Smarandache 问题的研究

Page 1


This book can be ordered in a paper bound reprint from: The Educational Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212 USA Toll Free: 1-866-880-5373 E-mail: info@edupublisher.com Peer Reviewer: Prof. Wenpeng Zhang, Department of Mathematics, Northwest University, Xi’an, Shaanxi, P. R. China. Prof. Xingsen Li, Ningbo Institute of Technology, Zhejiang University, Ningbo, P. R. China. Prof. Chunyan Yang and Weihua Li, Guangdong University of Technology, Institute of Extenics and Innovative Methods, Guangzhou, P. R. China. Prof. Qiaoxing Li, Lanzhou University, Lanzhou, P. R. China. Ph. D. Xiaomei Li, Dept. of Computer Science, Guangdong University of Technology, P. R. China. Copyright 2012 by The Educational Publisher, translators, editors and authors for their papers Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

ISBN: 9781599731902 Words: 175,000 Standard Address Number: 297-5092 Printed in the United States of America


8

š

8 c

š

Ăł . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 {0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2 SmarandacheŸê†–SmarandacheŸê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2.1 'uSmarandacheŸê ˜‡Ă&#x;ÂŽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2.2 ˜aÂ?šSmarandacheŸêĂšEulerŸê Â?§I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

2.3 ˜aÂ?šSmarandacheŸêĂšEulerŸê Â?§II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

2.4 'u–SmarandacheŸê Ă&#x;ÂŽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 'uSmarandacheŸê†–SmarandacheŸê Â?§I . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Âľ9yG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 ˜ ƒ'ÂŻK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 'uSmarandacheŸê†–SmarandacheŸê Â?§II . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 'uSmarandacheŸêÂ†ÂƒĂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê . . . . . . . . . . . . . . . . 27 3.1 ˜a†–SmarandacheŸêƒ' ŸêÂ?§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 'uSmarandachep‡Ÿê†–SmarandacheŸê Â?§ . . . . . . . . . . . . . . . . . . . . . 29 3.3 'ušÂ–SmarandacheŸê9Ă™ÊóŸê Â?§. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 'ušSmarandachep‡Ÿê†–SmarandacheŸê Â?§ . . . . . . . . . . . . . . . . . . 39 3.5 'uSmarandacheV ŒŸê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 ˜a2–SmarandacheŸê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7 ˜‡Â?šSmarandacheŸê91 a–SmarandacheŸê Â?§ . . . . . . . . . . . . . 48 3.8 'uSmarandache LCMŸê†SmarandacheŸê ފ . . . . . . . . . . . . . . . . . . . . . . 51 3.9 'uSmarandache LCMŸê9Ă™ÊóŸê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 SmarandacheS ĂŻĂ„ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 Smarandache LCM 'ÇS I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Smarandache LCM 'ÇS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Smarandache 1 ÂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.1 SmarandacheĂŒÂ‚1 ÂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.2 Smarandache VĂŠÂĄ1 ÂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Smarandache ĂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 Smarandache 3n ĂŞiS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 I


8

š

4.6 Smarandache kn ĂŞiS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7 Smarandache ²Â?ĂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Ă™§êĂ˜ÂŻK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.1 škFibonacciê†LucasĂŞ Ă° ÂŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Dirichlet L-Ÿê†n Ăš . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 2Ă‚Dirichlet L-Ÿê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 'u½n5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.2 'u½n5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ĂŤ Šz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

II


c

ó

c

ó

êØq¡ êØ, ´ïÄê 5Æ, AO´ïÄ ê5 êÆ©|. êØ/¤ Õá Æ

, XÙ¦êÆ©| uÐ, ïÄêØ { 3Øä uÐ, y

êØ®² \ êÆ Nõ©|, 3¥I, êØ ´uÐ @ êÆ©| . F1 <Ú¥I< é@Òk êØ £. êØ3êÆ¥ / ´ÕA , pdQ²`L/êÆ´ Æ

, êØ´êÆ¥

)0. Ïd, êÆ[ÑU rêØ¥ ] û ¦J / )þ ²¾0, ± y< /Á 0. êØfm© ÿ´^È ín {ïÄ ê 5 , =Ð êØ.

5úúuÐÑy)ÛêØ, êêØ, |ÜêØ . § Ï ïÄ { ØÓ

Ù¶, ѱÓ{ Ù Ä nØ â. Ö Ì éSmarandache¼ ê 9 Ù ' ¯ K C Ï ï Ä ( J ? 1 n n ã, Ì 0 Smarandache¼ ê 9 Ù § ' ¼ ê ( Ü ï Ä ? Ð, Ó 0

Smarandache ¼ê9 Ù§ '¼êéX #ïÄ(J,

0 A )Ûê

Ø¥ ¯K¿JÑ # ¯K. äN5`, ÖÌ XeSü: 1 ÙÌ {ü0 Smarandache¼ê9 Smarandache¼ê µÚ½Â; 1 ÙÌ 0 Smarandache¼ê Smarandache¼ê ïÄ(J9 # ¯K; 1n ÙÌ 0 Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê ïÄ( J; 1oÙÌ 0 SmarandacheS ïĤJ; 1ÊÙÌ 0 êإ٧S 9Dirichlet L-¼ê A ïĤJ. Ö´ÄuSmarandache¼ê9Ù ' X êدK # ïĤJ ®o. 3 ¤L§¥, É Ü©+ Ç õg , éd öL« ~a . Ó ö a Ü ó ÆÄ:ïÄÄ7é Ö ]Ï.

¤k Ö Ñ

z P ÚÆ

)!Ó1Ú?6L«©% a . du öY²k , Ö¥J Ñy Ø, H2 Ö ö1µ .

III


c

IV


1Â˜Ă™ {0

1Â˜Ă™ {0 35Â?kÂŻK, vk)‰6Â˜Ă–ÂĽ, {7ÛêZĂŚĂ?ϐĂ˜;[F.Smarandache ÇJĂ‘ 108‡ÿ™)Ăť ĂŞĂ˜ÂŻK, ÚÚü ¯þêĂ˜;[ , . Ă–ĂŒÂ‡0

Š¼k'SmarandacheŸê†–SmarandacheŸê9Ă™Âƒ'ÂŻK ĂŻĂ„Ăš#?Ă?. ĂŠ?Âż ĂŞnĂ?Âś SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!, = S(n) = min{m : m ∈ N, n|m!}. lS(n) ½Ă‚<‚N´íĂ‘XJn = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r LÂŤn IOŠ)ÂŞ, @o S(n) = max {S(pÎąi i )}. 1≤i≤r

ddĂ˜JOÂŽĂ‘S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 1, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6 ¡ ¡ ¡ .

ĂŠ ? Âż ĂŞnĂ? Âś –SmarandacheÂź ĂŞZ(n)½ Ă‚ Â?  êmÂŚ n

, Ă˜ m(m+1) 2

=

m(m + 1) Z(n) = min m : m ∈ N, n

. 2

lZ(n) ½ Ă‚ N ´ Ă­ Ă‘Z(n) c A ‡ Š Â?: Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 8, Z(10) = 4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 31, ¡ ¡ ¡ .

' uS(n)ĂšZ(n) ÂŽ â 5 Â&#x;, N Ăľ Æ Ăś Ă‘ ? 1 ĂŻ Ă„, Âź Ă˜ k (

J. Ă–ĂŒÂ‡ÂŒ7ÚßaŸê9Ă™Âƒ'Ÿê  #ĂŻĂ„?Ă?‰˜‡XĂš 8Bo (. äN/`, Ă–ĂŒÂ‡Â?)SmarandacheŸê†–SmarandacheŸê ĂŻĂ„(J! †SmarandacheŸê9–SmarandacheŸêƒ'ÂŻKĂŻĂ„(JĂšSmarandacheS ĂŻĂ„ (J , Â?ĂŞĂ˜OĂ?ĂśJøÍ ] , Â?Â?ĂŻĂ„SmarandacheÂŻK ÆÜJø Šz Â?B.

1


Smarandache ¼ê9Ù '¯KïÄ

2


1 Ă™ SmarandacheŸê†–SmarandacheŸê

1 Ă™ SmarandacheŸê†–SmarandacheŸê 2.1 'uSmarandacheŸê ˜‡Ă&#x;ÂŽ ĂŠ?Âż ĂŞn, Ă?Âś F. SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!. ~ XS(n) c A ‡ ŠS(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 10, S(11) = 11, S(12) = 4, ¡ ¡ ¡ . 'uS(n) { ߎâ5Â&#x;, žÍ Šz[1, 7], ĂšpĂ˜2­E.

'uS(n) Â? Â?5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âź Ă˜ k (J, ~XF. Luca Ç3Šz[2]ÂĽ?Ă˜ Ÿê A(x) =

1X S(n) x n6x

Ăže. OÂŻK, ‰Ñ A(x) ˜‡ r Ăž. O. ӞŒ„3Šz[3]ÂĽy² ? ĂŞ X

n>1

nι S(1) ¡ S(2) ¡ ¡ ¡ S(n)

´ýÊĂ‚Ăą , ÂżJĂ‘ eÂĄ Ă&#x;Ăż: Ă&#x; ÂŽ : ĂŠ?¿¢êx > 1, kĂŹCúª X LS(x) ≥ ln S(n) = ln x − ln ln x + O(1). n6x

'uĂšÂ˜Ă&#x;ÂŽ, –8q vk<ĂŻĂ„, – 3yk Šz¼„vw k'(Ă˜. F. Luca Ç@Â?kÂŒUy²ln x − ln ln x´LS(x) Ăž., ´ÊJy²LS(x) e.. Ăš

Â˜ÂŻK´k¿Â , – ÂŒÂąÂ‡NĂ‘S(n)Ÿê ÊêފŠĂ™5Â&#x;. Â?d, ĂŠĂšÂ˜ÂŻ K, |^Ă? 9)Ă›Â?{?1ĂŻĂ„, ÂŒÂą Ă‘ ,Ă˜Ă“ (Ă˜, =Xe½n:

½ n 2.1 ĂŠu?¿¢êx > 1, kĂŹCúª X LS(x) ≥ ln S(n) = ln x + O(1). n6x

w,d½nĂ˜=`²Ă&#x;ÂŽ 1 Â‡ĂŒÂ‘ln ln x´Ă˜ 3 , Â?Ă’´`,Šz[3]ÂĽ Ă&#x; ÿ´Â†Ă˜ , ӞÂ?‰Ñ LS(x) (LÂŤ/ÂŞ. ,XJ|^ƒêŠĂ™ÂĽ Â?( J, Â„ÂŒÂą Â?°( ĂŹCúª, =Ă’´

3


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ê?¿ êk > 1, k 1X LS(s) ≥ ln S(n) = ln x + C + O x n6x

1 , lnk x

Ù¼CÂ?ÂŒOÂŽ ~ĂŞ. Â? y²½n2.1, I‡eÂĄ A‡Ún. Ăš n 2.1 ĂŠ?ÂżÂƒĂŞp, kĂŹCúª X ln p p

p6x

X

= ln x + O(1),

ln p = x + O

p6x

x . ln x

y²:ĂŤ Šz[4 − 6].

eÂĄ|^dĂšn† ‰Ñ½n y². Ă„k‰ÑLS(x) Ăž. O. ¯¢Þ, dS(n) Ă? 5Â&#x; , ĂŠ?Âż ĂŞnkS(n) 6 n, ¤¹dEulerŒÚú

ª(Í Šz[6]¼½n3. 1), k 1X 1X LS(x) = ln S(n) 6 ln n x x n6x n6x Z Z x X 1 1 x ln(x + 1) = ln ndy 6 ln ydy + x x 1 x 1 n6x

= ln x − 1 +

1 ln(x + 1) + . x x

= LS(x) =

1X ln S(n) 6 ln x + O(1). x

(2-1)

n6x

Ù g, Ó | ^ Þ ¥ Ú n 5 OS(x) ≥

1 x

P

LnS(n) e .. ĂŠ ? Âż

n6x

ĂŞn > 1, w,n– k˜‡ƒĂ?fp, Ă˜Â” n = p ¡ n1 , u´dS(n) 5Â&#x; S(n) > p ln S(n) = ln S(p ¡ n1 ) > ln p. l dĂ™ Š Ă° ÂŞ(ĂŤ Šz[6]½n3.17), k LS(x) 1X = ln S(n) x n6x

4


1 Ă™ SmarandacheŸê†–SmarandacheŸê

1 X ln p x pn1 6x     X X X X X X 1 = ln p ¡ 1+ 1¡ ln p − ln p ¡ 1  x √ √ √ √ x n6 xp p6 n n6 x p6 x n6 x p6 x     X X X √ x x x 1 = ln p ¡ + O(1) + 1¡ +O − ln p ¡ x + O(1)  x √ p n n ln x √ √ p6 x n6 x p6 x      X X X 1 X √  √ ln p 1   = x¡ ln p + x ¡ ln p + O( x) +O + O(x) − x ¡  x p √ √ √ n √ p6 x n6 x n6 x p6 x √ √ √ √ √ √ x 1 = x ¡ ln x + O( x) + x ln x + O(x) − x x+O x ln x √ √ = ln x + ln x + O(1)

>

= ln x + O(1). = LS(x) > ln x + O(1).

(2-2)

dª(2-1)9(2-2)k LS(x) = ln x + O(1). u´ ¤½n2.1 y².

2.2 ˜aÂ?šSmarandacheŸêĂšEulerŸê Â?§I ĂŠu?Âż ĂŞn, Ă?Âś SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!, = Ă’ ´S(n) = min{m : m ∈ N, n|m!}.SmarandacheÂź ĂŞ ˆ ÂŤ 5 Â&#x; ´ ĂŞ Ă˜ 9 Ă™ A

^+Â?ÂĽÂ˜Â‡Â›ŠĂš<'5 ïđK(ĂŤ Šz[1, 7]). ĂŠu ĂŞn, φ(n)´' un EulerŸê, Ăšp φ(n)LÂŤĂ˜ÂŒun…†npƒ ĂŞ ‡ê(ĂŤ Šz[4]). ' uÂ?šEulerŸêĂšSmarandacheŸê Â?§ φ(n) = S(nk )

(2-3)

),ÊþÆÜÑ?1 ĂŻĂ„, ˜ Ă? (J[9−12] . ÂŒÂą|^Ă? Â?{)ĂťT Â?§3k = 7ž ÂŚ)ÂŻK, =‰ÑeÂĄ ½n. ½ n 2.2 k = 7ž, Â?§Ď†(n) = S(nk )=k)n = 1, 80. Â? y²½n2.2, I‡eÂĄ A‡Ún.

5


Smarandache ¼ê9Ù '¯KïÄ

Ú n 2.2 Euler¼ ê È 5 ¼ ê, = é u ? ¿ p êmÚn, K kφ(mn) = φ(m)φ(n). Ú n 2.3 n = pα1 1 pα2 2 · · · pαk k ´ ên IO©)ª, Kk φ(n) =

k Y

pαi i −1 (pi − 1).

i=1

Ú n 2.4 n > 2 , K7k2|φ(n). y ² : (1)e ênkÛ Ïf, Ø p, Kp > 2 2|p − 1.qdÚn2.3 (p − 1)|φ(n),¤±´ 2|φ(n).

(2)e ênvkÛ Ïf, n > 2 , 7kn = 2k ,k´ u1 ê.dEuler¼ ê 5 ´ φ(n) = 2k−1 (2 − 1) = 2k−1 , ¤± k2|φ(n). d(1)Ú(2) , Ún2.4¤ á.

Ú n 2.5 n = pα1 1 pα2 2 · · · pαk k ´ ên IO©)ª, K S(n) = max{S(pα1 1 ), S(pα2 2 ), · · · , S(pαk k )}. y ² : ë ©z[7]. Ú n 2.6 éu êpÚ êk, kS(pk ) 6 kp.AO/, k < p , kS(pk ) = kp. y ² : ë ©z[7]. Ú n 2.7 y = pα−2 (p − 1) − αp, p ê, K α > 3 , ¼êy´üN4O . y ² : Ï y ′ = (p − 1)pα−2 ln p − p, α > 3 , ´ y ′ > 0, (ؤá. e¡ ѽn2.2 y².rk = 7 \ §φ(n) = S(nk )¥,= φ(n) = S(n7 ).

(2-4)

w,n = 1´ª(2-4) ). ±eÌ ?Øn > 1 6. n > 1 n = pα1 1 pα2 2 · · · pαk k ´ ên IO©)ª,KdÚn2.5k 7αk 7α2 7r 1 S(n7 ) = max{S(p7α 1 ), S(p2 ), · · · , S(pk )} = S(p ).

(2-5)

dÚn2.2 , r

φ(n) = φ(p )φ

n pr

r−1

=p

(p − 1)φ

n pr

.

(2-6)

éáª(2-4))ª(2-6) , r−1

p

(p − 1)φ

n pr

6

= S(p7r ).

(2-7)


1 Ă™ SmarandacheŸê†–SmarandacheŸê

r = 1ž, ep = 2,dÂŞ(2-7)ÂŒ n

S(27 ) = 8 = φ

2

=n = 32,

,

φ(32) = 25 − 24 = 16 6= S(327 ), n = 32Ă˜´ª(2-4) ). ep = 3,K S(37 ) = 18 = 2φ چÚn2.4gĂą, ¤¹ª(2-4)Ăƒ).

n

3

,

Ă“nÂŒ , ep = 5, 7, 11ž, ÂŞ(2-4)Ăƒ). ep > 11,K

n S(p ) = 7p = (p − 1)φ , p 7

Â…2|p − 1, چÚn2.4gĂą, ¤¹ª(2-4)Ăƒ). r = 2ž, ep = 2, dÂŞ(2-7)ÂŒ

S(214 ) = 16 = 2φ =φ( n4 ) = 8, Kn = 64,

n

4

,

S(647 ) = S(242 ) = 46 6= 32 = 26 − 25 = φ(64), ¤¹n = 64Ă˜´ª(2-4) ). ep = 3, K S(314 ) = 30 = 6φ چÚn2.4 gĂą, ¤¹ª(2-4)Ăƒ).

n

9

,

Ă“nÂŒy,ep = 5, 7, 11, 13,ÂŞ(2-4)Ăƒ). ep > 17,K 14

S(p ) = 14p = p(p − 1)φ =k p−1 7= φ 2

n p2

n p2

,

چÚn2.4gĂą, ÂŞ(2-4)Ăƒ). r = 3ž, ep = 2, 21

2

S(2 ) = 24 = 2 φ

7

n

8

,

,


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

K n8 = 9, ¤¹n = 72, φ(72) = (23 − 22 )(32 − 3) = 24, S(727 ) = S(221 ¡ 314 ) = 30 6= 24 = φ(72), n = 72Ă˜´ª(2-4) ). ep = 3,K S(321 ) = 45 = 18φ چÚn2.4gĂą, ÂŞ(2-4)Ăƒ).

n

27

,

ep = 5, 7, 11, 13, 17, 19,Ă“nÂŒyÂŞ(2-4)Ăƒ). ep > 23,dĂšn2.6k, 21

2

S(p ) = 21p = p (p − 1)φ = 21 = p(p − 1)φ

n p3

n p3

,

,

چp > 23gĂą, ÂŞ(2-4)Ăƒ). r = 4ž, ep = 2, S(228 ) = 32 = 23 φ =φ

n 16

= 4, ¤¹n = 80,

n

16

,

φ(80) = (24 − 23 )(5 − 1) = 32, S(807 ) = S(228 ¡ 57 ) = 32 = φ(80),

n = 80´ª(2-4) ). ep = 3, n S(3 ) = 60 = 3 ¡ 2φ , 81 28

3

Ú´Ă˜ÂŒU , Ă?dÂŞ(2-4)Ăƒ). ep > 5,dĂšn2.6k,

28

3

28p > S(p ) = p (p − 1)φ = 2

28 > p (p − 1)φ

n p4

n p4

,

چp > 5gĂą, ÂŞ(2-4)Ăƒ). r = 5ž,ep = 2, S(235 ) = 42 = 24 φ

8

n

32

,

,


1 Ă™ SmarandacheŸê†–SmarandacheŸê

چÚn2.4gĂą, ÂŞ(2-4)Ăƒ). ep > 3, 35

4

35p > S(p ) = p (p − 1)φ = 3

35 > p (p − 1)φ

n p5

n p5

,

,

چp > 3gĂą, ÂŞ(2-4)Ăƒ). r > 6ž,ep = 2, S(27r ) = 2r−1 φ

n

2r

,

=‡2r−1 |S(p7r ), dSmarandacheŸê ½Ă‚ÚÚn2.5!2.6 ÂŒ , ĂšĂ˜ÂŒU¤å, ¤¹ ÂŞ(2-4)Ăƒ).

ep > 3,K 7r

r−1

7rp > S(p ) = p = r−2

7r > p

(p − 1)φ

(p − 1)φ

n pr

n pr

,

> pr−2 (p − 1),

dĂšn2.7ÂŒ ,ĂšĂ˜ÂŒU¤å, ¤¹ª(2-4)Ăƒ). nÞ¤ã: k = 7ž, Â?§Ď†(n) = S(nk )=k)n = 1, 80.Ă?d ¤ ½n2.2 y ².

2.3 ˜aÂ?šSmarandacheŸêĂšEulerŸê Â?§II ĂŠ u ĂŞn, SmarandacheÂź ĂŞ Â?S(n), φ(n)´EulerÂź ĂŞ, ! U Y ĂŁ Â? šSmarandacheŸêĂšEulerŸê Â?§ φ(n) = S(nk ) ). 3ĂžÂ˜!ÂĽ, Ž²Â‰Ă‘ Â?§(2-3)3k = 7ž Ăœ), !ò3dĂ„:މÑÂ? §(2-3)3k > 8ž ÂŚ)L§¹9Â?§) ‡ê¯K. =kXeA‡½n. ½ n 2.3 k = 8ž, Â?§(2-3)=k)n = 1, 125, 250, 289, 578. ½ n 2.4 k = 9ž, Â?§(2-3)=k)n = 1, 361, 722. ½ n 2.5 k > 10ž, Â?§(2-3)= 3k Â‡ ĂŞ). ½ n 2.6 en = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąs s ´ ĂŞn IOŠ)ÂŞ, Â… kÎą2 kÎąs 1 S(pkr ) = max{S(pkÎą 1 ), S(p2 ), ¡ ¡ ¡ , S(ps )},

9


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

K p > 2k + 1Â…k > 1, r > 2ž, Â?§(2-3)Ăƒ); 2k + 1Â?ÂƒĂŞÂž, Â?§(2-3) =k2‡ ), Â…n = 2p2 . eÂĄ5Â˜Â˜Â‰Ă‘¹Þ½n y². Ă„k½n2.3 y². rk = 8“\Â?§(2-3)ÂŒ , φ(n) = S(n8 ).

(2-8)

w,n = 1´ª(2-8) ).ÂąeĂŒÂ‡?Ă˜ n > 1ž Âœ6. n > 1Â…n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąs s ´ ĂŞn IOŠ)ÂŞ, KdĂšn2.6k 8Îąk 8Îą2 8r 1 S(n8 ) = max{S(p8Îą 1 ), S(p2 ), ¡ ¡ ¡ , S(pk )} = S(p )

(2-9)

dĂšn2.3ÂŒ , r

φ(n) = φ (p ) φ

n pr

r−1

=p

(p − 1)φ

n pr

.

(2-10)

ĂŠĂĄ(2-8)-(2-10)ÂŞÂŒ , r−1

p

(p − 1)φ

n pr

= S(p8r ).

(2-11)

p = 2, r = 1ž,d(2-11)ÂŒ n φ = S(28 ) = 10, 2 d(2-12)ÂŞÂŒĂ­ φ n2 > 1. Kn7šĂ›ÂƒĂ?fq,Â…   18, q=3      35, q=5 8 S q =  49, q=7      8q, q>7

(2-12)

(2-13)

¤¹(2-9)ÂŞĂš(2-12)ÂŞgĂą. p = 2, r = 1ž, ÂŞ(2-8)Ăƒ). φ(32) = 25 − 24 = 16 6= S(327 ), n = 32Ă˜´ª(2-8) ).

p = 2, r = 2ž, d(2-11)ÂŒ 2φ( n4 ) = S(216 ) = 18, =φ( n4 ) = 9, †Ún2.4gĂą, ¤¹ p = 2, r = 2ž, ÂŞ(2-8)Ăƒ). Ă“nÂŒy, p = 2, r = 3, 4, 5, 6, 7, 8ž, ÂŞ(2-8)Ăƒ). p = 2, r > 8ž, dĂšn2.6k n n 1 1 1 8r > S(28r ) = 2r−1φ r = 2r−2 φ r > 2r−2 = 2r , 2 2 2 2 4

=32r > 2r , gĂą. ¤¹ p = 2, r > 8ž, ÂŞ(2-8)Ăƒ). p = 3, r = 1ž, d(5)ÂŞÂŒ 22 φ n3 = S 38 = 18, =φ Ăą,¤¹ p = 3, r = 1ž, ÂŞ(2-8)Ăƒ).

10

n 3

= 9, †Ún2.4g


1 Ă™ SmarandacheŸê†–SmarandacheŸê

Ă“nÂŒy, p = 3, r = 2, 3, 4ž,ÂŞ(2-8)Ăƒ). p = 3, r > 5ž, dĂšn2.6k n n 1 2 8r > S(28r ) = 3r−1 φ r = 2 ¡ 3r−2 φ r > 2 ¡ 3r−2 > 2er−2 > 3 3 3 3 1 1 1 1 2 3 4 5 2 1 + (r − 2) + (r − 2) + (r − 2) + (r − 2) + (r − 2) > 8r, 2 6 24 120

gĂą.¤¹ p = 3, r > 5ž,ÂŞ(2-8)Ăƒ). p = 5, r = 1ž, d(2-11)ÂŞÂŒ 4φ n5 = S(58 ) = 35,gĂą, ÂŞ(2-8)Ăƒ). n n p = 5, r = 2ž,20φ 25 = S(516 ) = 70, =2φ( 25 ) = 7, gĂą, ÂŞ(2-8)Ăƒ). n n p = 5, r = 3ž,100φ( 125 ) = S(524 ) = 100, =φ 125 = 1, ¤¹n = 125, 250,

φ(125) = φ(53 ) = 100 = S(524 ) = S(1258 ),

φ(250) = φ(2 ¡ 53 ) = 100 = S(524 ) = S(2508 ), n = 125, 250´ª(2-8) ). p = 5, r = 4ž, Ă?Â?53 ¡ 4φ

n 625

p = 5, r > 4ž, ÂŞ(2-8)Â?Ăƒ).

p = 7, r = 1ž,d(2-11)ÂŞÂŒ 6φ

> S(532 ) = 130,¤¹ª(2-8)Ăƒ). Ă“nÂŒ n 7

= S(78 ) = 49,gĂą, ÂŞ(2-8)Ăƒ).

Ă“nÂŒ p = 7, r = 2ž, (2-8)ÂŞĂƒ). p = 7, r = 3ž,Ă?Â? n 72 ¡ 6φ > S(724 ) = 147, 243

¤¹(2-8)ÂŞĂƒ); p = 7, r > 3ž, ÂŞ(2-8)Ăƒ); p = 11, 13, r > 1ž, ÂŞ(2-8)Ăƒ). n p = 17, r = 1ž,d(2-11)ÂŞÂŒ 16φ 17 = S 178 = 17 ¡ 8,gĂą, ÂŞ(2-8)Ăƒ

).

p = 17, r = 2ž,k17¡16φ

n 172

= S 1716 = 17¡16,=φ

n 289

= 1, n = 289, 578,

φ(289) = φ 172 = 272 = S 1716 = S(2898 ), φ(578) = 272 = S 1716 = S 5788 ,

n = 289, 578´ª(2-8) ).

p = 17, r > 3ž, du17r−1 ¡ 16φ 17nr > S 178r ,¤¹ª(2-8)Ăƒ). n p = 19, r = 1ž,k18φ 19 = S 198 = 8 ¡ 19,gĂą,¤¹ª(2-8)Ăƒ).

Ă“n, p = 19, r = 2, 3ž,ÂŞ(2-8)Ăƒ); p = 19, r > 4ž, 19r > 19r−2 18φ( 19nr ) >

18 ¡ 19r−2 ,gĂą. ÂŞ(2-8)Ăƒ).

p > 19, r = 1ž,k(p − 1)φ( np ) = S(p8 ) = 8 ¡ p,Ă? Â?(p, p − 1) = 1, Â… e 11


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„ 8p k p−1 = 2k(k ∈ N + ), =p =

k(p−1) , 4

gĂą.¤¹ª(2-8)Ăƒ).

p > 19, r > 2ž,dĂšn2.6k r−2

8r > p

(p − 1)φ

n pr

> 22 ¡ 23r−2,

w,gĂą. ÂŞ(2-8)Ăƒ). nÞ¤ãÂŒ : k = 8ž,ÂŞ(2-8)=k)n = 1, 125, 250, 289, 578.Ăš Ă’y² ½ n2.3. Ă“n,^ƒq Â?{ÂŒÂąy²½n2.4Â?¤å. eÂĄy²½n2.5. ĂŠ?¿‰½ ĂŞk, n > 1, Â…n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąs s ´

ĂŞn IOŠ)ÂŞ, dS(n) ½Ă‚ÂŒ

kι2 kιs kr 1 S(nk ) = max{S(pkι 1 ), S(p2 ), ¡ ¡ ¡ , S(ps )} = S(p ).

qĂ? r

φ(n) = φ(p )φ

n pr

r−1

=p

(p − 1)φ

n pr

,

(2-14)

dÂ?§(2-3)ÂŒ r−1

p

n (p − 1)φ r p

= S pkr .

(2-15)

p 6 S(pkr ) 6 krp. epr−1 (p − 1)φ( pnr ) = krp,Kdφ(n) ½Ă‚95Â&#x;ÂŒ pr−1(p − 1)|krp,=pr−2 (p −

1)|kr.-y = pr−2 (p − 1) − kr, pÂ?‰½ ÂƒĂŞ,y´r Ÿê.K y ′ = (p − 1)pr−2 ln p − k.

p > 2k + 1Â…r > 2ž,ÂŒ y ′ > 0, džy´ßN4O ,Â…´ y > 0. ¤¹ª(2-15) p > 2k +1Â…r > 2ÂžĂƒ).== 3k Â‡ ĂŞnUÂŚ ÂŞ(2-13)¤ ĂĄ. Â

, ÂŒÂądĂšn2.2-2.6,(Ăœ½n2.4!½n2.5 y²Â?{Ă­Ă‘½n2.6Â?¤å.

2.4 'u–SmarandacheŸê Ă&#x;ÂŽ SmarandacheŸê´dF.Smarandache Ç3≪ Only Problems Not Solutions â‰ŤÂ˜

Ă–ÂĽĂš? , Ă™½Ă‚Â?S(n) = min{m : n|m!}. 5<‚Â?âSmarandacheŸê½Ă‚

n o m(m+1) –Smarandache ŸêZ(n) = min m : n| 2 .§Â‚kNĂľk 5Â&#x;, NĂľ<QĂŠ 12


1 Ă™ SmarandacheŸê†–SmarandacheŸê

d?1LĂŻĂ„. Erd¨ os[15] Q²Ă&#x;ÿÊuA ¤k nĂ‘kS(n) = P (n),Ù¼P (n)´Â?n  ÂŒÂƒĂ? fŸê. ĂŠuڇĂ&#x;Ăż8c¤Ÿ  Ă?(J´Aleksandar Ivic[25] , ÂŚy²

p log log log x N(x) = x exp − 2 log x log log x 1 + O , log log x

Ăš pN(x)L ÂŤ ¤ k Ă˜ ‡ Lx ĂŞ ÂĽ Ă˜ á v Â? §S(n) = P (n) ĂŞ ‡ ĂŞ.Mark FarrisĂšPatrick Mitchell[26] ĂŻĂ„ SmarandacheŸêS(n)3ÂƒĂŞÂ˜Ăž Ăže. O, Âż Xe(J: (p − 1)Îą 6 S(pÎą ) 6 (p − 1)(Îą + 1 + logÎąp ) + 1; Jozsef Sandor[27] ĂŻĂ„ Â?šSmarandacheŸêĂ˜ ÂŞ ÂŒ)5, y²

S(m1 + m2 + ¡ ¡ ¡ + mk ) < S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ) Ăš S(m1 + m2 + ¡ ¡ ¡ + mk ) > S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ) 3ĂƒÂĄĂľ). Lu Yaming[28] ?Â˜Ăšy² 3 Ă’¤åeÞãÂ?§Â? 3ĂƒÂĄĂľ|). 'uS(n)ĂšZ(n)„kNĂľ5Â&#x;ĂżĂ˜Â˜Ă™, AO´Z(n)duي ŠĂ™ Ă˜5K5 ÂŚ ĂŻĂ„ĂĽ5äkĂŠÂŒ (J.ĂœŠ+3[29]ÂĽJĂ‘e ÂŻK:´Ă„ þÂ?kk Â‡ P 1 ĂŞÂŚ n|d S(d) Â? ĂŞ; ŸêZ(n) ފ´þ ÂşMajumdar3[30]ÂĽJĂ‘ Âąeo

‡Ă&#x;ÂŽ:

(1)Z(n) = 2n − 1 Â…= n = 2k ,Ù¼kÂ?šK ĂŞ;

(2)Z(n) = n − 1 Â…= n = pk ,Ù¼pÂ?ÂŒu3 ÂƒĂŞ; (3)XJnĂ˜ULˆÂ?n = 2k /ÂŞ, KkZ(n) 6 n − 1;

(4)Ê?¿ nÑkZ(n) 6= Z(n + 1).

!òĂŒÂ‡ ã¹Þ¯K )‰, Ă˜ ĂŠuĂœŠ+¤JĂ‘ ÂŻK‰Ñ ˜½)‰, „ Majumdar¤JĂ‘ o‡Ă&#x;ÂŽ´ ( . Â? `²Ă&#x;ÂŽ (5, k‰ÑeÂĄA ‡Ún. Ăš n 2.8 eS(n) = P (n), n IOŠ)n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r P Îąr+1 (n), @o7kÎąr+1 = 1;ĂŠu1 6 k 6 r,7kÎąk 6 P (n) − 2.

y ² : eÎąr+1 > 1, KkP 2 (n)|n, n|S(n)! = P (n)!,KP 2 (n)|P (n)!.چP (n)Â?ÂƒĂŞg Ăą. kÎąr+1 = 1. n!ÂĽÂ?šÂƒĂ?fp ‡êÂ?Îą,=ávpÎą |n!, pÎą+1 ∤ n!,KkÎą =

13

P∞ h n i l=1 pl (y²Í


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

„[31]). dukpιk k |P (n)!,�dk ιk 6

∞ X P (n)

plk

l=1

6

∞ X P (n) l=1

plk

=

P (n) , pk − 1

Ă?d pk 6= 2ž´w,kÎąk 6 P (n) − 2; pk = 2ž, KktÂŚ 2t < P (n) < 2t+1 ,d žk

Îąk 6

t X P (n) l=1

2l

6

t X P (n) l=1

2l

= P (n) − P (n)

2 2t+1

< P (n) − 1,

Ă?Â?Îąk Â? ĂŞĂ?dkÎą 6 P (n) − 2.

Â? Â?\Â?B ĂŻĂ„Z(n), ½Ă‚˜‡# ŸêZ ∗ (n) = min{m : n|m(m + 1)}, w,

N´ nÂ?ÛêžZ(n) = Z ∗ (n), nÂ?óêžZ(n) = Z ∗ (2n), Ă?dÚ߇Ÿê´Â— ƒƒ' .e¥‰Ñ'uŸêZ ∗ (n) 5Â&#x;. Ăš n 2.9 n = pk ž, Z ∗ (n) = n−1; nšk߇¹ÞĂ˜Ă“ ƒĂ?fž, K7kZ ∗ (n) 6 n 2

− 1.

y ² :dZ ∗ (n) ½Ă‚´ Z ∗ (n) 6 n − 1, n = pk žkpk |Z ∗ (n)(Z ∗ (n) + 1), k pk |Z ∗ (n) ½ pk |Z ∗ (n) + 1, dÂžĂ‘ÂŒÂą Z ∗ (n) > pk − 1 = n − 1, džkZ ∗ (n) = n − 1.

nšk߇¹ÞĂ˜Ă“ ƒĂ?fž, džn7ÂŒŠ)Â?߇pƒ…Œu1 ĂŞ

ÂŚĂˆ, n = mk,Ù¼(m, k) = 1,džŒ kÂ?Ûê, K7½ 3Â…Â?˜ 3b, b′ ĂĄ uk  Âš K Â? { X ÂŚ mb ≥ −l mod kÂ…mb′ ≥ l mod k, Ă? d 7 kZ ∗ (n) 6

min{mb, mb′ − 1}. 5 Âż k|(mb + mb′ ),Ă? d kk|(b + b′ ), kb + b′ = k,d ukÂ? Ă› ĂŞ, 7kmin{b, b′ } 6

(k−1) ,Ă?d 2

Z ∗ (n) 6 m

k−1 n m n = − 6 − 1. 2 2 2 2

d¹Þ ĂšnÂŒÂą eÂĄA‡½n. ½ n 2.7 f (n) =

X 1 , S(d) d|n

@o3n 6 x ĂŞÂĽĂ˜ N(x)‡ ĂŞ , f (n)ĂžĂ˜ êŠ, Ù¼ p log log log x N(x) = x exp − 2 log x log log x 1 + O , log log x 14


1 Ă™ SmarandacheŸê†–SmarandacheŸê

=f (n)3A ¤k ĂŞĂžĂ‘Ă˜ êŠ. y ² :dAleksandar Ivic[25] (J, Â?Iy² S(n) = P (n)ž, f (n)Ă˜Â? ĂŞ. eS(n) = P (n),dĂšn2.8 , ÂŒ n IOŠ)Â?n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r P (n), Ù¼ιk 6

P (n) − 2,ònPÂ?n = mP (n),¤¹džk X 1 X 1 X 1 f (n) = = + S(d) S(d) S(dP (n)) d|n

d|m

d|m

X 1 X 1 = + S(d) P (n) d|m d|m Q r X 1 (Îąk + 1) = + k=1 . S(d) P (n) d|m

Â?I5Âż ĂŠud|m, S(d) < S(n) = P (n), Îąk + 1 6 P (n) − 1 < P (n), Ă?dĂŠu1˜ ĂœŠ, òĂ™Ă?Š

, Ă™Š1 ƒĂ?f uP (n),ĂŠu1 ĂœŠĂ™Šf ƒĂ?fÂ?

uP (n),Ă?dْ½Ă˜´ ĂŞ, Ă?dÚßĂœŠÂƒ\Ă˜ÂŒU¤Â? ĂŞ.½n2.7 y. ½ n 2.8 (i)Z(n) = 2n − 1 Â…= n = 2k , Ù¼kÂ?šK ĂŞ;

(ii) Z(n) = n − 1 Â…= n = pk , Ù¼pÂ?ÂŒu2 ÂƒĂŞ;

(iii)XJnĂ˜ULˆÂ?n = 2k /ÂŞ, KkZ(n) 6 n − 1.

y ² :(i) n = 2k ž(= Ă„kÂ? ĂŞ, k = 0´w, ), džkZ(n) = Z ∗ (2n), dĂš n2.9ÂŒ Z(n) = 2n − 1; eZ(n) = 2n − 1,7knÂ?óê, Ă„KZ(n) = Z ∗ (n) 6 n − 1, b n 6= 2k , 2n– „škÂ˜Â‡Ă›ÂƒĂ?f, dĂšn2.9ÂŒ Z(n) = Z ∗ (2n) 6 gĂą, n = 2k .

2n −1 2

= n−1,

(ii) n = pk , Â…pÂ?ÂŒu2 ÂƒĂŞÂž, džkZ(n) = Z ∗ (n), dĂšn2.9ÂŒ Z(n) = n − 1; eZ(n) = n − 1,w,nĂ˜ÂŒU´óê, b n 6= pk ,Kn– škĂźÂ‡Ă›ÂƒĂ?f, d Ăšn2.7ÂŒ Z(n) = Z ∗ (n) 6

n 2 − k

1,gĂą, kn = pk , Â…pÂ?ÂŒu2 ÂƒĂŞ.

(iii)enĂ˜ULˆÂ?n = 2 /ÂŞ, K7knÂ?Ûê, džkZ(n) = Z ∗ (n) 6 n − 1,

½KnÂ?óê…– škÂ˜Â‡Ă›ÂƒĂ?f, dĂšn2.9ÂŒ džk Z(n) = Z ∗ (2n) 6

2n − 1 = n − 1. 2

½ n 2.9 ĂŠ?Âż nĂ‘kZ(n) 6= Z(n + 1). y ² :b knÂŚ Z(n) = Z(n + 1) = m,K 3k, k ′ ÂŚ nk = (n + 1)k ′ =

m(m+1) ,d 2

u(n, n+1) = 1,Ă?dkn+1|k, n|k ′ , Ă?dkn+1 6 k, n 6 k ′ , ÂŒ m(m+1) > n(n+1), 2 ′

km > n + 1,d½n2.8ÂŒ K7kn = 2t , n + 1 = 2t , Â?U´n = 1, džw, kZ(1) 6= Z(2). 15


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

½ n 2.10 Ê?¿ x > 1, k 2 X J X 3 2 aj x2 x +O 6 Z(n) 6 x + O , x j J +1 8 ln log log x x x j=1 n6x 2

Ù¼aj =

Îś(j+1) . 2

y ² : Ă„ky²Ă˜ ÂŞmÂŒĂœŠ:d½n2.8ÂŒ , n = 2k ž, Z(n) = 2n−1, n = pk ž, Z(n) = pk − 1, nÂ?škĂ›ÂƒĂŞĂ?f óêž, Z(n) 6 n − 1; nÂ?šk2‡¹Þ Ă› ÂƒĂŞĂ?f ÛêžkZ(n) 6 (n−1) 2 , Ă?dÂŒ X X X Z(n) = Z(2k) + Z(2k + 1) + O(x) k6[ x2 ]

n6x

6

X

k6[ x2 ]

=3

k6[ x2 ]

2k − 1 +

X

k+

k6[ x2 ]

3 = x2 + O 8

X

k6[ x2 ]

Xp−1

2

p6x

k+

Xp−1 p6x

+

x2 . ln x

X

2

+

X

2k + O(x)

k6ln x

2k + O(x)

k6ln x

e ÂĄ y ² ½ n † ÂŒ Ăœ Š: Ă? Â?P (n)|n Z(n)(Z(n)+1) , kP (n)|Z(n)(Z(n) + 1), ¤ 2

ÂąZ(n) > P (n) − 1,Ă?dÂŒ : X X Z(n) > (P (n) − 1) n6x

n6x

=

X

P (n) + O(x)

n6x

J X aj x2 =x +O . logjx logJx +1 j==1 2

Â

Â˜ĂšĂŤÂ„Šz[25].

2.5 'uSmarandacheŸê†–SmarandacheŸê Â?§I 2.5.1 Âľ9yG ĂŠ?Âż ĂŞnĂ?Âś F. SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m! =S(n) = min{m : m ∈ N, n|m!}. lS(n) ½Ă‚<‚N´íĂ‘XJn = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r

LÂŤn IOŠ)ÂŞ, @oS(n) = max {S(pÎąi i )}. ddĂ˜JOÂŽĂ‘S(1) = 1, S(2) = 16i6r

2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 1, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6 ¡ ¡ ¡ .'uS(n) 16


1 Ă™ SmarandacheŸê†–SmarandacheŸê

ÂŽâ5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âź Ă˜ k (J[7,27,28,33,36] . ~X, Lu YamingĂŻ Ă„ ˜aÂ?šS(n)Â?§ ÂŒ)5[28] , y² TÂ?§kĂƒÂĄĂľ| ĂŞ), =y² ĂŠ? Âż ĂŞk > 2Â?§ S(m1 + m2 + ¡ ¡ ¡ + mk ) = S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ) kĂƒÂĄĂľ| ĂŞ)(m1 , m2, ¡ ¡ ¡ , mk ).

