 1du = − u ( + A) ∫ a a 1 ⎛a⎞ = − arcosh ⎜ ⎟ ( + A) a ⎝ x⎠

=−

GCE Further Pure Mathematics FP2 (6675) January 2010

B1

5

M1 A1

M1 M1 A1

(6)


Question Number

Q7

Scheme

(a)

u = k arcsin 2 x ,

Marks

du 2k = dx √ (1 − 4 x 2 )

dy = cos u du dy 2k = cos u × 2 dx √ (1 − 4 x )

M1 A1

cos u = √ (1 − sin 2 u ) = √ (1 − y 2 )

dy 2k = √ (1 − y 2 ) × 2 dx √ (1 − 4 x )

√ (1 − 4 x ) dx = 2k √ (1 − y 2

dy

2

A1

)

2

⎛ ⎞ (1 − 4 x ) ⎜ ddxy ⎟ = 4k 2 (1 − y 2 ) ⎝ ⎠ 2

cso M1 A1

(5)

Using u = arcsin 2 x is marked similarly. 2

(b)

⎛ dy ⎞ dy d 2 y dy −8 x ⎜ ⎟ + (1 − 4 x 2 ) 2 = − 8k 2 y 2 dx dx dx ⎝ dx ⎠ dy d2y −4 x + (1 − 4 x 2 ) 2 = −4k 2 y dx dx

(1 − 4 x 2 )

d2y dy − 4 x + 4k 2 y = 0 2 dx dx

M1 A1 A1 M1

cso

A1

(5) [10]

Alternative for part (a) arcsin y = k arcsin 2 x 1 dy 2k = 2 dx 2 √ (1 − y ) √ (1 − 4 x )

√ (1 − 4 x ) dx = 2k √ (1 − y 2

dy

2

M1 A1 A1

)

2

⎛ ⎞ (1 − 4 x ) ⎜ ddxy ⎟ = 4k 2 (1 − y 2 ) ⎝ ⎠ 2

GCE Further Pure Mathematics FP2 (6675) January 2010

6

cso M1 A1

(5)


Question Number Q8

Scheme

Marks

(a) Eliminating y between y = mx + c and y 2 = 4ax

( mx + c ) = 4ax m2 x 2 + 2 ( mc − 2a ) x + c 2 = 0 2

For a tangent

“ b 2 − 4ac = 0 ” 2 4 ( mc − 2a ) − 4m 2 c 2 = 0 c=

Leading to

(b)

M1 A1 M1

a m

cso A1

a passes through ( 4a, 5a ) m a 5a = 4ma + m 2 4 m − 5m + 1 = 0 ( 4m − 1)( m − 1) = 0

(4)

y = mx +

M1 A1 M1

1 m= , 1 4 y=

1 x + 4a, 4

A1

y = x+a

both

(c) Obtaining the points of contact between the tangents and the curve 1 e.g. Substituting m = , c = 4a into the quadratic in part (a) 4 2 1 2 ⎛x ⎞ x − 2ax + 16a 2 = ⎜ − 4a ⎟ = 0 ⇒ x = 16a 16 ⎝4 ⎠ Point has coordinates (16a, 8a )

A1

(5)

M1 A1

Substituting m = 1, c = a into the quadratic in part (a) x 2 − 2ax + a 2 = ( x − a ) = 0 ⇒ x = a 2

Point has coordinates ( a, 2a )

A1

With all methods, M1 is for finding the x- or y-coordinate of one point of contact. A1 is for any two coordinates correct. The second A1 is for all four coordinates correct. RQ 2 = (16a − a ) + ( 8a − 2a ) = 261a 2 2

RQ = a √ 261

2

( = 3a √ 29)

M1 A1

(5) [14]

GCE Further Pure Mathematics FP2 (6675) January 2010

7


Question Number Q8

Scheme

Marks

Alternatives for part (a) 1 Let the point of contact of l and C be ( 2at , at 2 ) d y y& 2a 1 = = = dx x& 2at t 1 l has the form y = x+c t 1 2at = at 2 + c ⇒ c = at ( 2at , at 2 ) lies on l t a c = at = m a 2 Eliminate y between y = mx + and y 2 = 4ax m 2 a⎞ ⎛ ⎜ mx + ⎟ = 4ax m⎠ ⎝ m=

M1 A1 M1

cso A1

a2 = 4ax m2 a2 m 2 x 2 − 2ax + 2 = 0 m 2 a⎞ ⎛ ⎜ mx − ⎟ = 0 m⎠ ⎝

(4)

m 2 x 2 + 2ax +

M1 A1 M1

a cso m Note: Alternative 2 allows the coordinates of R and Q in part (c) to be a written down using x = 2 . m

As this is a complete square, l is a tangent to C when c =

A1

(4)

Alternative for part (b) y = mx +

a x = + at passes through ( 4a, 5a ) m t

4a + at t t 2 − 5t + 4 = 0 ( t − 1)( t − 4 ) = 0 t = 1, 4 1 y = x + 4a, y = x + a 4 5a =

GCE Further Pure Mathematics FP2 (6675) January 2010

8

M1 A1 M1 A1

both

A1

(5)



Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email publications@linneydirect.com January 2010 For more information on Edexcel qualifications, please visit www.edexcel.com/quals Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.