SOME CONV ERGE NCE PROB LEMS INVO L VI!'IG
THE SMAR A80A CHE FUNC TION by
E. Burton, 1 Cojocaru, S. Cojocaru, C. Dwnittcscu Department o/lvlathemalic.;s. Unrl'ersity o/erai ova. eraiov a (1100). Romanza
In tlUs paper we consider same smes anl1llhed to che: SlIlllmndachl! fllllCllllJl (Dmdll cl senes and other (nwnenl::ll) scne:.l.1'.l;unptoul: behaviour aud wllvclg cncc 1l1"IhcliC ~cncli IS etabhshc:d.
1. INTRO DUCT ION. The Smarandache function S : ," • ~ is defined [3 J sUl.:h thOlt Sen) is the smallest inlcgc:r n with the property that n! is divisiole oy n.lf ( 1.1 )
is the decom positio n into primes of the positiv integer n, then S(n) =max S(p~ )
(1.2)
I
and more general if
nl
V
n'2
is the smallest commun multiple of n and l
fl!
then.
Let us observe thaI on the set N of non-negative integers. there arc two lallicea l slmclurcs
generated respectively by v= max.,
1\ -::
min and V"
The calculus of SIp;). )
depend~
= the
last
COltllll un 111 ult iph.:. 1\ d
greates t commu n dh,;sion. if we denote by results
!.
closet)· of two numeric;,1 scale,
(P) : 1. p,
tY •...• p.., ...
99
= the
anu s" thl: induced orders ill thc:o;e lalticcs.11
namel~'
the standa rd scale