M3 MS Jan 2009

Page 1

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6679/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


January 2009 6679 Mechanics M3 Mark Scheme Question Number

1

Scheme

⎛ 15 ⎞ 3a = − ⎜ 9 + ⎟ 2 ⎜ ⎟ t + 1 ( ) ⎝ ⎠ 15 3v = −9t + ( + A) t +1 v = 0, t = 4 ⇒ 0 = −36 + 3 + A ⇒ 5 v = −3t + + 11 t +1 t = 0 ⇒ v = 16

N2L

Marks

B1 M1 A1ft

A = 33

M1 A1

M1 A1

(7) [7]

2

θ T 4 3

mg

mg (a)

4 mg 3 T cos θ = mg

( ←)

T sin θ =

(↑)

M1 A1 A1

2

Leading to

(b)

HL

2 ⎛4 ⎞ T 2 = ⎜ mg ⎟ + ( mg ) ⎝3 ⎠ 5 T = mg 3

T=

λx

a 5 e= a 9

λ x2

5 3mge mg = 3 a

M1 A1

ft their T

(5)

M1 A1ft

2

3mg ⎛ 5 ⎞ 25 = × ⎜ a ⎟ = mga E= 2a 2a ⎝ 9 ⎠ 54

M1 A1

(4) [9]

6679/01 GCE Mathematics January 2009

2


Question Number

Scheme

ω=

3

Marks

80 × 2π ⎛ 8π ⎞ rad s −1 ⎜ = ≈ 8.377... ⎟ 60 ⎝ 3 ⎠ 16π ≈ 0.67 ms −1 as equivalent Accept v = 75 ( ↑ ) R = mg

( ← ) µ mg = mrω 2

For least value of µ

B1

B1 M1 A1=A1

2

µ=

0.08 ⎛ 8π ⎞ × ⎜ ⎟ ≈ 0.57 9.8 ⎝ 3 ⎠

accept 0.573

M1 A1

(7) [7]

4

(a)

T=

25 2π = 2 ω

a =8

⇒ ω=

B1

4π ( ≈ 0.502 ...) 25

M1 A1

2

⎛ 4π ⎞ 2 2 v = ω (a − x ) ⇒ v = ⎜ ⎟ (8 − 3 ) ⎝ 25 ⎠ 4π −1 v= √ 55 ≈ 3.7 ( m h ) 25 2

(b)

2

2

2

2

⎛ 4π ⎞ x = a cos ωt ⇒ 3 = 8cos ⎜ t⎟ ⎝ 25 ⎠ t ≈ 2.3602 … time is 12 22

6679/01 GCE Mathematics January 2009

3

ft their a, ω awrt 3.7

ft their a, ω

M1 A1ft M1 A1

(7)

M1 A1ft M1 A1

(4) [11]


Question Number 5

(a)

Scheme Let x be the distance from the initial position of B to C GPE lost = EPE gained

6mgx 2 mgx sin 30° = 2a a Leading to x = 6 7a AC = 6 (b)

Marks

M1 A1=A1 M1 A1

(5)

The greatest speed is attained when the acceleration of B is zero, that is where the forces on B are equal.

(

)

T = mg sin 30° = e=

6mge a

a 12

M1 A1

2

CE

1 2 6mg ⎛ a ⎞ a mv + ⎜ ⎟ = mg sin 30° 2 2a ⎝ 12 ⎠ 12 Leading to

v=

6 ga ⎛ ga ⎞ ⎜ ⎟= 12 ⎝ 24 ⎠

M1 A1

(7) [12]

Alternative approaches to (b) are considered on the next page.

6679/01 GCE Mathematics January 2009

M1 A1=A1

4


Question Number 5

Scheme

Marks

Alternative approach to (b) using calculus with energy. Let distance moved by B be x

1 2 6mg 2 mv + x = mgx sin 30° 2 2a 6g 2 v 2 = gx − x a d 2 dv 12 g v ) = 2v = g − x=0 For maximum v ( a dx dx a x= 12 CE

M1 A1=A1

M1 A1

2

ga ⎛ a ⎞ 6g ⎛ a ⎞ v = g⎜ ⎟− ⎜ ⎟ = 24 ⎝ 12 ⎠ a ⎝ 12 ⎠ ⎛ ga ⎞ v= ⎜ ⎟ ⎝ 24 ⎠ 2

M1 A1

(7)