Jozsef Sandor[27] ?Â˜Ăš`²Ê?Âż ĂŞk > 2, 3ĂƒÂĄĂľ| ĂŞ (m1 , m2 , ¡ ¡ ¡ , mk )

ávĂ˜ ÂŞ S(m1 + m2 + ¡ ¡ ¡ + mk ) > S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ). Ӟ, q 3ĂƒÂĄĂľ| ĂŞ(m1 + m2 + ¡ ¡ ¡ + mk )ávĂ˜ ÂŞ S(m1 + m2 + ¡ ¡ ¡ + mk ) < S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ). d , Mó¸[36] Âź k'S(n) ˜‡ Â?(J[36] . =y² ĂŹCúª ! 3 3 3 X 2 2 2Îś( )x x 2 +O (S(n) − P (n))2 = , 3 ln x ln2 x n6x Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f, Îś(s)LÂŤRiemann Zeta-Ÿê. y3½Ă‚,˜‡ŽâŸêZ(n)Â?

m(m + 1) Z(n) = min m : m ∈ N, n

. 2

TŸêkžÂ? ÂĄÂ?–SmarandacheŸê. 'u§ Ă? 5Â&#x;, Â?,–8 Ă˜Ăľ, ´Â?kĂ˜ <?1LĂŻĂ„, Âź ˜ kdŠ nĂ˜ĂŻĂ„¤J[37−39]. AO3Šz[40] 13Ù¼, Kenichiro KashiharaĂ˜ĂŁ ŸêZ(n) ˜ Ă? 5Â&#x;, ӞÂ?JĂ‘ e¥ß‡ ÂŻK: (A)ÂŚÂ?§Z(n) = S(n) ¤k ĂŞ); (B)ÂŚÂ?§Z(n) + 1 = S(n) ¤k ĂŞ). ! ĂŒÂ‡8 ´|^Ă? Â?{ĂŻĂ„Â?§(A) 9(B) ÂŒ)5, ¿Ÿ Ú߇Â? § ¤k ĂŞ), äN/`, =y² eÂĄ ½n. ½ n 2.11 ĂŠ?Âż ĂŞn > 1,ŸêÂ?§ Z(n) = S(n) ¤å Â…= n = p¡m, Ù¼pÂ?Ă›ÂƒĂŞ, mÂ? p+1 ?ÂżÂŒu1 Ă?ĂŞ. =m| p+1 Â…m > 1. 2 2 17


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

½ n 2.12 ĂŠ?Âż ĂŞn,ŸêÂ?§ Z(n) + 1 = S(n) p−1 ¤å Â…= n = p ¡ m, Ù¼pÂ?Ă›ÂƒĂŞ, mÂ? p−1 2 ?ÂżĂ?ĂŞ. =m| 2 .

w,, T½n”.)Ăť ÂŻK(A)9(B). ½=y² Ú߇Â?§Ă‘kĂƒÂĄĂľÂ‡ ĂŞ), ¿‰Ñ §Â‚z‡) äN/ÂŞ. Ù¼, AO3ÂŤm[1, 100]ÂĽ, Â?§Z(n) = S(n)k9‡), §Â‚ŠO´n = 1, 6, 14, 15, 22, 28, 33, 66, 91.ĂŠuÂŻK(B), w,Â?§Z(n) + 1 = S(n)3ÂŤm[1, 50]ÂĽk19 ‡), §Â‚ŠO´ n = 3, 5, 7, 10, 11, 13, 17, 19, 21, 23, 26, 29, 31, 34, 37, 39, 41, 43, 47. |^Ă? Â?{‰Ñ½n y². Ă„ky²½n2.10. ¯¢Þ, n = 1ž, Â?§Z(n) = S(n)¤å. n = 2, 3, 4, 5ž, w,Ă˜ávÂ?§Z(n) = S(n). u´, b½n > 6ávÂ?§Z(n) = S(n), Ă˜Â” Z(n) = S(n) = k. dŸêZ(n)9S(n) ½Ă‚ÂŒ , k´ ê, ÂŚ náveÂĄ ߇ Ă˜ÂŞ:

k(k + 1) , n|k!. n

2

(2-16)

Ă„k, y²3ÂŞ(2-16)ÂĽk + 1Ă˜ÂŒUÂ?ÂƒĂŞ. ¯¢ÞXJk + 1Â?ÂƒĂŞ, Ă˜Â” k + 1 = p,u´3n| p(p−1) ÂĽ (n, p) = 1ž, ĂĄÂ?Ă­Ă‘n| p−1 .l n Ă˜ 2 2 p−2 X i=1

i=

(p − 1)(p − 2) . 2

چk = p − 1Â? êŒ n| k(k+1) gĂąÂœ (n, p) > 1ž, dupÂ?ÂƒĂŞ, ¤¹ 2

Ă­Ă‘p|n. 2dun|k!, ĂĄÂ? p|k!. Ú´Ă˜ÂŒU , Ă?Â?p = k + 1,¤¹pĂ˜ÂŒU Ă˜(p − 1)!, l y² 3ÂŞ(2-16)ÂĽk + 1Ă˜ÂŒUÂ?ÂƒĂŞ.

Ă™g, y²3ÂŞ(2-16)ÂĽ kÂ?Ûêžk˜½Â?ÂƒĂŞ. ¯¢Þ kÂ?Ûêž k+1 2 Â?

ĂŞ, ekÂ?ĂœĂŞ, K kÂŒ¹Š)¤ßÂ‡Ă˜Ă“ ĂŞ ÂŚĂˆÂž, Ă˜Â” k = a ¡ b, a > 1, b > 1Â…a 6= b. u´5Âż (k, k+1 ) = 1,Ă˜JĂ­Ă‘k = a ¡ b|(k − 1)! k+1 |(k − 1)! 2dun 2 2

Ă˜ k(k+1) ĂĄÂ?Ă­Ă‘n|(k − 1)!. چk´ êŒ n|k!gĂą. kÂ?ĂœĂŞÂ…Â?,˜ 2

ÂƒĂŞ Â?˜ž, k = pÎą .dukÂ?Ûê, ¤¹p > 3, l p, 2p, ¡ ¡ ¡ , pÎąâˆ’1 Ăž uk − 1Â…z

‡êÑ Ă˜(k − 1)!, u´dn Ă˜ k(k+1) E,ÂŒ¹íĂ‘n|(k − 1)!. چk ½Ă‚gĂą, ¤ 2 Âą kÂ?Ă›ĂŞÂžÂ˜½Â?ÂƒĂŞ.

( Ăœ Âą Ăž Ăź ÂŤ Âœ š Ă­ Ă‘ kÂ? Ă› ĂŞ ž kk = p,d žn Ă˜ p(p+1) p!, ´ n 2 p+1 Ă˜ p+1 2 ž,w,kS(n) < p; n = pžZ(n) 6= S(n). ¤¹ÂŒÂą n = p ¡ m, Ù¼m´ 2

18


1 Ă™ SmarandacheŸê†–SmarandacheŸê

?˜Œu1 Ă?ƒ. y3y² n = p ¡ m, Ù¼m´ p+1 ?˜Œu1 Ă?êž, ˜½kZ(n) = S(n).¯¢ 2 p−1 P Ăždžw,kS(pm) = S(p) = p.Ă?Â?mĂ˜ Ă˜ i = p(p−1) , Ă„K†m Ă˜ p+1 gĂą!¤ 2 2 i=1

ÂąZ(pm) = p, l Z(pm) = S(pm). Â

, y²Ă˜ 3óêkÂŚ Z(n) = S(n) = k. ^‡y{5y²Ú˜(Ă˜. b

½ 3 Ăł ĂŞk = 2m, ÂŚ Z(n) = S(n) = k = 2m,K d Âź ĂŞZ(n)9S(n) ½ Ă‚ ÂŒ ,n Ă˜ k(k+1) = m(2m + 1) 9(2m)!. dcÂĄ ŠĂ›ÂŒ 2m + 1Ă˜ÂŒUÂ?ÂƒĂŞ, Ă„K 2 2m−1 P (n, 2m + 1) = 1ž, n Ă˜ i = m(2m − 1), w,چ2m´ êŒ n i=1

Ă˜m(2m + 1)gĂą! (n, 2m + 1) > 1ž,dÂƒĂŞ 5Â&#x;ĂĄÂ?Ă­Ă‘p = 2m + 1|n, l 2

dn|(2m)! p = 2m + 1|(2m)!, gĂą!¤¹2m + 1Ă˜ÂŒUÂ?ÂƒĂŞ, Ă“ ÂŒÂąy²mĂ˜ÂŒ UÂ?ĂœĂŞ, Ă„KN´íĂ‘n|(2m − 1)!, †2m´ êŒ n|(2m)! gĂą!l mÂ? ÂƒĂŞp, k = 2p. u´ÂŒ n|p(2p + 1)! 9n|(2p)!. ´, n up(2p + 1) ?˜Ă?ÂƒÂžĂ‘ ´Ă˜ÂŒU !Â?Ă’´`ĂŠ?Âżk|p(2p + 1), Ă˜ÂŒUkS(k) = 2p. u´, ¤ ½n2.10 y². y3y²½n2.11. †½n2.10 y²Â?{ƒq, ĂšpÂ?Â‰Ă‘ÂŒVL§. b½ ĂŞnávÂ?§Z(n) + 1 = S(n), Âż Z(n) + 1 = S(n) = k. u´dŸêZ(n)9S(n) ½ Ă‚Ă˜JĂ­Ă‘k´ ê, ÂŚ

k(k − 1) n

, n|k!. 2

(2-17)

w ,, ÂŞ f(2-17)ÂĽ kÂ? Ă› ĂŞ ž ˜ ½ Â? ƒ ĂŞ!Ă„ K ÂŒ J Ă‘n|(k − 1)!, †k´ Â

p−1 ĂŞ ÂŚ n|k!g Ăą. Ă? dk = pÂ? ˜ ƒ ĂŞ. 2 dn| p(p−1) 2 , Âż 5 ÂżS( 2 ) < p,ĂĄ Â? Ă­

Ă‘n = p ¡ m,mÂ? p−1 ?˜ Ă?ĂŞ. N´ y n = p ¡ m,mÂ? p−1 ?˜ Ă?êž, ná 2 2 vÂ?§Z(n) + 1 = S(n).

ÂŞ(2-17)ÂĽk = 2mÂ?óêž, k − 1 = 2m − 1˜½Â?ÂƒĂŞ, l ÂŒ Ă˜ 3Ăš

ĂŞnÂŚ Z(n) + 1 = S(n) = 2m. ¤¹, Â?§Z(n) + 1 = S(n) ¤å Â…= n = p ¡ m, Ù¼mÂ? p−1 2 ?˜ Ă?ĂŞ. u´, ¤ ½n2.11 y².

2.5.2 ˜ ƒ'ÂŻK 'uSmarandacheŸêS(n)9–SmarandacheŸêZ(n)5Â&#x; ĂŻĂ„Â?, Ă˜ ?Ă?, ´E, 3Ă˜ ÂŻK. Â? Buk, Ă–Ăś?1ĂŤ Ăš?Â˜ĂšĂŻĂ„, Ăšp0 ˜ †ŸêS(n)9Z(n) k' ¿…k¿Â ÂŻK. ÂŻ K 2.1 ĂŠ?Âż ĂŞn, H(n)LÂŤÂŤm[1, n]¼¤kÂŚS(n)Â?ÂƒĂŞ ĂŞ ‡

19


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

ĂŞ. Ă ĂŻĂ„H(n) ĂŹC5Â&#x;. Ă&#x;Ăż: H(n) = 1. n→∞ n lim

ÂŻ K 2.2  þkk Â‡ ĂŞn,ÂŚ X 1 S(d) d|n

� ê, Ù¼ ¯ K 2.3

P

d|n LÂŤĂŠn ¤k Ă?ĂŞÂŚĂš. ?Â˜ĂšĂ&#x;ÿÞªÂ? ĂŞ Â…= n P (n ĂŻĂ„Ÿê PS(n) (n) 9 S(n) ) ފ5Â&#x;, ¿‰Ñފ

= 1, 8.

X S(n) X P (n) , P (n) S(n)

n6x

n6x

Â˜Â‡ĂŹCúª, Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f. xÂŞuĂƒÂĄÂž, Ă&#x;Ăż1Â˜Â‡ĂžÂŠĂŹC uc ¡ x,Ù¼cÂ?,˜Œu1 ~ĂŞ;1 ‡ÞŠAT†xĂ“ . ,ÂŻK2.3†¯K2.1—ƒ ƒ'. XJÂŻK2.1ÂĽ Ă&#x;Ăż (, @oĂ’ÂŒ¹Ÿ 1 ‡ÞŠ ĂŹCúª. ÂŻ K 2.4 ŸêZ(n) ŠŠĂ™ĂŠĂ˜5K, ĂŠk nXn =

m(m+1) , 2

kZ(n) = m <

√ 2n.

ĂŠu,˜ nXn = 2Îą , kZ(n) = 2Îą+1 − 1 = 2n − 1. Ă?dk7‡ïÄZ(n) ފ5 Â&#x;, ‰Ñފ

X

n6x

Z(n),

X

ln(Z(n)),

n6x

X

n6x

1 Z(n)

Â˜Â‡ĂŹCúª. ÂŻ K 2.5 ÂŚÂ?§Z(n) = φ(n) ¤k ĂŞ), Ù¼φ(n)Â?EulerŸê. ĂšÂ˜Â?§k Ăƒ þ‡ ĂŞ), ~XnÂ?ÂƒĂŞpžÞávÂ?§. n = 2pÂ…p ≥ 1(mod4)ž, nÂ?áv

TÂ?§. Ă˜ Ăš ²Â…) , ´Ă„„kٌ ĂŞ)´Â˜Â‡Ăşm ÂŻK. Ă&#x;ĂżTÂ?§Â? kn = 1Âą9Þãߍ). ÂŻ K 2.6 ÂŚÂ?§S(Z(n)) = Z(S(n)) ¤k ĂŞ). Ă&#x;ĂżTÂ?§ þkk Â‡ ĂŞ).

2.6 'uSmarandacheŸê†–SmarandacheŸê Â?§II ĂŠ?Âż ĂŞn,Ă?Âś F.SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!, =S(n) = min{m : m ∈ N, n|m!}, d Âź ĂŞ ´ Ă? Âś ĂŞ Ă˜ ; [F.Smarandache3 5Only

Problems,Not Solutions6Â˜Ă–ÂĽĂš\ , ¿ïÆ<╀§ 5Â&#x;. lS(n) ½Ă‚N ´íĂ‘:XJn = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r LÂŤn IOŠ)ÂŞ, @oS(n) = max {S(pÎąi i )}.ddÂ? 16i6r

Ă˜JOÂŽĂ‘S(n) cA‡ŠÂ?:S(1) = 1, S(2) = 2S(4) = 4, S(5) = 5, S(6) = 3, S(7) =

20


1 Ă™ SmarandacheŸê†–SmarandacheŸê

7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6, ¡ ¡ ¡ .'uS(n) ÂˆÂŤÂŽâ5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âź Ă˜ k ( J, ĂŤ Šz[7,27,28,33] . ~X3Šz[36]ÂĽ, ĂŻĂ„ Úª X 1 d|n

(2-18)

S(d)

Â? ĂŞ ÂŻK, Âży² eÂĄ3‡(Ă˜: (a) nÂ?Ăƒ²Â?Ă?fêž, (2-18)ÂŞĂ˜ÂŒU´ ĂŞ; (b)ĂŠ?ÂżĂ›ÂƒĂŞp9?Âż ĂŞÎą, n = pÎą Â…Îą 6 pž, (2-18)ÂŞĂ˜ÂŒU´ ĂŞ; Îą

k−1 (c)ĂŠu?Âż ĂŞn, n IOŠ)ÂŞÂ?pÎą1 1 ¡ pÎą2 2 , ¡ ¡ ¡ , pk−1 ¡ pk Â…S(n) = pk ž,

(2-18)ÂŞĂ˜ÂŒU´ ĂŞ.

d , 3Šz[27]ÂĽ, J. SandorĂš\ –F. SmarandacheŸêZ(n)Xe: Z(n)½Ă‚Â? ,=  êm, ÂŚ n Ă˜ m(m+1) 2

m(m + 1) Z(n) = min m : m ∈ N, n

. 2

lZ(n) ½ Ă‚ N ´ Ă­ Ă‘Z(n) c A ‡ Š Â?: Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 8, Z(10) = 4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 31, ¡ ¡ ¡ .'uZ(n) ÂŽâ5Â&#x;, NþÆÜÂ?

?1 ĂŻĂ„, Âź Ă˜ k (J, ĂŤ Šz[38 − 41]. ! ĂŒÂ‡8 ´ïĂ„Ÿê Â?§

Z(n) + S(n) = kn

(2-19)

ÂŒ)5, Ù¼kÂ??Âż ĂŞ, Âż|^Ă? 9|ĂœÂ?{Âź ĂšÂ˜Â?§ ¤k ĂŞ ). äN/`Â?Ă’´y² eÂĄ ½n: ½ n 2.13 k = 1ž, n = 6, 12´Â?§(2-19)=k ߇AĂ? ĂŞ); džÙ§ ĂŞnávÂ?§(2-19) Â…= n = p ¡ u½Ün = p ¡ 2Îą ¡ u, Ù¼p > 7Â?ÂƒĂŞ, 2Îą |p − 1,

u´ p−1 ?ÂżÂ˜Â‡ÂŒu1 ÛêĂ?f. 2Îą

½ n 2.14 k = 2ž, n = 1´Â?§(2-19) ˜‡AĂ?); Ă™§ ĂŞnávÂ?§(2-19) Â…= n = p ¡ u,Ù¼p > 5Â?ÂƒĂŞ,u´ p−1 2 ?ÂżÂ˜Â‡óêĂ?f. 5Âż , Z(n) 6 2n − 19S(n) 6 n, ¤¹ k > 2ž, Â?§(2-19)vk ĂŞ). l n

½nĂŠN´ÊÂŽ FermatÂƒĂŞ, =/XÂŞFn = 22 + 1 ÂƒĂŞ, Ù¼n > 1Â? ĂŞ. ~ XF1 = 5, F2 = 17, F3 = 257 . d½n2.13Ă˜JĂ­Ă‘eÂĄ Ă­Ă˜: Ă­ Ă˜ 2.1 k = 1ž, XJnškFermatƒĂ?f, KnĂ˜ÂŒUávÂ?§(2-19).

21


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

|^Ă? 9|ĂœÂ?{5 ¤½n y². Ă„ky²½n2.13. ڞk = 1. 5Âż Z(1) + S(1) = 2 6= 1, Z(2) + S(2) = 5 6= 3, Z(3) + S(3) = 5 6= 3, Z(4) + S(4) = 11 6=

4, Z(5) + S(5) = 9 6= 5, Z(6) + S(6) = 6,¤¹n = 1, ¡ ¡ ¡ , 5Ă˜ávÂ?§(2-19). n = 6áv Â?§(2-19). u´ Ă™§návÂ?§(2)ž˜½kn > 7. n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k Â?n IOŠ )ÂŞ, dždF.SmarandacheŸê 5Â&#x;

S(n) = max {S(pÎąi i )} ≥ S(pÎą ) = u ¡ p, 16i6r

Ù¼pÂ?,˜pi , ÎąÂ?,Â˜Îąi , u 6 Îą. y35Âż p|n9S(n) = u ¡ p,¤¹ÂŒ n = pÎą ¡ n1 , návÂ?§(2-19)žk Z(n) + u ¡ p = pÎą ¡ n1 .

(2-20)

Ă„ky²3(2-20)ÂŞÂĽÎą = 1. Ă„Kb½ι > 2, u´d(2-20)ÂŞĂĄÂ?Ă­Ă‘p|Z(n) = m.dZ(n) = m ½ Ă‚ n = pÎą ¡ n1 Ă˜ m(m+1) , (m, m + 1) = 1,¤ ÂąpÎą |m.l 2

d(2-20)ÂŞĂ­Ă‘pÎą |S(n) = u ¡ p, =pÎąâˆ’1 |u,l pÎąâˆ’1 6 u. ´,˜Â?ÂĄ, 5Âż S(n) = S(pÎą ) = u ¡ p, dF.SmarandacheŸêS(n) 5Â&#x; u 6 Îą,¤¹pÎąâˆ’1 6 u 6 Îą. dÂŞ

ĂŠ Ă› ƒ ĂŞpw , Ă˜ ¤ ĂĄ. X Jp = 2, K Îą > 3ž, pÎąâˆ’1 6 u 6 Îą Â? Ă˜ ¤ ĂĄ. u ´ Â? k ˜ ÂŤ ÂŒ U:u = a = 2. 5 Âż n > 5Âą 9S(n) = 4,¤ Âą d ž Â? k ˜ ÂŤ ÂŒ U:n = 12, n = 12´Â?§(2) ˜‡). ¤¹XJĂ™§ ĂŞnávÂ?§(2-19),K(220)ÂŞÂĽ7kS(n) = p, Îą = u = 1.3ڍÂœše, -Z(n) = m = p ¡ v, K(2-20)ª¤

Â?

v + 1 = n1 , ½Ün1 = v + 1,=n = p ¡ (v + 1), Z(n) = p ¡ v. 2dZ(n) ½Ă‚ n = p ¡ (v + 1) Ă˜ Z(n)(Z(n) + 1) pv ¡ (pv + 1) = , 2 2 ½Ü(v + 1) Ă˜ Z(n)(Z(n) + 1) v ¡ (pv + 1) = , 2 2 5Âż (v + 1, v) = 1,¤¹ vÂ?óêždÞªåÂ?Ă­Ă‘v + 1|pv + p − p + 1,=v +

p−1 1|p − 1½Üv + 1| p−1 2 . w,ĂŠ 2 ?ÂżÂŒu1 ÛêĂ?fr, n = p ¡ r ´Â?§(2-19) ).

Ă?Â?džkZ(p ¡ r) = p ¡ (r − 1).

vÂ?Ûêž, d(v + 1) Ă˜ Z(n)(Z(n) + 1) v ¡ (pv + 1) = , 2 2

22


1 Ă™ SmarandacheŸê†–SmarandacheŸê

ddÂŒĂ­Ă‘

pv + 1 (p − 1)(v + 1) + v − p + 2 (v + 1)

= . 2 2

p − 1 = (2k + 1) ¡ (v + 1). u´ p − 1 = 2β ¡ h,Ù¼hÂ?Ûê, K v+1 Â? uh ÛêĂ?f. N´ yĂŠ?¿Û 2β ĂŞr|hÂ…r < h, n = p ¡ 2β ¡ r Â?Â?§(2-19) ). Ă?Â?džk Z(p ¡ 2β ¡ r) = p ¡ (2β ¡ r − 1). ¯¢Þ, 5Âż r|h. Ă„kN´íĂ‘p ¡ 2β ¡ r Ă˜ m(m+1) .u´dZ(n) ½Ă‚ 2 Z(p ¡ 2β ¡ r) = p ¡ (2β ¡ r − 1). u´y² ½n2.13. y3y²½n2.14. dž5Âż k = 2, ¤¹ n = 1ž, kZ(1) + S(1) = 2=n = 1´ Â?§(2-19) ˜‡). XJÂ?§(2-19)„kĂ™§ ĂŞ)n > 2,Kd½n2.13 y²Â?{ Ă˜JĂ­Ă‘n = p ¡ u, Ù¼p > 5Â?ÂƒĂŞ, S(u) < p. “\Â?§(2-19)ÂŒ Z(p ¡ u) + S(p ¡ u) = 2p ¡ u. ddÂŞĂĄÂ?Ă­Ă‘p Ă˜Z(p ¡ u). Z(p ¡ u) = p ¡ v, Kv = 2u − 1.dZ(n) ½Ă‚ p ¡ u p−1 Ă˜ p(2u−1)(p(2u−1)+1) . l u Ă˜ p−1 2 2 . d , uÂ? 2 ?˜Œu1 ÛêĂ?êž, Z(p ¡

u) = p ¡ (u − 1), ¤¹džn = p ¡ uĂ˜´Â?§(2-19) ĂŞ); uÂ? p−1 2 ?˜óêĂ? êžk

Z(p ¡ u) = p ¡ (2u − 1), dž Z(p ¡ u) + S(p ¡ u) = 2p ¡ u. u´ ¤ ½n2.14 y². d½n2.13Ă˜JĂ­Ă‘Š¼ Ă­Ă˜. ¯¢Þ½n2.13 ÂĽ ÂƒĂŞĂ˜ÂŒU´FermatÂƒĂŞ, Ă?Â? pÂ?Fermat ÂƒĂŞÂž, p − 1vkÂŒu1 ÛêĂ?f.

2.7 'uSmarandacheŸêÂ†ÂƒĂŞ ĂŠ?Âż ĂŞn, Ă?Âś F.SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n | m!. 23


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

= Ă’ ´S(n) = min{m : m ∈ N, n|m!}. Ăš ˜ Âź ĂŞ ´ { 7 Ă› ĂŞ Z ĂŚ Ă? Âś ĂŞ Ă˜ ; [F.Smarandache Ç3Œ¤Ă? 5Only Problems, Not Solutions6Â˜Ă–ÂĽĂš\ , Âż ïÆ<╀§ 5Â&#x;ÂœlS(n) ½Ă‚<‚N´íĂ‘XJn = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r LÂŤn I

OŠ)ÂŞ, @oS(n) = max {S(pÎąi i )}. ddÂ?Ă˜JOÂŽĂ‘S(n) cA‡ŠÂ?: S(1) = 1, 16i6r

S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6, ¡ ¡ ¡ ¡ ¡ ¡ . 'uS(n) ÂŽâ5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âź Ă˜ k (JÂœĂŤ Š

z[28, 32, 36, 37, 57]. ~X, Lu Yaming[28] 9Wju[32] ĂŻĂ„ ˜aÂ?šS(n)Â?§ ÂŒ)

5, y² TÂ?§kĂƒÂĄĂľ| ĂŞ). =Ă’´y² ĂŠ?Âż ĂŞk > 2, Â?§ S(m1 + m2 + ¡ ¡ ¡ + mk ) = S(m1 ) + S(m2 ) + ¡ ¡ ¡ + S(mk ) kĂƒÂĄĂľ| ĂŞ)(m1 , m2 , ¡ ¡ ¡ , mk ).

Mó¸[36] Âź k'S(n) ˜‡ Â?(JÂœÂ?Ă’´y² ĂŹCúª ! 3 3 3 X 2 2 x 2Îś x 2 +O (S(n) − P (n))2 = , 2 3 ln x ln x n6x

Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f, Îś(s)LÂŤRiemann zeta-Ÿê. ÚÂ=[57] ĂŻĂ„ 'uSmarandacheŸê ˜‡Ă&#x;ÂŽ, =Ă’´y² nÂ?, AĂ? ĂŞ(~XnÂ?Ăƒ²Â?Ă?fĂŞ)ž, Úª X 1 S(d) d|n

Ă˜ÂŒUÂ? ĂŞ. y3-PS(n)LÂŤÂŤm[1, n]ÂĽS(n)Â?ÂƒĂŞ ĂŞn ‡ê. 3˜Â&#x;™uL Šz PS(n) ÂĽ, J.CastilloïÆïÄ4 lim 3ÂŻK. XJ 3, (½Ă™4 . ĂšÂ˜ÂŻK n−→∞ n ´k , § ÂŤ F.SmarandacheŸêS(n)ŠŠĂ™ 5Æ5, ӞÂ?`²3Ă˝ÂŒþê Âœše, F.SmarandacheŸêS(n) ÂƒĂŞÂŠ! , 'uĂšÂ˜ÂŻK, duĂ˜ lĂ›eĂƒ, ¤¹Â–8vk<ĂŻĂ„, – vkw L k'Â?ÂĄ Ă˜Š. ! ĂŒÂ‡8 ´|^Ă? Â?{ĂŻĂ„ĂšÂ˜ÂŻK, Âż ”.)ĂťÂœä N/`Â?Ă’´y² eÂĄ : ½ n 2.15 ĂŠ?Âż ĂŞn > 1, kĂŹCúª PS(n) =1+O n

1 . ln n

w,ڴ˜‡'J.CastilloÂŻKÂ?r (Ă˜. ,XĂ›U?Þª¼ Ă˜ ‘Â?´Â˜ ‡k¿Â ÂŻK, k–u?Â˜ĂšĂŻĂ„! dd½nĂĄÂ? eÂĄ : 24


1 Ă™ SmarandacheŸê†–SmarandacheŸê

Ă­ Ă˜ 2.2 ĂŠ?Âż ĂŞn, k4 PS(n) = 1. n−→∞ n lim

Ăš!|^Ă? Â?{‰Ñ½n † y². Ă„k On − PS(n) Ăž.. ¯¢Þ

n > 1ž, n = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r LÂŤn IOŠ)ÂŞ, @odŸêS(n) ½Ă‚95Â&#x;ÂŒ

S(n) = S (pÎąi i ) = m ¡ pi . eÎąi = 1, @om = 1Â…S(n) = pi Â?ÂƒĂŞ. eÎąi > 1, @ om > 1, KS(n)Â?ĂœĂŞ. ¤¹n − PS(n)Â?ÂŤm[1, n]¼¤kS(n) = 19S(n)Â?ĂœĂŞ

n ‡ê! w,S(n) = 1 Â…= n = 1. u´-M = ln n, Kk X X X 161+ 1+ n − PS(n) = 1 + k6n S(k)=S(pÎą ), Îą>2

y3ŠO OÂŞ(2-21)ÂĽ ˆ‘, w,k X X X 16 1+ kpÎą 6n Îąp>M, Îą>2

≪

h

M 2

X

√ <p6 n

n + p2

pÎą 6n Îąp>M, Îą>3

n n ≪ + ι p ln n

≪

X n n + + Îą ln n √ p

≪

n n n n + √ + ≪ . M −1 ln n 2 M ln n

p6 n √ Îą> M

X

√ p6 n √ p> M , Îą>3

X

√ M <p6 n 2

kpÎą 6n Îąp>M, Îą>3

kp2 6n 2p>M

X

16

X

√ p6 n Îąp>M, Îą>p

X

1.

(2-21)

kpÎą 6n Îąp>M, Îą>2

S(k)6M

1+

k6 pn2

n + pÎą

X

X

1

pÎą 6n k6 pnÎą Îąp>M, Îą>3

X

√ p6 n Îąp>M, 36Îą<p

n pÎą

n pÎą (2-22)

ĂŠuÂŞ(2-21)ÂĽ ,˜‘, I‡Ì # OÂ?{. ĂŠ?ÂżÂƒĂŞp 6 M , -Îą(p) = i Y M M , =Ă’´ι(p)LÂŤĂ˜Â‡L  ÂŒ ĂŞ. u = pÎą(p) . ĂŠ?¿ávS(k) 6 p−1 p−1 p6M

M ĂŞk, S(k) = S(pÎą ), KdS(k) ½Ă‚˜½kpÎą |M !, l Îą 6

∞ X M j=1

pj

6

M . ¤¹¤kávS(k) 6 M ĂŞk˜½ Ă˜u, Ăš k Â‡ĂŞĂ˜ÂŹÂ‡Lu Ă? p−1 ĂŞ ‡ê, =Ă’´d(u). ¤¹k X X Y 16 1= (1 + Îą(p)) S(k)6M

p6M

d|u

=

Y

p6M



= exp 

M 1+ p−1 X

p6M

 M , ln 1 + p−1

25

(2-23)


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ù¼exp(y) = ey . dƒê½n ߍ/ÂŞ(ĂŤ Šz[4]9[6])

Ď€(M ) =

X

p6M

M 1= +O ln M

M ln2 M

,

X

ln p = M + O

p6M

M ln M

ÂŒ : X M M ln 1 + 6 ln 1 + p−1 p−1 p6M p6M X 1 = ln (p − 1 + M ) − ln p − ln 1 − p p6M X X 1 6 Ď€(M ) ¡ ln(2M ) − ln p + p p6M p6M M M M ¡ ln(2M ) =O . −M +O = ln M ln M ln M X

(2-24)

5Âż M = ln n, dÂŞ(2-23)9ÂŞ(2-24)ĂĄÂ? OÂŞ:

X

S(k)6M

c ¡ ln n 1 ≪ exp , ln ln n

(2-25)

Ù¼cÂ?˜ ~ĂŞ. 5Âż exp

c¡ln n ln ln n

n , ln n

u´(ĂœÂŞ(2-21), ÂŞ(2-22)9ÂŞ(2-25)ĂĄÂ?Ă­Ă‘ OÂŞ: n X 1=O . n − PS(n) = 1 + ln n ≪

k6n S(k)=S(pÎą ), Îą>2

¤¹ PS(n) = n + O u´ ¤ ½n y².

26

n . ln n


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜

Ă™§Ÿê 3.1 ˜a†–SmarandacheŸêƒ' ŸêÂ?§ c¥‰Ñ SmarandacheŸêS(n), Ă™½Ă‚Â? êmÂŚ n|m!, =S(n) = min{m : m ∈ N, n|m!}. lS(n) ½Ă‚N´íĂ‘: XJn = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k LÂŤn IO Š)ÂŞ, @o

S(n) = max{S(pÎą1 1 ), S(pÎą2 2 ), ¡ ¡ ¡ , S(pÎąk k )}. ' u Âź ĂŞS(n) ÂŽ â 5 Â&#x;, ĂŤ Š z[7, 36, 53 − 55, 57]. 3 Š z[58]ÂĽ, SandorĂš \

SmarandacheŸêS(n) ÊóŸêS ∗ (n), ½Ă‚Xe, ĂŠu?Âż ĂŞn, S ∗ (n)½Ă‚Â?

 ÂŒ ĂŞmÂŚ m!|n, =k S ∗ (n) = max{m : m ∈ N, m!|n}. 'uS ∗ (n) ÂŽâ5Â&#x;Â?kÆÜ?1LĂŻĂ„, ˜X ĂŻĂ„¤J. ~X3Šz[59]ÂĽ ZĂŻĂ„ k'S ∗ (n) ŸêÂ?§ X

SL∗ (d) =

d|n

X

S ∗ (d)

d|n

ÂŒ)5Âż ˜‡k (Ă˜, =e    X  X A= n: SL∗ (d) = S ∗ (d), n ∈ N ,   d|n

KÊu?¿ ¢ês, Drichlet?êf (s) =

d|n

P

n>1,n∈A

kĂ° ÂŞ

1 3s ns

6 1žuÑ, 3s > 1žÂù, …

1 f (s) = Îś(s) 1 − s , 12

Ù¼SL∗ (n)Â?Smarandache LCM ÊóŸê, Â…½Ă‚Â? SL∗ (n) = max{k : [1, 2, ¡ ¡ ¡ , k]|n, k ∈ N}, Îś(s)LÂŤRiemann zetaŸê. 3Šz[27], SandorĂš\ –SmarandacheŸêZ(n)½Ă‚Xe: ĂŠu?Âż ĂŞn,

27


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Z(n)� êm, Œ n| m(m+1) ,= 2

m(m + 1)

Z(n) = min m : m ∈ N, n

. 2

lZ(n) ½Ă‚ÂŒÂąOÂŽĂ‘Z(n) cA‡ŠÂ?: Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 8, Z(10) = 1, ¡ ¡ ¡ . 'uZ(n) ÂŽâ5 Â&#x;, NþÆÜÑ?1 ĂŻĂ„, Âź Ă˜ k¿Â (J[4,6,63−68] , Ӟ Z(n)˜ {

Ăź5Â&#x;: a)ĂŠu?Âż ĂŞÎą9Ă›ÂƒĂŞp, Z(pÎą ) = pÎą − 1; b)ĂŠu?Âż ĂŞÎą,Z(2Îą ) = 2Îą+1 − 1.

!ĂŒÂ‡0 'u–SmarandacheŸê†SmarandacheÊóŸê ŸêÂ?§ Z(n) + S ∗ (n) − 1 = kn,

k>1

(3-1)

ÂŒ)5. ڇ¯K8c„vk<ĂŻĂ„, ĂœŠ+ Ă‡ĂŻĂ†ĂŻĂ„ĂšÂ˜aÂ?§ ĂŞ) Âœ š, ÚÊ?Â˜ĂšĂŻĂ„ŸêS ∗ (n)†Z(n) 5Â&#x;9§Â‚ƒm 'Xk˜½nĂ˜Ă„:,  ­ ‡ ´ÂŒÂą)݆§Âƒ' ?ĂŞ ùÑ5 ÂŻK, ˜ Ă? AĂ?(J, l WĂ– ĂšÂ˜ĂŻĂ„+Â? ˜x. !|^Ă? 9|Ăœ Â?{Âź ڇÂ?§ ¤k ĂŞ). ½ =y² eÂĄ ½n: ½ n 3.1 ŸêÂ?§(3-1) k = 1ž, Â…= Â?kÂ?˜ )n = 1; k = 2ž, Â…= n = 2Îą , Îą > 1ávÂ?§(3-1); k > 3ž, Â?§(3-1)Ăƒ). |^Ă? 9|Ăœ Â?{ÂŒÂąÂ† ‰Ñ½n y². Â? {ßü„, Ă˜Â” S ∗ (n) = m. k = 1ž, w,n = 1ávÂ?§(3-1). ¤¹n = 1´Â?§(3-1) ˜‡). eÂĄb½n > 1Â…ávÂ?§(3-1). d–SmarandacheŸêZ(n) ½Ă‚ Z(n)(Z(n) − 1) + mZ(n) = nZ(n). d d ÂŞ Âż ( ĂœZ(n) ½ Ă‚ ĂĄ Â? ÂŒ Âą Ă­ Ă‘n Ă˜mZ(n), 5 Âż m!|n, ¤ Âą ÂŒ Âą mZ(n) = qn, ½ÜZ(n) =

qn . m

òdª“<ÂŞ(3-1)ÂŒ qn + m − 1 = n. dS ∗ (n) = m

m ½Ă‚ m!|n, l ÂŒ n = m! ¡ n1 , dž, ުŒzÂ?

q(m − 1)! ¡ n1 + m − 1 = m! ¡ n1 .

(3-2)

3 ÂŞ(3-2)ÂĽ k Ăź ‘ w , ÂŒ Âą (m − 1)! Ă˜, ¤ Âą d Ă˜ 5 Â&#x; ´ ÂŞ(3-2)ÂĽ

1 n ‘m − 1Â? U (m − 1)! Ă˜. w ,(m − 1)! Ă˜m − 1 Â… = m = 1, 2, 3.

m = 1ž, dÂŞ(3-2)ÂŒ q = 1, džkZ(n) = n, dŸêZ(n) ½Ă‚95Â&#x;ÂŒ ,

vk ĂŞn > 1ávZ(n) = n. m = 2ž, dÂŞ(3-1) Z(n) = n − 1Â…n > 1, d

žn = pÎą , Îą > 1, pÂ?Ă›ÂƒĂŞ, ²u n = pÎą , Îą > 1Ă˜´ª(3-1) ). m = 3ž, 28


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

=S ∗ (n) = m = 3, Kn = 6, ² yn = 6Ă˜ávÂŞ(3-1).¤¹ k = 1ž, ĂŞnáv ÂŞ(3-1) Â…= n = 1. k = 2ž, w,n = 1Ă˜ávÂŞ(3-1). Ă“n, b½n > 1Â…ávÂ?§(3-1). ŠâZ(n) ½Ă‚ džk Z(n)(Z(n) − 1) + mZ(n) = 2nZ(n). ĂĄÂ?ÂŒ¹ín Ă˜mZ(n), 5Âż m!|n, ÂŒÂą mZ(n) = q ′ n, ½ÜZ(n) =

q′ n m .

òd

q′ n

ª“\ÂŞ(3-1)ÂŒ m +m−1 = 2n. dS ∗ (n) = m ½Ă‚ m!|n, l ÂŒ n = m!¡n2 , džުŒzÂ? k(m − 1)! ¡ n2 + m − 1 = 2m! ¡ n2 .

(3-3)

3 ÂŞ(3-3)ÂĽ k Ăź ‘ w , ÂŒ Âą (m − 1)! Ă˜, ¤ Âą d Ă˜ 5 Â&#x; ´ ÂŞ(3-3)ÂĽ

1 n ‘m − 1Â? U (m − 1)! Ă˜. w ,(m − 1)! Ă˜m − 1 Â… = m = 1, 2, 3.

m = 1ž, d(3-3)ÂŞÂŒ k = 2, džkZ(n) = 2n, dŸêZ(n) ½Ă‚95Â&#x;ÂŒ ,

vk ĂŞn > 1 ávZ(n) = 2n. m = 2ž,d(3-1)ÂŞ Z(n) = 2n − 1Â…n > 1,¤

Âą,n = 2Îą , Îą > 1´ª(3-1) ). m = 3ž,=S ∗ (n) = m = 3,Kn = 6, ² yn = 6Ă˜ áv(3-1)ÂŞ. nĂž, k = 2ž, ĂŞnáv(3-1)ÂŞ Â…= n = 2Îą , Îą > 1. k > 3ž, d¹ÞߍÂœš y²Ă“nÂŒ¹í , vk ĂŞn > 1ávZ(n) = kn,ĂšZ(n) = kn − 1, Â…n = 6Â?Ă˜áv(3-1)ÂŞ. Â?§(3-1)Ăƒ). nÞ¤ã, B ¤ ½n3.1 y².

3.2 'uSmarandachep‡Ÿê†–SmarandacheŸê Â?§ Ă?Âś SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!,=S(n) = min{m : m P n|m!}. Ă? Âś –SmarandacheÂź ĂŞZ(n)½ Ă‚ Â? á v kU n Ă˜  k=1

ĂŞm,=Z(n) = min{m : n|(m(m + 1))/2}.~X,Z(n) cA‡ŠÂ?Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 5, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 9, Z(10) = 4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 3, Z(17) = 16, Z(18) = 8, Z(19) = 18, Z(20) = 15, ¡ ¡ ¡ .

' u Âź ĂŞS(n)ĂšZ(n), N Ăľ Æ Ăś ĂŻ Ă„ § ‚ 5 Â&#x;, Âż ˜ ­ ‡ (

J[7,29,69−72] . 32.5!ĂŻĂ„ Â?§ Z(n) = S(n),

Z(n) + 1 = S(n)

ÂŒ)5, ¿‰Ñ Â?§ Ăœ ĂŞ).

29


Smarandache ¼ê9Ù '¯KïÄ

©z[75] Ú? Ͷ Smarandachep ¼êSc(n),½Â max{m : y|n!, 1 < y 6 m, (m + 1)†n!}. ~X, Sc(n) cA Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(5) = 5, Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(13) = 16, Sc(14) = 16, Sc(15) = 16, · · · . ©z[72] Ó ïÄ Sc(n)¼êÚZ(n)¼ê m 'X § Z(n) + Sc(n) = 2n, ­ (J, ¿JÑ e¡ ß . ß : én ∈ N + , §

Sc(n) + Z(n) = 2n

¤á = n = 1, 3α , p2β+1, α ¦ 3α + 2 ê u u2 ê, p > 5 ê,β ¦ p2β+1 + 2 ê ? ê. !ò Ñù ß y², = e¡ ½n. ½ n 3.2 n´Û ê , § Sc(n) + Z(n) = 2n ) U n = 1, 3α , p2β+1 , α ¦ 3α + 2 ê u u2 ê, p > 5 ê, β ¦ p2β+1 + 2 ê ? ê. ½ n 3.3 n´óê ,©ü« ¹: (1)n 2 , nØ´ §Sc(n) + Z(n) = 2n ); (2)n´¿© óê, n k3 ØÓ Ïf , nØ´ §Sc(n) + Z(n) = 2n ). y²½n3.2Ú½n3.3, k Ñe¡A Ún. Ú n 3.1 eSc(n) = x ∈ N + , n 6= 3,Kx + 1 un ê. Ú n 3.2 (1)eα ∈ N + ,KZ(2α ) = 2α+1 − 1;

(2)ep´Ø u2 ê, α ∈ N + , KZ(pα ) = pα − 1.

