M2 MS Jan 2009

Page 1

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6678/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


January 2009 6678 Mechanics M2 Mark Scheme Question Number

Scheme T

R

1

F = ma parallel to the slope,

M1*

T − 1500g sinθ − 650 = 1500a

A1

Tractive force, 30000 = T x 15

M1*

650

a=

1500g

Marks

30000 15

− 1500(9.8)( 141 ) − 650 1500

0.2 (m s-2)

d*M1 A1 (5) [5]

2

(a)

R (↑) : R = 25 g + 75 g (= 100 g )

11 × 100 g 25 = 44g (=431)

B

S

F = µR ⇒ F =

C

B1 M1 A1 (3)

(b)

M(A): 25 g × 2 cos β + 75 g × 2.8 cos β

R 75g

2 5g

β A

F

= S × 4 sin β

M1 A2,1,0

R ( ↔) : F = S 176g sin β = 260g cos β

M1A1

β = 56(°)

A1 (6)

(c) So that Reece’s weight acts directly at the point C.

6678/01 GCE Mathematics January 2009

2

B1 [10]


Question Number 3

Scheme

R (b) : R = 10 g

R

(a)

Marks

µR

B1

4 10g = 56 7 4 ∴WD against friction = 10g 50 7 F = µR ⇒ F =

70

( )

( )( )

10g

2800(J)

B1 M1 A1 (4)

(b)

70(50) − " 2800 " =

1 2

M1*

(10)v 2 − 21 (10)(2)2

700 = 5v − 20 , 5v = 720 ⇒ v = 144

A1ft d*M1

Hence, v = 12 (m s-1)

A1 cao

2

2

2

(4) Or

(b)

4 R = 10a 7 4 70 − × 10 g = 10a , (a = 1.4) 7

N2L (→ ): 70 −

( )

M1* A1ft

AB → : v 2 = (2)2 + 2(1.4)(50)

d*M1

-1

Hence, v = 12 (m s )

A1 cao (4) [8]

4

(a)

v = 10t − 2t 2 , s = vdt

= 5t 2 −

M1 A1

2t 3 ( +C ) 3

t = 6 ⇒ s = 180 − 144 = 36 (m)

A1 (3)

(b)

s=

v dt =

− 432t −1

−1

(+ K ) =

t = 6, s = “36” ⇒ 36 = ⇒ K = − 36 At t = 10, s =

432 +K t

( )

B1

432 +K 6

M1* A1 d*M1

432 − 36 = 7.2 (m) 10

A1 (5) [8]

6678/01 GCE Mathematics January 2009

3


Question Number 5

Scheme

Marks

(a) MR xi (→) from AD yi (↓) from BD

108

18π

108 + 18π

4

6

x

6

− π8

y

B1

M1

AD (→): 108(4) + 18π (6) = (108 +18π ) x x=

B1

432 + 108π = 4.68731... = 4.69 (cm) (3 sf) AG 108 + 18π

A1 (4)

(b)

yi (↓)

-

6

from BD

8

π

B1 oe

M1

BD (↓): 108(6) + 18π (− π8 ) = (108 +18π ) y y =

y

A1ft

504 = 3.06292... = 3.06 (cm) (3 sf) 108 + 18π

A1 (4)

(c) vertical

12 − x

D

M1

B

y G

tan θ = θ = required angle

y 12 − 4.68731.. 3.06392.. = 12 − 4.68731..

θ = 22.72641... = 23 (nearest degree)

dM1 A1

A1 (4) [12]

6678/01 GCE Mathematics January 2009

4


Question Number 6

(a)

Scheme

Marks M1 A1

Horizontal distance: 57.6 = p x 3 p = 19.2

(2)

1 2 at for vertical displacement. 2 1 − 0.9 = q × 3 − g × 32 2 9g − 0.9 = 3q − = 3q − 44.1 2 43.2 *AG* q= = 14.4 3

(b) Use s = ut +

(c) initial speed

p 2 + 14.4 2

M1 A1

A1 cso (3)

(with their p) -1

M1 A1 cao

= 576 = 24 (m s )

(2) (d)

tan α =

14.4 3 (= ) 4 p

(with their p)

B1 (1)

(e) When the ball is 4 m above ground:

1 2 at used 2 1 3.1 = 14.4t − gt 2 o.e ( 4.9t 2 − 14.4t + 3.1 = 0 ) 2 3.1 = ut +

⇒t=

14.4 ± (14.4)2 − 4(4.9)(3.1) 2(4.9)

