SOME CONVERGENCE PROBLEMS INVOLVING THE SMARANDACHE FUNCTION

Page 1

SOME CONV ERGE NCE PROB LEMS INVO L VI!'IG

THE SMAR A80A CHE FUNC TION by

E. Burton, 1 Cojocaru, S. Cojocaru, C. Dwnittcscu Department o/lvlathemalic.;s. Unrl'ersity o/erai ova. eraiov a (1100). Romanza

In tlUs paper we consider same smes anl1llhed to che: SlIlllmndachl! fllllCllllJl (Dmdll cl senes and other (nwnenl::ll) scne:.l.1'.l;unptoul: behaviour aud wllvclg cncc 1l1"IhcliC ~cncli IS etabhshc:d.

1. INTRO DUCT ION. The Smarandache function S : ," • ~ is defined [3 J sUl.:h thOlt Sen) is the smallest inlcgc:r n with the property that n! is divisiole oy n.lf ( 1.1 )

is the decom positio n into primes of the positiv integer n, then S(n) =max S(p~ )

(1.2)

I

and more general if

nl

V

n'2

is the smallest commun multiple of n and l

fl!

then.

Let us observe thaI on the set N of non-negative integers. there arc two lallicea l slmclurcs

generated respectively by v= max.,

1\ -::

min and V"

The calculus of SIp;). )

depend~

= the

last

COltllll un 111 ult iph.:. 1\ d

greates t commu n dh,;sion. if we denote by results

!.

closet)· of two numeric;,1 scale,

(P) : 1. p,

tY •...• p.., ...

99

= the

anu s" thl: induced orders ill thc:o;e lalticcs.11

namel~'

the standa rd scale


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.