Ú n 3.3 n ∈ N + , n > 59 , KkSc(n) < 3n/2. Ú n 3.4 ên¿© , 3n n + n7/12 m7k ê. Ún3.1-3.4 y²ë ©z[30, 75, 77]. e¡y²½n3.2. n´Û ê , ©6« ¹5?Ø. 30


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

(1)n = 1÷v §. (2)n = 3, Z(3) = 2, Sc(3) = 3, 3Ø´ § ). (3)n = 3α (α > 2), 3α + 2 ê, K Sc(3α ) = 3α + 1,

Z(3α ) = 3α − 1,

3α ´ § ). (4)n = 3α (α > 2), 3α + 2Ø ê, KdÚn3.1 Ún3.2, k Sc(3α ) > 3α + 1,

Z(3α ) = 3α − 1,

3α Ø´ § ). (5)n = pγ , γ > 1, p > 5 ê, K Z(pγ ) = pγ − 1 n 6= 3, ù ©2« ¹:

en = p2β , β > 1, Kp ≡ ±1(mod3),u´ p2β ≡ 1(mod3),

l p2β + 2 ≡ 0(mod3), Kp2β + 2 Ø U ê, dÚn3.1, d nØ´ § ). en = p2β+1 ,Ù¥p > 5 ê, β ¦ p2β+1 + 2 ê ?¿ ê, dÚ n3.1, Sc(p2β+1 ) = p2β+1 + 1. dÚn3.2, Z(p2β+1 ) = p2β+1 − 1,KSc(p2β+1 ) + Z(p2β+1 ) = p2β+1 + 1 + p2β+1 − 1 = 2p2β+1 , n = p2β+1 §¤á. ep2β+1 + 2Ø ê, KdÚn3.1, Sc(p2β+1 ) > p2β+1 , n = p2β+1 Ø´ § ). (6)2†n, n = pα1 1 n1 , (p1 , n1 ) = 1, α1 > 1, p1 > 3 ê, Ó{ § n1 x ≡ 1(modpα1 1 ) k), ? Ó{ § n21 x2 ≡ 1(modpα1 1 ) k), Ù)Ø y,K 1 6 y 6 pα1 1 − 1,qpα1 1 − y½ c¡Ó{ § ), K

31


Smarandache ยผรช9ร ย 'ยฏKรฏร

1 6 y 6

ฮฑ

(p1 1 โ 1) . 2

d n21 y 2 โ ก (modpฮฑ1 1 ),

K pฮฑ1 1 |(n1 y โ 1)(n1 y + 1), (n1 y โ 1, n1 y + 1)|2, uยด(pฮฑ1 1 โ 1)|(n1 y โ 1)ยฝ(pฮฑ1 1 โ 1)|(n1 y + 1).

ฮฑ1 ฮฑ1 1 y) e(p1 โ 1)|(n1 y โ 1),Kn = p1 n2 (n1 yโ 1)(n , l 2 e(pฮฑ1 1

(pฮฑ1 โ 1)n1 n Z(n) = m 6 n1 y โ 1 6 1 โ 16 , 2 2

1 y) โ 1)|(n1 y + 1), Kn = pฮฑ1 1 n1 (n1 yโ 1)(n , l 2 Z(n) = m 6 n1 y 6

n (pฮฑ1 1 โ 1)n1 6 . 2 2

dร n3.3, n > 59ย , Kk Sc(n) + Z(n) <

3n n + = 2n, 2 2

dย nร รทv ย ยง. n < 59ย |^Oย ร ย ?1u รนยซย ยนe nร รทv ย ยง. nรพยครฃ, ยฝn3.2ยครก. eยกyยฒยฝn3.3. ยฉยฑenยซย ยน. (1) n = 2ฮฑ , ฮฑ > 1ย , Z(2ฮฑ ) = 2ฮฑ โ 1,

Sc(2ฮฑ ) > 1,

n = 2ฮฑ ร รทv ย ยง. (2) n = 2kpฮฑ , ฮฑ > 1, (2k, pฮฑ ) = 1, p > 3ย ย รชย , ร {ย ยง 4kx โ ก 1(modpฮฑ ) k),ย ร {ย ยง 16k 2 x2 โ ก 1(modpฮฑ ) k), ร )ร ย ย y,Kย 1 6 y 6 pฮฑ โ 1,qpฮฑ โ yยฝย cยกร {ย ยง ), Kย 1 6 y 6

(pฮฑ โ 1) .d 2

16k 2 y 2 โ ก 1(modpฮฑ ), Kpฮฑ |(4ky โ 1)(4ky + 1), (4ky โ 1, 4ky + 1) = 1,uยดpฮฑ |(4ky โ 1)ยฝpฮฑ |(4ky + 1).

32


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê Îą

ep |(4ky − 1), Kn =

2kpÎą 4ky(4ky−1) , 2

l k

4k(pÎą − 1) 1 Z(n) = m 6 4ky − 1 6 − 1 6 n − 2k − 1 6 1 − Îą n. 2 p

epÎą |(4ky + 1), Kn = 2kpÎą 4ky(4ky+1) , l k 2 4k(pÎą − 1) 1 Z(n) = m 6 4ky 6 6 n − 2k 6 1 − Îą n. 2 p

(3) n = (2k + 1)2Îą , Îą > 1, k > 1ž, KĂ“{Â?§ (2k + 1)x ≥ 1(mod2Îą+1 ) † (2k + 1)x ≥ −1(mod2Îą+1 ) Ăž7k), Â…)Â?Ûê, ÎąÂ?Ă“{Â?§ (2k + 1)x ≥ 1(mod2Îą+1 ) ), e1 6 Îą 6 2Îą − 1, K Îą=ÂŒ, Ă„K 2Îą + 1 6 Îą 6 2Îą+1 − 1, K 2Îą+1 − Îą 6 2Îą+1 − 2Îą − 1 = 2Îą − 1, Â…2Îą+1 − ιávĂ“{Â?§

(2k + 1)x ≥ −1(mod2Îą+1 ),

߇Ó{Â?§¼7k˜‡áv 1 6 Îą 6 2Îą − 1 )Îą, K2Îą+1 |[(2k + 1)Îą + 1]½2Îą+1 |[(2k + 1)Îą − 1].

e2Îą+1 |[(2k + 1)Îą + 1],K2Îą+1 (2k + 1)|[(2k + 1)Îą + 1](2k + 1), l 1 Îą Z(n) 6 Îą(2k + 1) 6 (2 − 1)(2k + 1) 6 1 − Îą n. 2 2Îą+1 |[(2k + 1)Îą − 1]ž, Ă“nÂ?kZ(n) 6 1 − 21Îą n. oƒ, ĂŠu(2),(3)ߍÂœš, =

n = 2ι pι1 1 pι2 2 ¡ ¡ ¡ pιk k (ι > 1, ιi > 1, k > 2)

33


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Â?Ă™IOƒŠ)ÂŞ, q Îł = min{2Îą , pÎą1 1 , pÎą2 2 , ¡ ¡ ¡ , pÎąk k }, K

l q Îł <

√ 3

n = 2Îą pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k > q 3Îł , n,K 2 1 1 Z(n) 6 n 1 − Îł < n 1 − √ = n − n3 , 3 q n

Ăš , n¿ŠÂŒÂž, dĂšn3.4, 7

2

Sc(n) + Z(n) < n + n 12 + n − n 3 < 2n, =TnĂ˜áv Â?§. nÞ¤ã, ½n3.3¤å.

3.3 'ušÂ–SmarandacheŸê9Ă™ÊóŸê Â?§ ĂŠ?Âż ĂŞnĂ?Âś –SmarandacheŸêZ(n)½Ă‚Â?áv

m P

kU n Ă˜ Â

k=1

ĂŞm,=Z(n) = min{m : m ∈ N + , n| m(m+1) }. dZ(n) ½Ă‚N´íĂ‘Z(1) = 2

1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 8, Z(10) = 4, Z(11) = 10, ¡ ¡ ¡ .NþÆÜïĂ„ ŸêZ(n) 5Â&#x;, ˜ ­Â‡ ( JĂšĂ&#x;ÂŽ[30,79,80] :

(a)ĂŠu?Âż ĂŞn,kZ(n) > 1; (b)ĂŠu?ÂżĂ›ÂƒĂŞpĂš ĂŞk, kZ(pk ) = pk − 1, Z(2k ) = 2k+1 − 1; (c)enÂ??ÂżĂœĂŞ, KZ(n) = max{Z(m) : m|n}.

P Šz[27]Ăš\ ŸêZ(n) ÊóŸêZ ∗(n), òĂ™½Ă‚Â?ávnU m k=1 k Ă˜ n o m(m+1)  ÂŒ ĂŞm, =Z ∗ (n) = max m : m ∈ N + , |n . ~ XZ ∗ (n) c A ‡ Š 2

Â?Z ∗ (1) = 1, Z ∗ (2) = 1, Z ∗ (3) = 2, Z ∗ (4) = 1, Z ∗ (5) = 1, Z ∗ (6) = 3, Z ∗ (7) = 1, Z ∗ (8) = 1, Z ∗ (9) = 2, ¡ ¡ ¡ . dŠz[27, 82], Z ∗ (n)äkXe5Â&#x;:

(d)ĂźÂ‡Ă›ÂƒĂŞp, qeávp = 2q − 1, KZ(pq) = p; ep = 2q + 1, KZ(pq) = p − 1; (e)en = 3s t(sÂ??Âż ĂŞ,tÂ?ĂœĂŞ), KZ ∗ (n) > 2; (f)ʤk ĂŞa, b, kZ ∗ (ab) > max{Z(a), Z(b)}. ĂœŠ+ĂŻĂ†ĂŻĂ„Â˜aÂ?šŸêZ(n)9Ă™ÊóŸêZ ∗ (n) Â?§ Z(n) + Z ∗ (n) = n

ÂŒ)5, ÂżJĂ‘eÂĄ Ă&#x;ÂŽ: Ă&#x; ÂŽ : (A)Â?§(3-4)Â?kk Â‡óê). Â?NÂ?k˜‡óê)n = 6; 34

(3-4)


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

(B) §(3-4) ¤kÛê)7 Û êp (p > 5). 'ud¯K, ©z[83]éÙ?1 ïÄ, y² ß (B), ¿(¡ß (A)E´úm ¯K. !ò? Ú0 éùü ß ?1 ïÄ, |^Ð {Ú|Ü {y¢ ù ü ß (5, e¡ (Ø: ½ n 3.4 §(3-4) k óê)n = 6; §(3-4) ¤kÛê) n = pk , p ê, k ?¿ ê. y :©ü« ¹?Ø. 1) n óê , ©±e4« ¹5y²: 1.1) n = 2k (k > 1) , kZ(2k ) = 2k+1 − 1, Z ∗ (2k ) = 1.l Z(2k ) + Z ∗ (2k ) 6=

2k , 2k Ø´ §(3-4) ).

1.2) n = 2p(p Û ê) ,ep = 3,KZ(6) = 3, Z ∗ (6) = 3,l Z(6) + Z ∗ (6) = 6, n = 6´ §(3-4) );ep = 5,KZ(10) = 4, Z ∗ (10) = 4,l Z(10) + Z ∗ (10) = 8 6= 10, n = 10Ø´ §(3-4) );ep > 5,KZ ∗ (2p) = 1, = Z(2p) = 2p − 1 , §(3-4)k). KI2p| 2p(2p−1) ,dd 2p − 1 óê, gñ. 2 U

1.3) n = 2k pα (k,α ê) ,e2k pα m 3/XA = 2B ± 1 'Xª, K px = 2 · 2y ± 1,

(3-5)

Ø U 32y = 2 · px ± 1.ùpx,y´©O uα, k ê. ¯¢þ, o¬ 3Ø é xÚy¦ (3-5)ª¤á. ÷vª(3-5)¤á xÚy©OP Xe?Ø¥ b,d a,c: 1.3.1)epx = 2 · 2y − 1, KZ ∗ (n) = max{px } = pb = 2 · 2a − 1.Z(n) = m = n − Z ∗ (n) = 2k pα − pb = 2k pα − 2 · 2a + 1, Kk

k α

(2 p − pb )(2k pα − 2 · 2a + 2) 2 p

2 k α

k = 1 , Ka = 1, pb = 3,u´8( n = 2p /ª; k > 1 , dª(3-6) 2k pα−b |(2k pα−b − 1)(2k−1 pα − 2a + 1) w,, ÃØb = α ´b < α,óêÑØ U Ø2 Ûê È, d §(3-4)Ã). 1.3.2)epx = 2 · 2y + 1,K Z ∗ (n) = max{px − 1} = pd − 1 = 2 · 2c . 35

(3-6)


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Z(n) = m = n − Z ∗ (n) = 2k pÎą − pd + 1 = 2k pÎą − 2 ¡ 2c , K

k Îą

(2 p − 2 ¡ 2c )(2k pÎą − pd + 2) 2 p

2 k Îą

(3-7)

k = cž, dÂŞ(3-7)k2pÎą |(pÎą −2)(2k pÎą −pd +2), óêĂ˜ÂŒU Ă˜Ă›ĂŞ,Â?§(3-4)dÂžĂƒ ); k > cž, k2k−c pÎą |(2k−c−1pÎą −1)(2k pÎą −pd +2), pÎą |(2k−c−1pÎą −1)(2k pÎą −pd +2)Ă˜

ÂŒU¤å, l džÂ?§(3-4)Ăƒ).

1.3.3) eĂ˜ 3'XÂŞ(3-5). KZ ∗ (n) = 1. Z(n) 6= n − 1. Ă„KĂ“Âœš1.2)ÂĽ ?

Ă˜Â˜ , Ûê 2 Ă˜ gĂą.

1.4) n = 2k uvž, Ù¼(2k , u) = (u, v) = (v, 2k ) = 1.Px,yŠOÂ?u,v Ă?f,zÂ? uk ĂŞ. n ˆ‡Ă?fƒme 3/XA = 2B Âą 1 'XÂŞ, Â?ÂŒUÂ?x = 2 ¡ 2z Âą 1½x = 2y ¡ 2z Âą 1, Ă˜ÂŒU 32z = 2x Âą 1½2z y = 2x Âą 1. w, 3þÊx,y,zá veÂĄ?Ă˜¼¤ 9 Ă˜½Â?§:

1.4.1)ex = 2 ¡ 2z − 1,KZ ∗ (n) = max{x} = x1 = 2 ¡ 2z1 − 1.Z(n) = m = n − Z ∗ (n) = 2k uv − x1 = 2k uv − 2 ¡ 2z1 + 1. Ă˜Â”Â˜Â„5, u = ex1 , Kk

k

(2 uv − x1 )(2k uv − 2 ¡ 2z1 + 2) 2 uv

2 k

(3-8)

k = 1ž, kz1 = 1, ÂŒ 2ev|(2ev − 1)(uv − 1), , v|(2ev − x1 )(uv − 1)Ă˜ÂŒU¤å,

Ñgù; k > 1ž, k

2k ev|(2k ev − 1)(2k−1 uv − 2z1 + 1), l óê Ă˜Ă›ĂŞ gĂą. 1.4.2)ex = 2 ¡ 2z + 1, KZ ∗ (n) = max{x − 1} = x2 − 1 = 2 ¡ 2z2 . Z(n) = m = n − Z ∗ (n) = 2k uv − x2 + 1 = 2k uv − 2 ¡ 2z2 , K

k

(2 uv − 2 ¡ 2z2 )(2k uv − 2 ¡ 2z2 + 1) 2 uv

, 2 k

(3-9)

k = z2 ž, k2uv|(uv−2)(2k uv−2k+1 +1), óêĂ˜ÂŒU Ă˜Ă›ĂŞ, Ă‘gĂą; k > z2 ž, k

2k−z2 +1 uv (2k uv − 2)(2k uv − x2 + 2), 36


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

u|(2k uv − 2)(2k uv − x2 + 2)Ă˜ÂŒU¤å, Ă‘gĂą.

1.4.3)ex = 2y ¡ 2z − 1,KZ ∗ (n) = max{x} = x3 = 2y3 ¡ 2z3 − 1. Z(n) = m = n − Z ∗ (n) = 2k uv − x3 = 2k uv − 2y3 ¡ 2z3 + 1.

Ă˜Â”Â˜Â„5, u = tx3 , Kk

k

(2 uv − x3 )(2k uv − 2y3 ¡ 2z3 + 2) 2k uv

, 2

(3-10)

k = 1ž, kz3 = 1, ÂŒ 2tv|(2tv − 1)(uv − 2y3 + 1), , v|(2tv − 1)(uv − 2y3 + 1)Ă˜ ÂŒU¤å, Ă‘gĂą; k > 1, k2k tv|(2k tv − 1)(2k−1 uv − 2z3 y3 + 1), óê Ă˜Ă› ĂŞ gĂą.

1.4.4)e= 2y ¡ 2z + 1, KZ ∗ (n) = max{x − 1} = x4 − 1 = 2y4 ¡ 2z4 . Z(n) = m = n − Z ∗ (n) = 2k uv − x4 + 1 = 2k uv − 2y4 ¡ 2z4 , Ă˜Â”Â˜Â„5, v = sy4 , Kk

k

(2 uv − 2y4 ¡ 2z4 )(2k uv − 2y4 ¡ 2z4 + 1) k 2 uv

, 2

(3-11)

k = z4 , k2uv|(uv − 2y4 )(2k uv − 2z4 +1 y4 + 1), Ăł ĂŞ Ă˜ ÂŒ U Ă˜ Ă› ĂŞ, Ă‘ g Ăą;

k > z4 ž, k2k−z4+1 su|(2k−z4 su − 2)(2k uv − x4 + 2), u|(2k−z4 su − 2)(2k uv − x4 + 2)Ă˜ ÂŒU¤å, Ă‘gĂą.

1.4.5)eĂ˜ 3¹Þ4ÂŤ'XÂŞ, KZ ∗ (n) = 1. Z(n) 6= n − 1,Ă„KÂŹ Ă‘n − 1Â?Ăł

ĂŞ gĂą.

nÞ¤ã, Â?§(3-4) óê)kÂ…=k˜‡Â?n = 6. 2) nÂ?Ûêž, Š¹e3ÂŤÂœš?Ă˜: 2.1)w,n = 1Ă˜´Â?§(3-4) ). 2.2) n = pk (pÂ?Ă›ÂƒĂŞ, kÂ? ĂŞ)ž, ep = 3,KZ(n) = n − 1, Z ∗ (n) = 2,l

Z(n) + Z ∗ (n) 6= n; ep > 5,KZ(n) = n − 1, Z ∗ (n) = 1. n = pk ´Â?§(3-4) ).

2.3) nškĂľÂ‡Ă˜Ă“ÂƒĂ?fž, n = uv,Ăšp(u, v) = 1. x,yŠOÂ?u,v Ă?f.

Ă˜Â”Â˜Â„5, u > v. Še AÂŤÂœš?Ă˜: 2.3.1)e 3'XÂŞx = 2y − 1. Z ∗ (n) = max{x} = x1 = 2y1 − 1. Pu = bx1. Z(n) = m = n − Z ∗ (n) = uv − x1 = uv − 2y1 + 1, Kk

(uv − x1 )(uv − 2y1 + 2) uv

, 2 37


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

ddŒ

(bv − 1)(uv − 2y1 + 2) bv

, 2

w,Ă˜¤å, Ă‘gĂą. -

(bv − 1)(uv − 2y1 + 2) v

, 2

2.3.2)e 3'XÂŞx = 2y + 1. Z ∗ (n) = max{x − 1} = x2 − 1 = 2y2 . Pn = dy2 . Z(n) = m = n − Z ∗ (n) = uv − x2 + 1 = uv − 2y2 ,

Kk

(uv − x2 + 2)(uv − 2y2 ) , uv

2

2du|(du − 2)(uv − x2 + 2), u|(du − 2)(uv − x2 + 2), w,Ă˜¤å, Ă‘gĂą.

2.3.3)eĂ˜ 3/Xx = 2y Âą 1 'XÂŞ, KZ ∗ (n) = 1. -Z(n) = m = n − 1, w

,n n(n−1) ¤å. eydž mĂ˜´ávZ(n)½Ă‚  ÂŠ. 2 dĂ“{Â?§uX ≥ 1(modv)k). ÂŒ u2 X 2 ≥ 1(modv)k). Ă™)Ă˜Â” Â?Y , K

Œ 1 6 Y 6 v − 1. Kv|(uY − 1)(uY + 1). v|(uY − 1)ž, k

uY (uY − 1) n = uv

, 2

Z(n) = m 6 uY − 1 6 u(v − 1) − 1 < uv − 1; v|(uY + 1)ž, k

uY (uY + 1) n = uv

, 2

Z(n) = m 6 uY 6 u(v − 1) < uv − 1. m = n − 1Ă˜´ávZ(n)½Ă‚  ÂŠ.

nĂœ¹ÞAÂŤÂœš, Ûên´Â?§(3-4) ) Â…= n = pk , Ù¼p > 5Â?ÂƒĂŞ, kÂ? ĂŞ. nÞ¤ã, ½n3.4¤å.

38


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

3.4 'ušSmarandachep‡Ÿê†–SmarandacheŸê Â?§ m P ĂŠ?Âż ĂŞn,–SmarandacheŸêZ(n)½Ă‚Â?ÂŚ n Ă˜ k  êm, k=1

n o

=Z(n) = min m : n m(m+1) .~X, TŸê cA‡ŠÂ?:Z(1) = 1, Z(2) = 3, Z(3) = 2

2, Z(4) = 7, Z(5) = 5, Z(6) = 3, Z(7) = 6, Z(8) = 15, Z(9) = 9, Z(l0) = 4, Z(11) =

l0, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5, Z(16) = 31, Z(17) = 16, Z(18) =

8, Z(l9) = 8, Z(20) = 15, ¡ ¡ ¡ .

' u Ăš ˜ Âź ĂŞ, N Ăľ Æ Ăś ĂŻ Ă„ § 5 Â&#x;, Âż ˜ ­ ‡ ( J, „ Š

z[85 − 89]. ~X, ĂœŠ+3Šz[87]ÂĽĂŻĂ„ Â?§Z(n) = S(n), Z(n) + 1 = S(n) ÂŒ) 5, ¿‰Ñ Â?§ Ăœ ĂŞ), 'uÚ߇Â?§, 3 Ă– 2.5!ÂĽkÂ?[ ĂŁ.

3Šz[75]ÂĽ, Ăš? Smarandachep‡ŸêSc(n), Sc(n)½Ă‚Â?ávy|n!Â…1 6 y 6 m ÂŒ ĂŞm,=Sc(n) = max{m : y|n!, 1 6 y 6 m, m + 1†n!}. ~ X,Sc(n) c A ‡ Š Â?:Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(6) = 6, Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(l0) = 10, Sc(11) = 12, Sc(12) = 12, Sc(13) = 16, Sc(14) = 16, Sc(15) = 16, ¡ ¡ ¡ .

Š z[75]ĂŻ Ă„ Sc(n) Ă? 5 Â&#x;, Âż y ² Âą e ( Ă˜: eSc(n) = x, Â…n 6= 3,

Kx + 1´ÂŒun  ÂƒĂŞ.

m P k Ă˜n 3Šz[91]ÂĽĂš? –SmarandacheÊóŸêZ ∗ (n), Z ∗ (n) ½Ă‚Â?áv k=1 n o  ÂŒ ĂŞm, =Z ∗ (n) = max m : m(m+1) |n . Šz[272]ĂŻĂ„ Z ∗ (n) 5Â&#x;, 2

˜ ­Â‡ (J. Šz[86]ÂĽĂŻĂ„ Ăšn‡Ÿêƒm 'XÂ?§Z(n) + Z ∗ (n) = n („3.3!)†Sc(n) = Z ∗ (n) + n, ˜ ­Â‡(J, ÂżJĂ‘ ˜ „™)Ăť Ă&#x;ÂŽ: Ă&#x; ÂŽ :Â?§Sc(n) = Z ∗ (n) + n )Â?pÎą , Ù¼pÂ?ÂƒĂŞ,2†ι, pÎą + 2Â?Â?ÂƒĂŞ. ! 8 ´ïĂ„¹Þ¯K, eÂĄ : ½ n 3.5 Â?§Sc(n) = Z ∗ (n) + n )Â?pÎą , Ù¼pÂ?ÂƒĂŞ, 2†ι, pÎą + 2Â?Â?ÂƒĂŞ, Âą9á v^‡ι(2Îą − 1)†n(Îą > 1), n + 2 Â?ÂƒĂŞ, nÂ? ĂŞ. 3y²½nƒck‰ÑeÂĄ A‡Ún. Ăš n 3.5 eSc(n) = x ∈ Z,Â…n 6= 3,Kx + 1Â?ÂŒun  ÂƒĂŞ. y ² :„Šz[75]. ddŒ„, Sc(n)Ă˜ 3n = 1, n = 3Â?Ûê , 3Ă™{Âœše ŠÑ´óê. Ăš n 3.6 Z ∗ (pÎą ) =

  2, p 6= 3  1, p = 3

39


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ăš n 3.7 en ≥ 0(modÎą(2Îą − 1)),KkZ ∗ (n) > 2Îą > 1. Ăš n 3.8 √

8n + 1 − 1 . 2 Ăšn3.6-Ăšn3.8 y²ÂžĂŤ Šz[27]. ∗

Z (n) 6

Ăš n 3.9 n = pÎą0 0 pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k (p0 = 2, pi > 3, k > 1, Îąi > 1)Â?n IOƒŠ)ªž,k n

Z(n) 6 n −

min{pι0 0 , pι1 1 , pι2 2 , ¡ ¡ ¡ , pιk k } y ² :aqu3.3!¼y²½n3.3 �{. n = pι0 0 pι1 1 pι2 2 ¡ ¡ ¡ pιk k (p0

= 2, pi > 3, k >

1, Îąi > 1)Â?Ă™IOƒŠ)ªž, ŠßÂœš5y².

(i) n = 2kpÎą , Îą > 1, (2k, pÎą ) = 1, p > 3Â?ÂƒĂŞ, dĂ“{Â?§ 4kx ≥ 1(modpÎą ) k), ÂŒ Ă“{Â?§ 16k 2 x2 ≥ 1(modpÎą ) k ), Ă™ ) Ă˜ ” Â?y,K ÂŒ 1 6 y 6 pÎąâˆ’1 ,qpÎąâˆ’y ½ Â? c ÂĄ Ă“ { Â? § ), K ÂŒ 1 6 y 6

pÎąâˆ’1 .d 2

16k 2 y 2 ≥ 1(modpÎą ), KpÎą |(4ky − 1)(4ky + 1), (4ky − 1, 4ky + 1) = 1,u´pÎą |4ky − 1 ½pÎą |4ky + 1 .

Îą Îą 4ky(4ky−1) ep |4ky − 1 , Kn = 2kp

, l 2

Z(n) = m 6 4ky − 1 1 4k(pÎą − 1) 6 − 1 6 n − 2k − 1 6 1 − Îą n 2 p n 6n − . min{pÎą0 0 , pÎą1 1 , pÎą2 2 , ¡ ¡ ¡ , pÎąk k }

epÎą |4ky + 1 , Kn = 2kpÎą 4ky(4ky+1) , l Â?k 2 4k(pÎą − 1) 1 n Z(n) = m 6 4ky 6 6 n − 2k = 1 − Îą n 6 n − . Îą0 Îą1 Îą2 2 p min{p0 , p1 , p2 , ¡ ¡ ¡ , pÎąk k } (ii) n = 2Îą (2k + 1), (Îą > 1, k > 1),KĂ“{Â?§ (2k + 1)x ≥ 1(mod2Îą+1 ) † (2k + 1) ≥ −1(mod2Îą+1 ) 40


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

Ăžk), Â…)Â?Ûê, ÎąÂ?Ă“{Â?§ (2k + 1)x ≥ 1(mod2Îą+1 ) ), e1 6 Îą 6 2Îą − 1,K Îą=ÂŒ, Ă„K 2Îą + 1 6 Îą 6 2Îą+1 − 1, K 2Îą+1 − Îą 6 2Îą+1 − 2Îą − 1 = 2Îą − 1, Â…2Îą+1 − ιávĂ“{Â?§

(2k + 1)x ≥ −1(mod2Îą+1 ),

߇Ó{Â?§¼7k˜‡áv1 6 Îą 6 2Îą −1 )Îą,K2Îą+1 |(2k + 1)Îą + 1½2Îą+1 |(2k + 1)Îą − 1 , e2Îą+1 |(2k + 1)Îą + 1 ,K

2Îą+1(2k + 1) |[(2k + 1)Îą + 1](2k + 1)Îą, l 1 n Z(n) 6 Îą(2k + 1) 6 (2 − 1)(2k + 1) 6 1 − Îą n 6 n − . Îą0 Îą1 Îą2 2 min{p0 , p1 , p2 , ¡ ¡ ¡ , pÎąk k } Îą

2Îą+1 |(2k + 1)Îą − 1ž, Ă“nÂ?k 1 n . Z(n) 6 1 − Îą n 6 n − Îą0 Îą1 Îą2 2 min{p0 , p1 , p2 , ¡ ¡ ¡ , pÎąk k }

nĂœ(i),(ii)k, n = pÎą0 0 pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k (p0 = 2, pi > 3, k > 1, Îąi > 1)Â?Ă™IOƒŠ)

ªž, K

Z(n) 6 n −

n min{pι0 0 , pι1 1 , pι2 2 , ¡ ¡ ¡

, pÎąk k }

.

e¥ò‰Ñ½n y², ŠĂŠÂŤÂœš5y². (1)n = 1ž, Z ∗ (1) = 1, Sc(1) = 1,K1Ă˜Â?Ă™). (2)n = 3Îą (Îą > 1),d Ăš n3.6, Z ∗ (3Îą ) = 2,en = 3Îą ´ Â? § ),KSc(3Îą ) = 2 + 3Îą ,Ă?Â?3|3Îą + 2 + 1,l 3Îą + 2 + 1Ă˜ÂŒUÂ?ÂƒĂŞ †Ún3.5ƒgĂą, n = 3Îą Ă˜´ Â?§ ). (3)n = pÎą (Îą > 1, p > 5),dĂšn3.6,Z ∗ (pÎą ) = 1, en = pÎą ´ Â?§ ), KSc(pÎą ) = β

1 + pι ,� p > 5ž, 3|p2

+2

, dĂšn3.5, ÎąĂ˜UÂ?óê, Â… pÎą + 2(2†ι) Â?ÂƒĂŞÂž,

n = pÎą (Îą > 1, p > 5Â?ÂƒĂŞ)áv Â?§. (4)n = 2Îą (Îą > 1),e m(m+1) |2Îą ,Ă?(m, m + 1) = 1,Km = 1, Z ∗ (2Îą ) = 1,en = 2Îą ´ 2

Â?§ ),KSc(2Îą ) = 1 + 2Îą ,Ă?2|(2Îą + 1 + 1),†Ún3.5gĂą, n = 2Îą (Îą > 1)Ă˜´ 41


Smarandache ¼ê9Ù '¯KïÄ

§ ). (5)n = pα1 1 pα2 2 · · · pαk k (k > 2, αi > 1) ÙIO ©)ª. q© ü« ¹5y².

(i)2†n,K2†pαi i ,l 2|Sc(n),en ÷v §,K7L2†Z ∗ (n).y ÄZ ∗ (n),e

3 êα(α > 1),¦α(2α − 1)|n,KZ ∗ (n) > 2α − 1,e 3 êα(α > 1),¦α(2α + 1)|n, KZ ∗ (n) > 2α,l

Z ∗ (n) = max{max{2k : k(2k + 1)|n}, max{2k − 1 : k(2k − 1)|n}}. 2©n« ¹5?Ø 1 ,eZ ∗ (n) = 2α − 1 > 1,Kα(2α − 1)|n,kα|n, α|[n + (2α − 1) + 1]. en ÷v

§, KSc(n) = 2α − 1 + n. Sc(n) + 1Ø ê, Ún3.5 gñ.

1 , eZ ∗ (n) = 2α > 1,Kα(2α + 1)|n,kα|n, (2α + 1)|n.en ÷ v §,

KSc(n) = 2α + n. Sc(n) + 1Ø ê, Ún3.5 gñ.

, eZ ∗ (n) = 1, dα > 1, Kα(2α − 1)†n, l en + 2Ø´ ê,dÚn3.5, ù

n Ø´ § ). en + 2 ê, dÚn3.5, ù n § ). =α(2α − 1)†n, n + 2 ê ên § ).

(ii)2|n,en÷v §, K7LZ ∗ (n) óê, Z ∗ (n) > 2, Z ∗ (n) = m > 2,

m(m + 1) |n , 2

K(m + 1)|n,? (m + 1)|(n + m + 1), ù Sc(n) = n + m + 1Ø´ ê, Ún3.5gñ. Ïd, §Sc(n) = Z ∗ (n) + n ) pα , Ù¥p ê, 2†α, pα + 2 ê, ±9÷v^ α(2α − 1)†n(α > 1), n + 2 ê, n ê. ùÒ ¤ ½n3.5 y².

3.5 'uSmarandacheV ¦¼ê é ? ¿ ên,Í ¶ Smarandache¼ êZ(n)½  êm¦ n o m(m+1) m(m+1) n| 2 , =Z(n) = min m : m ∈ N, n| 2 .ù ¼ê´dÛêZæͶêØ

;[Smarandache3©z[7]¥Ú? . 'u¼êZ(n) ê5 , NõÆö?1 ïÄ, ¼ Ø k (J[28,36,97−99] . ~X: (1)éu?¿ ên,Z(n) < nØð¤á. (2)é?¿ êp > 3, Z(p) = p − 1.

(3)é?¿ êp > 39k ∈ N, Z(pk ) = pk − 1. p = 2 , KkZ(2k ) = 2k+1 − 1.

(4)Z(n)´Ø \ , =Z(m + n)Øð uZ(m) + Z(n);Z(n) Ø´ ¦ , =Z(m ·

n)Øð uZ(m) · Z(n).

l±þ {ü 5 ±wÑ, Z(n) ©ÙéØ5Æ, 'u§ 5 k u

42


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

? ÚïÄ. d Smarandache ½  , ê Ø ¼ êSdf (n) Sdf (n) = min{m : m ∈

N, n|m!!}. T¼ê¡ SmarandacheV ¦¼ê, 'u§ Ð 5 , kØ Æö ?1 ïÄ¿ ­ (J[4,6,31,100] . ~X, Sdf (n)k é­ 5 ,

=Sdf (n) ±Ûó5ØC, Ò´`en Ûê, KSdf (n) Ûê, en óêKSdf (n) óê. éN´uy, Sdf (n) ´ éØ5Æ ¼ê, cÙ´3n ó ê ÿSdf (n)LyÑéØ­½ 5 . éZ(n)ÚSdf (n), ùü þLyÑØ­½5 ¼ê, UÄ3§ méÑ é XQ? ! Ì 8 Ò´ïÄ e¡ü ¼ê § )5, =¦ § Z(n) = Sdf (n), Z(n) + 1 = Sdf (n) ¤k ê). !ÏLÐ {0 ù ¯K ) , =y² e¡ ü ½n. ½ n 3.6 é?¿ ên > 1, ¼ê § Z(n) = Sdf (n)

(3-12)

=kÛê), Ù¤k)=k2«/ª: n = 45; n = pα1 1 pα2 2 · · · pαk k p,

Ù¥k > 1, p1 < p2 < · · · < pk < pþ Û ê, é1 6 i 6 k, αi > 1,Ó p + 1 ≡ 0(modpαi i ).

½ n 3.7 é?¿ ên > 1, ¼ê § Z(n) + 1 = Sdf (n)

(3-13)

=kÛê), Ù¤k)=k3«/ª: n = 9; n = p; n = pα1 1 pα2 2 · · · pαk k p,

Ù¥k > 1, p1 < p2 < · · · < pk < p þ Û ê, é1 6 i 6 k, αi > 0 3 αi > 1, Ó p − 1 ≡ 0(modpαi i ).

e¡y²ùü ½n. Äk½n3.6. ¯¢þ, n = 1 , §Z(n) = Sdf (n)¤á. éN´ y, n = 2, 3, 4, 5, 6, 7 , Z(n) = Sdf (n)ؤá. u´Ø n > 8. Äky² §(3-12)Ø Ukóê). n = 2α pα1 1 pα2 1 · · · pαk k n IO©)Ϫ.

(1)ek = 0,=n = 2α , d dSdf (n) 5 Sdf (2α ) óê, Z(2α ) = 2α+1 −

1 Ûê, l Sdf (2α ) 6= Z(2α ). d nØ÷v §. 43


Smarandache ¼ê9Ù '¯KïÄ

(2)ek > 1,Kn = 2α pα1 1 pα2 1 · · · pαk k .dSdf (n) ± Û ó 5 Ø C , eZ(n) =

Sdf (n) = a,Ka7 óê, Ø Z(n) = Sdf (n) = 2m,u´dZ(n)½Âk 2α pα1 1 pα2 1 · · · pαk k |m(2m + 1).

(3-14)

αi α α d(3-14)ª , 7k2α |m, é∀pαi i 7kpi |m ½pi |(2m + 1). d2 |m íÑ

2α |m!!. α

(3-15)

α

PS1 = {pαi i : pαi i |m}, S2 = {pj j : pj j |(2m + 1)}.

5¿ ¯¢, =S2 6= Ø,ù´Ï eS2 = Ø,Ké¤kpαi i þkpαi i |m, q2α |m, u

´d2α pα1 1 pα2 2 · · · pαk k | (2m−1)·2m , Z(n) 6 2m − 1, S2 6= Øu´: 2

(i)eS1 = Ø,=∀pαi i , pαi i |(2m + 1). emax{pαi i } 6 m,(Ü(3-15)ª , Sdf (n) 6 m; αi

αi

emax{pαi i } > m,(Ü(3-15)ª , Sdf (n) = 2s, 7∃pi0 0 ∈ S2 ,¦ pi0 0 |s. ,m 6= s.l Sdf (n) 6= 2m;

α

α

(ii)eS1 6= Ø, pαi i ∈ S1 , pj j ∈ S2 . emax{pαi i } < max{pj j },aq(i) ©Û α

α

{ , ÃØmax{pj j } 6 m, ´max{pj j } > m,ÑkSdf (n) 6= 2m. emax{pαi i } > α

max{pj j } , íÑSdf (n) 6 m.

nÜ(i),(ii) , d Sd(n) 6= Z(n).ùÒy² §(3-12)Ø Ukóê).

en Ûê, n = pα1 1 pα2 1 · · · pαk k pα n IO©)Ϫ. ±e©3« ¹?Ø:

(1)ek = 0,=n = pα ,d Z(pα ) = pα − 1 ó, Sdf (n) Û, ¤ ±Z(pα ) 6=

Sdf (pα ).

(2)ek > 1 α = 1,Kn = pα1 1 pα2 1 · · · pαk k p.

emax{pαi i } < p, KdSdf (n)5

Sdf (n) = Sdf (pα1 1 pα2 1 · · · pαk k p) = max{Sdf (pα1 1 ), · · · , Sdf (pαk k ), Sdf (p)} = p. e¤áZ(n) = Sdf (n) = p, KdZ(n)½Â pα1 1 pα2 1

p(p · · · pαk k p

+ 1) . 2

u´7L¤ápαi i |(p + 1), =p + 1 ≡ 0(modpαi i ).

, ¡, y² ÷vp + 1 ≡ 0(modpαi i ), ÒkZ(n) = p.é∀h < p, (i)eh < p − 1,Kdp †

h(h+1) , 2

h(h+1) , Z(n) 6= h; 2 2 , pα1 1 pα2 1 · · · pαk k p† (p−1)p 2 ,

pα1 1 pα2 1 · · · pαk k p †

(ii)eh = p−1,Kdpαi i |(p+1)9(p−1, p+1) =

Z(n) 6=

p − 1.l , ep + 1 ≡ 0(modpαi i ), KkZ(n) = Sdf (n), ù=´ §(3-12) |). α

emax{pαi i } > p, Kd Sdf (n) = p, ½Sdf (n) = max {Sdf (pαi i )} = Sdf (pj j ). (i)eSdf (n) = p,Kdmax{pαi i } > p , max{pαi i } † 44

16i6k p(p+1) , 2

Z(n) 6= p,l Z(n) 6=


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

Sdf (n). α

α

(ii)eSdf (n) = max {Sdf (pαi i )} = Sdf (pj j ), dSdf (n) 5 ,7kpj |Sdf (pj j ), 16i6k

u´pj |Sdf (n).

Äk5¿ ¯¢, =é?¿Û êp9α > 2, Øpα = 32 , þkSdf (pα ) < pα ,

Ï ep 6 2α − 1, KSdf (pα ) = (2α − 1)p < pα (Øpα = 32 ); ep < 2α − 1, KéN´ dp2 |pα !! , Sdf (pα ) < pα . Sdf (n) = max {Sdf (pαi i )} = Sdf (32 ) = 9 , éN´ 16i6k

2

yn = 3 × 5 = 45 ), Ù{ ¹þؤá.

α

α

é uSdf (n) = max {Sdf (pαi i )} = Sdf (pj j ) < pj j , e ¤ áZ(n) = Sdf (n) =

m,Km < α

16i6k αj α1 α1 pj p1 p2 · · · pαk k p| m(m+1) . 2

pj j gñ. Z(n) 6= Sdf (n).

α

q d ± þ © Û , pj |m,l pj j |m,ù m <

(3)ek > 1 α > 2, Kn = pα1 1 pα2 1 · · · pαk k pα .

eSdf (n) = max {Sdf (pαi i )} = Sdf (pα ), dk > 1 pα 6= 32 ,u ´Sdf (n) = 16i6k

α

α

Sdf (p ) = m < p .d dp|m9m < pα íÑpα †

Sdf (n).

m(m+1) , 2

ÏdZ(n) 6= m, Z(n) 6=

α

eSdf (n) = max {Sdf (pαi i )} = Sdf (pj j ), dα > 2 , 3 ù « ¹ eαj > 16i6k

α 2 pj j

α

2

α

α

6= 3 ,u ´Sdf (n) = Sdf (pj j ) = m < pj j . Ó , dpj j †

m, Z(n) 6= Sdf (n).

m(m+1) , 2

Z(n) 6=

u´B ¤ ½n3.6 y². e¡y²½n3.7. ½n3.6 y² { q, ùü Ñ VL§. dZ(p) = p −

19Sdf (p) = p ,n = p÷v §(3-13). én = pk /, Z(pk ) + 1 = pk − 1 + 1 = pk , ´Øn = 32 þ¤áSdf (pk ) < pk , ,Ø U÷v §(3-13). n = 32 = 9TÐÒ

´ §(3-13) AÏ). én = pα1 1 pα2 1 · · · pαk k p /, N´y², ¦Z(n) + 1 =

Sdf (n) = ÷vp − 1 ≡ 0(modpαi i ). Ù{ ¹þ ½n3.6 y² {aq,ùpò Ø2Kã.

