![](https://static.isu.pub/fe/default-story-images/news.jpg?width=720&quality=85%2C50)
3 minute read
From the ACS Press Room
“Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology”
ACS Central Science
Advertisement
It sounds like a party trick: Add water to the clear, licorice-flavored ouzo liquor, and watch it turn cloudy. This “ouzo effect” is an example of an easy way to make highly stable emulsions or mixtures of liquids that don’t like being together, like vinaigrettes but nobody has yet fully understood how it works. Now, researchers report in ACS Central Science that the secret may lie in the unique structure of the emulsion’s droplets. Ouzo is a popular liquor enjoyed throughout Greece, often served as an aperitif before a meal. Its “effect” happens because the anise extract used to flavor it is soluble in alcohol but not in water. So, when water is added to ouzo or other anise-flavored liquors, such as absinthe, the extract precipitates into tiny, light-scattering droplets that make the drink take on a murky, opaque appearance. But exactly how these beads of liquid achieve such high stability in ouzo without the addition of any other substances, aside from water, isn’t well understood. Knowing how this works could help manufacturers more quickly and easily create stable emulsions, such as cosmetics and paints, on a large scale. Previously, researchers had examined pre-formed ouzo droplets, but no one has yet been able to view them up-close as they form. So, Nathan Gianneschi and colleagues wanted to take a more detailed look at this effect by using a high-resolution microscopy technique known as liquid phase transmission electron microscopy (LPTEM).
The ouzo effect turns clear liquor cloudy using just water, as shown here with a similar liquor, and forms a highly stable emulsion in the process.
![](https://assets.isu.pub/document-structure/230412143210-99d3c41188e23ba182e9a72dc1e9eccb/v1/07527f2380fe84eca9c181cb68c3f845.jpeg?width=720&quality=85%2C50)
Unique Content/ Shutterstock.com
The researchers formed droplets by slowly adding water to a simulated ouzo solution, then watched them grow using LPTEM. They found that rather than consistently getting bigger, the droplets tended to reach a certain size then increase in “intensity” instead, with a dark ring on the outside. The spheres formed an internal, bubble-like structure, with a large concentration of the anise extract at the edge, and water and ethanol in the center. Even using commercially available ouzo, the same behavior was observed, though the droplets were smaller. The researchers say that this first-of-itskind work both establishes the utility of the LPTEM technique and could help create other highly stable emulsions.
The authors acknowledge funding from the Army Research Office, the National Science Foundation, the Packard Foundation, the American Association for the Advancement of Science, the Sloan Foundation, the Northwestern University Graduate Research Fellowship, the Dr. John N. Nicholson Fellowship, and Procter & Gamble
The Doherty Award is given for excellence in chemical research or chemistry teaching, meritorious service to ACS, new chemical methodology (for the industry), solution of pollution problems, and advances in curative or preventive chemotherapy. Nominees may come from industry, academia, government, or small business. The nominee should be a resident member in the area served by the ACS DFW Local Section, and the work should have been performed here. The award is $1500 and an engraved plaque.
The Schulz Award is given to high school chemistry teachers, who, like the late Dr. Werner Schulz, bring that something extra to the teaching of chemistry. The nominee and/or nominator need not be ACS members. Nominees should show excellence in chemistry teaching, as demonstrated by testimonials from students and fellow teachers, results in student competitions, and diligence in updating and expanding scientific/teaching credentials. The award is $1500 and an engraved plaque.
The DFW Section instituted the Chemistry Ambassador Award to recognize an outstanding Section member who has made a significant impact by promoting chemistry to the community. The 2023 Chemistry Ambassador of the Year award is based on peer or self-nominations to the selection committee. Submissions should be one page in length and address the community outreach activities either through teaching, service, or working with legislators to affect public policy. Submissions will be evaluated on the impact made, which may include but not limited to how many people were reached, impact on individual people in the community, and exemplary commitment to the promotion of chemistry in the community. The award is $1000.
Each nomination should contain a completed nomination form, a cover letter highlighting the nominee’s accomplishments, and a copy of the CV. One or two additional letters may accompany nominations. The nomination package should be sent by email as a single pdf file to Mrs. Karen Compton at karen.compton@pisd.edu. Nominations remain active for five years but should be updated annually.
The deadline for submission of nominations is May 01, 2023.