M3 MS Jun 2007

Page 1

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6679/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


June 2007 6679 Mechanics M3 Mark Scheme

Question Number

1.

Scheme

(a)

A

2 0

Marks

 2 x  x  dx 2

M1 A1

...

 2 x3   x   3 ... 

A1

2

 2 x3  8 4  A  x    4   3 0 3 3  (b)

x 1

cso

(by symmetry)

2 4 1 1 y   y 2 dx    2 x  x 2  dx 3 2 2 1    4 x 2  4 x 3  x 4  dx 2 1  4 x3 x5  4   x   2 3 5

A1

(4)

B1 M1 A1 A1

2

4 1  4 x3 x5  8 4 y  x    3 2 3 5  0 15 8 3 2 accept exact equivalents y   15 4 5

A1

(5) [9]


Question Number

2.

Scheme

(a) Base Mass ratios  h 2

y

Cylinder 2 h2 h 2

0

Container 3 h2

(b) Liquid Mass ratios M h y 2

B1 B1

h 2

1 y h  3

Container M h 3

Ratio of 1 : 2 : 3

y

3 h 2  y  2 h 2 

Leading to

Marks

M1 A1 cso A1

Total 2M

y

h h 2M  y  M   M  2 3 5 y h 12

Ratio of 1 : 1 : 2

(5)

B1 B1

M1 A1 A1

(5) [10]


Question Number

3.

Scheme

Marks

(a) At surface k  mg  k  mgR 2  2 R

(b)

mx  

N2L

cso

(2)

mgR 2 x2

dv gR 2 d 1 2 gR 2 or v  2  v  2 dx x dx  2  x 1 1 2 1 2 or v   gR 2 dx  v dv   gR x2 dx 2 x2 1 2 gR 2 v   C  2 x gR x  2 R, v  0  C   2 2 2gR v2   gR x 2gR 2 v2   gR At x  R , R v    gR 

M1 A1

M1 M1 A1 M1 A1

M1 A1

(7) [9]


Question Number

Scheme

Marks

A

4.

 l T

r

P mg

T cos   mg

M1 A1

T sin  

mv 2 r

M1 A1

tan  

r 2  l  r 

tan  

v2 rg

Eliminating T

M1

r v2  2 2   l  r  rg

Eliminating 

M1

cso

A1

2

gr 2  v 2   l 2  r 2  

or equivalent

M1 A1

(9) [9]


Question Number

5.

Scheme

(a)

Marks

x   2 x  1   2  0.04

    5

2 5

T

awrt 1.3

(b) v2   2  a 2  x2   0.22  52  a2  0.042 

2 a 25

M1 A1

ft their 

A1

(3)

M1 A1ft

accept exact equivalents or awrt 0.057 A1

(3)

(c) Using x  a cos t 1 a  a cos t 2 5t 

t

ft their 

M1 A1ft

3

15

T   4t 

A1 4 15

awrt 0.84

M1 A1 (5) [11]

Alternative to (c) Using x  a sin t 1 a  a sin t 2 5t  t

ft their 

M1 A1ft

6

30

T   T  4t 

A1 4 15

awrt 0.84

M1 A1 (5)


Question Number

Scheme

Marks

6. V

 W

W mg

O

U (a)

1 m U 2  v 2   mga 1  cos   2

Energy

T   Leaves circle when T  0

Leading to

mg cos  

M1 A1=A1

mv 2 a

U 2  2 ga  2 ga cos  g cos   a 2 U  ag  2  3cos   

M1 A1

Eliminating v

M1

cso

A1

(b) Using conservation of energy from the lowest point of the surface 1 m U 2  W 2   mga 2 W 2  U 2  2ag 1 3   Using cos   , W 2  ag  2    2ag  3 3 cso  ag  3 

Alternatives for (b) are given on the next page.

(7)

M1 A1=A1

M1 A1

(5) [12]


Question Number

6.

Scheme

Marks

Alternative to part (b) using conservation of energy from the point where P loses contact with surface. ga   2  V  ag cos     3

1 m W 2  V 2   mga cos  2 1  2 1 1  m W  ag   mga  2  3  3 2 W  ag  3 

Energy

Leading to

M1 A1 A1 cso

M1 A1

(5)

Alternative to part (b) using projectile motion from the point where P loses contact with surface.

ga 3 2 2 2 Wy  V sin   2 ga cos  V 2  ag cos  

1 1 8 3  1 ag 1    2 ga   ag 9 3  3 3 Vx  V cos  

8 3 1  W 2  Wy2  Vx2   ag  ag    ag  3  9 3 

M1 A1 A1 cso

M1 A1

(5)


Question Number

7.

Scheme

(a)

A

Marks

1.5l

B

2l

T

T P mg

AP   1.5l    2l  2

2

  2.5l

M1 A1

4 5   2.5l  1.5l   2  Hooke’s Law T   1.5l  3  5mg    2T cos   mg T   8   2 4  2 5mg  2   mg    3 5 8   3 15mg   16 A 1.5l B cos  

(b)

3.9l

B1 M1 A1 M1 A1 M1 cso

A1

(9)

h

P

h    3.9l   1.5l  2

2

  3.6l

M1 A1

1 2 15mg  2.4l  mv  mg  h  2   2 16 2 1.5l v0  2

Energy Leading to

ft their h cso

M1 A1ft = A1 A1

(6) [15]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.