3.6 a2 Smarandache¼ê Ͷ Smarandache ¼êZ(n)½Â :

m(m + 1) }. Z(n) = min{m : m ∈ N + , n

2

(3-16)

© z[105]í 2 Smarandache¼ ê, é ? ¿ ên,í 2 Smarandache¼ êZ3 (n)½Â

m(m + 1)(m + 2) Z3 (n) = min{m : m ∈ N , n

}. 6 +

45

(3-17)


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

! ò 0 ' uZ3 (n) Ă? 5 Â&#x; ĂŻ Ă„, Š O ĂŠn = 2l p, n = 2l pk , n = 2l Ă—

3k , l, k ∈ N + , p > 3Â?ÂƒĂŞ, ‰Ñ Z3 (n) ŸêŠ/ÂŞ. ÚʟêÂ?§ ĂŞ), ފ9 ĂŹCúª ÂŻK ĂŻĂ„Â?´k¿Â [29,36,107] .

Ăš n 3.10 ĂŠ?Âż ĂŞk, ÂƒĂŞp, eZ3 (kp) = m, Km7Â?lp − 2, lp − 1, lp, l ∈ N + nÂŤ Âœ/.

y ² :Ă?Â?Z3 (n) > 1, p = 2, 3ž, Ăšnw,¤å. p > 3´ÂƒĂŞ, dp|m(m + 1)(m + 2)/6, Kp7 Ă˜m, m + 1, m + 2Ă™ÂĽÂƒÂ˜, Ă?dm7klp − 2, lp − 1, lp, l ∈ N + nÂŤÂœ/. y..

e¥ò‰Ñ'uZ3 (n) A‡{Ăź5Â&#x;9y². (1) n = 2l p, l ∈ N + , p > 3Â?ÂƒĂŞ, Z3 (2l p) = m, Ă„m = gp−2, m = gp−1, m =

gpnÂŤÂœš9g Šk:

(a)eg = 1, m = p − 2,dž=km + 1 = p − 1Â?óê, d2l p|(p − 2)(p − 1)p/6,K

k2l+1 |p − 1,^ Ă“ { ÂŞ L ĂŁ = Â?, p − 1 ≥ 0(mod2l+1 )ž,Z3 (2l p) = p − 2;em =

p − 1, d2l p|(p − 1)p(p + 1)/6,Kk2l |p − 1½Ü2l |p + 1,= p Âą 1 ≥ 0(mod2l ), p − 1 6≥

0(mod(2l+1 ))ž, Z3 (2l p) = p − 1;e2l p|p(p + 1)(p + 2)/6,Kkp + 1 ≥ 0(mod(l + 1)), d žp + 1 ≥ 0(mod2l ),AkZ3 (2l p) = p − 1.

(b)Ă“n, eg = 2, m = 2p − 2ž, d2l p|(2p − 2)(2p − 1)2p/6,K2l−1 |p − 1,= p − 1 ≥

0(mod2),Â…p − 1 6≥ 0(mod2l )ž, Z3 (2l p) = 2p − 2;m 6= 2p − 1,Ú´Ă?Â?em = 2p −

1,K2l p|(2p−1)2p(2p+1)/6,Ú´Ă˜ÂŒU ;em = 2p,d2l p|2p(2p+1)(2p+2)/6,K2l−1 |p+ 1,=p + 1 ≥ 0(mod2l−1 ),Â…p + 1 6≥ 0(mod2l ).

(c)eg = 2k , k > 1, k ∈ N,d2l p|(2k p − 2)(2k p − 1)2k p/6, K2l |2k ,dZ3 (n)  5,

2k = 2l , dž, Z3 (2l p) = 2l p − 2.

(d)eg > 3Â?Ûê, m = gp − 2,d2l p|(gp − 2)(gp − 1)gp/6, k2l+1 |gp − 1;em =

gp − 1,d2l p|(gp − 1)gp(gp + 1)/6,K2l−1 |gp − 1½Ü2l |gp + 1;em = gp,d2l p|gp(gp +

1)(gp + 2)/6, K2l+1 |gp + 1,½k2l |gp + 1, džAkm = gp − 1.Ă“n, eg > 3Â?Ûê, m = 2gp − 2,džk2l−1 |gp − 1;em = 2gp, g > 3Â?Ûê, džk2l−1 |gp + 1.–dmÂŽv

46


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

kÙ§ U /. nþ, k   p − 2, p − 1 ≡ 0(mod2l+1 );       p − 1, p ± 1 ≡ 0(mod2l );      2p − 2, p − 1 ≡ 0(mod2l−1 );       p + 1 ≡ 0(mod2l−1 );   2p, Z3 (2l p) = gp − 2, gp − 1 ≡ 0(mod2l+1 );     gp − 1, gp ± 1 ≡ 0(mod2l );       2sp − 2, sp − 1 ≡ 0(mod2l−1 );       2sp, sp + 1 ≡ 0(mod2l−1 );     l 2 p − 2, Ù§,

Ù¥3 6 g 6 2l − 1, 3 6 s 6 2l−1 − 1 Ûê.

(2)Ón, n = 2l pk , l ∈ N + , k ∈ N + , p > 3 ê , k   pk − 2, pk − 1 ≡ 0(mod2l+1 );       pk − 1, pk ± 1 ≡ 0(mod2l );      2pk − 2, pk − 1 ≡ 0(mod2l−1 );      k  pk + 1 ≡ 0(mod2l−1 );   2p , Z3 (2l pk ) = gpk − 2, gpk − 1 ≡ 0(mod2l+1 );     gpk − 1, gpk ± 1 ≡ 0(mod2l );       2spk − 2, spk − 1 ≡ 0(mod2l−1 );       2spk , spk + 1 ≡ 0(mod2l−1 );     l k 2 p − 2, Ù§,

Ù¥3 6 g 6 2l − 1, 3 6 s 6 2l−1 − 1 Ûê.

n = 2l × 3k , l, k ∈ N + , Ä þª9©z[105]¥5 2 (©z[105]¥[4]ª)k   3k+1 − 2, 3k+1 − 1 ≡ 0(mod2l+1 );       3k+1 − 1, 3k+1 ± 1 ≡ 0(mod2l );      2 × 3k+1 − 2, 3k+1 − 1 ≡ 0(mod2l−1 );      k+1  3k+1 + 1 ≡ 0(mod2l−1 ); 2 × 3 ,  Z3 (2l × 3k ) = g · 3k+1 − 2, g · 3k+1 − 1 ≡ 0(mod2l+1 );     g · 3k+1 − 1, g · 3k+1 ± 1 ≡ 0(mod2l );       2s · 3k+1 − 2, s · 3k+1 − 1 ≡ 0(mod2l−1 );       2s · 3k+1 , s · 3k+1 + 1 ≡ 0(mod2l−1 );     l 2 × 3k+1 − 2, Ù§, 47


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ù¼3 6 g 6 2l − 1, 3 6 s 6 2l−1 − 1Â?Ûê.

3.7 ˜‡Â?šSmarandacheŸê91 a–SmarandacheŸê Â?§ ĂŠ?Âż ĂŞn, Ă?Âś SmarandacheŸêÂ?S(n)½Ă‚Â? êmÂŚ n|m!. =S(n) = min{m : m ∈ N, n|m!}. 1 a–SmarandacheŸêZ2 (n)½Ă‚Â? êkÂŚ n Ă˜ k

2

(k+1)2 ,½Ü 4

2

k (k + 1)2 , Z2 (n) = min k : k ∈ N, n

4

Ù¼NL¤k ĂŞ 8Ăœ. Ú߇Ÿê¹9k'SmarandacheŸê ½Ă‚ÂŒĂŤ Š z[7]. lS(n)9Z2 (n) ½Ă‚N´íĂ‘§Â‚ cA‘ŠÂ?: S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, ¡ ¡ ¡ . Z2 (1) = 1, Z2 (2) = 3, Z2 (3) = 2, Z2 (4) = 3, Z2 (5) = 4, Z2 (6) = 3, Z2 (7) = 6, Z2 (8) = 7, ¡ ¡ ¡ . 'uS(n) Ă? 5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âź Ă˜ k¿Â (J[28,36,97−100] . ~ XŠz[28]ĂŻĂ„ Â?§ S(m1 + m2 + ¡ ¡ ¡ + mk ) =

k X

S(mi )

i=1

ÂŒ)5, |^)Ă›ĂŞĂ˜ÂĽĂ?Âś nƒê½ny² ĂŠ?Âż ĂŞk > 3, TÂ?§kĂƒÂĄ Ăľ| ĂŞ)(m1 , m2 , ¡ ¡ ¡ , mk ).

Šz[36]ĂŻĂ„ S(n) ŠŠĂ™ÂŻK, y² ĂŹCúª 3

X

n6x

2Îś( 32 )x 2 (S(n) − P (n))2 = +O 3 ln x

3

x2 ln2 x

!

,

Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f,Îś(s)LÂŤRiemann zeta-Ÿê. Šz[97 − 98]ĂŻĂ„ S(2p−1 (2p − 1)) e. OÂŻK, y² ĂŠ?ÂżÂƒĂŞp > 7, k

OÂŞ

S(2p−1 (2p − 1)) > 6p + 19S(2p + 1) > 6p + 1.  C, Šz[99]Âź Â?˜„ (Ă˜:=y² ĂŠ?ÂżÂƒĂŞp > 17Ăš?ÂżĂ˜Ă“ ĂŞa 9b,k OÂŞ S(ap + bp ) > 8p + 1. d , Šz[100]?Ă˜ SmarandacheŸê ,Â˜ÂŤe. OÂŻK, =SmarandacheÂź

48


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

êʤ êê e. O¯K, y² Ê?¿ ên > 3k Oª: n

S(Fn ) = S(22 + 1) > 8 ¡ 2n + 1, n

Ù¼Fn = 22 + 1Â?Ă?Âś ¤ ĂŞĂŞ. 'uS(n) Ă™§ïĂ„SNš~ÂƒĂľ, ĂšpĂ˜2˜˜ Ăž. ĂŠuŸêZ2 (n) 5Â&#x;, –8 ) ĂŠ , $Â–Ă˜ ڇŸê ފ´Ă„äkĂŹC5Â&#x;. ! ĂŒÂ‡8 ´|^Ă? Â?{ĂŻĂ„ŸêÂ?§Z2(n) + 1 = S(n) ÂŒ)5, ¿Ÿ

ڇÂ?§ ¤k ĂŞ), äN/`Â?Ă’´y² eÂĄ : ½ n 3.8 ĂŠ?Âż ĂŞn,ŸêÂ?§Z2 (n) + 1 = S(n)kÂ…=ke nÂŤ/ÂŞ ): (A)n = 3, 4, 12, 33 , 2 ¡ 33 , 22 ¡ 33 , 23 ¡ 33 , 24 ¡ 33 , 34 , 2 ¡ 34 , 22 ¡ 34 , 23 ¡ 34 , 24 ¡ 34 ; 2

(B)n = p ¡ m,Ù¼p > 5Â?ÂƒĂŞ, mÂ? Ă˜ (p−1) ?Âż ĂŞ; 4

(C)n = p2 ¡ m,Ù¼p > 5Â?ÂƒĂŞÂ…2p − 1Â?ĂœĂŞ, mÂ?(2p − 1)2 ?ÂżÂŒu1 Ă?ĂŞ. w,T½n”.)Ăť Â?§Z2(n) + 1 = S(n) ÂŒ)5ÂŻK. ½=y² ڇÂ?§ kĂƒÂĄĂľÂ‡ ĂŞ)¿‰Ñ § z‡) äN/ÂŞ. eÂĄ|^Ă? Â?{Âą9SmarandacheŸê 5Â&#x;‰Ñ½n † y². k'g,ĂŞ Ă˜5Â&#x;Âą9ÂƒĂŞ k'SNÂŒĂŤ Šz[4 − 6]. ¯¢ÞN´ y: n = 3, 4, 12, 33 , 2 ¡ 33 , 22 ¡ 33 , 23 ¡ 33 , 24 ¡ 33 , 34 , 2 ¡ 34 , 22 ¡ 34 , 23 ¡ 34 , 24 ¡ 34 ž, Â?§Z2 (n) + 1 = S(n)w,¤å. y3ŠeÂĄAÂŤÂœšÂ?[?Ă˜: S(n) = S(p) = p > 5ž, n = mp,KS(m) < pÂ…(m, p) = 1.dženávÂ? §Z2 (n)+1 = S(n),@oZ2 (n) = p−1,¤¹dZ2 (n) ½Ă‚kn Ă˜ (p−1) 4 2 (p−1)2 Âąm| (p−1) 4 ,Ă? dmÂ? 4 ? Âż Ă? ĂŞ.

‡ ƒ, n =

2 2

p

,=mp| (p−1) 4

2 mp…m| (p−1) 4 ž,

2 2

p

.¤

kS(n) =

p, Z2 (n) = p − 1, ¤¹n = mp´Â?§Z2 (n) + 1 = S(n) ). u´y² ½nÂĽ 1 ÂŤÂœš(B).

S(n) = S(p2 ) = 2p, p > 5ž, n = mp2 ,KS(n) < 2pÂ…(m, p) = 1.dženáv Â?§Z2 (n) + 1 = S(n),@oZ2 (n) = 2p − 1,¤¹dZ2 (n) ½Ă‚kn Ă˜(2p − 1)2 p2 ,¤¹ mp2 |(2p − 1)p2 , ½Üm|(2p − 1)2 . w ,m 6= 1, Ă„ Kn = p2 , S(p2 ) = 2p, Z2 (p2 ) = p − 1.¤ Âą d žn = p2 Ă˜ á v Â? §Z2 (n) + 1 = S(n).u´m7L´(2p − 1)2 ˜‡Œu1 Ă?ĂŞ. d , Ă?Â?2p − 1Â?Ăœ ĂŞ, n = mp2 ž, Z2 (n) 6= p − 1, Z2 (n) 6= p, ¤¹Z2 (n) = 2p − 1, S(n) = 2p, ¤ Âąn = mp2 ávÂ?§Z2 (n) + 1 = S(n).u´y² ½nÂĽ Âœ/(C).

y3y² S(n) = S(pÎą )Â…p > 5Âą9Îą > 3ž, nĂ˜ávÂ?§Z2 (n) + 1 = S(n). Ăš ž n = mpÎą , S(m) 6 S(pÎą ), (m, p) = 1. u´kS(n) = hp, Ăšph 6 Îą.enávÂ? 49


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

§Z2 (n) + 1 = S(n),KZ2 (n) = hp − 1. u´dZ2 (n) ½Ă‚k

2 2 2

Îą (hp − 1) m p n = mp

4

l d Ă˜ 5Â&#x;ÂŒ pÎąâˆ’2 |h2 6 Îą2 .¤¹p|h. Îą > h > 5. p > 5Â…Îą > 5ž, pÎąâˆ’2 |h2 6 Îą2 ´Ă˜ÂŒU , Ă?Â?džkĂ˜ ÂŞpÎąâˆ’2 > Îą2 .

y3 Ă„S(n) = 3, džn = 3½Ü6.² yn = 3´Â?§Z2 (n) + 1 = S(n) ˜

‡); S(n) = S(32 ) = 6ž, n = 9, 18, 36, 45, ² y§Â‚Ă‘Ă˜ávÂ?§Z2(n) + 1 = S(n); S(n) = S(33 ) = 9ž, n = 33 , 2 ¡ 33 , 22 ¡ 33 , 5 ¡ 33 , 7 ¡ 33 , 23 ¡ 33 , 10 ¡ 33 , 14 ¡ 33 , 16 ¡ 33 , 20 ¡ 33 . dž² y n = 33 , 2 ¡ 33 , 22 ¡ 33 , 23 ¡ 33 , 24 ¡ 33 ávÂ?§Z2 (n) + 1 = S(n);Ă“ ÂŒ¹íĂ‘ S(n) = S(34 ) = 9ž, Â?k n = 34 , 2 ¡ 34 , 22 ¡ 34 , 23 ¡ 34 , 24 ¡ 34 ávÂ?§Z2 (n) + 1 = S(n). Â

Ă„S(n) = S(2Îą ).w,n = 1, 2Ă˜ávÂ?§Z2 (n) + 1 = S(n). eS(n) = S(4) =

4, @on = 4, 12.² yn = 4, 12ávÂ?§Z2(n) + 1 = S(n); S(n) = S(23 ) = 4ž, d žn = 8, 24.² yĂš nĂžĂ˜ávÂ?§Z2(n) + 1 = S(n); S(n) = S(24 ) = 6ž, d žn = 16, 3 ¡ 16, 5 ¡ 16, 15 ¡ 16.²u §Â‚ĂžĂ˜ávÂ?§Z2(n) + 1 = S(n); S(n) =

S(25 ) = 8ž,

n = 25 , 3 ¡ 25 , 5 ¡ 25 , 7 ¡ 25 , 15 ¡ 25 , 21 ¡ 25 , 35 ¡ 25 , 105 ¡ 25 , džN´ y§Â‚ĂžĂ˜ávÂ?§Z2 (n) + 1 = S(n); S(n) = S(2Îą ) = 2h, Îą > max{6, h} ž, n = m ¡ 2Îą , KS(m) < S(2Îą )Â…(m, 2) = 1.dženávÂ?§Z2 (n) + 1 = S(n), K dŸêZ2 (n) ½Ă‚,

n=m¡2

Îą (2h

− 1)2 (2h)2 = (2h − 1)2 h2 , 4

ddĂ­Ă‘2Îą |h2 6 (Îą − 1)2 < Îą2 , ĂšÂ‡Ă˜ ÂŞ9 Ă˜5´Ă˜ÂŒU , Ă?Â?A^êÆ8B{ N´y² Îą > 6ž,2Îą > (Îą − 1)2 > h2 .

nĂœ¹ÞÂˆÂŤÂœš, ĂĄÂ? ¤½n3.8 y².

50


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

3.8 'uSmarandache LCMŸê†SmarandacheŸê ފ ĂŠ?Âż ĂŞn,Ă?Âś SmarandacheŸêS(n)½Ă‚Â? êmÂŚ n|m!.= Ă’´S(n) = min{m : m ∈ N, n|m!}, Smarandache LCMŸêSL(n)½Ă‚Â? êk,ÂŚ n|[1, 2, ¡ ¡ ¡ , k],[1, 2, ¡ ¡ ¡ , k] LÂŤ1, 2, ¡ ¡ ¡ , k  ú ĂŞ. 'uÚ߇Ÿê

5Â&#x;, NþÆÜ?1 ĂŻĂ„, Âż Ă˜ ­Â‡ (J[8,14,29,37−39] . ~X, Šz[39]ĂŻ Ă„SL(n) ŠŠĂ™ÂŻK, y² ĂŹCúª X

n6x

2 (SL(n) − P (n))2 = ¡ Îś 5

5

5 x2 ¡ 2 ln x

!

5

+O

x2 ln x

!

,

Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f. Šz[39]„?Ă˜ Â?§SL(n) = S(n) ÂŒ)5, Âż )Ăť TÂŻK. =y² :? Ă›ávTÂ?§ ĂŞÂŒLÂŤÂ?n = 12½Ün = pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r p, Ù¼p1 , p2 , ¡ ¡ ¡ , pr , p´ Ă˜Ă“ ÂƒĂŞÂ…Îą1 , Îą2 , ¡ ¡ ¡ , Îąr , ´ávp > pÎąi i (i = 1, 2, ¡ ¡ ¡ , r) ĂŞ. !ĂŒÂ‡0 |^Ă? 9|ĂœÂ?{ĂŻĂ„¡ĂœĂžÂŠ X S(n) n6x

SL(n)

(3-18)

ĂŹC5Â&#x;. ĂšÂ˜ÂŻK´k¿Â , Ă?Â?ÂŞ(3-18) ĂŹC5‡N Ú߇ŸêŠŠĂ™ 5Æ5, XJĂŹCúª X S(n) âˆźx SL(n)

n6x

¤å, @oĂ’ÂŒ¹ä½ŸêS(n)ĂšSL(n) ŠA ??ƒ ! ! ĂŠĂšÂ˜ÂŻK?1 ĂŻ Ă„, Âży² § (5. äN/`=y² e¥ß‡(Ă˜. ½ n 3.9 ĂŠ?¿¢êx > 1kĂŹCúª X S(n) x ln ln x =x+O . SL(n) ln x n6x

½ n 3.10 Ê?¿¢êx > 1kÏCúª X P (n) x ln ln x =x+O , SL(n) ln x n6x

Ù¼P (n)LÂŤn  ÂŒÂƒĂ?f. w,½nÂĽ Ă˜ ‘´Âš~f , =Ă˜ Â‘Â†ĂŒÂ‘= ˜‡ lnlnlnxx Ă?f, ´Ă„ 3˜ ‡ r ĂŹCúªÂ?´Â˜Â‡k ÂŻK.

51


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

eÂĄy²Ú߇½n. Â?y²½n3.9, aq/, Â?ÂŒ¹íĂ‘½n3.10. ¯¢Þ²L{ ĂźC/ĂĄÂ? X S(n) X S(n) − SL(n) X = + 1 SL(n) SL(n) n6x n6x n6x   X |SL(n) − S(n)| . =x + O  SL(n)

(3-19)

n6x

y3|^ŸêS(n)9SL(n) 5Â&#x;Âą9Ă? †|ĂœÂ?{5 OÂŞ(3-19)ÂĽ Ă˜ ‘. dSL(n) 5Â&#x; n IOŠ)ÂŞÂ?pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k žk SL(n) = max{pÎą1 1 , pÎą2 2 , ¡ ¡ ¡ , pÎąk k }. eSL(n)Â?ÂƒĂŞp,@oS(n)Â?Â?ÂƒĂŞp.Ă?d, 3ڍÂœšekSL(n) − S(n) = 0.¤¹3 ÂŞ(3-19) Ă˜ ‘¼, ¤kš"‘7Ă‘y3@ ÂŚSL(n)Ă˜ uÂƒĂŞ ĂŞnÂĽ, = SL(n) = max{pÎą1 1 , pÎą2 2 , ¡ ¡ ¡ , pÎąk k } ≥ pÎą , Îą > 2. AÂ?ÂŤm[1, x]¼¤kávÞª^‡n 8Ăœ, ĂŠ?Âżn ∈ A, n = pÎą1 1 , pÎą2 2 , ¡ ¡ ¡ , pÎąk k =

pÎą ¡ n1 , Ù¼(p, n1 ) = 1. y3ŠßÂœš?Ă˜: A = B + C,Ù¼n ∈ BXJSL(n) =

pÎą >

ln2 x . 9(ln ln x)2

n ∈ CXJSL(n) = pÎą <

X |SL(n) − S(n)|

n6x

SL(n)

ln2 x . 9(ln ln x)2

u´k

X |SL(n) − S(n)| X |SL(n) − S(n)| + SL(n) SL(n) n∈B n∈C X X X 6 1+ 1 ≥ R1 + R2 .

=

n6

9x(ln ln x)2 ln2 x

ln2 x x 6pÎą 6 n 9(ln ln x)2 Îą>2

(3-20)

n∈C

y3ŠO OÂŞ(3-20)ÂĽ ˆ‘. Ă„k OR1. 5Âż pÎą 6 ln4 xžkÎą 6 4 ln ln x u´ dƒê½nk R1 6

X

x pÎą 6 n Îą>2

X

X

n6 lnx4 x

≪ ≪ ≪

n6 lnx4 x

X

n6 lnx4 x

X

r

X

x 9x(ln ln x)2 pÎą 6 n x 6n6 ln2 x Îą>2 ln4 x

X

√ x Îą6ln x

p6

X

1+

n

X

1+

x ln x + n ln ln x

ln x)2 x 6n6 9x(ln ln4 x ln2 x

X

ln x)2 x 6n6 9x(ln ln4 x ln2 x

x ln ln x . ln x

r

X

X

√ x Îą64 ln ln x

p6

n

1

x n (3-21)

52


1nĂ™ †SmarandacheŸê9–SmarandacheŸêƒ' ˜ Ă™§Ÿê

y3 OR2 ,5Âż 8ĂœCÂĽÂ?š ƒ Â‡ĂŞĂ˜ÂŹÂ‡L ĂŞpÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąk k ‡ê, Ă™ ÂĽÎąi 6 2 ln ln x, pi 6

ln x ,i 3 ln ln x

= 1, 2, ¡ ¡ ¡ . u´5Âż ƒêŠĂ™úª X y 1 1 ln p = y + O , − ln 1 − âˆź , ln y ln p ln p p6y

k R2 =

X

Y

16

n∈C

ln x p6 3 ln ln x

=

Y

ln x p6 3 ln ln x

 

X

06Îą62 ln ln x

p2 ln ln x 1 − ln1p



pι 

  −1 Y X 1 ≪ 1− exp 2 ln ln x ln p ln p ln x ln x p6 3 ln p6 3 ln ln x ln x  X 3 1  ≪ exp  ln x + 4 ln p ln x

x ≪ , ln x

p6 3 ln ln x

(3-22)

Ù¼exp(y) = ey . (ĂœÂŞ(3-20),(3-21)9ÂŞ(3-22), Ă­Ă‘ OÂŞ X |SL(n) − S(n)| x ln ln x ≪ . SL(n) ln x

(3-23)

n6x

|^ÂŞ (3-19)9ÂŞ(3-23)ĂĄÂ?Ă­Ă‘ĂŹCúª X S(n) x ln ln x =x+O . SL(n) ln x

n6x

u´ ¤ ½n3.9 y². 5Âż SL(n) = pÂ?ÂƒĂŞÂž,S(n) = P (n) = p; SL(n)Ă˜Â?ÂƒĂŞÂž, P (n) 6 S(n) 6 SL(n), u´dy²½n3.9 Â?{ĂĄÂ?Ă­Ă‘½n3.10.

3.9 'uSmarandache LCMŸê9Ă™ÊóŸê ĂŠu?Âż ĂŞn, Smarandache LCMŸê ½Ă‚Â? SL(n) = min{k : k|[1, 2, ¡ ¡ ¡ , k], k ∈ N}.

53


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

'u§ 5Â&#x;9ŸêÂ?§kNþÆÜ?1LĂŻĂ„, ˜ (J. ~XMurthy3 Šz[14]ÂĽy² nÂ?ÂƒĂŞÂž,SL(n) = S(n). Ӟ„?Ă˜

SL(n) = S(n), S(n) 6= n ÂŒ ) 5. Ăš pS(n) = min{m : n|m!, m ∈ N}Â?SmaranacheÂź ĂŞ. ƒ

Le Mao-

hua3Šz[19] )Ăť Murthy3Šz[14]JĂ‘ ÂŻK, Ă‘ Â…= n = 12 ½Ün =

pÎą1 1 pÎą2 2 ¡ ¡ ¡ pÎąr r p, (p > pÎąi i , i = 1, 2, ¡ ¡ ¡ , r)žÂ?§k).

Lv Zhongtian 3Šz[20]?Ă˜ SL(n) ĂŹC5Â&#x;, ˜‡ Ă? ފOÂŽĂş

ÂŞ X

n6x

k

X ci ¡ x2 Ď€ 2 x2 SL(n) = +O + 12 ln x i=2 lni x

x2 lnk+1 x

,

Ăšpx > 1Â?¢ê, kÂ? ĂŞ,cÂ?ÂŒOÂŽ ~ĂŞ. ĂŠu?Âż ĂŞn,Ă?Âś Smarandache LCMŸê ÊóŸê½Ă‚Â? SL∗ (n) = max{k : [1, 2, ¡ ¡ ¡ , k]|k, k ∈ N}. dSL∗ (n) ½Ă‚ÂŒÂąN´íĂ‘,SL∗ (1) = 1, SL∗ (2) = 2, SL∗ (3) = 1, SL∗ (4) = 2, SL∗ (5) = 1, SL∗ (6) = 3, SL∗ (7) = 1, SL∗ (8) = 2, SL∗ (9) = 1, SL∗ (10) = 2, . w,, nÂ?Ă› êž, SL∗ (n) = 1, nÂ?óêž, SL∗ (n) > 2. 'uڇŸê ٌ5Â&#x;, NþÆÜÂ?? 1LĂŻĂ„, ˜X ĂŻĂ„¤J, „Šz[4, 19 − 21].

~X3Šz[21]ÂĽ, Tian ChengliangĂŻĂ„ ŸêÂ?§ X SL∗ (d) = n d|n

Ăš X

SL∗ (d) = φ(n)

d|n

ÂŒ)5, Âż Ă‘cĂśÂ?kÂ?˜ ĂŞ)n = 1,

Ăś ĂŞ)Â?n = 1, 3, 14. d

3Šz[21]ÂĽ, Œ„ïÄ SL∗ (n) ?ĂŞĂš9ފ, ˜‡k (J: ∞ X SL∗ (n) n=1

ns

= Îś(s)

∞ X X (pÎąâˆ’1 )(ps − 1) Îą=1

p

[1, 2, ¡ ¡ ¡ , pι ]

Ăš X

n6x

SL∗ (n) = c ¡ x + o(ln2 x),

Ù¼Μ(s)Â?Riemann zeta-Ÿê. 54


1nÙ Smarandache¼ê9 Smarandache¼ê ' Ù§¼ê

Z3©z[59]ïÄ § (1)n Ûê;

P

d|n SL

(d) =

P

d|n S

(d), ¿ ÑÙ)

(2) 3†n , Kn = 2α pα1 1 pα2 2 · · · pαk k , p1 > 5, α > 1, αi > 0, k > 1, i = 1, 2, · · · , k;

(3) 3|n ,Kn = 2α · 3α1 pα2 2 · · · pαk k , p2 > 5, α > 1, αi > 0, k > 2, i = 1, 2, · · · , k.

   X  X ∗ ∗ SL (d) = S (d), n ∈ N , A= n:   d|n

½Â

d|n

∞ X 1 f (s) = , (Re(s) > 1), ns n=1 n∈A

K Z 'uÙ) 8Ü ð ª 1 f (s) = ζ(s) 1 − s , 12 Ù¥ζ(s) Riemann zeta-¼ê. ! Ì 8 ´|^Ð êØÚ©Û {ïÄ¼ê § Y SL∗ (d) + 1 = 2ω(n)

(3-24)

d|n

)5, ¿ Ù¤k ê), =Ò´e¡½n. ½ n 3.11 é?¿ ên, ¼ê §(3-24)k) = n = pα , α > 1, p > 3 ê. y ² : dSL∗ (n) ½Â, ´ n = 1, 2w,Ø´ §(3-24) ). e¡©ü« 6?1? Ø: (1)en = p > 3 ê, Kω(n) = ω(p) = 1,

Q

SL∗ (d)+1 = SL∗ (1)·SL∗ (p)+1 = 2,

d|n

¤±, w,n = p ê´ §(3-24) ). (2)en Üê, @o Xe©Û:

1) n = 2α , α > 1 ,´ ω(n) = ω(2α ) = 1, Y SL∗ (d) + 1 = SL∗ (1) · SL∗ (2) · · · SL∗ (2α ) + 1 = 2α + 1, d|n

K2α + 1 = 2,=2α = 1, α = 0,ù α > 1gñ. ¤±n = 2α ,α > 1Ø´(3-24) ). 2) n = 2α pβ ,α > 1, β > 1, p > 3 ê, d ω(n) = ω(2α pβ ) = 2, 55


Smarandache ¼ê9Ù '¯KïÄ

dSL∗ (n) ½ÂÚ5 ´

Q

SL∗ (2m pn ) + 1 > 2α+β + 1 > 4,

m=0 n=0

d|2α pβ α β

β α Q Q

SL∗ (d) + 1 =

n = 2 p , α > 1, β > 1, p > 3 , §(3-24)Ã).

3) n = 2α pα1 1 pα2 2 · · · pαk k , α > 1, αi > 1, i = 1, 2, · · · , k, k > 1, pi > 3 pÉ

ê.´ ω(n) = ω(2α pα1 1 pα2 2 · · · pαk k ) = k + 1, Y

α

SL (d) + 1 = α

α

α Y α1 Y

n=0 m1 =0

d|2α p1 1 p2 2 ···pk k

>2

α+

k P

αi

i=1

···

αk Y

mk =0

mk 1 m2 SL∗ (2n pm 1 p2 · · · pk ) + 1

+1

> 2α+k·1 + 1 > 2k+1 + 1 > 2k+1 . ¤±n = 2α pα1 1 pα2 2 · · · pαk k , §(3-24) Ã).

4) n = pα , α > 1, p > 3 ê. á kω(n) = ω(pα ) = 1, d ½  α Q Q SL∗ (pm ) + 1 = 1 + 1 = 2, ¤±(3-24)ª¤á. n = pα ´ SL∗ (d) + 1 = m=0

d|pα

§(3-24) ).

5) n = pα1 1 pα2 2 · · · pαk k , αi > 1, 3 6 p1 < p2 · · · < pk , i = 1, 2, · · · , k, k > 2, du ω(n) = ω(pα1 1 pα2 2 · · · pαk k ) = k, α

Y α

SL (d) + 1 = α

d|p1 1 p2 2 ···pk k

α1 α2 Y Y

m1 =0 m2 =0

···

αk Y

mk =0

mk 1 m2 SL∗ (pm 1 p2 · · · pk ) + 1 = 1 + 1 = 2,

d 7k2 = 2k ,=k = 1,ùÚk > 2gñ.¤±n = pα1 1 pα2 2 · · · pαk k , §(3-24) Ã).

nܱþ?Ø(1)Ú(2) , §(3-24)k) = n = pα , α > 1, p > 3 ê,

ù Ò ¤ ½n3.11 y².

56


1oĂ™ SmarandacheS ĂŻĂ„

1oĂ™ SmarandacheS ĂŻĂ„ 4.1 Smarandache LCM 'ÇS I (x1 , x2 , ..., xt )Ăš[x1 , x2 , ..., xt ]ŠOLÂŤx1 , x2 , ..., xt  ÂŒĂşĂ?fĂš ú ĂŞ. r ´Â˜Â‡ÂŒu1 ĂŞ. ĂŠ?Âż ĂŞn, K T (r, n) =

[n, n + 1, ..., n + r − 1] [1, 2, ..., r]

PŠSLR(r) = {T (r, n)}∞ n=1 ÂĄÂ? Â?r Smarandache LCM'ÇS . Maohua Le

ĂŻĂ„ § 5Â&#x;, ‰Ñ 'uSLR(2), SLR(3) ĂšSLR(4) 4íúª, ʲw, 1 T (2, n) = n(n + 1). 2   1 n(n + 1)(n + 2), en ´Ă›ĂŞ ; T (3, n) = 6  1 n(n + 1)(n + 2), en ´óê. 12   1 n(n + 1)(n + 2)(n + 3), en 6≥ 0(mod3); T (4, n) = 24  1 n(n + 1)(n + 2)(n + 3), en ≥ 0(mod3). 72

!‰Ñ r = 5ž 4íúª, =‰ÑeÂĄ ½n. ½ n 4.1 ĂŠu?Âż ĂŞn,k T (5, n) =

57

[22]


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

 1  n(n + 1)(n + 2)(n + 3)(n + 4),   120         1    240 n(n + 1)(n + 2)(n + 3)(n + 4),          1   360 n(n + 1)(n + 2)(n + 3)(n + 4),    

n 6≥ 0(mod2)…n 6≥ 0(mod3)…n 6≥ 0(mod4)

…n + 1 6≥ 0(mod3);

n ≥ 0(mod2)…n 6≥ 0(mod3)…n 6≥ 0(mod4)

…n + 1 6≥ 0(mod3);

n ≥ 0(mod2), n 6≥ 0(mod3)½n 6≥ 0(mod2),

n 6≥ 0(mod3), n 6≥ 0(mod4), n + 1 6≥ 0(mod3);

1  n(n + 1)(n + 2)(n + 3)(n + 4), n 6≥ 0(mod3), n ≥ 0(mod4), n + 1 6≥ 0(mod3);   480    1   720 n(n + 1)(n + 2)(n + 3)(n + 4), n ≥ 0(mod2), n 6≥ 0(mod3), n 6≥ 0(mod4),      n + 1 ≥ (mod3)½n ≥ 0(mod2), n ≥ 0(mod3),      n 6≥ 0(mod4);      1   1440 n(n + 1)(n + 2)(n + 3)(n + 4), n 6≥ 0(mod3), n ≥ 0(mod4), n + 1 ≥ 0(mod3)     ½n ≥ 0(mod3), n ≥ 0(mod4).

eÂĄ|^ ÂŒĂş ĂŞĂš ú ĂŞ 5Â&#x;5y²½n4.1. Â?,[n, n + 1, n + 2, n +

3, n + 4] = [n(n + 1), (n + 2)(n + 3), n + 4], ´[n(n + 1), (n + 2)(n + 3), n + 4](n(n + 1), (n+2)(n+3), n+4) 6= n(n+1)(n+2)(n+3)(n+4). ¤¹Êu?¿ß‡ ĂŞ  ÂŒĂş

ꆠú ĂŞ 5Â&#x;Ă­2 ?Âżn‡9n‡¹Þ ĂŞÂžÂżĂ˜¤å. ÂŚ)T (r, n) 4íúª, 'Â…´Â‡ÂŚĂ‘[n, n + 1, n + 2, n + 3, n + 4], 3dònŠOŠa?1`². du Ă“{'X´ d'X, ¤¹^§ÂŒÂąr ĂŞ8yŠÂ?eZ‡ da. (1)en ≥ 0(mod2), n 6≥ 0(mod3), n 6≥ 0(mod4), [n, n +1, n +2, n +3, n +4] Ăł

Ăł

Ăł

2

3

4

5

6

10

11

12

13

14

14

15

16

17

18

22

23

24

25

26

26

27

28

29

30

34

35

36

37

38

38

39

40

41

42

ƒ nóê[n, n+2, n+4] = 14 [n(n+2)(n+4)], ƒ Ûê[n+1, n+3] = (n+1)(n+3), en + 1 ≥ 0(mod3)ž,Kn + 4 ≥ 0(mod3),¤¹   1 [n(n + 1)(n + 2)(n + 3)(n + 4)], n + 1 ≥ 0(mod3)ž, [n, n + 1, n + 2, n + 3, n + 4] = 12  1 [n(n + 1)(n + 2)(n + 3)(n + 4)], n + 1 6≥ 0(mod3)ž. 4

58


1oĂ™ SmarandacheS ĂŻĂ„

(2)en ≥ 0(mod3),n 6≥ 0(mod2), [n, n +1, n +2, n +3, n +4] ó

Ăł

3

4

5

6

7

9

10

11

12

13

15

16

17

18

19

21

22

23

24

25

27

28

29

30

31

33

34

35

36

37

Ăź ƒ Ăł ĂŞ[n + 1, n + 3] =

1 [(n 2

+ 1)(n + 3)], q � �n ≥ 0(mod3),n + 3 ≥

0(mod3),¤¹[n, n + 3] = 13 [n(n + 3)],¤¹dž

1 [n, n + 1, n + 2, n + 3, n + 4] = [n(n + 1)(n + 2)(n + 3)(n + 4)]. 6 (3)en ≥ 0(mod4),n 6≥ 0(mod3), [n, n +1, n +2, n +3, n +4] ó

Ăł

Ăł

4

5

6

7

8

8

9

10

11

12

16

17

18

19

20

20

21

22

23

24

28

29

30

31

32

32

33

34

35

36

40

41

42

43

44

nƒ óê, qĂ?Â?n ≥ 0(mod4),n + 4 ≥ 0(mod4), ¤¹[n, n + 2, n + 4] = 18 [n(n +

2)(n + 4)], en + 1 ≥ 0(mod3),Kn + 4 ≥ 0(mod3),¤¹   1 n(n + 1)(n + 2)(n + 3)(n + 4), n + 1 6≥ 0(mod3)ž, [n, n + 1, n + 2, n + 3, n + 4] = 8  1 n(n + 1)(n + 2)(n + 3)(n + 4), n + 1 ≥ 0(mod3)ž. 24

(4)en ≥ 0(mod2),n ≥ 0(mod3),n 6≥ 0(mod4),

59


Smarandache ¼ê9Ù '¯KïÄ

[n, n +1, n +2, n +3, n +4] ó

ó

ó

6

7

8

9

10

18

19

20

21

22

30

31

32

33

34

42

43

44

45

46

54

55

56

57

58

n óê[n, n + 2, n + 4] = 14 [n(n + 2)(n + 4)], n ≡ n + 3 ≡ 0(mod3),¤± [n, n + 1, n + 2, n + 3, n + 4] =

1 [n(n + 1)(n + 2)(n + 3)(n + 4)]. 12

(5)en ≡ 0(mod3),n ≡ 0(mod4), [n, n +1, n +2, n +3, n +4] ó

ó

ó

12

13

14

15

16

24

25

26

27

28

36

37

38

39

40

48

49

50

51

52

60

61

62

63

64

n óê[n, n + 2, n + 4] = 18 [n(n + 2)(n + 4)],Ï , n ≡ n + 4 ≡ 0(mod4),n ≡

n + 3 ≡ 0(mod3), ¤±[n, n + 3] = 13 [n(n + 3)],¤± [n, n + 1, n + 2, n + 3, n + 4] =

1 [n(n + 1)(n + 2)(n + 3)(n + 4)]. 24

(6)en 6≡ 0(mod2),n 6≡ 0(mod3),n 6≡ 0(mod4)

60


1oĂ™ SmarandacheS ĂŻĂ„

[n, n +1, n +2, n +3, n +4] Ăł

Ăł

5

6

7

8

9

7

8

9

10

11

11

12

13

14

15

13

14

15

16

17

17

18

19

20

21

19

20

21

22

23

23

24

25

26

27

25

26

27

28

29

ĂźÂƒ óê[n + 1, n + 3] = 12 [(n + 1)(n + 3)], en + 1 ≥ 0( mod 3),[n, n + 1, n + 2, n +

3, n+4] = 16 [n(n+1)(n+2)(n+3)(n+4)]; en+1 ≥ 0( mod 3), [n, n+1, n+2, n+3, n+4] = 1 2 [n(n

+ 1)(n + 2)(n + 3)(n + 4)].

r¹Þ8a?1 n, ÂƒĂ“^‡ 4íúª8Â?˜a, B ½n4.1.