14.4 ± 146.6 = 0.023389… or 2.70488… 9.8 duration = 2.70488... − 0.23389... t=

M1 A1

seen or implied

M1

awrt 0.23 and 2.7

A1

= 2.47 or 2.5 (seconds) or 6 (e)

M1 A1 (6)

M1A1M1 as above t=

14.4 ± 146.6 9.8

A1

146.6 o.e. 9.8 = 2.47 or 2.5 (seconds)

Duration 2 ×

M1 A1 (6)

(f) Eg. : Variable ‘g’, Air resistance, Speed of wind, Swing of ball,

The ball is not a particle.

B1 (1) [15]

6678/01 GCE Mathematics January 2009

5


Question Number 7

(a)

Scheme

2u

Before P

After

Marks

u

3m

2m

x

y

Correct use of NEL

M1*

y − x = e(2u + u ) o.e.

A1

Q

CLM (→) : 3m(2u ) + 2m( −u ) = 3m( x ) + 2m( y ) (⇒ 4u = 3 x + 2y ) Hence x = y – 3eu, 4u = 3(y-3eu) + 2y, ( u (9e + 4) = 5 y ) Hence, speed of Q = 51 (9e + 4) u AG

B1 d*M1 A1 cso (5)

(b)

1 (9e + 4)u − 3eu 5 1 2u Hence, speed P = (4 − 6e)u = (2 − 3e) o.e. 5 5 1 2u x= u= (2 − 3e) ⇒ 5u = 8u − 12eu, ⇒ 12e = 3 2 5 gives, e = 123 ⇒ e = 41 AG

x = y − 3eu =

M1# A1

& solve for e

d#M1 A1 (4)

Or

(b)

M1 A1

Using NEL correctly with given speeds of P and Q 3eu =

1 5

(9e + 4)u − u

3eu =

9 5

eu + 54 u − 21 u ,

1 2

6 5

e=

3 10

⇒ e=

3e − 95 e = 15 60

4 5

1 2

#

d#M1

& solve for e

⇒ e = 41 .

A1 (4)

(c) Time taken by Q from A to the wall =

Distance moved by P in this time =

d ⎧ 4d ⎫ =⎨ ⎬ y ⎩ 5u ⎭

M1†

u d u ⎛ 4d ⎞ 2 × (= ⎜ ⎟ = d ) 2 ⎝ 5u ⎠ 5 2 y

⎛d⎞

Distance of P from wall = d − x ⎜ ⎟ ; = d − 52 d = 35 d ⎝y⎠

A1 d†M1; A1 cso

AG

(4) or

(c)

1 1 9 1 5 u : ( + 4)u = u : u = 2:5 2 5 4 2 4 So if Q moves a distance d, P will move a distance 52 d Distance of P from wall = d − 52 d ; = 35 d AG

M1†

Ratio speed P:speed Q = x:y =

A1

cso

d†M1; A1 (4)

6678/01 GCE Mathematics January 2009

6


Question Number

Scheme

(d) After collision with wall, speed Q = 51 y =

Time for P, TAB =

3d 5 1 2

Hence TAB = TWB ⇒

(d)

( )= 5u 4

1 4

3d 5 1 2

their y

B1ft

from their y

B1ft

u

−x x , Time for Q, TWB = 1 u u 4

−x x = 1 u u 4

gives, 2 (3d5 − x ) = 4x ⇒ or

1 5

Marks

3d 5

M1

− x = 2x , 3x =

After collision with wall, speed Q = 51 y =

1 5

A1 cao

⇒ x = 51 d

3d 5

( )= 5u 4

(4) 1 4

u

their y

speed P = x = u , speed P: new speed Q = u : u = 2 :1 from their y 1 2

Distance of B from wall = nd

2

or (d)

1 2

1 4

1 3d d × ;= 3 5 5

their

After collision with wall, speed Q = 51 y =

1 5

( )= 5u 4

1 2 +1

B1ft B1ft M1; A1 (4)

1 4

u

their y

B1ft

Combined speed of P and Q = u + u = u 1 2

Time from wall to 2nd collision =

1 4

3d 5 3u 4

=

3 4

3d 5

×

4 3u

=

4d 5u

Distance of B from wall = (their speed)x(their time) =

6678/01 GCE Mathematics January 2009

7

from their y u 4d ; = 51 d × 4 5u

B1ft M1; A1 (4) [17]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.