5 hm r^ B O})_ uK; —–
Smarandache
d\
Let’s Flying by Wing —–Mathematical Combinatorics & Smarandache Multi-Spaces Linfan MAO
Chinese Branch Xiquan House 2010
d\ H ℄ ' E # ! V Æ #r[ 100045 H ℄ { > Æ >{ D{ >C eÆ C eF #r[ 100190 r[9S C % > Æ/:C #C eiTk#r[ 100044 Email: maolinfan@163.com
5 hm r^ B O})_ uK; —–
Smarandache
Let’s Flying by Wing —–Mathematical Combinatorics & Smarandache Multi-Spaces Linfan MAO
Chinese Branch Xiquan House 2010
This book can be ordered in a paper bound reprint from:
Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.Zeeb Road P.O.Box 1346, Ann Arbor MI 48106-1346, USA Tel:1-800-521-0600(Customer Service) http://wwwlib.umi.com/bod
Peer Reviewers: Y.P.Liu, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China. F.Tian, Academy of Mathematics and Systems, Chinese Academy of Sciences, Beijing 100190, P.R.China. J.Y.Yan, Graduate Student College, Chinese Academy of Sciences, Beijing 100083, P.R.China. W.L.He, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China.
Copyright 2010 by Chinese Branch Xiquan House and Linfan Mao
Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/∼smarandache/eBooks-otherformats.htm
ISBN: 978-1-59973-032-5
S
p)
S [ > Æ ?X HZ/ v r j mZ |
!
MS bxN\y &$\ Æ#xN)? $ > oC V$ %3=m$V N R $`qT7R! #8 &$\" &i`x,\Bkg i`#x8${=_2G e# 0 i` 5" g# v u o <Q 4 C#N{N{F ;Æ#h eqT ljXZg0 eoYl&41 C#y℄I {F7Hg| #h p=6 v# Ay)6> ,\ Cy8 3T 6NWQ k p *(%IT 17 &#6pNr) %IT 3 &#6NWk Xjn 4/%IT 8 &# 8 Iv%FW! 3 &u. )#,\TBX 96Y#H& &i $ yiqY68 $
$i`3x9E LL`#Wnx $#s D0 N t,so $ W Q d n3B h j8k$ mg#y y|p *(v%,#t i pesh 1YP~#%Iu #0M2 $&IÆyW r)6U " C K |uS#3{|)U #6U %Ik$N) $~ {{Q#Io $&I3G℄ZAzN $K 2- $K $|p *( #%Iu ℄7$ K $# X7$Q Æ0)nx $&I\V 3 Nu$K&: Zs $ RaQ8UQxqk$',vs$)#- vs$) # 8 QV$%vs 9"O[u $2-%I#...... 6 #3WxR` IC v%tsÆ ~ o%3 $2-\{ w NR I &W$`#?bv #k2 i pe℄ A0)4<3{ " jgxd7'd71xn 7Ik0(; )N{ jgx0('0(1x6 ;Æ)d7 `Q NgC \+ sy 6 0(#"= #6 / 0 (ByD a / T3 3sh 0(#h 6lYN j si#3 % 7I# j Cf|) `#3 %yiL_#Ai n7I,\ M~#
K)
ii
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