4.2 Smarandache LCM 'ÇS II ĂžÂ˜!‰Ñ Smarandache LCM'ÇS ŠO3 u2,3,4,5ž 4íúª, ĂšÂ˜ !òïĂ„Smarandache LCM'ÇS ˜„Ă?‘úª, ‰ÑSmarandache LCM'ÇS ŠO'u r!'un ˜„Ă?‘úª, = eÂĄ A‡(J. ½ n 4.2 ĂŠ?Âżg,ĂŞn, r§¡Â‚kXe4íúª¾ T (r + 1, n) =

([1, 2, ..., r], r + 1) n+r T (r, n), r + 1 ([n, n + 1, ..., n + r − 1], n + r)

Ă­ Ă˜ 4.1 XJr + 1 Ăšn + r Ă‘´Âƒê§K¡Â‚kÂ˜Â‡ÂƒĂŠ{Ăź úª¾ T (r + 1, n) =

n+r T (r, n). r+1

½ n 4.3 ĂŠ?Âżg,ĂŞn, r§¡Â‚k,˜‡4íúª¾ T (r, n + 1) =

n+r (n, [n + 1, ..., n + r]) T (r, n). n ([n, n + 1, ..., n + r − 1], n + r)

Ă­ Ă˜ 4.2 XJn Ăšn + r Ă‘´ÂƒĂŞÂ…r < n§K¡Â‚Â?k˜‡Â?{Ăź úª¾ T (r, n + 1) =

n+r ¡ T (r, n); n

61


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

XJn Ăšn + r Ă‘´ÂƒĂŞÂ…r > n§K¡Â‚k T (r, n + 1) = (n + r) ¡ T (r, n). ½ n 4.4 ĂŠ?Âżg,ĂŞn, r§¡Â‚k4íúª¾ T (r + 1, n + 1) =

([1, 2, ..., r], r + 1) n+r n+r+1 ¡ ¡ n r+1 ([n + 1, ..., n + r], n + r + 1) (n, [n + 1, ..., n + r]) ¡ ¡ T (r, n). ([n, n + 1, ..., n + r − 1], n + r)

Â? y²ÚA‡½n, I‡¹eA‡Ún. Ăš n 4.1 ĂŠ?Âż ĂŞaĂšb, k(a, b)[a, b] = ab. Ăš n 4.2 ĂŠ?Âż ĂŞs, tÂ…s < t, k (x1 , x2 , ..., xt ) = ((x1 , ..., xs ), (xs+1 , ..., xt )) Ăš [x1 , x2 , ..., xt ] = [[x1 , ..., xs ], [xs+1 , ..., xt ]]. Ăšn4.1Ăš4.2 y²ÂžĂŤ Šz[6]. eÂĄ5y²½n4,2. Ă„kŠâŠâT (r, n) ½Ă‚, Ăšn4.1Ăš4.2, k [n, n + 1, ..., n + r] = [[n, n + 1, ..., n + r − 1], n + r] [n, n + 1, ..., n + r − 1](n + r) = , ([n, n + 1, ..., n + r − 1], n + r) [1, 2, ¡ ¡ ¡ , r + 1] = [[1, 2, ¡ ¡ ¡ , r], r + 1] =

(r + 1)[1, 2, ¡ ¡ ¡ , r] , ([1, 2, ¡ ¡ ¡ , r], r + 1)

u´§¡Â‚ 'uT (r + 1, n) 4íúª [n, n + 1, ..., n + r] [1, 2, ..., r + 1] [[n, n + 1, ..., n + r − 1], n + r] = [[1, 2, ..., r], r + 1]

T (r + 1, n) =

=

(n+r)[n,n+1,...,n+r−1] ([n,n+1,...,n+r−1],n+r) (r+1)[1,...,r] ([1,2,...,r],r+1)

n + r [n, n + 1, ..., n + r − 1] ([1, 2, ..., r], r + 1) r+1 [1, 2, ..., r] ([n, n + 1, ..., n + r − 1], n + r) n+r ([1, 2, ..., r], r + 1) = T (r, n). r + 1 ([n, n + 1, ..., n + r − 1], n + r) =

Ăš Ă’ ¤ ½n4.2 y². 62


1oĂ™ SmarandacheS ĂŻĂ„

Ă­Ă˜4.1 y². r + 1 Ăšn + r Ă‘´ÂƒĂŞÂž, w,k ([1, 2, ¡ ¡ ¡ , r], r + 1) = 1, ([n, n + 1, ¡ ¡ ¡ , n + r − 1], n + r) = 1, Kd½n4.2, ¡Â‚k ([1, 2, ..., r], r + 1) n+r T (r, n) r + 1 ([n, n + 1, ..., n + r − 1], n + r) n+r = T (r, n). r+1

T (r + 1, n) =

ÚÒy² Ă­Ă˜4.1. ½n4.3 y²: Ă“ ŠâT (r, n) ½Ă‚ÚÚn4.1†Ún4.25y²½n4.3. Ă„kd Ăšn4.1ÚÚn4.2, k [n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]] =

n[n + 1, n + 2, ¡ ¡ ¡ , n + r] , (n, [n + 1, n + 2, ¡ ¡ ¡ , n + r])

u´ [n + 1, n + 2, ¡ ¡ ¡ , n + r] [n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]] ¡ (n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]) = n [n, n + 1, n + 2, ¡ ¡ ¡ , n + r] ¡ (n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]) = , n u´ Ă‘'uT (r, n + 1) 4íúª [n + 1, ..., n + r] [1, 2, ..., r] [n, n + 1, ..., n + r](n, [n + 1, ..., n + r]) 1 = n [1, 2, ..., r] (n, [n + 1, ..., n + r]) [n, n + 1, ..., n + r − 1](n + r) = n[1, 2, ..., r] ([n, n + 1, ..., n + r − 1], n + r) n+r (n, [n + 1, ..., n + r]) [n, n + 1, ..., n + r − 1] = n ([n, n + 1, ..., n + r − 1], n + r) [1, 2, ..., r] n+r (n, [n + 1, ..., n + r]) = T (r, n). n ([n, n + 1, ..., n + r − 1], n + r)

T (r, n + 1) =

ÚÒ ¤ ½n4.3 y². Kk

Ă­Ă˜4.2 y². n ´ÂƒĂŞÂ…r < n ž, [n + 1, n + 2, ¡ ¡ ¡ , n + r] 7Ă˜škƒĂ?fn§ (n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]) = 1;

63


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ӟ, en + r Â?´ÂƒĂŞ, K7,k ([n, n + 1, ¡ ¡ ¡ , n + r − 1], n + r) = 1. Ă?dÂŒÂą T (r, n + 1) =

n+r (n, [n + 1, ..., n + r]) n+r T (r, n) = T (r, n). n ([n, n + 1, ..., n + r − 1], n + r) n

n´ÂƒĂŞÂ…r > nž, [n + 1, n + 2, ¡ ¡ ¡ , n + r] 7šÂƒĂ?fn, Ă?d (n, [n + 1, n + 2, ¡ ¡ ¡ , n + r]) = n, Ӟdun + r ´ÂƒĂŞ, Ă?dk (n, [n + 1, ..., n + r]) n+r T (r, n) n ([n, n + 1, ..., n + r − 1], n + r) = (n + r)T (r, n).

T (r, n + 1) =

ÚÒy² Ă­Ă˜4.2. ½n4.4 y²: A^½n4.2Ăš½n4.3 ĂŠN´ ½n4.4 (J, = T (r + 1, n + 1) ([1, 2, ..., r], r + 1) n+r+1 T (r, n + 1) = r + 1 ([n + 1, ..., n + r], n + r + 1) (n + r + 1)(n + r) ([1, 2, ..., r], r + 1) (n, [n + 1, ..., n + r]) = T (r, n). (r + 1)n ([n + 1, ..., n + r], n + r + 1) ([n, ..., n + r − 1], n + r) ÚÒ ¤ ½n4.4 y².

4.3 Smarandache 1 ÂŞ 4.3.1 SmarandacheĂŒÂ‚1 ÂŞ ĂŠu?Ă› ĂŞn,n Ă— n1 ÂŞ

1

2

.

..

n − 1

n

3 ¡¡¡ n 1

.. .. ..

. . .

n ¡ ¡ ¡ n − 3 n − 2

1 ¡¡¡ n − 2 n − 1

2 ¡¡¡ n − 1

ÂĄÂ?n SmarrandacheĂŒÂ‚1 ÂŞ, PÂ?SCND(n).

64

n

(4-1)


1oĂ™ SmarandacheS ĂŻĂ„

a,d´EĂŞ,n Ă— n1 ÂŞ

a a+d ¡¡¡

a+d a + 2d ¡¡¡

.. ..

. .

a + (n − 2)d a + (n − 1)d ¡ ¡ ¡

a + (n − 1)d a ¡¡¡

a + (n − 2)d a + (n − 1)d

a + (n − 1)d a

.. ..

. .

a + (n − 4)d a + (n − 3)d

a + (n − 3)d a + (n − 2)d

(4-2)

ÂĄÂ?'uĂŞĂŠ(a, d) n SmarrandacheĂŒÂ‚ÂŽâ?ĂŞ1 ÂŞÂ…LÂŤÂ?SCAD(n; a, d). 3Šz[34]ÂĽ, Murthy‰Ñ e¥ß‡Ún. Ăš n 4.3 ĂŠu?Ă› ĂŞn, n

SCND(n) = (−1) 2 nn−1

(n + 1) . 2

(4-3)

Ăš n 4.4 ĂŠu?Âż ĂŞn†?ÂżEĂŞĂŠa, d, k   a, n = 1ž, SCAD(n; a, d) = n (a+(n−1)d)  (−1) 2 (nd)n−1 , n > 1ž.

(4-4)

Maohua|^Ž Š 1 ª

a1 a2 ¡ ¡ ¡ an−1

a a ¡ ¡ ¡ a n−2

n 1

. . ..

.. .. .

a3 a4 ¡ ¡ ¡ a1

a2 a3 ¡ ¡ ¡ an

(4-5)

2

3Šz[35]ÂĽ, Le Maohuay² 'uSCND(n)†SCAD(n; a, d) Ă&#x;Ăż. =Le

an an−1 .. . a2 a1

Y

= (a1 + a2 x + ¡ ¡ ¡ + an xn )

xn =1

y² Ăšn4.3†4.4¢SĂžÂŒÂąÂ† OÂŽ=ÂŒ.

X‡OÂŽÂŞ(4-1), Â?‡l . 1n1mŠ, ĂžÂ˜1 −1 \ e˜1, 1˜1 Ă˜Ă„, ÂŚ

1 2 ¡ ¡ ¡ n − 1 n

1 1 ¡ ¡ ¡ 1 1 − n

. . .. .. SCND(n) =

.. .. . .

1 1 ¡ ¡ ¡ 1 1

1 1 − n ¡ ¡ ¡ 1 1

65

.


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

,

12 1n Ăœ\ 1˜ , 2r1˜ Ă?m (Ă˜,=

n(n − 1)/2 2 ¡ ¡ ¡ n − 1 n

0 1 ¡ ¡ ¡ 1 1 − n

. . . . .. .. .. ..

SCND(n) =

0 1 ¡ ¡ ¡ 1 1

0 1 − n ¡¡¡ 1 1

1 ¡¡¡ 11 − n

.

. . .. ..

n(n + 1)

..

=

1 ¡¡¡ 1 1

2

1 − n ¡ ¡ ¡ 1 1

n−1

(n + 1) = (−1) nn−1 . 2 n 2

Ă“ , ÂŞ(4-2)Â?ÂŒ^ڍÂ?{OÂŽ. rSCND(n)˜„z, a1 , a2 , ¡ ¡ ¡ , an ´n‡EĂŞ,n Ă— n 1 ÂŞ

a a ¡ ¡ ¡ a a

1 2 n−1 n

a

a ¡ ¡ ¡ a a 2 3 n 1

.

. . .

..

.. .. ..

an−1 an ¡ ¡ ¡ an−3 an−2

an a1 ¡ ¡ ¡ an−2 an−1

(4-6)

ÂĄÂ?'uĂŤĂŞa1 , a2 , ¡ ¡ ¡ , an n SmarandacheĂŒÂ‚1 ÂŞÂ…LÂŤÂ?SCD(a1 , a2 , ¡ ¡ ¡ , an ).ĂŠ

un SmarandacheĂŒÂ‚1 ÂŞSCD(a1 , a2 , ¡ ¡ ¡ , an ), A^ÂŞ(4-5), ÂŒ eÂĄ ½n. ½ n 4.5 ĂŠun‡?ÂżEĂŞa1 , a2 , ¡ ¡ ¡ , an , SCD(a1 , a2 , ¡ ¡ ¡ , an ) = (−1)r

Y

(a1 + a2 x + ¡ ¡ ¡ + an xn−1 ),

xn =1

Ù¼   n − 1, en´óê, r= 2  (n − 1)/2, en´Ă›ĂŞ.

66

(4-7)


1oĂ™ SmarandacheS ĂŻĂ„

SCD(a1 , a2 , ¡ ¡ ¡ , an ) ,Â˜ÂŤAĂ?Âœš´: a, q߇EĂŞ, n Ă— n1 ÂŞ

n−2 n−1

a aq ¡ ¡ ¡ aq aq

aq

2 n−1 aq ¡ ¡ ¡ aq a

. . . .

..

.. .. ..

aq n−2 aq n−1 ¡ ¡ ¡ aq n−4 aq n−3

n−1 n−3 n−2

aq a ¡ ¡ ¡ aq aq

(4-8)

ÂĄÂ?'u(a, q) n SmarandacheĂŒÂ‚AĂ›?ĂŞ1 ÂŞÂ…LÂŤÂ?SCGD(n; a, q). ĂŠu, n SmarandacheĂŒÂ‚AĂ›?ĂŞ1 ÂŞSCGD(n; a, q), kXe ½n: ½ n 4.6 ĂŠu?Âż ĂŞn†?ÂżEĂŞĂŠa, q, SCGD(n; a, q) = (−1)r an (1 − q n )n−1 .

(4-9)

½n4.6 y²:lÂŞ(4-6)!(4-8)k SCGD(n; a, q) = SCD(a, aq, aq 2 , ¡ ¡ ¡ , aq n−1 ), 2dÂŞ(4-7), ÂŒÂą SCD(a, aq, aq 2 , ¡ ¡ ¡ , aq n−1 ) = (−1)r

Y

(a + aqx + aq 2 x2 + ¡ ¡ ¡ + aq n−1 xn−1 )

xn =1

r n

= (−1) a

Y

(1 + qx + q 2 x2 + ¡ ¡ ¡ + q n−1 xn−1 ).

xn =1

XJxn = 1,K(1 + qx + q 2 x2 + ¡ ¡ ¡ + q n−1 xn−1 )(1 − qx) = 1 − q n ,du Y Y 1 1 n n (1 − qx) = q − x = 1 − qn , −x =q n q q xn =1 xn =1 ÂŒ ÂŞ(4-9). ¤¹½n4.6¤å. ¢SĂž, Ăšn4.3!Ăšn4.4!½n4.6Ă‘´½n4.5 A Ă?Âœš.

4.3.2 Smarandache VĂŠÂĄ1 ÂŞ 3Šz[35]ÂĽ, ĂŠu?Âż ĂŞn, n Ă— n1 ÂŞ

2 ¡¡¡ n − 1 n

1

2 3 ¡¡¡ n n − 1

. . .. ..

.. .. . .

n − 1 n ¡ ¡ ¡ 3 2

n n − 1 ¡¡¡ 2 1

ÂĄÂ?n SmarandacheVĂŠÂĄ1 ÂŞÂ…LÂŤÂ?SBND(n). 67

(4-10)


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

a,bĂźEĂŞ,n Ă— n1 ÂŞ

a a + d ¡ ¡ ¡ a + (n − 2)d a + (n − 1)d

a+b

a + 2d ¡ ¡ ¡ a + (n − 1)d a + (n − 2)d

. . . .

.. .. .. ..

a + (n − 2)d a + (n − 1)d ¡ ¡ ¡ a + 2d

a + d

a + (n − 1)d a + (n − 2)d ¡ ¡ ¡ a + d

a

(4-11)

ÂĄÂ?'u(a, d) n SmarandacheVĂŠÂĄÂŽâ?ĂŞ1 ÂŞÂ…LÂŤÂ?SBAD(n; a, d). 'un SmarandachVĂŠÂĄ1 ÂŞSBND(n)†SmarandachVĂŠÂĄÂŽâ?ĂŞ1 ÂŞSBAD(n; a, d) , Le Maohuay² e Ăšn4.6,Ăšn4.7. Ăš n 4.5 ĂŠu?Âż ĂŞn, SBND(n) = (−1)

n(n−1) 2

2n−1 (n + 1).

(4-12)

Ăš n 4.6 ĂŠu?Âż ĂŞn†?ÂżEĂŞĂŠa, d, SBAD(n; a, d) = (−1)

n(n−1) 2

2n−2 dn−1 (2a + (n − 1)d) .

a, d´EĂŞ, n Ă— n1 ÂŞ

aq ¡¡¡

a

aq aq 2 ¡ ¡ ¡

. ..

.. .

aq n−2 aq n−1 ¡ ¡ ¡

n−1 n−2

aq aq ¡¡¡

aq aq

aq n−1 aq n−2

.. ..

. .

2

aq aq

aq a n−2

(4-13)

n−1

(4-14)

ÂĄÂ?'u(a, q) n SmarandacheVĂŠÂĄAĂ›?ĂŞ1 ÂŞÂ…LÂŤÂ?SBGD(n; a, q). 'un SmarandacheVĂŠÂĄAĂ›?ĂŞ1 ÂŞSBGD(n; a, q),keÂĄ ½n. ½ n 4.7 ĂŠu?Âż ĂŞn†EĂŞĂŠa, d,   0, n = 2ž, SCGD(n; a, d) = n(n−1)  (−1) 2 an q n(n−2)(n−1) (q 2 − 1)n−1 , n 6= 2ž. ½n4.7 y²:‡OÂŽÂŞ(4-14), Â?IOÂŽ

q ¡ ¡ ¡ an−2 q n−1

1

q 2 n−1 n−2

q ¡ ¡ ¡ q q

.

.. .. ..

..

. . . .

n−2 n−1 2

q

q ¡¡¡ q q

n−1 n−2

q q ¡¡¡ q 1

68

(4-15)

(4-16)


1oĂ™ SmarandacheS ĂŻĂ„

dÂŞ(4-14), n = 1½n = 2ž, ÂŒ ÂŞ(4-15)¤å. Ă?dÂŒb½n > 2. rÂŞ(4-16) 12 JĂ‘ĂşĂ?fq,12 −1 \ 11 , , U11 Ă?m,

n−2 n−1

1 q ¡ ¡ ¡ a q q ¡¡¡

1

q

q q 2 ¡ ¡ ¡ q n−1 q n−2

q3 ¡ ¡ ¡

.

.. .. .. ..

..

= q(−1)n+1 (q n−1 − q n−3 ) ¡ ... . . . .

q n−2 q n−1 ¡ ¡ ¡ q 2 q

q n−3 q n−1 ¡ ¡ ¡

n−1 n−2

n−2 n−2

q

q q ¡¡¡ q 1 q ¡¡¡

an−2 q n−1

q n−1 q n−2

.. ..

. .

q 3 q 2

q2 q

= q(−1)n−1 (q n−1 − q n−3 )q 2 (−1)n ¡ (q n−2 − q n−4 ) ¡ ¡ ¡

n−1

1q

q n−2 (−1)4 (q 2 − 1)

n−2

q q = (−1)

n(n−1) 2

q (n−2)(n−1) (q 2 − 1)n−1 .

dd, ÂŒ ÂŞ(4-15). ½n4.7 y. Ă­2SBND(n) ˜„œ/. a1 , a2 , ¡ ¡ ¡ , an ,´n ‡EĂŞ, n Ă— n1 ÂŞ

a2 ¡ ¡ ¡ an−1 an

a1

a a3 ¡ ¡ ¡ an an−1

2

.

.. .. ..

.. . . .

an−1 an ¡ ¡ ¡ a3 a2

an an−1 ¡ ¡ ¡ a2 a1

(4-17)

ÂĄÂ?'uĂŤĂŞa1 , a2 , ¡ ¡ ¡ , an n SmarandacheVĂŠÂĄ1 ÂŞÂ…LÂŤÂ?SBD(a1 , a2 , ¡ ¡ ¡ , an ). ĂŠuSBD(a1 , a2 , ¡ ¡ ¡ , an ) OÂŽ, „´Â˜Â‡Â™)Ăť ÂŻK.

4.4 Smarandache ĂŞ N + ´ N ĂŞ 8Ăœ. ĂŠu ĂŞn, S(n) = min{k|k ∈ N + , n|k!}.

(4-18)

Xd S(n)ÂĄÂ?'un SmarandacheŸê. n´ ĂŞ, XJn Ă˜Ă“ ĂŞÂƒĂš u2n, KÂĄn´ ĂŞ. Ă?Âą5, ĂŞÂ˜Â†´êĂ˜ÂĽ Â˜Â‡Ăš<'5 ÂŻK[41] .  C, Ashbacher[42] ò ĂŞ VgĂ­2 SmarandacheŸê‰Œ, òáv X S(d) = n + 1 + S(n)

(4-19)

d|n

ĂŞnÂĄÂ?Smarandache ĂŞ.ĂŠd, Ashbachery² : n 6 106 ž, =kSmarandache

69


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

ĂŞ12. !ò?Â˜Ăš0 Smarandache ĂŞ, =y² : ½ n 4.8 =kSmarandache ĂŞ12. Ăš n 4.7 XJ n = pr11 pr22 ¡ ¡ ¡ prkk

(4-20)

S(n) = max {S(pr11 ), S(pr22 ), ¡ ¡ ¡ , S(prkk )} .

(4-21)

´ ên IOŠ)ª, K

y ² :̈́Šz[43]. Ăš n 4.8 ĂŠuÂƒĂŞpĂš ĂŞr, 7kS(pr ) 6 pr. y ² :̈́Šz[43]. Ăš n 4.9 ĂŠu ĂŞn, d(n)´n Ă˜êŸê. dž,d(n)´Ăˆ5Ÿê; (4-20)´n I OŠ)ÂŞ,K d(n) = (r1 + 1)(r2 + 1) ¡ ¡ ¡ (rk + 1).

(4-22)

y ² :̈́Šz[44]ÂĽ ~6.4.2. Ăš n 4.10 Ă˜ ÂŞ n < 2, n ∈ N d(n)

(4-23)

=k)n = 1, 2, 3, 4, 6. eÂĄy²½n4.8. n´¡Ăœn 6= 12 Smarandache ĂŞ. ŠâŠz[41]ÂĽ (

J, ÂŒ n > 106 . (4-20)´n IOŠ)ÂŞ. ŠâĂšn4.7ÂŒ S(n) = S(pr ),

(4-24)

p = pj , r = rj , 1 6 j 6 k.

(4-25)

n|S(pr )!,

(4-26)

S(d) 6 S(pr ).

(4-27)

Ù¼

l(4-24)Œ

¤¹Êun ?Ă› ĂŞdĂ‘k

70


1oĂ™ SmarandacheS ĂŻĂ„

ĂŠu ĂŞn, g(n) =

X

S(d).

(4-28)

d|n

dž, l(4-19)Ăš(4-28)ÂŒ n¡Ăœ g(n) = n + 1 + S(n).

(4-29)

q d(n)´n Ă˜êŸê.l(4-27)Ăš(4-29)ÂŒ d(n)S(pr ) > n.

(4-30)

dul(4-20)Ăš(4-24)ÂŒ gcd(pr , n/pr ) = 1, ¤¹ n = pr m, m ∈ N, gcd(pr , m) = 1.

(4-31)

qlĂšn4.9ÂŒ ,d(n)´Ăˆ5Ÿê, l(4-31)ÂŒ d(n) = d(pr )d(m) = (r + 1)d(m).

(4-32)

ò(4-31)Ăš(4-32)“\(4-30)= m (r + 1)S(pr ) >3 . r p d(m) f (n) =

n d(n) ,

(4-33)

dž(4-33)ÂŒ ¤ (r + 1)S(pr ) > f (m). pr

(4-34)

u´, ŠâĂšn4.8ÚÚn4.10, l(4-34)ÂŒ : =kSmarandache ĂŞ12. ½n4.8y..

4.5 Smarandache 3n ĂŞiS ĂŠ?Âż ĂŞn, Ă?Âś Smarandache 3nĂŞiS an ½Ă‚Â? an = 13, 26, 39, 412, 515, 618, 721, 824, .... TĂŞ zÂ˜Â‡ĂŞĂ‘ÂŒ¹ŠÂ?ĂźĂœŠ, ÂŚ 12ĂœŠ´11ĂœŠ 3 . ~X, a12 = 1236, a20 = 2060, a41 = 41123, a333 = 333999, ....ĂšÂ˜ĂŞ ´Ă?ϐĂ˜;[Smarandache Ç 3 Š z[7]Ăš Š z[46]ÂĽ J Ă‘ , Ă“ ž ÂŚ ĂŻ Æ < ‚ ĂŻ Ă„ T ĂŞ 5 Â&#x;. ' u Ăš ˜ ÂŻK, ÂŽĂšĂĽĂ˜ ÆÜ 5Âż, Âż ˜ ĂŻĂ„¤J[47−49] .3Šz[49]ÂĽ, ĂœŠ+Ă&#x; ĂżSmarandache 3nĂŞiS ÂĽÂŒUvk ²Â?ĂŞ, Â?,Šz[49]ÂĽvk )ĂťTĂ&#x; ÂŽ, y² Âąe(Ă˜: (a) nÂ?Ăƒ²Â?Ă?fêž, an Ă˜ÂŒU´ ²Â?ĂŞ; 71


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

(b) nÂ? ²Â?êž, an Ă˜ÂŒU´ ²Â?ĂŞ; (c)XJan ´Â˜Â‡ ²Â?ĂŞ, @okn = 22a1 ¡32a2 ¡52a3 ¡112a4 ¡n1 , Ù¼(n1 , 330) = 1.

Ăš (Ă˜Â?Ă&#x;ÂŽ (5Jø ­Â‡Â?â, ÂŤ ĂŻĂ„TÂŻK ˜ g´ĂšÂ?{,

l,˜Â?ÂĄwÂŤĂ‘Smarandache 3nĂŞiS ˜ S35Â&#x;. 'uĂšÂ˜ĂŞ cn‘ ÂŚ Ú¯K´k¿Â , Â?Ă’´`´Ă„ 3a1 + a2 + ... + aN ˜‡(ƒ ÂŚĂšúª½ÜÏ Cúª? ²L{ßí ĂšOÂŽ, ÂŒÂąÂ‰Ă‘Â˜Â‡E, OÂŽúª, Ă™(J†N (ƒ/ÂŞ k', ´/ÂŞÂżĂ˜nÂŽ, Â…lÂĽĂ˜U ĂŒÂ‡ĂœŠ, =Ă˜U ĂŹCúª. u´, ! Äފ ln a1 + ln a2 + ... ln aN ĂŹC5ÂŻK, |^Ă? Â?{9 ĂŞ ? 5Â&#x;y² eÂĄ (Ă˜. ½ n 4.9 ĂŠ?¿¿ŠÂŒ ĂŞN, kĂŹCúª X ln an = 2N ¡ ln N + O(N). n6N

eÂĄy²T½n. Ă„k Ă„an ( , nÂ?k ê, =n = bk bk−1...b2 b1 ,Ù¼1 6 bk 6 9, 0 6 bi 6 9(i = 1, 2, ..., k − 1). u´dÂŚ{ ? {KÂŒ , 333...34 | {z } 6 n 6 |333...3 {z } k−1

ž, 3nÂ?k ê;

k

333...34 | {z } 6 n 6 333...33 | {z } k

k+1

ž, 3nÂ?k + 1 ê. dan ½Ă‚ĂĄÂ?

an = n ¡ (10k + 3), ½ an = n ¡ (10k+1 + 3). ĂŠ?¿¿ŠÂŒ ĂŞN, w, 3 ĂŞM , ÂŚ : 333...33 | {z } < n 6 333...33 | {z } . M

u´dcÂĄ ŠĂ›, kĂ° ÂŞ Y

16n6N

an =

3 Y

n=1

an ¡

33 Y

n=4

(4-35)

M+1

1 (10M −1) 3

an ¡ ¡ ¡

Y

n= 13 (10M−1 −1)+1 M−1

N!(10 + 3)3 ¡ (100 + 3)30 ¡ ... ¡ (10M + 3)3¡10 72

an ¡

N Y

an =

n= 13 (10M −1)+1 1

M

¡ (10M+1 + 3)N− 3 (10

−1)

. (4-36)


1oĂ™ SmarandacheS ĂŻĂ„

5Âż x → 0ž, k OÂŞln(1 + x) = x + O(x2 ),¤¹ M X

= =

k=1 M X k=1 M X k=1

k−1

ln(10k + 3)3¡10 k−1

3 ¡ 10

3 ¡ k ¡ ln 10 + k + O 10

k ¡ 10k−1 ¡ 3 ln 10 +

1 102k

9 M + O(1) 10

1 1 9 = M ¡ 10M ¡ ln 10 − (10M − 1) ¡ ln 10 + M + O(1) 3 27 10 1 = M ¡ 10M ¡ ln 10 + O(N). 3 M+1

N− 13 (10M −1)

(4-37)

1 M = N− 10 − 1 ln(10M+1 + 3) 3

ln(10 + 3) 1 M 10 − 1 (M + 1) ln 10 + O(1) = N− 3 1 = N ¡ M ¡ ln 10 − ¡ M ¡ 10M ¡ ln 10 + O(N). 3

(4-38)

A^EulerÂŚĂšúª½½ĂˆŠ 5Â&#x;, N´ X ln n = N ¡ ln N − N + O(1). ln(N!) =

(4-39)

16n6N

5Âż ÂŞ(4-35), Ă˜J Ă‘ OÂŞ 10M < N 6 10M+1 , ½Ü ln N = M ln 10 + O(1).

(4-40)

(ĂœĂ° ÂŞ(4-36)9ĂŹ?úª(4-37)-(4-40), ĂĄÂ? ĂŹCúª X ln an n6N

=

X

16n6N

ln n +

M X

k−1

ln(10k + 3)3¡10

1

M

+ ln(10M+1 + 3)N− 3 (10

−1)

k=1

= 2N ¡ ln N + O(N). u´½n4.9 y. w,, ڇÏCúªÂ„' oá, ´Ă„ 3Â?°( ĂŹCúª, „k –u?Â˜ĂšĂŻĂ„.

73


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

4.6 Smarandache kn ĂŞiS ĂŠu∀k ∈ N + , Ă?Âś Smarandache kn ĂŞiS {a (k, n)}½Ă‚Â?Ăš ĂŞ8, T8

ĂœÂĽ zÂ˜Â‡ĂŞĂ‘ÂŒ¹Š¤ßĂœŠ, ÂŚ 1 ĂœŠ´1Â˜ĂœŠ k . ~XĂžÂ˜!‰Ñ

Smarandache 3nĂŞiS {a (3, n)} = {13, 26, 39, 412, 515, 618, 721, 824, ...} , =Ă’´TĂŞ zÂ˜Â‡ĂŞĂ‘ÂŒ¹ŠÂ?ĂźĂœŠ, 1 ĂœŠ´1Â˜ĂœŠ 3 . ĂžÂ˜!¼‰Ñ 'u ln a (3, n) ފ5Â&#x;, y² ĂŹCúª X

n6N

ln a (3, n) = 2N ¡ ln N + O (N) .

'uĂšÂ˜ĂŞ ٌ5Â&#x;, –8q „vk<ĂŻĂ„, ïÄڇê 5Â&#x;´k¿Â , – ÂŒÂąÂ‡NĂ‘Ăš AĂ?ĂŞ A 9ŠĂ™5Â&#x;. !¤ 9 Ă? ĂŞĂ˜ ÂŁÂŒĂŤÂ„ Šz[6]. !|^Ă? 9|ĂœÂ?{ĂŻĂ„

n a (k, n) ފ5Â&#x;, ¿‰Ñ A‡k ĂŹCúª. ½ n 4.10 k ∈ N + , 2 6 k 6 5, KĂŠ?¿¿ŠÂŒ ĂŞx, kĂŹCúª X n 9 = ln x + O (x) . a (k, n) k ¡ 10 ¡ ln 10 16n6x

½ n 4.11 k ∈ N + , 6 6 k 6 9,K ¢êx ¿ŠÂŒÂž, EkĂŹCúª X n 9 = ln x + O (x) . a (k, n) k ¡ 10 ¡ ln 10 16n6x

AO/, k = 396 ž, d½n4.10„Œ¹íĂ‘eÂĄĂ­Ă˜: Ă­ Ă˜ 4.3 ĂŠ?¿¿ŠÂŒ ĂŞx, kĂŹCúª X n 3 = ln x + O (x) . a (3, n) 10 ¡ ln 10 16n6x

Ă­ Ă˜ 4.4 ĂŠ?¿¿ŠÂŒ ĂŞx, kĂŹCúª X n 3 = ln x + O (x) . a (6, n) 20 ¡ ln 10 16n6x

74


1oÙ SmarandacheS ïÄ

w,ùA ìCúªØ´ ©°(, ´Ä 3 °( ìCúªE,´ úm ¯ K, ò´UYïÄ 8I. e¡y²ùü ½n. y²½n4.10 ¥k = 293 ¹, aq/ ±íѽ n4.10 ¥k = 4, 59½n4.11. Äky²½n4.10¥k = 2. Ä a (2, n) ( , n ? L« k ê, =Ò´ n = bk bk−1 · · · b2 b1 , Ù¥ 1 6 bk 6 9, 0 6 bi 6 9, i = 1, 2, · · ·, k − 1. u´d¦{ ? {K , 10k−1 6 n 6 5 · 10k−1 − 1 , 2n k ê; 5 · 10k−1 6

n 6 10k − 1 , 2n k + 1 ê. da (2, n) ½Âá a (2, n) = n · 10k + 2 ,

½ö

a (2, n) = n · 10k+1 + 2 .

é?¿¿© êx, w,∃M ∈ N + ¦

5 · 10M 6 x < 5 · 10M+1 , u´kð ª X

16n6x 4 X

n a (2, n)

49 499 4999 X X X n n n n = + + + + a (2, n) a (2, n) a (2, n) a (2, n) n=1 n=5 n=50 n=500

···+ 4 X

M 5·10 X−1

n=5·10M−1

n + a (2, n)

X

5·10M 6n6x

n a (2, n)

49 499 4999 X X X 1 1 1 1 = + + + 2 3 4 10 + 2 n=5 10 + 2 n=50 10 + 2 n=500 10 + 2 n=1

···+

M 5·10 X−1

n=5·10M−1

1 M+1

10

+2

+

X

5·10M 6n6x

1 M+2

10

+2

5−1 50 − 5 500 − 50 5000 − 500 + + + + 2 10 + 2 10 + 2 103 + 2 104 + 2 5 · 10M − 5 · 10M−1 x − 5 · 10M ···+ +O 10M+1 + 2 10M+2 + 2 9 · 10 9 · 102 9 · 103 9 · 10M + O (1) = + + + · · · + 2 · 102 +2 2 · 103 +2 2 · 104 +2 2 · 10M+1 +2 =

75

(4-41)


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

9 ¡ 102 + 2 − 2 9 ¡ 103 + 2 − 2 9 104 + 2 − 2 + + + = 20 ¡ 102 + 2 20 ¡ 103 + 2 20 104 + 2 9 10M+1 + 2 − 2 + O (1) ¡¡¡+ 20 10M+1 + 2 ! M X 9 1 = M +O + O (1) 20 10m m=1

=

9 M + O (1) . 20

(4-42)

5Âż ÂŞ(4-41) , ĂŠĂŞ

k OÂŞ

M ln 10 + ln 5 6 x < ln 5 + (M + 1) ln 10 ½Ü M= ¤¹dª( 4-42) ÏCúª X 16n6x

1 ln x + O (1) . ln 10

n 9 = ln x + O (x) . a (k, n) 20 ¡ ln 10

u´y² ½n4.10ÂĽk = 2 Âœš. y3y²½n4.10 ÂĽk = 3 Âœš. Ă„ ĂŞ a (3, n) ( , n ›?›LÂŤ Â?k ê, =Ă’´ n = bk bk−1 ¡ ¡ ¡ b2 b1 , Ù¼ 1 6 bk 6 9, 0 6 bi 6 9, i = 1, 2, ¡ ¡ ¡k − 1. u´dÂŚ{ ? {KÂŒ , ¡ ¡ ¡ 34} 6 n 6 333 ¡ ¡ ¡ 33} |333 {z | {z k−1

ž, 3nÂ?k ê;

k

333 ¡ ¡ ¡ 34} 6 n 6 333 ¡ ¡ ¡ 33} | {z | {z k

k+1

ž, 3nÂ?k + 1 ê. u´ nÂ?k êž, da (3, n) ½Ă‚

½Ü

a (3, n) = n ¡ 10k + 3 , a (3, n) = n ¡ 10k+1 + 3 . 76


1oĂ™ SmarandacheS ĂŻĂ„

ĂŠ?¿¿ŠÂŒ ĂŞx, w,∃M ∈ N + , ÂŚ 333 ¡ ¡ ¡ 33} 6 x < |333 {z ¡ ¡ ¡ 33}, | {z M

u´kð ª X 16n6N 3 X

(4-43)

M+1

n a(3, n)

33 333 3333 X X X n n n n = + + + + a(3, n) n=4 a(3, n) a(3, n) n=334 a(3, n) n=1

¡¡¡ =

X

n= 13 ¡(10M−1 −1)+1

3 X

n + a(3, n)

X

1 (10M −1)+16N6x 3

n a(3, n)

33 333 3333 X X X 1 1 1 1 + + + + 2+3 3+3 4+3 10 + 3 10 10 10 n=1 n=4 n=34 n=334

¡¡¡ + =

n=34)

1 ¡(10M −1) 3

1 ¡(10M −1) 3

X

1

n= 13 ¡(10M−1 −1)+1

10M

+3

X

+

1 ¡(10M −1)+16n6x 3

1 10M+1

+3

3 33 − 3 333 − 33 3333 − 333 + 2 + + + 10 + 3 10 + 3 103 + 3 104 + 3 ! 1 1 1 M M−1 M ¡ (10 − 1) − (10 − 1) x − ¡ (10 − 1) 3 3 ¡¡¡ + 3 +O 10M + 3 10M+1 + 3

3¡1 3 ¡ 10 3 ¡ 102 3 ¡ 103 + 2 + 3 + 4 + 10 + 3 10 + 3 10 + 3 10 + 3 3 ¡ 10M−1 + O(1) ¡¡¡ + 10M + 3 3 ¡ (10 + 3 − 3) 3 ¡ (102 + 3 − 3) 3 ¡ (103 + 3 − 3) 3 ¡ (104 + 3 − 3) = + + + + 10 ¡ (10 + 3) 10 ¡ (102 + 3) 10 ¡ (103 + 3) 10 ¡ (104 + 3) 3 ¡ (10M+1 + 3 − 3) ¡¡¡ + + O(1) 10 ¡ (10M + 3) ! M X 3 1 = M +O + O(1) 10 10m m=1

=

=

3 M + O(1). 10

(4-44)

5¿ ª(4-43) =´

u´k Oª

1 1 ¡ 10M − 1 6 x < ¡ 10M+1 − 1 , 3 3

M=

1 ln x + O (1) . ln 10 77


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

¤¹dª(4-44) ÏCúª X

16n6x

3 n = ln x + O (x) . a (3, n) 10 ¡ ln 10

u´ ¤ ½n4.10 ÂĽk = 3 y². |^Ă“ Â?{Â?ÂŒ¹íĂ‘½n4.10 ÂĽk = 4, 5 (Ă˜. –u½n4.11 y², Ăš½n4.10 y²aq, Â?´3ŒÚ¼Ên Š{Ă˜Ă“, Ăš pĂ’Ă˜Â˜Â˜Ăž~.

4.7 Smarandache ²Â?ĂŞ ĂŠ?¿šK ĂŞn, ^SP (n)LÂŤn Smarandache ²Â?ĂŞ, =Ă’´ÂŒu½ un  ²Â?ĂŞ. ~XTĂŞ cA‘Â?: 0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, ¡ ¡ ¡ . ^IP (n)LÂŤn Smarandache ÂŒ²Â?ĂŞ, =Ă’´Ă˜Â‡Ln  ÂŒ ²Â?ĂŞ.ڇê cA‘Â?: 0, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, ¡ ¡ ¡ . Sn =

(SP (1) + SP (2) + ¡ ¡ ¡ + SP (n)) ; n

In =

(IP (1) + IP (2) + ¡ ¡ ¡ + IP (n)) ; n

Kn = Ln =

p n

SP (1) + SP (2) + ¡ ¡ ¡ + SP (n);

p n

IP (1) + IP (2) + ¡ ¡ ¡ + IP (n).

3Šz[7]ÂĽ, {7ÛêZĂŚĂ?ϐĂ˜;[Smarandache ÇJĂ‘ Ú߇ê , ¿ïÆ<╀§ ÂˆÂŤ5Â&#x;, k'Ăš SNĂšk' ¾Í Šz[51, 52, 57].3Š z[56]ÂĽ, F Kenichiro KashiharaƏ2gÊÚ߇ê ) , , ӞJĂ‘ ĂŻĂ„ n 4 SInn !Sn − In ! K Ln 9Kn − Ln ùÑ5ÂŻK, XJĂ‚Ăą, ¿ŒĂ™4 . 3Šz[60]ÂĽ,

ÂƒĂ„gĂŻĂ„ ĂšA‡ÞŠ ĂŹC5ÂŻK, Âż|^Ă? 9)Ă›Â?{y² eÂĄA‡( Ă˜:

78


1oÙ SmarandacheS ïÄ

½ n 4.12 é?¿¢êx > 2, kìCúª X 3 x2 SP (n) = + O(x 2 ); 2 n6x

X

IP (n) =

n6x

3 x2 + O(x 2 ). 2

dd½ná íÑe¡ íØ: í Ø 4.5 é?¿ ên, kìCúª 1 Sn = 1 + O(n− 2 ); In

94 ª lim

n→∞

Sn = 1. In

í Ø 4.6 é?¿ ên, kìCúª 1 Kn = 1 + O(n− 2 ); Ln

94 ª Kn = 1, n→∞ Ln lim

lim (Kn − Ln ) = 0.

n→∞

, , 'uSn − In ìC5¯K, 8q vk<ïÄ, vk3yk ©

z ¥ w ., , ö @ ù ¯ K ´ k , Ù Ï 3 u ¡ § ) û ± é ©z[56]¥ ¯K ± £ , xþ ÷ éÒ;, ¡ ± xÑü«ê SP (n)9IP (n) «O. ÖÄu©z[60]¥ g ¿(ÜÓa Ü¿±9Ø °(?n, ïÄ Sn − In ìC5¯K, ¼ r ìCúª, äN/` Ò´y² e¡ ½n.

