M3 MS Jun 2010

Page 1

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M3 (6679/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful. Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024475 All the material in this publication is copyright Š Edexcel Ltd 2010


Summer 2010 Mechanics M3 6679 Mark Scheme Question Number

Marks

Scheme

Q1

A

α

13l T B

5l

mg

12 13 T cos α = mg cosα =

(a)

R (↑)

(b)

Eqn of motion

v=

5 2

gl 3

12 = mg 13 13 T = mg 12

B1 M1

oe

v2 5l 13mg 5 v2 × =m 12 13 5l 25 gl v2 = 12 T sin α = m

⎛ ⎞ gl 25 gl or or any other equiv) ⎟⎟ ⎜⎜ accept 5 12 12 ⎝ ⎠

A1

(3)

M1 A1 M1 dep

A1

(4) [7]


Question Number Q2

Marks

Scheme

k x2 k mg = ( − ) 2 R mgR 2 F= x2 F = (−)

(a)

M1 M1

*

mgR 2 x2 dv gR 2 v =− 2 x dx ⎛ gR 2 ⎞ 1 2 v = ∫ ⎜ − 2 ⎟ dx 2 ⎝ x ⎠ mx = −

(b)

x = R, v = 3U

x = 2R , v = U

1 2 gR 2 v = ( +c ) 2 x 9U 2 = gR + c 2 1 2 gR 2 9U 2 v = + − gR 2 x 2 1 2 gR 2 9U 2 U = + − gR 2 2R 2 gR U2 = 8 gR U= 8

A1

(3)

M1 M1 M1 dep on 1st M mark A1 M1 dep on 3rd M mark

M1 dep on 3rd M mark

A1

(7) [10]

GCE Mechanics M3 (6679) Summer 2010


Question Number

Marks

Scheme

Q3

R

F θ mg EPE lost =

R (↑)

λ × 0.62 2 × 0.9

λ × 0.12 ⎛

7 ⎞ ⎜= λ⎟ 2 × 0.9 ⎝ 36 ⎠

R = mg cos θ

M1 A1 M1

4 = 0.4 g 5 F = µ R = 0.15 × 0.4 g P.E. gained = E.P.E. lost − work done against friction = 0.5 g ×

0.5g × 0.7 sin θ =

λ × 0.62

λ × 0.12

− 0.15 × 0.4 g × 0.7 2 × 0.9 3 0.1944λ = 0.5 × 9.8 × 0.7 × + 0.15 × 0.4 × 9.8 × 0.7 5 λ = 12.70...... λ = 13 N or 12.7 2 × 0.9

M1 A1

M1 A1 A1

A1 [9]

GCE Mechanics M3 (6679) Summer 2010


Question Number Q4

(a)

Marks

Scheme

cone 4π l 3 mass ratio 3 4 dist from l O Moments:

container 68π l 3 3 68 x

cylinder 24π l 3 72 3l

4l + 68 x = 72 × 3l 212l 53 x= = l 68 17

M1 A1

B1 M1 A1ft

accept 3.12l

A1

(6)

(b)

G

X

θ GX = 6l − x

seen 2l 6l − x 2 × 17 = 49 θ = 34.75... = 34.8 or 35

tan θ =

GCE Mechanics M3 (6679) Summer 2010

M1 M1 A1

A1

(4) [10]


Question Number

Marks

Scheme

Q5

v C

mg (a)

(b)

Energy:

1 1 m × 5ag − mv 2 2 2 2 v = 5ag − 2ag sin θ

mga sin θ =

(3)

M1 A1 M1 A1

(4)

At C , θ = 90° T = mg ( 5 − 3) = 2mg T > 0 ∴ P reaches C

(d)

A1

Eqn of motion along radius: mv 2 T + mg sin θ = a m T = ( 5ag − 2ag sin θ ) − mg sin θ a T = mg ( 5 − 3sin θ )

(c)

M1 A1

Max speed at lowest point ( θ = 270° ; v 2 = 5ag − 2ag sin 270 ) v 2 = 5ag + 2ag v = √ ( 7 ag )

M1 A1 A1

(3)

M1 A1

(2) [12]

GCE Mechanics M3 (6679) Summer 2010


Question Number

Q6

Marks

Scheme

d2 x 3 =− 2 2 dt ( t + 1)

(a)

dx −2 = ∫ −3 ( t + 1) dt dt −1 = 3 ( t + 1) ( + c ) t = 0, v = 2 2 = 3 + c c = −1 dx 3 = −1 dt t + 1

t = 0, x = 0

*

⇒ c′ = 0 x = 3ln ( t + 1) − t v=0⇒ t=2

3 =1 t +1

x = 3ln 3 − 2 = 1.295... = 1.30 m (Allow 1.3)

GCE Mechanics M3 (6679) Summer 2010

M1 A1 M1

⎛ 3 ⎞ x = ∫⎜ − 1⎟ dt ⎝ t +1 ⎠ = 3ln ( t + 1) − t (+ c′)

(b)

M1

A1

(5)

M1 A1 B1

M1 A1 M1 A1

(7) [12]


Question Number

Marks

Scheme

Q7

A

3a

e

T O

R ( ↑ ) T = 2mg

(a)

2mg B1

6mge 3a 6mge 2mg = 3a e=a AO = 4a

Hooke's law: T =

M! A1

(3)

(b)

T

4a

x

x

H.L. Eqn. of motion

GCE Mechanics M3 (6679) Summer 2010

2mg 6mg ( a − x ) 2mg ( a − x ) T= = 3a a -2mg + T = 2mx 2mg ( a − x ) -2mg + = 2mx a 2mgx − = 2mx a g x=− x a a period 2π g

B1ft M1 M1

A1

*

A1

(5)


Question Number

v2 = ω 2 ( a2 − x2 )

(c)

vmax

2

vmax

(d)

Marks

Scheme

x=−

a 8

2 ⎞ g ⎛⎛ a ⎞ = ⎜⎜ ⎟ − 0⎟ ⎟ a ⎜⎝ ⎝ 4 ⎠ ⎠ 1 = √ ( ga ) 4

v2 =

g ⎛ a2 a2 ⎞ ⎜ − ⎟ a ⎝ 16 64 ⎠

3ag 64 2 2 v = u + 2as 3ag 0= − 2 gh 64 3a h= 128 a 3a 19a Total height above O = + = 8 128 128

M1 A1 A1

(3)

M1

=

M1 A1

A1

(4) [15]

GCE Mechanics M3 (6679) Summer 2010



Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email publications@linneydirect.com Order Code UA024475 Summer 2010 For more information on Edexcel qualifications, please visit www.edexcel.com/quals Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.