Zfk" jâ&#x201E;&#x201E; & 10 *#3$|)[p$| $#s6u\+) 10 & !~#k|â&#x201E;&#x201E; n=g=&u. B s$#F(x,\TB) b A#M $# 5 s $nk3 D[ 3 $uC \.? A Collection of Selected Papers on Smarandache Geometries & Combinatorial Maps, kQ Chinese Branch Xiquan House D?MD?#2006 &!!#"y Cn7I#x Cn 0&"3[N p %,|vs #sB 0 Q s $`B! C#8 4 Cn 0 0 y7 i t \ 2006 &D? .?W!B`7G)#Xue =$ .Q#8Nu2-, j{(u #"yD" &$\) Y#$|U # 3WQ) w Nu%I#q3Z y Nu$b .QZA$\i` KI#& e0N\pĂ&#x2020;#s- $\ &!Qp#qĂ&#x2020; (3n E;EZb Letâ&#x20AC;&#x2122;s Flying by Wing! QH|kQ WD?M 4 Qk# r3b 10 & D$ &e#XE)N tj\$ > g m { Smarandache J -#e > g m x3b u&6 Smarandache `^3GE#!{ N 6QSE Smarandache ON& es, V$&e [NuV$|.u#b$Ă&#x2020;&eox $ V$2- ;E Wing of Scientific Research! ZQ8 8\Ă&#x2020; .QW$IN D I& {} ^ x 2003 & y N)| |%Iu/ &0 ?I . QyĂ&#x2020; #ogM|U 7$Q E6 3 7$Q l.+"#1x 5 mD )Cn bN.Q |) = O (3# x 3 $uC # x 3 7Q $C$[p %,|vs j\ { ^ x y &$\#6+K_ !~ $#nBk r \ O NN.Q . P$:)I`~N p %,#!TZg7$# !"C \ p K C , vs\ovs 2-, T3ZAT3 Q $W x . $:)I`ZD $ r }e jhAQSNu2-p 8 I`2-%I >" uh { ( ^ x & 3 *n~ | QVKN.6` z $`V Ou&?I =&{#3NxI6z $` $ P 2JB ) #F G& ,8z $`* 2J{ 50 7$n3Nx1: * "\ * V$2 Xubu&7I Q $` x9oQ$&e }#8NuV2â&#x201E;&#x201E;\ .m Nu r.2-4/ $`ys#?x [, 7& V$ M%ZA n V$DK 8HM0\#bFxbu&3B$` &$`â&#x201E;&#x201E;g N \ .Q z$hCA"\#jgâ&#x201E;&#x201E;\z 2- #s$:)7I[zN 8 r2
4 Nn 4 Nn
4 | Gn
9F
iii
-#~ r 8 â&#x201E;&#x201E;zN#x â&#x201E;&#x201E;$2-#B 8 â&#x201E;&#x201E;Gpo N> 2- n T3#bv # r&ej|)Ldj` Ix#?y5 k 73#s r QSV${7ZD 2-â&#x201E;&#x201E;\#[? z, 7&v DKAx ,$ DK " #8 &$` 0 y7 i { } . x 1985 &36U .~pN$r$Kin & $ 2- e"%u&#O6$\|.y NNâ&#x201E;&#x201E;%#8 &$\T4 $ ' $Ko ,\ hpN #O)Nuâ&#x201E;&#x201E;% lSE#bFx7I[B | $$K!< : #a 8 &$\$K $% NuD A Forward of SCIENTIFIC ELEMENTS x3 SCIENTIFIC ELEMENTS \Ã&#x2020;y NN 5 .Q ) Smarandache &ex, .m[A t NÃ&#x2020;&e#? $ r&eAx6Y3GE# x r&eXZ6 $El Y &e#[? ) Smarandache &eo3 $ r&e6V$2-Esb 3G 3 L e,& RMI x7I6$) ~ $QHN" u oNu r $ I #8 $EJOnx >NsKL9 A RMI A! I#sZ$\KIDl6 & $2- E NN.Q Qa Q { 7 -Smarandache J:Qa xI`nB$| +K_ !~ $zk &~ o$\ IYn $ > o6 > â&#x201E;&#x201E; Ng m >{HB> ?2 a EO NNV_ .Q#e x IBgNtU $ \W$ DQHoNu N e P I) kRH Smarandache `^ Smarandache Gp z zGp #.%`^Gp 5#B 8 N> G 0\ )Nu d UN ,\T3 #v#yD d7Y ~#h B d7(h ~} d& FyD 0(L+#h yTx,\F| N pp Cj ` d7%` %2 ` 0(#}D#72o# M7{ &sA# ` 0(syN `%2 ` %0(#EY#"X _ $K %I 6V$Eh VP k~#} y & g72' AC8 ,# G g|H! $Z\Ã&#x2020; &I -y
N: N !