½ n 4.13 éu?¿ ên > 2, kìCúª Sn − In =

4√ n + O(1). 3

ù (J Ö ©z[60] Øv, Ó ò©z[56]¥éê Sn9In JÑ ¤k¯K )û. ,, dT½n ±íÑe¡ 4 : 1

lim (Sn − In ) n = 1;

n→∞

lim

Sn − In 4 √ = . 3 n 79


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

eÂĄy²d½n. |^Ă? Â?{9EulerÂŚĂšúªŠOĂŠSn9In ?1š~°( O,  ª|^߇°( O‰Ñ½n y².ĂŠ?Âż ĂŞn > 2, w, 3Â?˜ 1

ĂŞM áv:M 2 < n 6 (M + 1)2 , =M = n 2 + O(1).u´k 1X 1 X 1 X S(n) = SP (k) = SP (k) + SP (k) n n n 2 2 k6n k6M M <k6n X 1 X 1 X SP (k) + (M + 1)2 = n n 2 2 2 h6M (h−1) <k6h

M <k6n

1 X 2 1 = (h − (h − 1)2 )h2 + (n − M 2 )(M + 1)2 n n h6M 1 X 1 = (2h3 − h2 ) + (n − M 2 )(M + 1)2 n n h6M 2

M (M + 1)2 M (M + 1)(2M + 1) 1 − + (n − M 2 )(M + 1)2 2n 6n n 2 M (M + 1)(2M + 1) M (M + 1)2 2 − . = (M + 1) − 6n 2n =

(4-45)

Ă“nŠâIP (n) ½Ă‚, Â?kOÂŽúª 1X 1 X 1 X In = IP (k) = IP (k) + IP (k) n n n 2 2 k6n k<M M 6k6n X 1 X 1 X = IP (k) + M2 n n 2 2 2 h6M (h−1) 6k<h

M 6k6n

1 X 2 1 = (h − (h − 1)2 )(h − 1)2 + (n − M 2 + 1)M 2 n n h6M 1 X 1 = (2h3 − 5h2 + 4h − 1) + (n − M 2 + 1)M 2 n n h6M 2

M (M + 1)2 5M (M + 1)(2M + 1) 2M (M + 1) M (n − M 2 + 1)M 2 − + − + 2n 6n n n n 2 2 2 M (M − 2M − 3) 5M (M + 1)(2M + 1) 2M + M = M2 − − + . (4-46) 2n 6n n =

u´d(4-45)Ăš(4-46) M (M + 1)(2M + 1) M 2 (M + 1)2 Sn − In = (M + 1)2 − − − 6n 2n M 2 (M 2 − 2M − 3) 5M (M + 1)(2M + 1) 2M 2 + M 2 M − − + 2n 6n n 3 2M + 7M = 2M + 1 − . (4-47) 3n 5Âż 1

M = n 2 + O(1), 80


1oĂ™ SmarandacheS ĂŻĂ„

d(4-47)ÂŞBÂŒĂ­Ă‘ Sn − In = 2M − =

2M 4 + O(1) = M + O(1) 3 3

4√ n + O(1). 3

81


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

1ĂŠĂ™ Ă™§êĂ˜ÂŻK 5.1 škFibonacciê†LucasĂŞ Ă° ÂŞ

S

¯¤¹ , FibonacciS {Fn } †LucasS {Ln}(n = 0, 1, 2, ...) ´d ‚548 Fn+2 = Fn+1 + Fn , Ln+2 = Ln+1 + Ln

5½Ă‚ , Ù¼n > 0, F0 = 0, F1 = 1, L0 = 2 Â…L1 = 1. Ú߇S 3êÆ!ĂŻĂ“ Æ!OÂŽĂ…D–)ÔÆ ˆ‡+Â?Ă‘užX4Ă™­Â‡ Š^. Ă?d'uFn ĂšLn ˆ ÂŤÂˆ 5Â&#x; ĂŻĂ„ĂĄĂš IS ¯þÆÜ 81. R.L.Duncan[76] ĂšL.Kuipers[78] ŠO 31967cĂš1969cy² log Fn ´ 1 ˜—ŠĂ™ . Neville Robbins[81] 31988cĂŻĂ„

/Xpx2 Âą 1, px3 Âą 1 (Ù¼p ´ÂƒĂŞ) FibonacciĂŞ. 'uFibonacciĂŞ Ă° ÂŞĂšÂ?ÂĄ SN, Â?kĂ˜ ʤ

(J. ~X, m X

Fn = Fm+2 − 1,

n=0 m−1 X

F2n+1 = F2m ,

n=0

m X n=0

m X

nFn = mFm+2 − Fm+3 + 2, n m−n Cm Fc−n Fkn Fk+1 = Fmk+c ,

n=0

n Ù¼Cm =

m! n!(m−n)! .

2004c, ĂœŠ+[84] Â?šFn ĂšLn A‡Â?2Â? Ă° ÂŞ X

Fm(a1 +1) Fm(a2 +1) . . . Fm(ak+1 +1) =

a1 +a2 +¡¡¡+ak+1 =n

X

F k+1 (k) (−1)mn m U 2k k! n+k

Lma1 Lma2 . . . Lmak+1

a1 +a2 +¡¡¡+ak+1 =n+k+1

82

im Lm , 2


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

m(n+k+1)

= (−1)

k+1 m+2

2 X k! h=0

i

2

Lm

h

(k + 1)! (k) Un+2k+1−h h!(k + 1 − h)!

im Lm , 2

Ù¼k, m ´?Âż ĂŞ, n, a1 , a2 , . . . , ak+1 ´ÂšK ĂŞÂ…i ´âˆ’1 ²Â?Š, Uk (x) ´1 aChebyshevþ‘ª. ´w[90] 3dĂ„:Ăžq 'uFibonacciþ‘ª A‡ð ÂŞ n

X

a1 +a2 +¡¡¡+ak =n

Fa1 +1 (x) ¡ Fa2 +1 (x) ¡ ¡ ¡ Fak +1 (x) =

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ¡ xn−2m ,

Ù¼Fibonacciþ‘ªFn(x)d ‚548úªFn+2(x) = xFn+1 (x) + Fn (x)½Ă‚, Â… n Ă?ŠÂ?F0 (x) = 0,F1 (x) = 1; Cm =

m! n!(m−n)! ,[z]LÂŤĂ˜Â‡Lz  ÂŒ ĂŞ;

x = 1ž,

Fn (x) = Fn , dd A‡'uFibonacciĂŞ Ă° ÂŞ,ÂąeA‡úªĂ‘ĂŠ?Âż ĂŞk Ăšn¤å n

X

a1 +a2 +¡¡¡+ak =n+k

Fa1 ¡ Fa2 ¡ ¡ ¡ Fak =

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ,

n

X

a1 +a2 +¡¡¡+ak =n+k

F2a1 ¡ F2a2 ¡ ¡ ¡ F2ak = 3k ¡ 5

n−k 2

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ¡ 5−m ,

n

X

a1 +a2 +¡¡¡+ak =n+k

F3a1 ¡ F3a2 ¡ ¡ ¡ F3ak = 22n+k

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ¡ 16−m ,

n

X

a1 +a2 +¡¡¡+ak =n+k

F4a1 ¡ F4a2 ¡ ¡ ¡ F4ak = 3n ¡ 7k ¡ 5

n−k 2

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ¡ 45−m ,

n

X

a1 +a2 +¡¡¡+ak =n+k

F5a1 ¡ F5a2 ¡ ¡ ¡ F5ak = 5k ¡ 11n

[2] X

m=0

m k−1 Cn+k−1−m ¡ Cn+k−1−2m ¡ 121−m .

!ĂŒÂ‡Ă?LrxnL¤Chebyshevþ‘ª5 Â?šFibonacciê†LucasĂŞ o ‡ð ÂŞ. Â?Ă’´, ‡y²eÂĄ ߇½n. ½ n 5.1 ĂŠ?¿šK ĂŞn Ăš ĂŞm, kĂ° ÂŞ L2n m

=

(2n)! (−1)mn (n!)2

L2n+1 m

= (2n + 1)!

+ (2n)!

n X k=0

n X k=1

(−1)m(n−k) L2km ; (n − k)!(n + k)!

(−1)m(n−k) L(2k+1)m . (n − k)!(n + k + 1)! 83


Smarandache ¼ê9Ù '¯KïÄ

½ n 5.2 é?¿ K ên Ú êm, kð ª n

L2n m

(2n)! X (−1)m(n−k) (2k + 1) F(2k+1)m ; = Fm (n − k)!(n + k + 1)! k=0

n

L2n+1 m

2(2n + 1)! X (−1)m(n−k) (k + 1) = F2(k+1)m . Fm (n − k)!(n + k + 2)! k=0

!ò Ñ3½ny²¥I ^ A Ún. 3 ÑÚn cÄkI 1 aChebyshevõ ªTn(x) Ú1 aChebyshevõ ªUn(x) (n = 0, 1, · · · ) L

ª

n n i p p 1 h x + x2 − 1 + x − x2 − 1 , 2 n+1 n+1 p p 1 Un (x) = √ x + x2 − 1 − x − x2 − 1 . 2 x2 − 1

Tn (x) =

,§ ±^Xe48úª5½Â:

Tn+2 (x) = 2xTn+1 (x) − Tn (x), Un+2 (x) = 2xUn+1 (x) − Un (x), Ù¥n > 0, T0 (x) = 1, T1 (x) = x, U0 (x) = 1 U1 (x) = 2x. e¡ ÑXeA Ún. Ú n 5.1 é?Û êm Ún, kð ª Tn (Tm (x)) = Tmn (x), Um(n+1)−1 (x) Un (Tm (x)) = . Um−1 (x) y²: ë ©z[84]. Ú n 5.2 i ´−1 ² , m Ún ´?¿ ê, Kkð ª i Un = in Fn+1 , 2 i in = Ln , Tn 2 2 i imn Tn Tm = Lmn , 2 2 Fm(n+1) i Un Tm = imn . 2 Fm n y²: w,kUn 2i = in Fn+1 , Tn 2i = i2 Ln, K âÚn5.1, qN´/ {e

ü úª. ùÒy² Ún5.2.

84


1ÊÙ Ù§êدK

Ú n 5.3 é?¿ K ên, ∞

X 1 x ≡ an·0 T0 (x) + an·k Tk (x) 2 n

(5-1)

k=1

xn ≡

∞ X

bn·k Uk (x),

(5-2)

k=0

Kk

an·k =

bn·k =

 

2n! (n−k)!!(n+k)!! ,

n > k, n + k ´óê; Ù¦.

 0,

 

2(k+1)n! , (n−k)!!(n+k+2)!!

n > k, n + k ´óê; Ù¦.

 0,

y²: , Chebyshevõ ªkéõ5 (ë ©z[92]). ~X   m 6= n,  Z 1  0, Tm (x)Tn (x) √ dx = π2 , m = n > 0, 2  1−x −1   π, m = n = 0; Tn (cos θ) = cos nθ;

   Z 1p  0, 1 − x2 Um (x)Un (x) dx = π2 ,  −1   π,

Un (cos θ) =

m 6= n,

m = n > 0,

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

m = n = 0;

sin(n + 1)θ . sin θ

(5-8)

(x) Äky²(5-3)ª. é?¿ K êm, Äk (5-1)ªü>Ó ¦± √Tm , 2ü> 1−x2

l−1 1 È©, A^(5-5)ª Z 1 n Z 1 Z 1 ∞ X x Tm (x) 1 Tm (x)T0 (x) Tm (x)Tk (x) √ √ √ dx = an·0 dx + an·k dx 2 2 1 − x2 1 − x2 1 − x −1 −1 −1 k=1 π = an·m , (m = 0, 1, 2, · · · ) 2 Ïd, an·m

2 = π

Z

1

−1

xn Tm (x) √ dx. 1 − x2

85


Smarandache ¼ê9Ù '¯KïÄ

x = cos t, â(5-6)ªk Z 2 π an·m = cosn t cos mt dt π 0 Z 2 π = cosn t (cos(m − 1)t cos t − sin(m − 1)t sin t) dt π 0 Z Z 2 π 2 π n+1 = cos t cos(m − 1)t dt − cosn t sin(m − 1)t sin t dt π 0 π 0 Z π 2 1 sin(m − 1)t d(cosn+1 t) = an+1·m−1 + · π n+1 0

π

2 1 n+1 = an+1·m−1 + · · cos t · sin(m − 1)t

π n+1 0 Z 2 m−1 π n+1 − · cos t cos(m − 1)t dt π n+1 0 m−1 = an+1·m−1 − · an+1·m−1 n+1 n−m+2 = · an+1·m−1 n+1 n−m+2 n−m+4 = · · an+2·m−2 n+1 n+2 =··· n−m+2 n−m+4 n − m + 2m = · ··· · an+m·0 n+1 n+2 n+m =

(n+m)!! (n−m)!! (n+m)! n!

· an+m·0 .

e¡O an+m·0 , w, an+m·0 {z, In = ê, K

Rπ 0

2 = π

Z

π

cosn+m t dt.

0

cosn t dt. n Ûê , Ï f (x) = cos x 3«m[0, π] þ´Û¼

In =

Z

π

Z

π

cosn t dt = 0;

(5-9)

0

n óê , k Z

π

cos t dt = cosn−1 t d sin t 0

0 Z π

n−1 π = sin t cos t 0 + (n − 1) sin2 t · cosn−2 t dt 0 Z π = (n − 1) 1 − cos2 t cosn−2 t dt Z0 π Z π n−2 cos t dt − (n − 1) cosn t dt = (n − 1)

In =

n

0

0

86


1ÊÙ Ù§êدK

= (n − 1)In−2 + (n − 1)In .

(5-10)

Ïd 'uIn 4íúª In =

n−1 · In−2 . n

(5-11)

Kdª(5-11) n−1 n =··· n−1 = n

In =

dIn ½Â I0 =

Z

· In−2 = ·

n−1 n−3 · · In−4 n n−2

n−3 1 · · · · I0 , n−2 2

π

0

cos t dt =

0

Z

0

(5-12)

π

1 · dt = π.

(5-13)

Ïd(ܪ(5-9), (5-12)Ú(5-13), Z π In = cosn t dt 0  (n−1)!! π, n ´óê, n!! =  0, n ´Ûê. dd

Z 2 π an+m·0 = cosn+m t dt π  0  2(n+m−1)!! , n + m ´óê, (n+m)!! =  0, n + m ´Ûê.

Ïd an·m =

 (n+m)!!  (n−m)!! (n+m)! n!

2(n+m−1)!! (n+m)!!

=

2n! , (n−m)!!(n+m)!!

n > m, n + m ´óê, Ù¦.

0,

-m = k, á= (5-3)ª. √

^ a q {, 5 y ²(5-4)ª. é ? ¿ K êm, Ä k (5-2)ª ü > Ó ¦

± 1 − x2 Um (x), 2l−1 1 È©, |^(5-7)ª Z 1p Z 1p ∞ X n 2 1 − x x Um (x) dx = bn·k 1 − x2 Um (x)Uk (x) dx −1

k=0

π = bn·m , 2

87

−1

(m = 0, 1, 2, · · · )


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

-m = k, Kk bn¡k

2 = π

Z

1 −1

p

1 − x2 xn Uk (x) dx.

x = cos t Šâ(5-8)ÂŞ, k Z 2 Ď€ bn¡k = cosn t ¡ sin(k + 1)t ¡ sin t dt Ď€ 0 Z Ď€ 2 −1 = ¡ sin(k + 1)t d(cosn+1 t) Ď€ n+1 0 Z Ď€

Ď€ 2 −1 n+1 n+1

= ¡ cos t ¡ sin(k + 1)t 0 − (k + 1) cos t ¡ cos(k + 1)t dt Ď€ n+1 0 Z 2 k+1 Ď€ = ¡ cosn+1 t ¡ cos(k + 1)t dt Ď€ n+1 0 k+1 = ¡ an+1¡k+1 . n+1 |^(5-3)ÂŞ, k bn¡k =

 

2(k+1)n! , (n−k)!!(n+k+2)!!

n > k, n + k ´óê; Ă„K.

 0,

Ă?d (5-4)ÂŞ. ÚÒy² Ăšn2.3. Ăš n 5.4 ĂŠ?¿šK ĂŞn, rxn L¤Xe /ÂŞ n

x

2n

(2n)! 2(2n)! X 1 = n T (x) + T2k (x) 0 2 n 4 (n!) 4 (n − k)!(n + k)! k=1

=

n (2n)! X

4n

k=0

2k + 1 U2k (x), (n − k)!(n + k + 1)! n

x

2n+1

(2n + 1)! X 1 = T2k+1 (x) n 4 (n − k)!(n + k + 1)! k=0

=

n (2n + 1)! X

4n

k=0

k+1 U2k+1 (x). (n − k)!(n + k + 2)!

y²: 3Ăšn5.3 ÂŞ(5-3)Úª(5-4)ÂĽ, ank 6= 0 ž, n + k 7Â?óê, =n †k ä

kÂƒĂ“ Ûó5, |^ĂšÂ˜:, òy²Ăšn5.4.

Ă„ky²1˜‡ ÂŞ, Šâª(5-1)9(5-3), k ∞

X 1 x2n = a2n¡0 T0 (x) + a2n¡k Tk (x) 2 k=1

1 = a2n¡0 T0 (x) + 2

n X

a2n¡2k T2k (x)

k=1

88


1ÊÙ Ù§êدK n

X 2(2n)! 2(2n)! 1 = · T0 (x) + · T2k (x) 2 (2n)!!(2n)!! (2n − 2k)!!(2n + 2k)!! k=1

=

(2n)! T0 (x) + 4n (n!)2

n 2(2n)! X

4n

k=1

1 · T2k (x), (n − k)!(n + k)!

, ¡, dª(5-2)Úª(5-4) x

2n

= = =

∞ X

k=0 n X k=0 n X k=0

=

b2n·k Uk (x) b2n·2k U2k (x) 2(2k + 1)(2n)! · U2k (x) (2n − 2k)!!(2n + 2k + 2)!! n

(2n)! X 2k + 1 · U2k (x). n 4 (n − k)!(n + k + 1)! k=0

é u 1 ª, Ï 2n + 1 ´ Û ê, ¤ ±a2n+1·0 = 0, Ï d d Ú n5.3¥ ª(5-1)Ú ª(5-3), k x

2n+1

=

∞ X

a2n+1·k Tk (x)

k=1

=

n X

a2n+1·2k+1 T2k+1 (x)

k=0

=

n X k=0

2(2n + 1)! · T2k+1 (x) (2n − 2k)!!(2n + 2k + 2)!! n

(2n + 1)! X 1 · T2k+1 (x), = n 4 (n − k)!(n + k + 1)! k=0

, ¡, dª(5-2)Úª(5-4) x2n+1 =

∞ X

b2n+1·k Uk (x)

k=0

=

n X

b2n+1·2k+1U2k+1 (x)

k=0

=

n X k=0

2(2k + 2)(2n + 1)! · U2k+1 (x) (2n − 2k)!!(2n + 2k + 4)!! n

(2n + 1)! X k+1 = · U2k (x). n 4 (n − k)!(n + k + 2)! k=0

ùÒy² Ún5.4.

89


Smarandache ¼ê9Ù '¯KïÄ

y35 Ñ1 !ü ½n y². ½n5.1 y²: âÚn5.4, -x = Tm (x), Kk n

2n Tm (x)

1 (2n)! 2(2n)! X T2k (Tm (x)), = n T (T (x)) + 0 m 2 n 4 (n!) 4 (n − k)!(n + k)! k=1

n

2n+1 Tm (x)

(2n + 1)! X 1 = T2k+1 (Tm (x)), n 4 (n − k)!(n + k + 1)! k=0

2-x =

i 2

¿ \þª, âÚn5.2 ± n

i2mk i2mn 2n (2n)! 2(2n)! X 1 L = + L2mk , 22n m 4n (n!)2 4n (n − k)!(n + k)! 2 k=1

n X

i(2n+1)m 2n+1 (2n + 1)! L = 22n+1 m 22n

k=0

= L2n m

=

(2n)! (−1)mn (n!)2

L2n+1 = (2n + 1)! m

1 i(2k+1)m Lm(2k+1) . (n − k)!(n + k + 1)! 2

+ (2n)!

n X k=1

n X k=0

(−1)m(k−n) L2km , (n − k)!(n + k)!

(−1)m(k−n) Lm(2k+1) . (n − k)!(n + k + 1)!

ùÒ ¤ ½n5.1 y². ½n5.2 y²: |^Ún5.4, k n

2n (x) Tm

(2n)! X 2k + 1 = n U2k (Tm (x)), 4 (n − k)!(n + k + 1)! k=0

n

2n+1 Tm (x)

(2n + 1)! X k+1 = U2k+1 (Tm (x)), n 4 (n − k)!(n + k + 2)! k=0

¿ -x = 2i , âÚn5.2 k

n

Fm(2k+1) i2mn 2n (2n)! X 2k + 1 Lm = n i2mk , 2n 2 4 (n − k)!(n + k + 1)! Fm k=0

n

Fm(2k+2) im(2n+1) 2n+1 (2n + 1)! X k+1 Lm = i(2k+1)m . 2n+1 n 2 4 (n − k)!(n + k + 2)! Fm k=0

z{ L2n m

n X (−1)m(k−n) (2k + 1) Fm(2k+1) = (2n)! , (n − k)!(n + k + 1)! Fm k=0

L2n+1 m

n X (−1)m(k−n) (k + 1) F2m(k+1) = 2(2n + 1)! . (n − k)!(n + k + 2)! Fm k=0

90


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

ÚÒy² ½n5.2.

5.2 Dirichlet L-Ÿê†n Ăš ĂŠÂˆÂŤn Ăš O´)Ă›ĂŞĂ˜¼ ­Â‡ ïđKƒ˜. p ´ÂƒĂŞ, f (x) = a0 + a1 x + ¡ ¡ ¡ + ak xk ´Â˜Â‡ ĂŞXĂŞ kgþ‘ª, Â…áv(p, a0 , a1 , . . . , ak ) = 1. @

31932c, L. J. Mordell[93] ĂŻĂ„ Xe¤ã ƒCĂŞn Ú¿ Ă?Âś ½n p−1 X 1 f (x) e ≪ p1− k , p x=1 Ù¼e(y) = e2Ď€iy . 3›c

uێ[94,95,101] ĂšDnä[102] òÚÂ˜ÂŻK*Ă? ߇CĂž, = p−1 X p−1 X 2 f (x, y) e ≪ p2− k , p x=1 y=1

Ù¼f (x, y) ´'u߇CĂžx Ăšy kgþ‘ª, ´¢Ăƒ ´, ĂšÂ˜(JĂ˜UÚßCĂž n Ăšpƒ=†. ƒ

, L. Carlitz ĂšS. Uchiyama[103] qU? Šz[93] (J

p−1

X f (x) √

e

6 k p,

p x=1

Ù¼k > 2.

!ÂĽ, ½Ă‚Xe‘A n Ăš q X

χ(a)e

a=1

f (a) , q

Ù¼χ ´Â˜Â‡ q DirichletA , Â…q ∤ (a0 , a1 , . . . , ak ). f (a) = naž, Tn ĂšC¤ GaussĂš G(n, χ) =

q X

χ(a)e

a=1

AO/, n = 1, P

χ = χ0 ž, P

an q

q X

a τ (χ) = χ(a)e . q a=1

Cq (n) =

q X

a=1

91

′

na e q

,

.


Smarandache ¼ê9Ù '¯KïÄ

¡ RamanujanÚ, Ù¥

q X

L«é¤k qp a ¦Ú. ù´þ¡¤?Ø n Ú

a=1

AÏ ¹(eq = p ´ ê f (a) = na), ,§ 5 ) éõ. 'uGaussÚ 5 , w,k G(n1 , χ) = G(n2 , χ),

n1 ≡ n2 (modq),

G(−n, χ) = χ(−1)G(n, χ), G(n, χ) = χ(n)τ ¯ (χ),

G(n, χ) ¯ = χ(−1)G(n, χ), ¯

(n, q) = 1,

Cq (n) = Cq (1) = τ (χ0 ),

(n, q) = 1,

d , χ ´ q A , χ0 ´ÌA , q, n ´ ê. , , eχ, χ1 Úχ2 ©O q, q1 Úq2 A , ÷v^ q = q1 q2 , (q1 , q2 ) = 1, χ = χ1 χ2 , KGaussÚ ±©) eª G(n, χ) = χ1 (q2 )χ2 (q1 )G(n, χ1 )G(n, χ2 ). eχ q A (' u A ½ Â ë © z[6, 106,]), χ(n)( q)´ d A χ∗ ( q ∗ ) Ñ , q1 ´ Úq ∗ k Ó Ï f(Ø O ­ ê) q Ø ê, K é(n.q) > 1, q ∗ 6= (n,q1q1 ) , kG(n, χ) = 0; q ∗ = (n,q1q1 ) , k n q q q ∗ ∗ −1 G(n, χ) = χ¯ χ µ ∗ φ(q)φ τ (χ∗ ), (n, q) q ∗ (n, q) q (n, q) (n, q) Ù¥, µ(n) ´M¨obius¼ê, φ(q) ´Euler¼ê. 'uτ (χ) ­ 5 Ò´eχ ´ q(q ?¿ ê) A , √ K|τ (χ)| = q, é?¿ χ q, kXeØ ª(ë ©z[6] Ú[106]) |τ (χ)| 6

q.

, , τ (χ) k ©)ª. eχq ⇔ χ∗q∗ , k q q ∗ τ (χ) = χ µ ∗ τ (χ∗ ). ∗ q q ´, χ ´ DirichletA , f (a) ´ kgõ ª , p X f (a) χ(a)e p a=1 Cz´4ÙØ5Æ . kNõÆöé§ ½ ïÄ. é êq > 3, k õ ªf (x) gê, φ(q) Euler¼ê, χ ´ q Dirichlet A , 92


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

e(k, qφ(q)) = 1, Mó¸[108] ‰Ñ ڍ‘A n Ăš ˜‡ ÂŞ

q 4 q Y X X

X f (a)

Îą+2 2 2 χ(a)e Îą+1− ,

= φ (q)q

q p ι m=1 χ mod q a=1

Ù¼

Q

pÎą kq

p kq

LÊ¤kávpÎą |q Â…pÎą+1 ∤ q p ÂŚĂˆ.

q, m, n 9k ´ ĂŞÂ…ávq, k > 1, (q, k) = 1ž, 4uw[109] ĂŻĂ„ Xe/ÂŞ ¡

ĂœÂ?ĂŞĂš C(m, n, k, χ; q) =

q X

χ(a)e

a=1

eÂĄ ÂŞ q X X

χ mod q m=1

4

2 2

|C(m, n, k, χ; q)| = q φ (q)

Y

pÎą kq Îą>2

mak + na q

,

Îą + 1 + 2(k, p − 1) Îą+1− p

¡

Y 2((k, p − 1) + 1) 1 (k, p − 1)2 − 2+ ¡ 2− , p p p(p − 1) pkq

Ù¼

Q

pÎą kq ½Ă‚Ă“Ăž.

4ĂŻĂŚ!½­2ĂšĂ?7[110] Â?´òXe/ÂŞ ƒCĂŞn Úí2 3 ÂŤmĂž ¿‰Ñ OÂŞ X

x<m6x+y

1

Λ(m)e(mk ι) ≪ (qx)Ǎ

1

q 2 yÎť 2 1

x2

5

1 2

1 2

1 6

1 2

+q x Îť +y x

3 10

+

x4

1

Îť6

+

x 1

1

q2Îť2

!

,

Ù¼, Λ(n) ´von MangoldtŸê, k > 1 ´ ĂŞ, x, y Ă‘Â?¢êÂ…2 6 x 6 y, Îą = a q

+ d,1 6 a 6 q, (a, q) = 1, Îť = |d|xk + x2 y −2 . Ă™§'un Ăš SNžÍ Š

z[111-119].

!´òn Ăš

p X a=1

χ(a)e

f (a) , p

†Dirichlet L-Ÿê?1\ , ‰ÑŒ‚ \ ފ ĂŹCúª. 'uDirichelet L-Ÿê \ ފ, IS ¯þÆÜÑʧ?1 ĂŻĂ„(ĂŤ Šz[120-127]). 32002c´wĂšĂœŠ+[128] ҉Ñ Dirichlet L-ŸêÚτ (χ) \ ފ ĂŹCúª. X |Ď„ (χ)|m |L(1, χ)|2k

χ6=χ0

k−1 Y 1 − C2k−2 1 2k−1 Y 2 2k−1 =N φ (N)Îś (2) 1− 2 1− p p2 p|q p∤q m +O q 2 +ÇŤ , m −1 2

93

!

Y

p|M

m m p 2 +1 − 2p 2 + 1


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ù¼q > 3 Â? ĂŞÂ…ávq = M N, (M, N) = 1, M =

Q

pkq n Â…p2 ∤ q p ÂŚĂˆ), Cm =

m! . n!(m−n)!

p(

Q

pkq

LÊ¤kávp|q

u´, !rĂš ˜‡2Ă‚n چDirichlet L-Ÿê(Ăœ3Â˜ĂĽ, ĂŻĂ„§Â‚\ Ăž Š ĂŹC5Â&#x;

p−1 2 X

X f (a)

χ(a)e

|L(1, χ)|2m ,

p

χ6=χ0 a=1

Ă‘ ˜‡Â?˜„ (Ă˜. ڌU Â?\Â˜Ă™/ Ăš ˜‡2Ă‚n چDirichlet L-Ÿêƒm ,ÂŤĂŠX. Â?O(/`, òy²eÂĄ ½n: ½ n 5.3 p > 3 ´ÂƒĂŞÂ…χ´ p DirichletA . 2 f (x) =

Pk

i=0 ai x

i

´Â˜Â‡ ĂŞ

XĂŞ kgþ‘ª…ávp ∤ (a0 , a1 , . . . , ak ). KĂŠ?Âż ĂŞm Ăšk, kXeĂŹCúª

p−1 2 X

X f (a)

χ(a)e

|L(1, χ)|2m

p χ6=χ0 a=1 ! m−1 Y 1 − C 2m−2 2− k1 +ÇŤ = p2 Îś 2m−1(2) 1− + O p , p20 p 0

Ù¼

Q

p0

n LÊ¤kĂ˜Ă“up ÂƒĂŞÂŚĂˆ, Cm =

m! , n!(m−n)!

Â…ÂŒO~ĂŞ=Â?6u ĂŞk

Ăš?˜‰½ ¢êǍ. e -f (a) = a, kDirichlet L-Âź ĂŞ †τ (χ)\ Ăž Š ĂŹ C Ăş ÂŞ, Ăš Ă™ ¢ Ă’ ´ Š z[128] ˜‡AĂ?Âœš. r§ ¤XeĂ­Ă˜: Ă­ Ă˜ 5.1 p > 3 ´Â˜Â‡ÂƒĂŞÂ…χ ´ p Dirichlet A , KĂŠ?Âż ĂŞm, kXe ĂŹCúª X

χ6=χ0 2

=p Îś

|τ (χ)|2 |L(1, χ)|2m

2m−1

(2)

Y p0

m−1 1 − C2m−2 1− p20

!

+ O(p1+ÇŤ ).

˜„/, ĂŠuq > 3 ´ ĂŞ, ^8c¤Ă?Âş Â?{Ăƒ{ , ´Âƒ&

q

2 X

X f (a)

χ(a)e

|L(1, χ)|2m ,

q χ6=χ0 a=1

ĂŹCúª´ 3 , Ă?dĂšE´Â˜Â‡m˜5ÂŻK.

Â? ¤½n y², I‡eÂĄA‡Ún. Ă„k‰Ñ‘kþ‘ª n Ăš Â˜Â‡Ă° ÂŞ.

94


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

Ăš n 5.5 f (x) ´ ĂŞXĂŞ kgþ‘ª, PÂ?f (x) = a0 + a1 x + ¡ ¡ ¡ + ak xk , ¿…χ ´ p(p > 3 ´ÂƒĂŞ) DirichletA . Kk

p−1 2 p−1 p−1

X X X f (a)

g(b, a)

χ(a)e χ(a) e ,

=p−1+

p b a=1

a=2

Ù¼g(b, a) = f (ab) − f (b) =

Pk

i=0

b=1

ai (ai − 1)bi .

y²: 5Âż 1 6 b 6 p − 1, Kk(b, p) = 1. ŠâA 5, ÂŒÂą

p−1

2 X p−1

X f (a) f (a) − f (b)

χ(a)e χ(a)χ(b)e ¯

=

p p a=1

a, b=1

=

p−1 X p−1 X a=1 b=1

f (ab) − f (b) χ(ab)χ(b)e ÂŻ . p

g(b, a) = f (ab) − f (b) = Ă?d

k X i=0

ai (ai − 1)bi ,

p−1 2 p−1 p−1

X f (a)

X X g(b, a)

χ(a)e χ(a)e

=

p p a=1 b=1 a=1 X p−1 p−1 p−1 X X g(b, 1) g(b, a) = χ(1)e + χ(a)e p p a=2 b=1 b=1 p−1 p−1 X X g(b, a) =p − 1 + χ(a) e . b a=2 b=1

ÚÒy² Ăšn5.5. Ăš n 5.6 f (x) E , á v Ăš n5.5 ^ ‡, 2 -g(x) = g(x, a) = f (ax) − f (x) = Pk i i i=0 ai (a − 1)x , KkXe OÂŞ 

p−1 1



X ≪ p1− k , p ∤ (b0 , b1 , . . . , bk ) g(b, a)

e

 = p − 1, p|(b0 , b1 , . . . , bk ) p b=1 Ù¼bi = ai (ai − 1), i = 0, 1, . . . , k Â…k ´þԻf (x) gĂŞ.

y²: w, p |(b0 , b1 , . . . , bk )ž(Ă˜¤å. p ∤ (b0 , b1 , . . . , bk )ž, Šâg(x, a) ½

Ă‚, k(ĂŤ Šz[93, 103])

p−1

X 1 g(b, a)

e

≪ p1− k .

p b=1

ÚÒy² Ăšn5.6.

95


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ăš n 5.7 p ´ÂƒĂŞ, p > 3 Â…dm (n) PÂ?rnL¤m‡Ă?f L{‡ê, =dm (n) ´m gĂ?fŸê. KĂŠ?ÂżECĂžs, Re(s) > 1, k ∞ X d2m (n) 1 2m−1 Y 2m−1 A(m, p0 , s), =Îś (s) 1 − s ns p n=1 p 0

(n, p)=1

Q Ù¼Μ(s) ´Riemann zeta-Ÿê¿Â… p0 LÊ¤kĂ˜Ă“up ÂƒĂŞÂŚĂˆ, A(m, p, s) = 2 P2m−2 1 Pi i−j m! j j n i=0 j=0 (−1) C2m−1 Cm+i−j−1 , Cm = n!(m−n)! . pis

y²: ĂŤ Šz[129]ÂĽ Ăšn2.3, Â…-q = p ÂƒĂŞ.

Ăš n 5.8 p ´ ƒ ĂŞp > 3 …χ ´ p DirichletA . PA(y, χ) = A(y, χ, m) = P N6n6y χ(n)dm (n), KkXe O X 4 |A(y, χ)|2 ≪ y 2− 2m +ÇŤ p2 , χ6=χ0

Ù¼Ǎ ´?Âż ½ ĂŞ. y²: ĂŤ Šz[127]ÂĽ Ăšn4, Âż qÂ?ÂƒĂŞ. Ăš n 5.9 p > 3 ´ÂƒĂŞÂ…χ ´ p DirichletA . KĂŠ?Âż1 < a < p Ăš?Âż ĂŞm, kXeĂŹCúª X

χ(a)|L(1, χ)|2m =

χ6=χ0

p dm (a) 2m−1 Y Îś (2) A(m, p0 , s) + O(pÇŤ ), a p 0

Q

Ă™ ÂĽÇŤ ´ ? Âż ½ ĂŞ, L ÂŤ ĂŠ ¤ k Ă˜ Ă“ up ƒ ĂŞ ÂŚ Ăˆ, A(m, p, s) = p0 2 P2m−2 1 Pi i−j m! j j n (−1) C C 2m−1 m+i−j−1 , Cm = n!(m−n)! . i=0 j=0 pis y²: Â? Â?Bü„, X X A(χ, y) = χ(n)dm (n), B(χ, y) = χ(n)dm (n). p 6n6y a

p6n6y

KĂŠRe(s) > 1, Dirichlet ŸêL(s, χ) ýÊĂ‚Ăą, Ă?d|^AbelĂ° ÂŞk m

L (s, χ) =

∞ X χ(n)dm (n) n=1

ns

p

=

a X χ(n)dm (n)

n=1 p

=

ns

X χ(n)dm (n) n=1

ns

96

+s

Z

+s

Z

+∞

A(χ, y) dy y s+1

+∞

B(χ, y) dy. y s+1

p a

p


1ÊÙ Ù§êدK

w,þªés = 1 ¤á(d χ 6= χ0 ). Ïd âDirichlet L-¼ê ½Â, é?¿ êa 6= 1 k X χ(a)|L(1, χ)|2m χ6=χ0

2 ∞

X χ(n)dm (n)

= χ(a)

n n=1 χ6=χ0 ! ∞ ! ∞ X X X χ(n)dm (n) χ(l)d ¯ m (l) = χ(a) n l n=1 χ6=χ0 l=1   ! Z +∞ p X X χ(n)dm (n) Z +∞ A(χ, y) X χ(l)d ¯ (l) B( χ, ¯ y) m = χ(a)  + dy  + dy 2 2 p n y l y p p a χ6=χ0 l=1 16n6  p a  ! p a X X χ(n)dm (n)  X χ(l)d ¯ m (l)  = χ(a) n l n=1 l=1 χ6=χ0  p  Z +∞ a X X χ(n)dm (n)  B(χ, ¯ y)  + χ(a) dy n y2 p n=1 χ6=χ0 ! Z ! p +∞ X X χ(l)d ¯ A(χ, y) m (l) + χ(a) dy p l y2 a χ6=χ0 l=1 ! Z Z +∞ +∞ X A(χ, y) B(χ, ¯ y) χ(a) + dy dy 2 2 p y y p a X

χ6=χ0

≡ M1 + M2 + M3 + M4 .

y35©O Oþª

ª¥ z .

(i)|^ p A 'X, (p, l) = 1 , kð ª   φ(p), en ≡ l mod p ; X χ(n)χ(l) ¯ =  0, Ù¦. χ mod p

K âÚn5.7, éN´  p  ! p a X X χ(n)dm (n) X χ(l)d ¯ (l) m  M1 = χ(a)  n l n=1 χ6=χ0

=

X

l=1

p a

p XX χ(an)χ(l)d ¯ m (n)dm (l)

χ mod p n=1 l=1

nl

97

p

p a X X dm (n)dm (l) n=1 l=1

nl


Smarandache ¼ê9Ù '¯KïÄ p

p a X X ′ ′ dm (n)dm (l) = φ(p) + O(pǫ ) nl n=1 l=1 an≡l( mod p) p a 2 X ′ dm (n)dm (a) = φ(p) + O(pǫ ) 2 an n=1 p

a 2 dm (a)φ(p) X ′ dm (n) = + O(pǫ ) 2 a n n=1   ∞ ∞ 2 2 dm (a)φ(p) X ′ dm (n) X ′ dm (n)  = − + O(pǫ ) 2 2 a n n n=1 n= p a  ∞ ∞ 2 2 X d (n) dm (a)φ(p) X ′ dm (n) ′ m  dm (a)φ(p) = + O + pǫ  2 2 a n a n n=1 n= ap p dm (a) 2m−1 1 2m−1 Y ζ = (s) 1 − s A(m, p0 , s) + O(pǫ ). a p

= Ù¥ÎÒ

P′

n

p dm (a) 2m−1 ζ (2) a

p0 6=p

Y

A(m, p0 , s) + O(pǫ ),

p0

Q

L«é¤k pp n¦Ú,

p0

L«é¤kØÓup ê¦È, 3þ

ª¥^ mgØê¼ê {ü O, =dm (n) ≪ nǫ .

(ii) âÚn5.7ÚA 5 , k  p  Z +∞ a X X χ(n)dm (n)  B(χ, ¯ y)  M2 = χ(a) dy 2 n y p n=1 χ6=χ0  p  ! Z p3(2m−2 ) P a X X χ(n)d ¯ χ(n)d (n) m (n) p6n6y m  = χ(a)  dy n y2 p n=1 χ6=χ0  p  Z +∞ P a X X χ(n)d ¯ χ(n)d (n) m (n) m p6n6y  + χ(a)  dy n y2 p3(2m−2 ) n=1 χ6=χ0

p

X

Z p3(2m−2 ) y a X

1

dm (n)dm (l) X

dy ≪ χ(an) χ(l) ¯

y 2

n=1 n p

l=p χ6=χ0 Z +∞ 1 X ǫ +p |B(χ, ¯ y)|dy. 2 p3(2m−2 ) y χ6=χ0

|^CauchyØ ªÚÚn5.8 N´ X

χ6=χ0

1 2

|B(χ, ¯ y)| 6 φ (p) 

1 2

X

χ6=χ0

98

|B(χ, ¯ y)|2


1ÊÙ Ù§êدK

6p

1 2

Ïd, k

M2 ≪

Z

p3(2 p

+p ≪

Z

m−2 )

3 +ǫ 2

Z

p

p ǫ

≪p ,

2

3

2

6 p 2 y 1− 2m +ǫ .

(5-14)

2

3(2m−2 )

p

p

1

p

y a

X X φ(p)

′ ′ dm (n)dm (l)

dy +

y 2 n=1 n l=p

an≡l(p)

+∞

3(2m−2 )

y

2− 24m +ǫ 2

y −1− 2m +ǫ dy p

a ǫ φ(p) X ′ ǫ1 y p y dy + pǫ y 2 n=1 n p a

ùp^ Odm (n) ≪ nǫ . (iii)aq/, ± M3 =

X

χ(a)

χ6=χ0

(iv)éuM4 , k Z X χ(a) M4 =

p X χ(l)d ¯ m (l) l=1

l

! Z

! Z

+∞ p a

A(χ, y) dy y2

!

= O(pǫ ).

B(χ, ¯ z) dz p z2 p a χ6=χ0 ! ! Z p2m−1 Z ∞ ! Z p2m−1 Z ∞ ! X A(χ, y) B(χ, ¯ z) = χ(a) + dy + dz p y2 z2 p2m−1 p p2m−1 a χ6=χ0 ! Z 2m−1 ! Z p2m−1 p X A(χ, y) B(χ, ¯ z) χ(a) = dy dz + p y2 z2 p a χ6=χ0 ! Z Z p2m−1 ∞ X A(χ, y) B(χ, ¯ z) + χ(a) dy dz + p y2 z2 p2m−1 a χ6=χ0 ! Z ∞ Z p2m−1 X A(χ, y) B(χ, ¯ z) + dy dz + χ(a) y2 z2 2m−1 p p χ6=χ0 Z ∞ Z ∞ X A(χ, y) B(χ, ¯ z) + χ(a) dy dz y2 z2 p2m−1 p2m−1 +∞

A(χ, y) dy y2

+∞

χ6=χ0

≡ N1 + N2 + N3 + N4 .

éuN1 , dA(χ, y)ÚB(χ, ¯ z) ½Â±9A Ú 5, k ! Z 2m−1 ! Z p2m−1 p X A(χ, y) B(χ, ¯ z) N1 = χ(a) dy dz 2 2 p y z p a χ6=χ0

99


Smarandache ¼ê9Ù '¯KïÄ

=

Z

p2

m−1

p a

m−1

p

Z

6p

p2

Z

X 1 y2z2 p a

2m−1

2m−1

Z

p p a

p

p

X

6n6y p6l6z

dm (n)dm (l) 

X

χ6=χ0

1 X′ X′ dm (n)dm (l)dydz y 2z2 p a

χ(an)χ(l) ¯  dydz

6n6y p6l6z

an≡l( mod p)

≪ ≪

2m−1

Z Z

p p a

Z

2m−1

p

p

2m−1

p p a

a

2m−1

Z

X 1 dm (n)dydz y 2z 1−ǫ p

p

6n6y

y −1+ǫ z −1+ǫ dydz

p

ǫ

≪p .