Alternative approach to (b) using calculus with Newton’s second law. As before, the centre of the oscillation is when extension is

mg sin 30° − T = mx&& ⎛a ⎞ 6mg ⎜ + x ⎟ 1 ⎝ 12 ⎠ = mx&& mg − 2 a 6g 6g && x=− x ⇒ ω2 = a a 6 g a ⎛ ⎞ ⎛ ga ⎞ vmax = ω a = ⎜ ⎟× = ⎜ ⎟ ⎝ a ⎠ 12 ⎝ 24 ⎠

a 12

M1 A1

N2L

6679/01 GCE Mathematics January 2009

5

M1 A1 A1 M1 A1

(7)


Question Number 6

(a)

Scheme

∫y

2

Marks

dx = ∫ ( 4 − x 2 ) dx = ∫ (16 − 8 x 2 + x 4 ) dx 2

= 16 x −

8 x3 x5 + 3 5

M1 A1

2

⎡ 8 x3 x5 ⎤ 256 16 x − + ⎥ = ⎢ 3 5 ⎦ 0 15 ⎣

∫ xy

2

M1 A1

dx = ∫ x ( 4 − x 2 ) dx = ∫ (16 x − 8 x 3 + x5 ) dx 2

= 8x2 − 2 x4 +

x6 6

M1 A1

2

⎡ 2 x6 ⎤ 32 4 8 x − 2 x + = ⎢ ⎥ 6 ⎦0 3 ⎣

M1A1

∫ xy dx = 32 × 15 = 5 x= ∫ y dx 3 216 8 2

2

(b)

¿

l 2 256 5 l π × = π ×16l × 15 8 2 A × x = ( π r 2l ) ×

Leading to l =

2√3 3

6679/01 GCE Mathematics January 2009

M1 A1 (10)

M1 A1 ft

accept exact equivalents or awrt 1.15

M1 A1 (4) [14]

6


Question Number 7

(a)

Scheme Let speed at C be u CE

(b)

Marks

1 1 ⎛ ag ⎞ mu 2 − m ⎜ ⎟ = mga (1 − cos θ ) 2 2 ⎝ 4 ⎠ 9 ga − 2 ga cos θ u2 = 4 mu 2 mg cos θ ( + R ) = a 9mg − 2mg cos θ eliminating u mg cos θ = 4 3 Leading to cos θ = ¿ 4

9 ga 3 3 − 2 ga × = ga 4 4 4 ⎛ 3ga ⎞ 3 ⎛ 27 ga ⎞ u x = u cos θ = ⎜ ⎟× = ⎜ ⎟ = 2.033 a ⎝ 4 ⎠ 4 ⎝ 64 ⎠ ⎛ 3 ga ⎞ √ 7 ⎛ 21ga ⎞ = u y = u sin θ = ⎜ ⎟× ⎜ ⎟ = 1.792 a ⎝ 4 ⎠ 4 ⎝ 64 ⎠ 21 7 245 v y2 = u y2 + 2 gh ⇒ v y2 = ga + 2 g × a = ga 64 4 64 v ⎛ 245 ⎞ tanψ = y = ⎜ ⎟ ≈ 3.012 … ux ⎝ 27 ⎠ ψ ≈ 72° awrt 72°

At C

( →)

(↓)

u2 =

√ √

√ √

Or

c

1.3

c

(1.2502 )

M1 A1

M1 A1 M1 M1 A1 (7)

B1 M1 A1ft M1 M1 A1 M1 A1

c

awrt 1.3

Alternative for the last five marks Let speed at P be v. CE

1 2 1 ⎛ ag ⎞ mv − m ⎜ ⎟ = mg × 2a or equivalent 2 2 ⎝ 4 ⎠ 17mga v2 = 4 ux 27 4⎞ ⎛ ⎛ 27 ⎞ cosψ = = ⎜ × ⎟= ⎜ ⎟ ≈ 0.315 v ⎝ 64 17 ⎠ ⎝ 272 ⎠ ψ ≈ 72° awrt 72°

Note: The time of flight from C to P is

6679/01 GCE Mathematics January 2009

235 − 21 ⎛ a ⎞ ⎜⎜ ⎟⎟ ≈ 1.38373 8 ⎝g⎠

7

⎛a⎞ ⎜⎜ ⎟⎟ ⎝g⎠

M1 M1 A1 M1 A1

(8) [15]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.