éuN2 , âA Ú 5 , ª(5-14)±9 Oªdm (n) ≪ nǫ , ± ! Z Z p2m−1 ∞ X B(χ, ¯ z) A(χ, y) N2 = χ(a) dy dz 2 2 p y z 2m−1 p a χ6=χ0 ! Z 3·2m−2 ! m−1 Z p2 p X B(χ, ¯ z) A(χ, y) χ(a) = dy dz + 2 2 p y z 2m−1 p a χ6=χ0 ! Z Z p2m−1 ∞ X B(χ, ¯ z) A(χ, y) + χ(a) dy dz p y2 z2 p3·2m−2 a χ6=χ0

=

Z

p2

m−1

p3·2

m−2

p2m−1

p a

Z

Z

p2

m−1

Z

X 1 y2z2 p

X

6n6y p6l6z a

dm (n)dm (l)

X

χ(an)χ(l)dydz ¯ +

χ6=χ0

1 X X χ(an)dm (n)B(χ, ¯ z)dydz 2 2 p 3·2m−2 y z p p a χ6=χ0 a 6n6y

Z 2m−1 Z 3·2m−2

p p 1 X′ X′

dm (n)dm (l)dydz + 6 p 2 2

p

y z p p2m−1

a 6n6y p6l6z

a

an≡l( mod p)

Z p2m−1 Z ∞

X X

1 ′

+

d (n) |B( χ, ¯ z)| dydz m

2 2 p 3·2m−2 y z p p

a

χ6=χ0 6n6y a

Z 2m−1 Z 3·2m−2

p

p

y −1+ǫ z −1+ǫ dydz + m−1

p

2 p a

Z 2m−1 Z

p

∞ 3 2

+

y −1+ǫp 2 z −1− 2m +ǫ dydz

m−2

p

p3·2 a m−2 − 2m +ǫ 3 2 ǫ +ǫ 2 ≪p + p p3·2 +

100


1ÊÙ Ù§êدK

≪ pǫ . |^ N2 aq O {, ± N3 ≪ pǫ . éuN4 , dCauchyØ ªÚÚn5.8, ± Z ∞ Z ∞ X A(χ, y) B(χ, ¯ z) χ(a) N4 = dy dz y2 z2 2m−1 2m−1 p p χ6=χ0 Z ∞ Z ∞ 1 X χ(a)A(χ, y)B(χ, ¯ z)dydz = 2 2 p2m−1 p2m−1 y z χ6=χ

0

Z ∞ Z ∞ X

1

dydz 6 χ(a)A(χ, y)B( χ, ¯ z)

2 2 p2m−1 p2m−1 y z χ6=χ

0 Z ∞ Z ∞ 1 X |A(χ, y)| · |B(χ, ¯ z)| dydz 6 2 2 p2m−1 p2m−1 y z χ6=χ 0  1  1 2 2 Z ∞ Z ∞ X 1 X 2 2 6 |A(χ, y)| |B(χ, ¯ z)|  dydz · 2 2 p2m−1 p2m−1 y z χ6=χ0 χ6=χ0 Z ∞ Z ∞ 1 1 1 2− 24m +ǫ 2 2 2− 24m +ǫ 2 2 y p p ≪ · z dydz 2 2 p2m−1 p2m−1 y z Z ∞ Z ∞ 2 2 −1− 22m +ǫ dy · 6p y z −1− 2m +ǫ dz p2m−1

m−1 −

≪ p2 p2 = pǫ .

p2m−1

2 +ǫ 2m

m−1 − 2m +ǫ 2 · p2

ÏddN1 , N2 , N3 ÚN4 O

M4 = O (pǫ ) . nÜ(i), (ii), (iii)Ú(iv) ©Ûá= X p dm (a) 2m−1 Y χ(a)|L(1, χ)|2m = ζ (2) A(m, p0 , s) + O(pǫ ), a p χ6=χ0

Ù¥

Q

p0

0

L«é¤kØÓup ê¦È A(m, p, s) =

2m−2 X i=0

n Cm =

m! n!(m−n)! .

i 2 1 X i−j j j (−1) C C , 2m−1 m+i−j−1 pis j=0

ùÒ ¤ Ún5.9 y².

101


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Ăš n 5.10 p > 3 ´ÂƒĂŞÂ…χ ´ p DirichletA . KĂŠ?Âż ĂŞm k ! m−1 X Y 1 − C 2m−2 |L(1, χ)|2m = p Îś 2m−1(2) 1− + O(pÇŤ ), 2 p 0 p χ6=χ0

0

Ù¼Ǎ ´?Âż ½ ĂŞ,

Q

p0

LÊ¤kĂ˜Ă“up ÂƒĂŞÂŚĂˆ.

y²: ĂŤ Šz[127]ÂĽ Ăšn6, Âż-q ÂƒĂŞ. !ò ¤½n5.3 y². Ă„kdĂšn5.5 k

p−1 2 X

X f (a)

χ(a)e

|L(1, χ)|2m

p χ6=χ0 a=1

=

X

χ6=χ0

! p−1 X g(b, a) p−1+ χ(a) e |L(1, χ)|2m p a=2

= (p − 1) = (p − 1)

p−1 X

X

χ6=χ0

X

χ6=χ0

b=1

|L(1, χ)|

2m

|L(1, χ)|

2m

p−1 X p−1 X g(b, a) X + e χ(a)|L(1, χ)|2m p a=2 χ6=χ0

b=1

p−1 p−1 X X g(b, a) X ′ χ(a)|L(1, χ)|2m + e p a=2 b=1

+

p−1 p−1 X X ′′

χ6=χ0

e

a=2 b=1

Ù¼g(b, a) =

Pk

i

g(b, a) X

p

χ(a)|L(1, χ)|2m ,

χ6=χ0

i

i

− 1)b , bi = ai (a − 1) …

i=0 ai (a

p−1 p−1 X X ′

a=2 b=1

†

p−1 p−1 X X ′′

a=2 b=1

ŠOLÊáv

^‡p ∤ (b0 , b1 , . . . , bk ) Ăšp|(b0 , b1 , . . . , bk ) ÂŚĂš. e¥òŠO OÚ߇ڪ. (1) p ∤ (b0 , b1 , . . . , bk ), ŠâĂšn5.6ÚÚn5.9 k

p−1 p−1

X X X

g(b, a) ′ 2m

e χ(a)|L(1, χ)|

p

a=2 b=1

χ6=χ0

X p−1 p−1 X X

g(b, a)

′

2m

6 e χ(a)|L(1, χ)|

p

a=2 b=1 χ6=χ0

p−1 X X

1 ≪ p1− k +ÇŤ

χ(a)|L(1, χ)|2m

χ6=χ0

a=2 2− k1 +ÇŤ

≪p

p−1 X dm (a) a=2

1

a

≪ p2− k +ÇŤ ,

102


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

Þª^ dm (a) ≪ aÇŤ .

(2) p | (b0 , b1 , . . . , bk )ž, =p | b0 , p | b1 , . . . , p | bk ; dup ∤ (a0 , a1 , . . . , ak ), K–

3˜‡al ÂŚ p ∤ al , Ă?dĂŠuڇl ˜½kp | (al − 1), =Ă“{Â?§ al ≥ 1(modp)

¤å. 38Ăœ{2, 3, ¡ ¡ ¡ , p − 1}ÂĽ, ávp | (al − 1) a ‡ê–þkl − 1 ‡. duÂŽ 1

1

² l − 1 < l 6 k, al > al − 1 > p, u´ka > p l > p k . Ă?ddĂšn5.6ÚÚn5.9 k

p−1 p−1 X

X ′′ X

g(b, a) 2m

e χ(a)|L(1, χ)|

p

a=2 b=1

χ6=χ0

X p−1 p−1 X X

g(b, a)

′′

2m

6 e χ(a)|L(1, χ)|

p

a=2 b=1 χ6=χ0 p−1 X

p dm (a) a a=2 dm (a) 2 max Ă— ♯{a : a ∈ {2, 3, . . . , p − 1}, al ≥ 1(mod p)} ≪p 1/k a p 6a<p

≪

′′

(p − 1)

1

≪ kp2− k +ÇŤ , 1

≪ p2− k +ÇŤ , Ù¼dm (a)E,|^ (1)ÂĽ O Â?{. Ă?d(Ăœ(1), (2)ÚÚn5.10 ĂĄ=ÂŒÂą

p−1

2 X

X f (a)

χ(a)e( ) |L(1, χ)|2m

p

χ6=χ0 a=1 X |L(1, χ)|2m | = |(p − 1) χ6=χ

0

 

p−1 p−1

X

X ′ X

g(b, a) 2m +O 

e χ(a)|L(1, χ)|

 p

a=2 b=1

χ6=χ0

 

p−1 p−1

X X X

g(b, a) ′′ 2m +O 

e χ(a)|L(1, χ)|

 p

a=2 b=1

χ6=χ0 ! m−1 Y 1 − C2m−2 1 = p2 Îś 2m−1(2) 1− + O(p2− k +ÇŤ ), 2 p0 p 0

Ù¼

Q

p0

n LÊ¤kĂ˜Ă“up ÂƒĂŞÂŚĂˆ, Cm =

103

m! n!(m−n)! ,

ÂŒO ~ĂŞÂ?6uk ÚǍ. Ă?d


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

ÏCúª

p−1

2 X

X f (a)

χ(a)e

|L(1, χ)|2m

p χ6=χ0 a=1 ! m−1 Y 1 − C 1 2m−2 = p2 Îś 2m−1(2) 1− + O(p2− k +ÇŤ ). 2 p0 p 0

Ăš Ă’ ¤ ½n5.3 y².

5.3 2Ă‚Dirichlet L-Ÿê q > 3 ´ ĂŞ, …χ´ q DirichletA , ĂŠ?¿¢êa > 0, Ă„Xe½Ă‚ 2 Ă‚Dirichlet L-Ÿê L(s, χ, a) =

∞ X

χ(n) , s (n + a) n=1

Ù¼s = Ďƒ +it ávĎƒ > 0 Ăšt Ă‘´¢ê. |^)Ă›òÿÂ?ÂŒÂąr§*Ă? ‡E²¥(Ă˜ s = 1, χ Â?ĂŒA Âœš). 'u2Ă‚Dirichlet L-Ÿê, Bruce C. Berndt[130−132] ĂŻĂ„

Nþáv, ›^‡ Ă° ÂŞ. Ù¼ Ă?Âś ˜‡´ χ´Â˜Â‡ q A ž, Dirichlet L-ŸêL(s, χ) ávŸêÂ?§ − (s+b) 2 Ď€ 1 Ď„ (χ) (s + b) L(s, χ) = b √ R(1 − s, χ), ÂŻ R(s, χ) = Γ q 2 i q

Ù¼ b= ĂŠĎƒ >

1 2

  0, χ(−1) = 1,

 1, χ(−1) = −1.

− m Â…m´ ĂŞ, Berndt[132]

  m−1 −s j X a  (−1) Γ(s + j)L(−j, χ) L(s, χ, a) = + G(s) , Γ(s) j=0 j! aj

Ù¼G(s) ´)Ă›Ÿê. n Â?š êž, N´OÂŽĂ‘L(n, χ, a), AO/, L(0, χ, a) = L(0, χ). Ă“ ž, ' uDirichlet L-Âź ĂŞ Ăž Š 5 Â&#x; Â? k N Ăľ Æ Ăś Ă‘ Š ĂŻ Ă„(ĂŤ Š z[133-136]). qÂ?ÂƒĂŞpž, I. Sh. Slavutskiˇi[133] 31986c‰Ñ

X Ď€2 |L(1, χ)|2 = p − log2 p + θ log p, 6 χ6=χ0

Ù¼, p 6 35ž, |θ| < 10. 104


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

ĂœŠ+[136] KĂŻĂ„ ĂŠÂ˜Â„ q Dirichlet L-Ÿê ފ5Â&#x;,

 2 2 2 X Y X log p Ď€ 1 φ (q)  + O(log log q), |L(1, χ)|2 = φ(q) 1 − 2 − 2 log q + 6 p q p−1

χ6=χ0

Ù¼φ(q)´EulerŸê,

p|q

p|q

P

p|q LÂŤĂŠq Ă˜Ă“ÂƒĂ?fÂŚĂš, [137]

D.R. Heath-Brown

Q

p|q LÂŤĂŠq Ă˜Ă“ÂƒĂ?fÂŚĂˆ. 1 Ăž ފ5Â&#x; 2

ĂŻĂ„ Dirichlet L-Ÿê3s =

X 1

2 φ(q) X q

L , χ

= Âľ T (k),

2 q k

χ mod q

k|q

Ù¼T (k) kĂŹCúª 2 2N−1 X 1 n k 1 k2 + cn k − 2 + O(k −n ), T (k) = log + Îł + 2Îś 8Ď€ 2 n=0 ávN > 1,cn ´ÂŒOÂŽ ~ĂŞÂ…γ´Euler~ĂŞ. Ă˜dƒ , R. Balasubramanian[138] Dirichlet L-Ÿê3Ďƒ = 12 ‚Þ ĂŹCúª

2 2 X 1 √ √

L

= φ (q) log(qt)+O(q(log log q)2 )+O(te10 log q )+O(q 12 t 23 e10 log q ), + it, χ

2 q

χ mod q

Ù¼t > 3 Â…ʤk q Ă‘¤å.

3 !ÂĽ, XJ s = 1, a > 1, Êڇ2Ă‚Dirichlet L-Ÿê ފš~a, , = Ž‡ X

χ6=χ0

| L(1, χ, a)|2

ĂŹCúª, Ù¼χ ´ q DirichletA …χ0 LÂŤĂŒA . ,˜Â?ÂĄ, 2Ă‚iĂšb Â?Ă‘Dirichlet L-Ÿê ¤kšw,":Ă‘ uÂ†Â‚Ďƒ = 12 Ăž. ĂšÂ˜ÂŻKĂĄĂš {¤Þ¯ Ăľ#ÑÆÜ ĂŻĂ„, ¿…Œ‚¼k˜ Ž² 'uDirichlet L-Ÿê ":ŠĂ™ ­Â‡5Æ, ´EĂŽvkˆ <‚¤ýĂ? @ {. Ă?dĂšÂ˜ÂŻK´ÂŠ UYĂŻĂ„ ˜‡­Â‡Â‘K. !K^Â˜ÂŤuĂ‘ Ăş1ĂŻĂ„2Ă‚Dirichlet L-Ÿê3Ďƒ = 12 ‚Þ ފ 5Â&#x;, l ‰Ñ

2 X 1

L

+ it, χ, a

2

χ mod q

,Â˜Â‡ĂŹCúª, Ù¼χ ´ q DirichletA , 0 6 a 6 1. 'u2Ă‚Dirichlet L-Ÿê ފ5Â&#x; ĂŻĂ„, 8c¤ $ . – „vkĂŠ ? Ă›Âƒ' ĂŤ Šz. ÂŚ+XdÆ܂Â?,ĂŠa, , Ă?Â?ږ ÂŒ¹Ê 2Ă‚Dirichlet L-Ÿê†Dirichlet L-Ÿê ƒm ,ÂŤĂŠX. =y² Xe ߇½n: ½ n 5.4 q > 3 ´ ê…χ ´ q DirichletA . Hurwitz ̟ê½Ă‚Xe, ĂŠu? 105


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Âż EĂŞs, k Îśs, a =

∞ X

1 (n + a)s n=0

(a > 0, s = Ďƒ + it, Ďƒ > 1).

(5-15)

KÊ?¿ ¢êa > 1, kXeÏCúª: a

X

χ6=χ0

[d] X Âľ(d) a 4φ(q) X Âľ(d) X 1 φ(q) log q 2 |L(1, χ, a)| = φ(q) Îś 2, − +O , √ d2 d a d k q d|q

k=1

d|q

Ù¼φ(q) ´EulerŸê, Âľ(d) ´M¨obiusŸê, ÂŒO~ĂŞ=Â?6ua. w,, d > až, ½n5.4ÂŒ{zÂ? X X Âľ(d) a φ(q) log q 2 |L(1, χ, a)| = φ(q) Îś 2, +O ; √ d2 d q χ6=χ0

d|q

d = a ž, ½n5.4=CÂ? X Ď€ 2φ(q) Y 1 4φ2 (q) φ(q) log q 2 |L(1, χ, a)| = 1− 2 − +O . √ 6 p aq q χ6=χ0

p|q

^aqÂ?{, Â?ÂŒÂą 'u2Ă‚Dirichlet L-Ÿê 2k (k > 2)gފ X |L(1, χ, a)|2k . χ6=χ0

½ n 5.5 q > 3 ´ ĂŞÂ…t > 3 ´¢ê, χ ´ q DirichletA . KĂŠ?Âż ¢ ĂŞ0 6 a 6 1, keÂĄ ĂŹCúª  

2 2 X 1 X X Âľ(d)

log p 

L

= φ (q) log qt + 2Îł + + it, χ, a βa/d − φ(q)

2 q 2Ď€ p−1 d

χ mod q

Ù¼φ(q) ´EulerŸê, βx = ÂŤq Ă˜Ă“ÂƒĂ?f ‡ê.

p|q

d|q

5 1 1 5 +O qt− 12 + t 6 log3 t2ω(q) + q 2 t 12 log t2ω(q) , P∞

x n=1 n(n+x)

´Â?6ux ˜‡ŒOÂŽ ~ĂŞ, …ω(q) L

w,, a = 0ž, ĂĄ=ÂŒÂą Dirichlet LŸê3Ďƒ = 12 ‚ÞÞŠ ĂŹCúª. Ă?d ĂšÂ˜(J´cÂĄ(J Â˜Â‡Ă­2. ĂŠu2Ă‚Dirichlet L-Ÿê 2k (k > 2) gފ

2k X 1

L + it, χ, a

,

2 χ mod q

É8cÂ?{  Â›Â„Ăƒ{ § ĂŹCúª. $–Êk = 2, Â?Ăƒ{Âź ˜‡Ă? ĂŹC úª. Ă?dĂšI‡?Â˜Ăšg Â?\k Â?{.

106


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

5.3.1 'u½n5.4 Â? y²½n5.4, I‡eÂĄ A‡Ún. Ă„k‰ÑDirichlet L-Ÿê†Ù2Ă‚/ÂŞ Â˜Â‡Ă° ÂŞ. Ăš n 5.11 q > 3 ´ ĂŞ, …χ ´ q DirichletA . L(s, χ) Â?ĂŠAA Â?χ Dirichlet L-Ÿê, L(s, χ, a) Â?2Ă‚Dirichlet LŸê. KĂŠ?Âż ¢êa > 0, k L(1, χ, a) = L(1, χ) − a

∞ X

χ(n) . n(n + a) n=1

y²: ŠâDirichlet L-Ÿê9Ă™2Ă‚/ÂŞ ½Ă‚, k ∞ ∞ X χ(n) X χ(n) − n + a n=1 n n=1 ∞ X χ(n) χ(n) − = n+a n n=1

L(1, χ, a) − L(1, χ) =

= −a

∞ X

χ(n) , n(n + a) n=1

£‘ L(1, χ, a) = L(1, χ) − a ÚÒy² Ăšn5.11.

∞ X

χ(n) . n(n + a) n=1

Ăš n 5.12 q ´ ĂŞÂ…q > 3 …χ ´ q DirichletA . PA(y, χ) = KkXe O X

χ6=χ0

P

N6n6y

χ(n)d(n).

|A(y, χ)|2 ≪ yφ2(q),

y²: ĂŤ Šz[127]ÂĽ Ăšn4, Â…-k = 2. Ăš n 5.13 q > 3 ´ ê…χ ´ q DirichletA . Kk X Y 1 2 |L(1, χ)| = φ(q)Îś(2) 1 − 2 + O(q ÇŤ), p χ6=χ0

Ù¼φ(q) ´EulerŸê, Â…

p|q

Q

p|q

LÂŤĂŠq ¤kĂ˜Ă“ÂƒĂ?fÂŚĂˆ, ÇŤ ´?¿‰½ ĂŞ.

y²: ĂŤ Šz[127]ÂĽ Ăšn6Âż-k = 2. Ăš n 5.14 q > 3 ´ ê…χ ´ q DirichletA . KĂŠ?Âż ¢êa > 1, k ∞ XX

χ6=χ0

χ(n) ¯ L(1, χ) n(n + a) n=1 107


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„ [ ad ] Y 1 φ(q) log q φ(q) 1 φ(q) X Âľ(d) X = 1− 2 + 2 . Îś(2) +O √ a p a d k q p|q

k=1

d|q

y²: Ă„kA^AbelĂ° ÂŞk L(1, χ) =

q X χ(n) n=1

n

+

Z

+∞

q

A(χ, y) dy, y2

∞ X

Z +∞ N X χ(n) ÂŻ χ(n) ÂŻ (2y + a)A(χ, ÂŻ y) dy, = + 2 n(n + a) n=1 n(n + a) y (y + a)2 N n=1 P Ù¼A(χ, y) = q<n<y χ(n), Â…N > q ´ ĂŞ. ddk ∞ XX

χ6=χ0

=

χ(n) ¯ L(1, χ) n(n + a) n=1 N X

χ(n) ¯ + n(n + a) n=1

X

χ6=χ0

Z

+∞

N

(2y + a)A(χ, ¯ y) dy y 2 (y + a)2

!

q X χ(n) n=1

n

+

Z

+∞

q

A(χ, y) dy y2

!

Z +∞ q N X XX χ(n) ÂŻ χ(m) χ(n) ÂŻ A(χ, y) + = dy + 2 n(n + a) m n(n + a) y q m=1 χ6=χ0 n=1 χ6=χ0 n=1 Z q +∞ X X χ(n) (2y + a)A(χ, ÂŻ y) + dy + n y 2 (y + a)2 N χ6=χ0 n=1 Z +∞ X Z +∞ (2y + a)A(χ, ÂŻ y) A(χ, z) dy dz + y 2 (y + a)2 z2 N q N XX

χ6=χ0

≥ A1 + A2 + A3 + A4 . ò OÞªÂ

˜‡ Ă’ÂĽ z˜‘. Ă„k OA1 . dA 5, CauchyĂ˜

ªÚÚn5.13, A1 =

χ6=χ0

=

q X χ(n) ¯ χ(m) n(n + a) m=1 m n=1

N XX

X

χ mod q

=

q N X X χ(m)χ(n) ¯ + O (log q) mn(n + a) n=1 m=1

q N X X ′

X 1 χ(m)χ(n) ¯ + O (log q) mn(n + a)

′

n=1 m=1

= φ(q)

χ mod q

q N X X ′

′

n=1 m=1 m≥n( mod q)

= φ(q)

q X

1 + O (log q) mn(n + a) N/q

′

m=1

q

X X 1 1 ′ ′ + φ(q) + O (log q) 2 m (m + a) m(kq + m)(kq + m + a) m=1 k=1

108


1ĂŠĂ™ Ă™§êĂ˜ÂŻK q X

X 1 Âľ(d) + 2 (m + a) m m=1 d|(m,q)   N/q q X X 1 ′ ′ +O φ(q) + log q  m(kq + m)(kq + m + a) m=1

= φ(q)

k=1

= φ(q)

X

Âľ(d)

1 + O (log q) + a/d)

d3

m2 (m

1 + + a/d)

d3

m=1

∞ X Âľ(d) X d|q

+O φ(q)

d|q

d3

X Âľ(d) d|q

m=1



∞ X Âľ(d) X

X Âľ(d) d|q

= φ(q)

+ O (log q)

m2 (m



= φ(q)

+ a)

q/d X Âľ(d) X d|q

= φ(q)

1

m2 (m

m=1 d|m

d|q

= φ(q)

q X

d3

1  + O (log q) d3 m2 (m + a/d) m=q/d ! ∞ 1 1 X a/d 1 + + O (log q) − (a/d)2 m=1 m2 m + a/d m ! ∞ X d d2 1 1 + − + O (log q) am2 a2 m + a/d m m=1

[a/d] φ(q) X ¾(d) X 1 φ(q) X ¾(d) Μ(2) + 2 = + O (log q) a d2 a d k k=1

d|q

d|q

[a/d] Y 1 φ(q) X Âľ(d) X 1 φ(q) Îś(2) + O (log q) . = 1− 2 + 2 a p a d k p|q

k=1

d|q

eÂĄUY OA2 , A3 ĂšA4 . ŠâĂšn5.12, 'uA Ăš P´olyaĂ˜ ÂŞÂą9CauchyĂ˜ ÂŞ, |^{Ăź O, k |A2 | =

N XX

χ6=χ0

χ(n) ¯ n(n + a) n=1

Z

N XX

+∞

q

Z +∞ 1 6 n(n + a) q χ6=χ0 n=1 Z ∞ 1 1 2 ≪ q φ(q) log q dy y2 q φ(q) log q ≪ , √ q

109

A(χ, y) dy y2

P

q<n<y χ(n)

y2

dy


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Z q XX χ(n)

|A3 | =

χ6=χ0 n=1 Z ∞

≪ log q

≪ log q ≪ |A4 | = 6

q

∞Z ∞

N

q

2

≪

+∞

χ6=χ0 N Z ∞Z ∞

Z

Z

∞

N

N

(2y + a)A(χ, ¯ y) dy y 2 (y + a)2

2y + a X |A(χ, ÂŻ y)|dy y 2 (y + a)2 χ6=χ0  1  1 2 2 X X 2y + a  2 1  |A(χ, ÂŻ y)|  dy y 2 (y + a)2 χ6=χ0

χ6=χ0

φ (q) log q √ , N N

XZ N

6

3 2

N

n

+∞

(2y + a)A(χ, ¯ y) dy 2 y (y + a)2

Z

+∞ q

A(χ, z) dz z2

X 2y + a |A(χ, ÂŻ y)| ¡ |A(χ, z)|dydz y 2(y + a)2 z 2 χ6=χ0  1  1 2 2 X X 2y + a 2 2  |A(χ, ÂŻ y)|   |A(χ, z)|  dydz y 2(y + a)2 z 2 χ6=χ0

χ6=χ0

φ (q) √ √ , N N q

N = q 2 , u´k [ ad ] Y χ(n) ÂŻ φ(q) 1 φ(q) X Âľ(d) X 1 φ(q) log q L(1, χ) = Îś(2) 1− 2 + 2 +O . √ n(n + a) a p a d k q n=1

∞ XX

χ6=χ0

p|q

k=1

d|q

Ă?dy² Ăšn5.14. Ăš n 5.15 q > 3 ´ ê…χ ´ q DirichletA , KĂŠ?Âż ¢êa > 1, kXeĂŹ Cúª

2 ∞ X

X Y χ(n)

φ(q) 1 φ(q) X Âľ(d) a = Îś(2) 1 − + Îś 2,

2 2 2 2

n(n + a) a p a d d n=1

χ6=χ0

p|q

d|q

[ ad ]

2φ(q) X Âľ(d) X 1 +O − 3 a d k k=1

d|q

φ(q) log q q

.

y²: N > q Â??˜ ĂŞ, |^A 5, P´olyaĂ˜ ÂŞÂą9Ăšn5.12, k

∞

2 X

X χ(n)

n(n + a)

n=1 χ6=χ0 ! Z +∞ N X X χ(n) (2y + a)A(χ, y) = + dy Ă— n(n + a) y 2 (y + a)2 N n=1 χ6=χ0

110


1ÊÙ Ù§êدK

! (2z + a)A(χ, ¯ z) dz z 2 (z + a)2 N ! N X χ(m) ¯ + m(m + a) m=1 χ6=χ0 ! Z N +∞ X X χ(n) (2z + a)A(χ, ¯ z) dz + + n(n + a) z 2 (z + a)2 N χ6=χ0 n=1 ! N X Z +∞ (2y + a)A(χ, y) X χ(m) ¯ + dy + 2 2 y (y + a) m(m + a) N m=1 χ6=χ0 X Z +∞ (2y + a)A(χ, y) Z +∞ (2z + a)A(χ, ¯ z) + dy dz y 2 (y + a)2 z 2 (z + a)2 N N χ6=χ0   N N X X X 1 1  + χ(n)χ(m) ¯ = n(n + a) m(m + a) n=1 m=1 χ6=χ0 P Z +∞ (2y + a) χ6=χ0 |A(χ, y)| dy +O y 2(y + a)2 N ! 3 N X N X 2 (q) 1 φ ′ ′ = φ(q) + O(1) + O 3 mn(m + a)(n + a) N2 n=1 m=1 N X

χ(m) ¯ × + m(m + a) m=1 ! N X X χ(n) = n(n + a) n=1

Z

+∞

m≡n( mod q)

= φ(q)

N X

n=1

= φ(q)

N X

n=1

N X

1 + 2φ(q) 2 n (n + a)2 

N X N X ′

n=1 m=1 m≡n( mod q), m>n N/q

X 1 ′ φ(q) + O n2 (n + a)2

N X

k=1 n=1

1 + O(1) mn(m + a)(n + a) 

1  + O(1) n(n + a)(kq + n)(kq + n + a)

X 1 φ(q) log N = φ(q) µ(d) + O + O(1) n2 (n + a)2 q n=1

= φ(q)

N/d X µ(d) X d|q

= φ(q)

d|(n,q)

d4

∞ X µ(d) X d|q

d4

+O φ(q) = φ(q)

1 +O 2 n (n + a/d)2 n=1

X µ(d) d|q

d4

φ(q) log N q

1 + 2 (n + a/d)2 n n=1

∞ X µ(d) X d|q

d4

n=N/d

∞ 3 X

d a3

n=1

1 +O 2 n (n + a/d)2

φ(q) log N q

a/d a/d 2 2 + 2 + − 2 (n + a/d) n n + a/d n

111

!

+O

φ(q) log N q


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Y φ(q) 1 = 2 Îś(2) 1− 2 + a p p|q

[a]

d φ(q) X Âľ(d) a 2φ(q) X Âľ(d) X 1 + 2 Îś 2, − +O a d2 d a3 d k

d|q

k=1

d|q

φ(q) log N q

.

N = q 2 , K

2 ∞ X

X Y χ(n)

φ(q) 1 φ(q) X Âľ(d) a 1− 2 + 2 Îś 2,

= 2 Îś(2) 2

n(n + a) a p a d d n=1 χ6=χ0

p|q

d|q

[ ad ]

2φ(q) X Âľ(d) X 1 +O − 3 a d k k=1

d|q

φ(q) log q q

.

Ăš Ă’y² Ăšn5.15. !ĂŒÂ‡ ¤½n5.4 y². dĂšn5.11, Ăšn5.12, Ăšn5.13, ÂŒ¹å= ½ n5.4. =ĂŠ?Âżq > 3, k X |L(1, χ, a)|2 χ6=χ0

2 ∞ X

X χ(n)

=

L(1, χ) − a

n(n + a)

n=1

χ6=χ0

∞ XX

χ(n) ÂŻ L(1, χ) − n(n + a) n=1 χ6=χ0 χ6=χ0

2 ∞ ∞

X X χ(n) X

X χ(n)

L(1, χ) ÂŻ + a2 −a

n(n + a) n(n + a) χ6=χ0 n=1 χ6=χ0 n=1   Y 1 = φ(q)Îś(2) 1 − 2 + O(q ÇŤ ) p p|q   [ ad ] Y X X φ(q) 1 φ(q) Âľ(d) 1 φ(q) log q  −2a  Îś(2) 1− 2 + 2 +O √ a p a d k q k=1 p|q d|q  Y 1 φ(q) X Âľ(d) a 2  φ(q) +a Îś(2) 1 − + Îś 2, a2 p2 a2 d2 d p|q d|q  [ ad ] X X 2φ(q) Âľ(d) 1 φ(q) log q  − 3 +O a d k q =

X

2

|L(1, χ)| − a

d|q

k=1

a

[d] X Âľ(d) a 4φ(q) X Âľ(d) X 1 φ(q) log q = φ(q) Îś 2, − +O . √ d2 d a d k q d|q

k=1

d|q

112


1ÊÙ Ù§êدK

ùÒ ¤ ½n5.4 y².

5.3.2 'u½n5.5 Äk{ü0 e Ù=ò ^ ­ { . ù {¡ 7:{, § ´van der Corput[139] u20­V20c ^5?n êÈ© êÚ , Ï êØ¥Nõ ­ ¯K )ûI éù êÚ êÈ©k Ð ìCúª½öÐ O, ù { Ï~ < ¡ van der Corput {. !3½n5.5 y²¥, 2 /A^

ù {. ±eA 5 {ü V) ù {: 5 5.1µ µ f (x), f ′ (x), g(x), g ′ (x) ´«m[a, b] þ ¢ üNëY¼ê, ¿ |f ′ (x)| 6 δ < 1, |g(x)| 6 h0 , |g ′(x)| 6 h1 . Kk X

g(n)e(f (n)) =

Z

b

g(x)e(f (x))dx + O

a

a<n6b

h0 + h1 1−δ

,

(5-16)

Ù¥e(f (x)) = exp(2πif (x)), O ~ê´ýé . 5 5.2µ µ 35 5.1 ^ e, g(x)/f ′(x) 3«m[a, b] þ´üN , ÷vf ′ (x)/g(x) > m > 0 ½−f ′ (x)/g(x) > m > 0. Kk

Z b

4 if (x)

g(x)e dx

6 .

m a

(5-17)

5 5.3µ µ 35 5.1Ú5 5.2 ^ e, k

X

≪ 1 + h0 + h1 . g(n)e(f (n))

m 1−δ

a<n6b

(5-18)

(Ü5 5.1Ú5 5.2, á=

, , ò^ êénØ ' £. êéÌ ´?n/X X S= e (f (n)) (B > 1, 1 < h 6 B) B<n6B+h

êÚ O, ± S Ð þ.. F" Xe/ª 'uS þ. S ≪ Aκ B λ , eA ≪ |f ′ (x)| ≪ A (A > 12 ), 0 6 κ 6

1 2

6 λ 6 1, ù | K¢ê(κ, λ)Ò¡ ê

é.

w ,, (κ, λ) = (0, 1) ´ ê é, ¿ N ê é | ¤ 8 Ü ´ à 8, P ∆ = {(tκ1 + (1 − t)κ2 , tλ1 + (1 − t)λ2 ) |(κ1 , λ1 ) (κ2 , λ2 )´ êé, 0 6 t 6 1}. ù

113


Smarandache ¼ê9Ù '¯KïÄ

(JÑ´é² , XJ ¦f (x) r (r > 5) ê÷v: AB 1−r ≪ |f (r) (x)| ≪ AB 1−r

(r = 1, 2, 3, · · · ),

K ± 'uS ² (J. ~X, |^f (x) 2 , kXe5 : 5 5.4µ µ h > 1, f ′′ (x) 3«m[B, B + h] ´ëY ÷v 0 < λ 6 |f ′′ (x)| 6 Cλ, Kk X

1 2

− 12

e(f (n)) = O Chλ + λ

B<n6B+h

,

Ù¥ O ~ê´ýé . l5 5.4 á= ± êé( 12 , 12 ), = S ≪ B AB −1

12

+ AB −1

− 12

1

1

≪ A2B 2.

Ød , ±|^e¡ ü 5 E¤I êé. 5 5.5µ µ e(κ, λ)´ êé, K (µ, ν) =

κ 1 λ , + 2κ + 2 2 2κ + 2

´ êé. 5 5.6µ µ e(κ, λ)´ êéÓ ÷v^ 3 κ + 2λ > , 2 K (µ, ν) =

1 1 λ − ,κ+ 2 2

´ êé. Ïd ±ÏL5 5.5Ú5 5.69c¡¤` êé à55 E¤I ê é. ~X, êé( 12 , 12 ) ±@ |^5 5.6d êé(0, 1) , |^5 5.5é êé( 12 , 12 ) ^ , q # êé( 16 , 23 ). , ± E¦^5 5.5, 5 5.6± 9 êé à5. X êé( 27 , 47 ) Ò´é êé( 16 , 23 ) kA^5 5.5, U 2A^5 5.6 . êénØ3¢ ¥A^ ~2 , Ù¥^ êé= ud, ' u õ êé ?Ø ±ë ©z[139]. Ø þ¡ êénØ, I ^ 'uHurwitz ζ¼ê ìC¼ê § X 1 x1−s x−σ ζ(s, a) = − +O , (n + a)s 1 − s 1 − C −1 06n6x−a

114

(5-19)


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

džxávx >

Ct∗ ∗ 2Ď€ (t

= max(2Ď€, |t|)), Â…C > 1Â?~ĂŞ. a = 1žÂ?ÂŒÂą Riemann

̟ê ĂŹCúª. Ă™ĂŒÂ‡|^XeĂŹCúª.

5 Â&#x; 5.7Âľ Âľ s = Ďƒ + it, Â…¢êx, y > C > 0 áv2Ď€xy = t, KĂŠu0 < Ďƒ1 6 Ďƒ 6 Ďƒ2 < 1, t > 0, k X

Îś(s, a) =

X e(−av) 1 + A(s) + (n + a)s v 1−s

06n6x−a

+O(x

âˆ’Ďƒ

16v6y

log(y + 2) + y

Ďƒâˆ’1

1

(|t| + 2) 2 âˆ’Ďƒ ),

Ă™ÂĽÂŒO~ĂŞÂ?6uĎƒ1 , Ďƒ2 , Â…

1 âˆ’Ďƒ

t 2

t π 1

A(s) =

exp −i t log

− 1+O

2Ď€ 2Ď€e 4 |t|

(5-20)

(t → +∞).

t 6 0, KÂŞ(5-20)CÂ? Îś(s, a) =

X

06n6x−a

X e(av) 1 ′ + A (s) + (n + a)s v 1−s 16v6y

1

+O(xâˆ’Ďƒ log(y + 2) + y Ďƒâˆ’1(|t| + 2) 2 âˆ’Ďƒ ), Ù¼

1 âˆ’Ďƒ

t 2

t π 1

+ A (s) =

exp −i t log

1+O

2π 2πe 4 |t| ′

(t → −∞).

AO/, -s = 12 + it, KĂŠ?Âżt > 0, k 1 Îś + it, a 2 it X X e(−av) Ď€ 1 1 2Ď€ = + ei(t+ 4 ) + O(x− 2 log t). 1 1 +it −it t 2 2 06n6x−a (n + a) 16v6y v

(5-21)

Â? y²½n5.5, „I‡eÂĄ A‡Ún. Ăš n 5.16 q ´ ĂŞ, k X Âľ(d) log d d|q

d

=−

φ(q) X log p . q p−1 p|q

y²: ĂŤ Šz[135]ÂĽĂšn2. Ăš n 5.17 q ´Â˜ ĂŞ, Â…0 6 a 6 1, t > 2 ´¢ê, χ ´ q DirichletA . K kĂ° ÂŞ

2 2 q/d X 1 X X

φ(q) 1 b + a/d

L

Îś

, ¾(d) + it, χ, a

= + it,

2 q 2 q/d

χ mod q

d|q

b=1

Ù¼Μ(s, Îą) ´Hurwitz ̟ê, §ÂŒÂą)Ă›òÿ ²¥(s = 1:Ă˜ ). 115


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

y²: s = Ďƒ + it, Â…Ďƒ > 1, K2Ă‚Dirichlet L-ŸêýÊĂ‚Ăą, Ă?dk q q ∞ ∞ X X X χ(n) χ(b) 1 X b+a L(s, χ, a) = = = s χ(b)Îś s, . (5-22) (n + a)s (nq + b + a)s q q n=1 n=0 b=1

b=1

|^ q A Ăš 5, dÂŞ(5-22)

q

2

X X X 1 b + a

|L(s, χ, a)|2 = 2Ďƒ χ(b)Îś s,

q q χ mod q χ mod q b=1 q X q 1 X b1 + a X ÂŻ b2 + a = 2Ďƒ Îś s, Îś s, χ(b1 )χ(b ÂŻ 2) q q q b1 =1 b2 =1 χ mod q q q φ(q) X X b1 + a ÂŻ b2 + a = 2Ďƒ Îś s, Îś s, q q q b =1 b =1 1 2 (b1 , q)=1 (b2 , q)=1

φ(q) = 2Ďƒ q

b1 ≥b2 ( mod q)

q X

b=1 (b, q)=1

2

Îś s, b + a

q

q φ(q) X

b + a

2 X = 2Ďƒ Âľ(d)

Îś s, q

q b=1

d|(b, q)

q/d X

φ(q) X b + a/d

2

= 2Ďƒ Âľ(d)

Îś s, q/d

, q d|q

b=1

|^Μ(s, a) ÚL(s, χ, a) )Û5, -s =

1 2

+ it, k

2 2 q/d X 1 X X

φ(q) 1 b + a/d

L

Îś

=

. + it, χ, a + it, ¾(d)

2 q 2 q/d

χ mod q

d|q

b=1

Ăš Ă’y² Ăšn5.17.

ÂąeÂ? Â?B, Pa′ = a/d, q ′ = q/d. Ăš n 5.18 q ′ > 2 ´ ĂŞ, Â…0 6 a′ 6 1, t > 3. Kk

!

q′ ′ X

1 1 b+a 1

≪ q ′ 12 t 125 log t + q ′ t− 14 log t,(5-23) Îś − it, − 1 1 ′ ′

′ +it −it

2 q 2 2 ( b+a

b=1 ( b+a

q′ ) q′ ) Ù¼≪ ~ê=�6ua′ .

y²: Šâ5Â&#x;5.7, k 1 b + a′ 1 Îś − it, − 1 −it 2 q′ b+a′ 2 q′

116


1ĂŠĂ™ Ă™§êĂ˜ÂŻK

=

1

X

b+a′ q′ )

(n +

16n6x

ddĂĄ=

q′

X 1

b+a′ 12 +it

b=1 ( q′ ) ′

=

q X

1

b=1 ( 

Ă—

b+a′ q′

1

) 2 +it

X X

16n6x b=1

+O(q ′ x

Ă—

(n +

(

− 21

2Ď€ t

b+a 1 − it, 2 q′

b+a′ 21 −it ) q′

n+(b+a′ )/q ′ (b+a′ )/q ′

q′

+

−it

′

1

X

16n6x

=

Îś

1 −it 2

b+a′ q′

1 2

+

it

b+a′ q′

) (n +

)

1 2

2Ď€ t

+

X e

16v6y

′ − b+a v q′ 1 +it 2

v

1

+ O(x− 2 log t),

!

1 − b+a′ 1 −it

( q′ ) 2

−it

Ď€

ei(−t+ 4 )

2Ď€ t

Ď€

ei(−t+ 4 )

b+a′ X e − q′ v

16v6y

−it

v

1 +it 2



1 + O(x− 2 log t)

′ b+a′ e − ( b+a v v)−it X X q′ q′ q′

Ď€

ei(−t+ 4 )

′

1

2 ( b+a q ′ v)

16v6y b=1

+

log t) 1

≥ M1 + M2 + O(q ′ x− 2 log t),

(5-24)

Ù¼x, y ´Â–½~ĂŞ, Â…2Ď€xy = t, 0 < C < x, y < t. 3M1 ÂĽ, b+a′ q′ b+a′ q′

n+

Ù¼Pf (b) =

t 2Ď€

!it

′

=

nq ′ + b + a′ b + a′

it

= eit log

′

+b+a log nqb+a . , , g(b) = ′

Ă˜5 OM1 , Ă?dk

nq ′ +b+a′ b+a′

1

b+a′ q′

1 2

n+ b+a q′

′

1 2

t −nq ′ f (b) = < 0, 2Ď€ (b + a′ )(nq ′ + b + a′ ) ′

g ′ (b) =

−q ′ (nq ′ + 2b + 2a′ ) . (b + a′ )(nq ′ + b + a′ )

= e2Ď€if (b) ,

, |^5Â&#x;5.3ĂšÂ?ĂŞĂŠn

(5-25)

(5-26)

b + a′ > t ž, |f ′ (b)| 6

1 < 1, 2Ď€

1

1

(5-27) 1

1

|g(b)| 6 q ′ t− 2 (nq ′ )− 2 = q ′ 2 (nt)− 2 ,

(5-28)

|g ′(b)| ≪ qt−1 ,

(5-29)

117


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„ 1

1

tnq ′ (b + a′ ) 2 (nq ′ + b + a′ ) 2 f ′ (b) − = g(b) 2Ď€(b + a′ )(nq ′ + b + a′ ) q′ tn

1

tn 2 = . 1 1 > 1 1 > q′ 2π(b + a′ ) 2 (nq ′ + b + a′ ) 2 2π(q ′ + 1) 2 (nq ′ + q ′ + 1) 2

tn

b + a′ < t ž, ÊuN < b < N + h < 2N, …|f ′ (b)| ≪

t N,

|^Â?ĂŞĂŠ

1 X

1 1 t 6 2

e (f (b)) ≪ N 3 ≪ t6 N 2 .

N

N6b6N+h62N

Ă?d, du5Â&#x;5.3Úª(5-27)-(5-31),

X X

|M1 | 6 g(b)e (f (b))

16n6x 16b6q ′

X

X X

6 g(b)e (f (b)) +

′

(5-30) 1 2 6, 3

O

(5-31)

k

X

g(b)e (f (b))

16n6x b+a >t 16n6x b+a′ 6t

′

X q X X X

1 1

− ′

1 + (nt) 2 q 2 +

g(b)e (f (b))

≪

2

16n6x n t 16n6x j≪log t 2j−1 <b<2j

X

1 1 1 X q′ X X

′2 −2 2

≪ + O q t x + max g(b)e (f (b))

1

′ 16N6t−a

2t n

16n6x 16n6x j≪log t N<b<2N 1

1

1

1

1

1

1

1

1

1

1

≪ q ′ x 2 t−1 + q ′ 2 x 2 t− 2 +

X

X 1 1

max ′

+ e (f (b))

log t max ′ N+a′ 1 ′ 1 N+a

16N6t−a (

2 2 16N6t−a

16n6x N<b<N +h<2N q ′ ) (n + q ′ )

′ X X 1 1 1 1 q

≪ q ′ x 2 t−1 + q ′ 2 x 2 t− 2 + log t max ′ √ √ √

e (f (b))

16N6t−a N n q ′

16n6x N<b<N +h<2N

X √q ′ X

1

′ 12 −1 ′ 12 21 − 12 √ log t max ′ √

≪q x t + q x t + e (f (b))

16N6t−a n N N6b6N+h62N

16n6x √ X 1 1 1 1 1 1 q′ 1 √ log t max ′ √ t 6 N 2 ≪ q ′ x 2 t−1 + q ′ 2 x 2 t− 2 + 16N6t−a n N 16n6x 1

1

1

≪ q ′ x 2 t−1 + q ′ 2 x 2 t− 2 + q ′ 2 x 2 t 6 log t 1

≪ q ′ x 2 t−1 + q ′ 2 x 2 t 6 log t.

(5-32)

aq/, Â?ÂŒÂą M2 O, 1

1

1

1

M2 ≪ q ′ y 2 t−1 + q ′ 2 y 2 t 6 log t. 118

(5-33)


1ÊÙ Ù§êدK

Ïd, dª(5-24), (5-32)Ú(5-33), k

!

X ′

q

1 1 b+a 1

ζ − it, −

′ b+a′ 12 +it b+a′ 12 −it

2 q ( q′ )

b=1 ( q′ )

1 1 1 1 1 1 1 ≪ q ′ x 2 + y 2 t−1 + q ′ 2 x 2 + y 2 t 6 log t + q ′ x− 2 log t.

q t x = y = 2π ,

!

q′ ′ X

1 1 b+a 1

≪ q ′ 12 t 125 log t + q ′ t− 14 log t. ζ − − it, 1 1 ′ ′

′ +it −it

2 q 2 2 ( b+a

b=1 ( b+a

q′ ) q′ )

ùÒy² Ún5.18.

Ú n 5.19 q ′ > 2 ´ ê, 0 6 a′ 6 1, t > 3. Kk

! 2 q′

X 1 1 b + a′

+ it, − b+a′ 1 +it

ζ ′

2 q ( q′ ) 2 b=1 1 1 5 q′ t ′ − 12 3 ′2 6 log t) + O ) + O(t log t = q ′ log ′ + γ + O(q t q , (q + a′ )2π Ù¥γ ´Euler~ê, O ~ê= 6ua′ .

y²: â5 5.7, |^)Ûòÿk

! 2 q′

X 1 1 b + a′

+ it, −

ζ

1 ′ ′ b+a 2 +it

2 q ( ) ′ b=1 q

2

b+a′ q′

it

X X X e − q′ v π 1 1 2π

i(t+ 4 ) −2 = + e + O(x log t)

1 1 +it −it

t ′ 2 v2 16v6y b=1 16n6x n + b+a

q′

2

2 ′

q q b+a X X X X e(− q′ v)

1

+

+ = 1

b+a′ 21 +it

−it 2 (n + v )

b=1 16n6x b=1 16v6y q′     −it q′ b+a′ X X X e( q′ v) 1 −i(t+ π4 )    2π + + e 1 1 ′ b+a 2 +it +it t 2 (n + ) v ′ 16n6x 16v6y b=1 q    ′ it q b+a′ X X X e(− v) π 1 q′    2π + + ei(t+ 4 ) 1 b+a′ 12 −it −it t 2 v 16n6x (n + q ′ ) 16v6y b=1

 

it b+a′ X X X e(− v)

′ 1 π 1 2π q − i(t+ )

 + 4 +O x 2 log t + e 1 1

b+a′ 2 +it −it t 2 (n + ) v

16b6q ′ 16n6x 16v6y q′ +O x−1 log2 t ≡ A1 + A2 + A3 + A4 + A5 + O x−1 log2 t . (5-34) 119


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

ò OÂŞ(5-34)ÂĽz˜‘. (i)Ă„k OA1 . dÂŞ(5-34) k

2

q′

X X

1

A1 = 1 ′

b+a 2 +it

(n + )

b=1 16n6x q′ ′

=

q X X

1

X

b=1 16n6x 16m6x ′

q X X

(n +

b+a′ 12 +it ) q′

1 b+a′ 12 −it ) q′

(m +

′

q X X 1 1 1 = + + ′ 1 +it ′ 1 −it b+a′ b+a b+a n + 2 2 (n + ) (m + ) ′ ′ ′ q b=1 16n6x b=1 16m<n6x q q ′

+

q X

1

X

b=1 16n<m6x q′

= q′

b=1 16n6x

b+a′ 12 −it q′ )

X

1

b=1 16m<n6x

′

+

(m +

q′

X 1 + nq ′ + b + a′

X X q X

(n +

1

b+a′ 12 +it q′ )

1

X

b=1 16m<n6x

(n +

b+a′ q′

(n +

1

b+a′ q′

)

1 +it 2

(m +

b+a′ 12 −it q′ )

1 )

1 −it 2

(m +

b+a′ 12 +it ) q′

= q ′ A11 + A12 + A13 .

(5-35)

w,, A13 †A12 �. �d�I OA11 ÚA12 . ÊuA11 , �� q X

q q ∞ X X 1 1 X a a = − = log q + Îł − + O(q −1 ), n + a n n(n + a) n(n + a) n=1 n=1 n=1 n=1

k ′

A11 =

q X X

b=1 16n6x

nq ′

1 + b + a′

X 1 1 − ′ n+a n + a′ 16n6q ′ 16n6q ′ ([x]+1) 1 1 ′ ′ = log(q ([x] + 1)) + Îł − βa′ + O − log q + Îł − βa′ + O ′ qx q′ 1 = log x + O ′ , (5-36) q P a′ Ă™¼βa′ = ∞ n=1 n(n+a′ ) .

=

X

eÂĄ OA12 . Ă„kk

′

A12 =

q X

X

b=1 16m<n6x

(n +

120

m+ b+a q′ n+ b+a q

′

′

b+a′ 21 q ′ ) (m

it

+

b+a′ 12 q′ )


1ÊÙ Ù§êدK ′

=

q X

X

16m<n6x b=1

it log

e (n +

mq ′ +b+a′ nq ′ +b+a′

b+a′ 21 ) (m q′

+

b+a′ 12 ) q′

.

(5-37)

f (b) =

mq ′ + b + a′ t log ′ , 2π nq + b + a′

(5-38)

1 1 b + a′ − 2 b + a′ − 2 , g(b) = n + m+ q′ q′

(5-39)

w,, g(b) ´üNeü , (n − m)q ′ t > 0, 2π (mq ′ + b + a′ )(nq ′ + b + a′ )

(5-40)

−t(n − m)q ′ ((n + m)q ′ + 2(b + a′ )) < 0, 2π(mq ′ + b + a′ )2 (nq ′ + b + a′ )2

(5-41)

q′ q ′ (m + a′ ) + 2(b + a′ ) . 2 (nq ′ + b + a′ ) 32 (mq ′ + b + a′ ) 32

(5-42)

f ′ (b) =

f ′′ (b) =

g ′ (b) = −

Ïd, f (b) ´üNþ, , f ′ (b) ´üNeü . t 6

mnq ′ , n−m

k |f ′ (b)| =

t (n − m)q ′ 1 6 < 1, ′ ′ ′ ′ 2π (mq + b + a )(nq + b + a ) 2π

|g(b)| = |g ′ (b)| =

n+

b+a′ q′

1 1 2

m+

1 1 6 √mn b+a′ 2

1 6√ , mn 2 (nq ′ + b + a′ ) (mq ′ + b + a′ ) 3 2

f ′ (b) t(n − m) (n − m)t √ = . 1 1 ≫ g(b) mnq ′ 2π(mq ′ + b + a′ ) 2 (nq ′ + b + a′ ) 2 dd9 â5 5.3Úª(5-35), (5-43)-(5-46),   X  1 + √1  |A12 | ≪ (n−m)t mn √ 16m<n6x mnq ′ √ X mn ′ −1 ≪q t +x n−m 16m<n6x

121

(5-44)

q′

q ′ (q ′ (m + n) + 2(b + a′ )) 3 2

(5-43)

(5-45)

(5-46)


Smarandache ¼ê9Ù '¯KïÄ

′ −1

=qt

x−1 X x−1 X

k=1 m=1 ′ −1 2

p

m(m + k) +x k

≪ q t x log t. t >

mnq ′ n−m ,

(5-47)

dª(5-41), k t(n − m) t(n − m) ≪ |f ′′ (b)| ≪ , 2 ′2 m q n m2 q ′2 n

Ïdd5 5.4 Úª(5-37), k

′ +b+a′

X log q

it log mq nq ′ +b+a′ max ′

e |A12 | ≪

1 1 16N6q

′ 2 ′ 2 1+a 1+a 16m<n6x n + N<b<N +h<2N m + q′ q′ X log t ≪ 1 1 × ′ 2 ′ 2 1+a 1+a 16m<n6x n + m + q′ q′

1 − 1

2 2 t(n − m) t(n − m)

× max ′ q ′ +

2 ′2 2 ′2 16v6q

m q n m q n √ √ X X t log t t log t √ ≪ √ √ 3+ nm n m X

16m<n6x 1 2

16m<n6x

′ 2 −1

≪ t x log t + q x t

log t.

(5-48)

¤±, dª(5-37), (5-47)Ú(5-48), k 1 ′ −1 2 2 |A12 | ≪ q t x + t x log t.

Ïd, dª(5-35), (5-36)Ú(5-49), 1 A1 = q ′ log x + O (q ′ t−1 x2 + t 2 x) log t .

Ó , |^CauchyØ ª, k

2  12 1  ′

′ 2

q q q X X X X X

1 1 2

6

   1 1 1

b+a′ 2 +it

b+a′ 2 +it

) ) (n + (n +

b=1 16n6x b=1 b=1 16n6x q′ q′ 1

≪ q ′ log 2 t.

(ii)éuA2 , Ï

P

16u6y

1 u

= log y + γ + O q1′ , k

2 ′

q′

X v)

X e(− b+a

q′

A2 = 1

−it 2 v

b=1 16v6y

122

(5-49)

(5-50)

(5-51)


1ĂŠĂ™ Ă™§êĂ˜ÂŻK ′

=

X

q 2Ď€i X X e

b+a′ (v−u) q′

1

1

u 2 −it v 2 +it   X 1 X 1   = q′ + O q ′ 1 1  u u2 v 2 16u<v6y 16u6y u≥v( mod q ′ )  X = q ′ (log y + Îł + O(q â€˛âˆ’1 )) + O q ′ 16u6y 16v6y b=1

X

16k6[ qy′ ] 16u6y



3

= q ′ (log y + Îł) + O q ′ 4

1

X

16k6[ qy′ ]

= q ′ (log y + γ) + O(y).

k

1 4

X

16u6y



1  3 u4



1  √ √ ′ u kq + u

(5-52)

|^CauchyĂ˜ ÂŞ, ĂĄ=



2  12 1  ′

′ ′ 2

q′

q′ q

b+a b+a X X e(− q′ v)

X X X e(− q′ v)

2 

  1 1 1

6

−it −it 2 2 v v

b=1 16v6y b=1 b=1 16v6y 1

≪ q ′ log 2 t.

(5-53)

(iii) x < y, 2Ď€xy = t, KŠâ5Â&#x;5.7, k ′ it 1 X X e(− b+a v) 1 2Ď€ q′ i(t+ Ď€4 ) −2 + e + O x log t 1 b+a′ 21 +it t v 2 −it 06n6x (n + q ′ ) 16v6y ′ it 1 X X e(− b+a ′ v) Ď€ 1 2Ď€ q i(t+ 4 ) −4 = + e + O t . log t 1 ′ 1 +it −it t 2 2 √ t (n + b+a √ ) v ′ t q 06n6

16v6

2Ď€

2Ď€

Ă?d,

2Ď€ t

it

2Ď€ = t

it

+

′

i(t+ π4 )

e

1

v 2 −it

16v6y i(t+ π4 )

e

X

√

x<n6

X e(− b+a q ′ v) X

√

16v6

1

t 2Ď€

1 t 2Ď€

(n +

′

e(− b+a v) q′

b+a′ 21 +it q′ )

v 2 −it 1 −2 + O x log t .

dA3 ½Ă‚Úª(5-54), (5-51) ĂĄ=  ′ −it q X X 1  2Ď€ −i(t+ Ď€4 ) A3 = e  1 ′ b+a 2 +it t b=1 16n6x (n + q ′ ) 123

(5-54)

′

X

√

16v6

e( b+a q ′ v) 1

t 2Ď€

v 2 +it

+


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

X

+

√

x6n6

2Ď€ = t

−it

1 t 2Ď€

b+a′ 12 −it q′ )

(n +

−i(t+ Ď€4 )

e

X



1  + O x− 2 log t 

√

16n6x 16v6

1

+

X

√

16n6x x6m6

t 2Ď€

q X b=1

1 +O q ′ 2 log t

n+

v 2 +it

t 2Ď€

′

X

′

1

X

b+a′ q′

1 1 +it 2

q X b=1

′

e( b+a v) q′ 1 +it + b+a′ 2 n + q′ b+a′ q′

m+

1 −it + 2

1 = A31 + A32 + O q ′ 2 log t .

(5-55)

ĂŠuA32 , ÂŒÂą|^† OA1 aq Â?{ , Ă?dk 3

3

3

1

|A32 | ≪ q ′ x 2 t− 4 + t 4 x 2 log t.

(5-56)

ĂŠuA31 , dÂŞ(5-55), k |A31 | 6

6

X

X

√

16n6x 16v6

X

X

√

16n6x 16v6

-

1 t 2Ď€

t 2Ď€

v

1 +it 2

′

′

2πi b+a v q′

q e X b=1

n+

n+

b+a′ q′

w,, g(b) ´ßNeĂź , {ĂźOÂŽ v t − , ′ ′ q 2Ď€(nq + b + a′ )

f ′′ (b) =

1 2

−it

q′ b+a′ b+a′ 2Ď€i v−it log n+

q′ q′ 1

X e

. 1 1

v 2

b=1 b+a′ 2

n + q′

t b + a′ b + a′ v− , f (b) = log n + q′ 2Ď€ q′ 1 b + a′ − 2 g(b) = n + , q′

f ′ (b) =

b+a′ q′

2π(nq ′

g ′ (b) = −

t , + b + a′ )2

1 2q ′ n +

124

b+a′ q′

3 . 2

(5-57)


1ÊÙ Ù§êدK

Ïd, t 6 nq ′ ,

v

t t t 1 ′

6 |f (b)| = ′ − 6 6 < 1,

′ ′ ′ ′ ′ q 2π(nq + b + a ) 2π(nq + b + a ) 2πnq 2π

1

′ −2

b+a 1

|g(b)| 6 n +

6 √ , ′

q n

(5-58)

(5-59)

1 |g ′(b)| 6 √ , n

(5-60)

f ′ (b) − = g(b)

v t − ′ ′ ′ 2π(nq + b + a ) q

v t > − ′ ′ ′ 2π(nq + b + a ) q t t √ ≫ ′ n ≫ ′√ . nq q n

b + a′ n+ q′ 1 + a′ n+ q′

1 2

1 2

(5-61)

Ïd, d5 5.3 Úª(5-57)-(5-61), k |A31 | ≪

X

X

16n6x 16v6

≪ q ′ t−1

1

t √ q′ n

1

t 2π

X √ n

16n6x

3

1

v2

X

16v6

t 2π

1 +√ n

!

1 √ v

3

≪ q ′ t− 4 x 2 . t > nq ′ , k n2tq′2 ≪ |f ′′ (b)| ≪ |A31 | ≪ ≪ ≪

X

X

t 2π

X

X

t 2π

X

X

16n6x 16v6

16n6x 16v6

16n6x 16v6 3

t 2π

1

(5-62) t , n2 q ′2

¤± â5 5.4 Úª(5-57),

X 1 log q ′

2πif (b)

√ max e

1

n 1<N<q′

v2 N<b<N +h<2N " 1 2 ′2 12 # 2 1 log q ′ ′ t n q √ q + 1 2 ′2 n n q t v2 log t √ nv 1

√ t nq ′ +√ n t

3

≪ t 4 x 2 log t + q ′ t− 4 x 2 log t.

(5-63)

(ܪ(5-62)Ú(5-63), k 3

3

3

1

1

3

|A31 | ≪ q ′ t− 4 x 2 + t 4 x 2 log t + q ′ t− 4 x 2 log t 125


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„ 3

3

1

1

≪ q ′ x 2 t− 4 log t + t 4 x 2 log t.

(5-64)

Ă?d, dÂŞ(5-55), (5-56)Ăš(5-64), k 3

3

3

1

1

|A3 | ≪ q ′ x 2 t− 4 + t 4 x 2 log t + q ′ 2 log t.

(5-65)

A4 †A3 ´ Ă? , ¤¹kaq O, = 3

3

3

1

1

|A4 | ≪ q ′ x 2 t− 4 + t 4 x 2 log t + q ′ 2 log t.

(5-66)

(iv)ĂšĂœŠò OA5 . dÂŞ(5-34), (5-51)Ăš(5-53), ĂĄ=

′ b+a X

X 1 1 2Ď€ it i(t+ Ď€ ) X e − q′ v

4 |A5 | ≪ x− 2 log t + e

1 1 +it −it

t ′ 2 2 v b+a ′ 16b6q 16n6x n + 16v6y

q′

 

b+a′

e − v X X

 q′ 1  X X

− 12



6 x log t  +

1 1

+it

−it

′ 2 2 v

b+a ′ ′ 16b6q 16n6x n + 16b6q 16v6y

q′ 1

3

6 q ′ x− 2 log 2 t.

nÞ¤ã, (Ăœ(i), (ii), (iii)Ăš(iv)oĂœŠ y², ĂĄ= 1 A = q ′ log x + q ′ (log y + Îł) + O q ′ t−1 x 2 log t + 1 3 3 1 +O t 2 x log t + O(y) + O q ′ x 2 t− 4 + O q ′ 2 log t 3 1 3 ′ − 12 4 2 2 +O t x log t + O q x log t + O x−1 log2 t . 1

-x = t 6 log3 t, y =

t 2Ď€x ,

A = q ′ log ÚÒy² Ăšn5.19.

(5-67)

k

5 1 1 5 t + q ′ Îł + O q ′ t− 12 + O t 6 log 2 t + O q ′ 2 log t . 2Ď€

ĂšÂ˜!, ò ¤½n5.5 y². ŠâĂšn5.17ĂŠN´

2 X 1

L

+ it, χ, a

2 χ mod q

q′ X

φ(q) X 1 b + a′

2

= Âľ(d)

Μ 2 + it, q ′

q b=1 d|q

! 2 q′

′ X φ(q) X 1 1 b + a 1

+ it, = Âľ(d) −

b+a′ 1 +it + Μ

b+a′ 21 +it

( ′ )2 q 2 q′ ( ) ′ b=1 q q d|q

126

(5-68)


1ĂŠĂ™ Ă™§êĂ˜ÂŻK q′

X q′ φ(q) X = ¾(d) q b + a′ d|q

b=1

q′

X φ(q) X 1 + ¾(d) 1 ′ q ( b+a′ ) 2 +it d|q

b=1

q

Îś

b + a′ 1 − it, 2 q′

−

1 ′

1

−it 2 ( b+a q′ )

!

+

! q X φ(q) X 1 1 b + a′ 1 + + it, Âľ(d) Îś − b+a′ 1 + b+a′ 12 −it q 2 q′ ( q′ ) 2 +it b=1 ( q ′ ) d|q

! 2 q′

X 1 b + a′ φ(q) X 1

+ Âľ(d) + it, − b+a′ 1

Îś

. ′ +it

q 2 q ( ′ )2 ′

d|q

b=1

q

2dĂšn5.18, 5.19Ăš5.16, ĂŠ?¿¢êt > 3, k 2 X

1

L + it, χ, a

2 χ mod q

φ(q) X Âľ(d)q ′ log(q ′ ) + Îł − βa′ + O q â€˛âˆ’1 + q d|q 1 5 1 t φ(q) X ′ ′ − 12 3 ′ Âľ(d) q log + Îł + O(q t + + t 6 log t + q 2 log t) + q 2Ď€ d|q   X 1 5 1 φ(q) +O  |Âľ(d)|(q ′ 2 t 12 log t + q ′ t− 4 log t) q d|q X Âľ(d) qt X Âľ(d) X Âľ(d) log d = φ(q) log + 2Îł − φ(q) βa/d − φ(q) + d 2Ď€ d d d|q d|q d|q   X X X 1 |Âľ(d)| φ(q) 5 φ(q) 5 |Âľ(d)|  +O φ(q)t− 12 + t 6 log3 t |Âľ(d)| + 1 t 12 log t 1 d q q2 d2 d|q d|q d|q   X log p X Âľ(d) φ2 (q)  qt  − φ(q) = log + 2Îł + βa/d q 2Ď€ p−1 d p|q d|q 1 5 1 5 − 12 3 ω(q) ω(q) 6 2 12 +O qt + t log t2 + q t log t2 ,

=

P∞

x n=1 n(n+x)

´Â˜Â‡Â†x k' ÂŒOÂŽ ~ĂŞ, …ω(q) LÂŤq Ă˜Ă“ÂƒĂ?f P q ‡ê. Þª¼|^ OÂŞ d|q |Âľ(d)| ≪ φ(q) . ÚÒ ¤ ½n5.5 y². d Ă™¼βx =

127


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

Í Šz

[1] Dumitrescu V. Seleacu. The Smarandache function. Erhus University Press, 1996. [2] Florian Luca. The average Smarandache function. Smarandache Notions Journal, 2001(12), 1(2-3): 19-27. [3] Florian Luca.On a series involving S(1)¡S(2) ¡ ¡ ¡ S(n). Smarandache Notions Journal, 1999(10), 1(2-3): 128-129.

[4] ĂœŠ+. Ă? ĂŞĂ˜. ĂœS: ĂąĂœÂ“Â‰ÂŒĂ†Ă‘Â‡ , 2007. [5] É. ÂŤJ. )Ă›ĂŞĂ˜Ă„:. ÂŽ: ‰Æч , 1999. [6] Tom M. Apostol. Introduction to analytic number theory. New York: Spring-Verlag, 1976. [7] Smarandache F. Only problems, not solutions. Chicago: Xiquan Publication House, 1993. [8] Chen Jianbin. Value distribution od the F. Smarandache LCM function. Scientia Magna, 2007, 3(2): 15-18. [9] Ma Jinping. An equation involving the Smarandache function. Scientia Magna, 2005, 1(2): 89-90. [10] Yi Yuan. An equation involving the Euler function and Smarandache function, 2005, 1(2): 172-175. [11] ‘Æ). Â?âÂŽ. 'uĂŞĂ˜ŸêÂ?§Ď•(n) = S(n5 ). uHÂ“Â‰ÂŒĂ†Ă† , 2007, 4: 41-43. [12] x7. 'uĂŞĂ˜ŸêÂ?§Ď•(n) = S(nt ). ÂĽI‰ M# r, 2009, (2): 154-154. [13] Mark Farris and Patrick Mitchell. Bounding the Smarandache function. Smarandache Notions J, 2008, 13: 37-42. [14] Murthy A. Some notions on least common multipies. Smarandache Notions Journal, 2001, 12: 307-309. [15] Erd¨ os P. Problem 6674. American Mathematical Monthly, 1991, 98, 965. [16] Ç!. 'ušÂ–SmarandacheŸê9Ă™ÊóŸê Â?§ ÂŒ)5. ĂœHÂŒĂ†Ă† (g ,‰Æ‡), 2011, 33(8): 102-105. [17] ĂŤ . 'uSmarandacheĂš ފ. ĂœHÂ“Â‰ÂŒĂ†Ă† (g,‰Æ‡), 2011, 36(1):

128


Í Šz

44-47. [18] Â?d. ˜aÂ?šSmarandacheĂšŸê Dirichlet?ĂŞ. ĂœHÂ“Â‰ÂŒĂ†Ă† (g,‰Æ ‡), 2011, 36(1): 39-43. [19] Le Maohua. An equation concerning the Smarandache LCM function. Smarandache Notions Journal, 2004, 14: 186-188. [20] Lv Zhongtian. On the F. Smarandache LCM function and its mean value. Scientia Magna, 2007, 3(1): 22-25. [21] Tian Chengliang. Two equations involving the Smarandache LCM function. Scientia Magna, 2007, 3(2): 80-85. [22] Le Maohua. Two formulas for Smarandache LCM ratio sequences. Smarandache Notions Journal, 2004, 14: 183-185. [23] Wang Ting. A formula for Smarandache LCM ratio sequence. Research on Smarandache problems in number theory, 2005, 45-46. [24] Â? R. ' uSmarandache LCMÂź ĂŞ ĂŠ Ăł Âź ĂŞ Â? §. ÂĄ H “ ‰ Æ Æ , 2012, 27(2): 21-23. [25] Aleksandar Ivic. On a problem of erdos involving the largest prime factor of n. M. Math., 2005, 145: 35-46. [26] Faris Mark and Mitchell Patrick. Bounding the Smarandache function. Smarandache Notions Journal, 1999, 10: 81-86. [27] Sandor J. On a dual of the Pseudo-Smarandache function. Smarandache Notions Journal, 2002, 13: 18-23. [28] Lu Yaming. On the solutions of an equation involving the Smarandache function. Scientia Magna, 2006, 2, 76-79. [29] ĂœŠ+. 'uF.Smarandache Ÿê ߇¯K. Ăœ ÂŒĂ†Ă† , 2008, 38: 173-175. [30] A. A. K. Majumdar. A note on the Pseudo-Smarandache function. Scientia Magna, 2006, 2: 1-25. [31] É. ÂŤJ. ƒê½n Ă? y². Þ°: Þ°Â‰Ă†Eâч , 1988. [32] Wju. 'uSmarandacheŸê ˜‡Ă&#x;ÂŽ. ç9Ă´ÂŒĂ†Ă† (g,‰Æ‡), 2007, 24(5): 687-688. [33] Wang Yougxing. On the Smarandache function. Research on Smarandache Problem in Number Theory, 2005, 2: 103-106. [34] Murthy A. Smarandache determinant sequences. Smarandache Notions Journal, 2001, 12: 275-278. [35] Le Maohua. Two classes of Smarandache determinants. Scientia Magna, 2006, 2(1): 129


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

20-25. [36] Mó¸. 'uSmarandacheŸê ŠŠĂ™. êÆÆ (¼ŠÂ‡), 2009, 49(5): 10091012. [37] Le Maohua. Two function equations. Smarandache Notions Journal, 2004, 14: 180182. [38] Gorskid. The Pseudo-Smarandache functions. Smarandache Notions Journal, 2000, 12: 140-145. [39] Sandor J. On additive analogues of certain arithmetic function. Smarandache Notions Journal, 2004, 14: 128-132. [40] Kashhaeak. Comments and topics on Smarandache notions and problems. New Mexico: Erhus University Press, 1996. [41] Guy R. K. Unsolved problems in number theory. New York: Springer Verlag, 1981: 25- 56. [42] Ashbacher C. On numbers that are Pseudo-Smarandache and Smarandache perfects. Smarandache Notions Journal, 2004, 15: 40-42. [43] Farris M. and Mitchell P. Bounding the Smarandache functions. Smarandache Notions Journal, 2002, 13: 37-42. [44] uێ. ĂŞĂ˜Ă‰Ăš. ÂŽ: ‰Æч , 1979: 121-123. [45] Wju. 'uSmarandache ĂŞ. Ă HÂ“Â‰ÂŒĂ†Ă† (g,‰Æ‡), 2007, 35(4): 13-14. [46] Smarandache F. Sequences of numbers involved in unsolved problems. Hexis, 2006. [47] AÂĄ_. Smarandache LCM Ÿê†ÙÊóŸê ¡ĂœĂžÂŠ. S„ Â“Â‰ÂŒĂ†Ă† (g,䮂ŠÂ‡), 2010, 39(3): 229-231. [48] Ă ÂŻÂŚ. 'uF. Smarandache {ߟê†DirichletĂ˜ĂŞĂšŸê ¡ĂœĂžÂŠ. S„ Â“Â‰ÂŒĂ†Ă† (g,䮂ŠÂ‡), 2010, 39(5): 441-443. [49] Nan Wu. On the Smarandache 3Ď€ digital sequence and the Zhang Wenpeng’s conjecture. Scientia Magna, 2008, 4(4): 120-122. [50] Gou Su. The Smarandache 3n digital sequence and its some asymptotic properties. Journal of Inner Mongolia Normal University (Natural Science Edition), 2010, 39(6): 563-564. [51] Perez. M. L. Florentin Smarandache Definitions, Solved and Unsolved Problems, Conjectures and Theorems in Number theory and Geometry. Chicago: Xiquan Publishing House, 2000. [52] !Ă´. ˜‡# ĂŞĂ˜Ÿê9Ă™§ ŠŠĂ™. X{êƆA^êÆ, 2007, 23(2): 130


Í Šz

235-238. [53] É. ÂŤJ. Ă? ĂŞĂ˜. ÂŽ: ÂŽÂŒĂ†Ă‘Â‡ , 1992. [54] ´w. } ÂŒ. SmarandacheÂŻKĂŻĂ„. High American Press, 2006. [55] Wju. ߇k'–SmarandacheŸê Â?§. 3 zóÆ Æ , 2004, 21(4): 96-104. [56] Xu ZF and Zhang WP. On a problem of D. H. Lehmer over short intervals. Journal of Mathematical Analysis and Applications, 2006, 320(2): 756-770. [57] ÚÂ=. 'uSmarandacheŸêS(n) ˜‡Ă&#x;ÂŽ. X{êƆA^êÆ, 2007, 23(2): 205-208. [58] Sandor J. On certain Generalizations of the Smarandache function. Notes Number Theory and Discrete Mathematics, 1999, 5(2): 41-51. [59] Z. ˜‡Â?šSmarandache LCMÊóŸê Â?§. ç9Ă´ÂŒĂ†g,䮮 , 2008, 25(5): 23-27. [60] ƒ. 'uSSSP (n)ĂšSISP (n) ފ. X{êƆA^êÆ, 2009, 25(3): 431-434. [61] Smarandache F. Sequences of numbers involved in unsolved problems. Phoenix: Hexis, 2006. [62] Guo J. and He Y. Several asymptotic formulae on a new arithmetical function. Research on Smarandache problems in number theory, 2004, 115-118. [63] Lou Y. On the Pseudo Smarandache function. Scientia Magna, 2007, 3(4): 48-50. [64] Zheng Y. On the Pseudo Smarandache function and its two cojectures. Sientia Magna, 2007, 3(4): 50-53. [65] o$Ă´. ˜‡†SmarandacheŸêk' ŸêÂ?§9Ă™ ĂŞ). Ăœ ÂŒĂ†Ă† , 2008, 38(6): 892-893. [66] ‘è. ĂŤ Ăś. 'uSmarandache²Â?ÂŠĂœŠê a2 (n)Ăšb2 (n). ­Â&#x;Â“Â‰ÂŒĂ†Ă† , 2010, 27(6): 1-3. [67] ĂŁÂ&#x;². 'uÂż ĂŁÂ?§x3 + 1 = 57y 2 . ­Â&#x;Â“Â‰ÂŒĂ†Ă† , 2010, 27(3): 41-44. [68] Ăœ4

. 2Ă‚FibonacciĂŞ Ăšúª. ­Â&#x;Â“Â‰ÂŒĂ†Ă† , 2010, 28(5): 45-48.

[69] Perzem L Florentin. Smarandache denitions solved and unsolved problems, conjectures and theorems in number theory and geometry. Chicaga Xiquan Publishing House, 2000. [70] ´ÂŒ>. ˜‡Â?šSmarandacheŸê Â?§. —„p Ă„:䮮 , 2008, 21(2): 253-254. [71] Gorsk I. The Pseudo-Smarandache function. Smarandache Notions Journal, 2002, 13: 140-149. 131


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

[72] Zhang A. Smarandache reciprocal function and an elementary in equality. Scientia Magna, 2008, 4(2): 1-3. [73] Gou Su. The Smarandache kn digital sequence and its mean value properties. Basic Sciences Journal of Textile Universities, 2011, 24(2): 250-253. [74] Li Fenju. On the difference between the mean value of the Smarandache square parts sequences SP (n) and IP (n). Pure and Applied Mathematics, 2010, 26(1), 69-72. [75] Murthy A. Smarandache reciprocal function and an elementary inequality. Smarandache Notions Journal, 2000, 11: 312-315. [76] Duncan R. Applications of uniform distribution to the Fibonacci numbers. The Fibonacci Quarterly, 1967, 5: 137-140. [77] Huxley M. The distribution of prime numbers. Oxford: Oxford University Press, 1972. [78] Kuipers L. Remark on a paper by R. L. Duncan concerning the uniform distribution mod 1 of the sequence of the Logarithms of the Fibonacci Numbers. The Fibonacci Quarterly, 1969, 7: 465-466. [79] Gunarto H and Majumdar A. On Numerical Values of Z(n). Research 0n Number Theory and Smarandache Notions: Proceedings of the Fifth International Conference on Number Theory and Smarandache Notions. London: Hcxis, 2009, 34-50. [80] Majumdar A. On the Dual Functions Z ∗ (n) and S ∗ (n). Research on Number Theory and Smarandache Notions: Proceedings of the Fifth International Conference on Number Theory and Smarandache and Smarandache Notions. London: Hexis, 2009: 74-77. [81] Robbins N. Fibonacci numbers of the forms px2 + 1, px3 + 1, where p is prime. Applications of Fibonacci Numbers, 1988, 2: 77-88. [82] Wu Xin and Li Xiaoyan. An Equation Involving Function Sc (n) and Z ∗ (n). Research on Number Thcory and Smarandache Notions: Proceedings of the Fifth International Conference on Number Theory and Smarandache Notions. London: Hexis, 2009: 5256. [83] ĂœĂ›. ˜‡Â?šÂ–SmarandacheŸê9Ă™ÊóŸê Â?§. X{êƆA^êÆ, 2009, 25(4): 786-788. [84] Zhang Wenpeng. Some identities involving the Fibonacci numbers and Lucas numbers. The Fibonacci Quarterly, 2004, 42: 149-154. [85] Perez M. Florentin Smarandache Definitions, Solved and Unsolved Problems, Conjectures and Theorems in Number Theory and Geometry. Chicago: Xiquan Publishing 132


Í Šz

House, 2000. [86] Zhang Wennpeng and Li Ling. Two problems related to the Smarandache function. Scientia Magna, 2008, 3(2): 1-3. [87] Zhang Wengpeng. On two problems of the Smarandache function. Journal of Northwest University, 2008, 38(2): 173-176. [88] Yang Mingshun. On a problem of the Pseudo-Smarandache function. Pure and Applied Mathematics, 2008, 24(3): 449-451. [89] David Gorski. The Pseudo-Smarandache function. Smarandache Notions Journal, 2002, 13: 140-149. [90] Yi Yuan and Zhang Wenpeng. Some identities involving the Fibonacci polynomials. The Fibonacci Quarterly, 2002, 40(4): 314-318. [91] Jozsef Sandor. On certain arithmetic functions. Smarandache Notions Journal, 2001, 12: 260-261. [92] Abramowitz M. and Stegun IA. Handbook of Mathematical Functions With Formulas. Graphs and Mathematical Tables. USA: Dover Publications, 1964. [93] Mordell LG. On a sum analogous to a Gauss’s sum. Quart J Math(Oxford), 1932, 3: 161-167. [94] Hua LK and Min SH. On a double exponential sum. Science Record, 1942, 1: 23-25. [95] Hua LK. On an exponential sum. Journal of Chinese Math Soc, 1940, 2: 301-312. [96] Xu ZF, Zhang WP. Some identities involving the Dirichlet L-function. Acta Arithmatica, 2007, 130(2): 157-166. [97] ەw. 'uSmarandacheŸê ˜‡e. O. —„p Ă„:䮮 , 2009, 22(1): 133-134. [98] ەw. 'uSmarandacheŸê ˜‡# e. O. X{êƆA^êÆ, 2008, 24(4): 706-708. [99] oÂŽĂš, „‰. 'uSmarandacheŸê ˜‡e. O. Ăœ ÂŒĂ†Ă† (g,‰Æ ‡), 2011, 41(4): 377-379. [100] Wang Jinrui. On the Smarandache function and the Fermat numbers. Scientia Magna, 2008, 4(2): 25-28. [101] Hua LK. On exponential sums over an algebraic field. Canadian J Math, 1951, 3: 44-51. [102] Min SH. On systems of algebraic equations and certain multiple exponential sums. Quart J Math(Oxford), 1947, 18: 133-142. [103] Carlitz L and Uchiyama S. Bounds for exponential sums. Duke Math J, 1957, 24(1): 133


Smarandache Ÿê9Ă™Âƒ'ÂŻKĂŻĂ„

37-41. [104] Corskid D. The pseudo Smarandache function. Smarandache Notions Journa1, 2002, 13: 140-149. [105] HĂ…². Ă­2–SmarandacheŸê. B²ÂŒĂ†Ă† (g,‰Æ‡), 2010, 27(1): 6-7. [106] É. ÂŤJ. x nâĂ&#x;ÂŽ. ÂŽ: ‰Æч , 1981. [107] Ă…Ăœ¸. ˜aÂ?šSmarandacheÊóŸêÂ?§ ÂŚ). ĂąĂœÂ“Â‰ÂŒĂ†Ă† (g,‰Æ ‡), 2007, 35(4): 9-11. [108] Xu ZF. On the mean value of the complete trigonometric sums with Dirichlet character. Acta Math Sin, 2007, 23(7): 1341-1344. [109] Liu HN. Mean value of mixed exponential sums. Proc Amer Math Soc, 2008, 136(4): 1193-1203. [110] 4ĂŻĂŚ. ½­2. Ă?7. ÂŤmĂž ƒCĂŞn Ăš. ÂĽI‰Æ(A6), 2006, 36(4): 448-457. [111] Davenport H. On certain exponential sums. J Reinc U Angew Math, 1933, 169: 158-176. [112] Kolesnik G. On the estimation of multiple exponential sums. Recent Progress in Analytic Number Theory, 1981, 1: 231-246. [113] Liu HN, Zhang WP. On the hybrid mean value of Gauss sums and generalized Bernoulli numbers. Proc Japan Acad Series(Math Sci), 2004, 80(6): 113-115. [114] Liu HY, Zhang WP. Some identities involving certain Hardy sums and Ramanujan sum. Acta Math Sin, 2005, 21(1): 109-116. [115] Min SH. On systems of algebraic equations and certain multiple exponential sums. Quart J Math(Oxford), 1947, 18:133-142. [116] Vinogradov IM. Special variants of the method of trigonometric sums(Russian). Nauka, Moscow, 1976. [117] Vinogradov IM. The method of trigonometric sums in number theory (Russian). Nauka, Moscow, 1980. [118] Yi Y, Zhang WP. An application of exponential sum estimates. Acta Math Sin, 2004, 20(5): 851-858. [119] Yi Y, Zhang WP. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin, 2004, 20(1): 175-180. [120] Glyn H, Nigel W, Kam W. A new mean value result for Dirichlet L-functions and polynomials. Quart. J. Math, 2004, 55: 307-324. [121] Heath-Brown DR. An asymptotic series for the mean value of Dirichlet L-functions. 134


Í Šz

Comment Math Helvetici, 1981, 56:148-161. [122] Liu HN, Zhang WP. On the mean value of L(m, χ)L(n, χ) at positive integers m, n > 1. Acta Arith, 1973, 20: 119-134. [123] Ramachandra K. A simple proof of the mean fourth power estimate for Μ and L 12 + it . Ann Scuola Norm Sup(Pisa), 1974, 1: 81-97.

1 2

+ it

[124] Shparlinski IE. On some weighted average values of L-functions. Bull Aust Math Soc, 2009, 79: 183-186. [125] ´w, ĂœŠ+. 'uDirichlet L-Ÿê 2kg\ ފ. êÆ?Ă?, 2002, 6: 517-526. [126] Zhang Wenpeng. The first power mean of the inversion of L-functions weighted by quadratic Gauss sums. Acta Math Sin, 2004, 20(2): 283-292. [127] Zhang Wenpeng, Yi Yuan, He Xiali. On the 2k-th power mean of Dirichlet Lfunctions with the weight of general Kloosterman sums. J Number Theory, 2000, 84: 199-213. [128] Xu Zhefeng and Zhang Wenpeng. On the order of the high-dimensional Cochrane sum and its mean value. Journal of Number Theory, 2006, 117(1): 131-145. [129] Mó¸, ĂœŠ+. DirichletA 9Ă™A^. ÂŽ: ‰Æч , 2008. [130] Berndt BC. Generalized Dirichlet series and Hecke’s functional equation. Proc Edinburgh Math Soc, 1966-1967, 15(2): 309-313. [131] Berndt BC. Identities involving the coefficients of a class of Dirichlet series III. Trans Amer Math Soc, 1969, 146: 323-342. [132] Berndt BC. Identities involving the coefficients of a class of Dirichlet series IV. Trans Amer Math Soc, 1970, 149: 179-185. [133] SlavutskiˇiIS. Mean value of L-function and the class number of the cyclotomic field (Russian). Algebraic systems with one action and relation, Leningrad Gos Ped Inst Leningrad, 1985, 122-129. [134] Stankus E. Mean value of Dirichlet L-functions in the critical strip. Litovskii Matematicheskii Sbornik(Lietuvos Matematikos Rinkinys), 1991, 31(4): 678-686. [135] ĂœŠ+. 'uL-Ÿê gފúª. êÆcrA6, 1990, 1: 121-127. [136] ĂœŠ+. 'uL-Ÿê ފ. ĂŞĂ†ĂŻĂ„Â†ÂľĂ˜, 1990, 10(3): 355-360. [137] Heath-Brown DR. An asymptotic series for the mean value of Dirichlet L-functions. Comment Math Helvetici, 1981, 56:148-161. [138] Balasubramanian R. A note on Dirichlet L-functions. Acta Arithmatica, 1980, 38: 273-283. [139] Ivic A. The Riemann zeta-function:The theory of the Riemann zeta-function and 135


Smarandache ¼ê9Ù '¯KïÄ

applications. New York: Wiley, 1985. [140] Phillips E. The zeta-function of Riemann; further developments of van der Corput’s method. Quart J Math(Oxford), 1933, 4: 209-225. [141] «É, «J. )ÛêØÄ:. ÆÑ , ®, 1991.

136


Ro ngMa Sc ho o lo fSc i e nc e No r t hwe s t e r nPo l y t e c hni c a lUni v e r s i t y Xi ’ a n, Sha a nx i P. R. Chi na



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.