ag 8 Z V N
t
d/J B O N O &gN* U
o ` 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 3 $uC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 $uC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 rw uC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 $K $ â&#x201E;&#x201E;% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A Forward of SCIENTIFIC ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 x|E x|g o RMI A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 3 %3uC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 N> jD BgNtU $ -Smarandache `^ N . . . . . . . . . . . . . . . . . . . . 75 d/J 1985-2010 â&#x201E;&#x201E;&N D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; lY5 > 7 7, 1-3
6|~Oo_
d/J H â&#x201E;&#x201E; { > Ă&#x2020; >{ D{ >C eĂ&#x2020;#r[ 100190! : vh2 N Q $ l nR = 9S C FA _ ` >h Ur[} 4 \C ` > y v{hĂ&#x2020; i > y > #yNr ?AG > E t y > # T NHâ&#x201E;&#x201E;{>Ă&#x2020; >{ D{>CeĂ&#x2020; ys2o# | ysCe % \$ # Y 7 M;}WG >R ; 7 #z j"Nl yWG > # } N p yW R ( e G > YB >Ă&#x2020; # s y i K3q l !<v$9S C F#` > ## # y
jT
Abstract: This paper historically recalls that I passed from a construction worker to a researcher in the post-doctoral stations of Chinese Academy of Mathematics and System science, including how to receive the undergraduate diploma in applied mathematics of Peking University learn by myself, how to get to the Northern Jiaotong University for a doctorate in operations research and cybernetics studies with applications, and how to get the post-doctoral position, which shows that there are not only one way to growth and success for students in elementary school. Particularly, it is valuable for those students not getting to a university, or not getting to a favorite university.
Key Words: Construction worker, learn by oneself, growth and success, doctorate.
AMS(2000): 01A25,01A70
%IBg&, 3[N _q p %,, Z j , Nd%I#Nd7$# 1999 & 4 * 8 r- vs$)#2003 & 6 * 8V24/[u&I2- 9&T3LS, t6 `M{#"= xyD - 3x6NB $ 9, ipe7I 0 N $W 2003 %T }Ă&#x2020; } 6#P k- 1 2
e-print: http://zikao.eol.cn
2
K)
:
DnS X,h ?hn| –
Smarandache
K .
n`M $Æ, I $ K, \+y=l O+ $=0)$KOV, B $ j8k$mg?{|NWp *(%I X%I, v)N p %,, N [5% n`6{ [E4{4 , +jN h 0" f{ [S`xNÆ℄ ", 7I6 $inyD / yM E )bA eH, 6 X%I B& , 3{|U NBp $r$K 9& W!%I, t i eHs$P~ xNz$2p K , Nz6U %Ik$N )t~ {{Q$K $sIo[u r $ 2- [p $rÆ0$I , 3$|) %Ir), 0)N K C , eye %K .m, I e% DY K 0\0)3j2 D%I Bp, i^* pe #bx3 A K 4*, xNuK o AK \sx e %lj#N.0) , / Qk, $2-FhYN. 5 b3i^T Dl TyHp K N., F ATyHe% \, s6[p $r$| %Ir) :&, ZZ Z℄ %3 t: G&1DY, yD dy0℄ vi e Hy , . x.WJ h=0 , xA xI i^, XU ~ ~ 7$Q , Æ0\V$I lSE, bÆYloxQk qq, 6Qk4{, 8 , synl#z , Fynl# |g w) } qT+&B / , 6p I%Ig+&i, 3 |)U k$oU ~ ~ 7$Q " % r=D nx $&I\V`I.Wo$s$) "XS) 38Q kI .m 3&NZ4%, 36U k$k|vs\XQ Dogm, D eQ V 7I6T ($T, DlTN., x \)NÆyD fe: rx ',vs$), hDQkbÆ= 6: =& , 4` e%C , < A l o&I℄ wK NZ NZ d7, 3h ? : !<, yxV9DR, yT> j`< i^C {$K =& , 3 j8)UQxqk$',vs$) ,vs$)83{"xy S th 73\\+{! { %Ir)y r7, y \+\!#bA3Nzi%, Nz',$), Æ0N. i, 9&$Ky S, tj` \+xav S <E: E jO, M&IÆo.Z4*, &Q ℄\ 4`yE℄i, 1 i%, Z!7Wo\+Ir Eq<Eh&QÆ 0\ eÆ.q | Rn 0N., ik6?, D Dl n vsN.7Nx"\# xe 5#Cx-[7I*P QpÆ0 N .Æ0 #x )Q g)~ XV# NC m4 6 vsN. 2- yIT3 #S b !QS 92-QkG%I bA, 6 |vs$) , , b N{DK7I W?oQk x )yk o 2-a>Qk
n[6?88
3
& o.Z, sj8 QV$%[uvs 2-%I 3xU ~ ~ 7$Q `I\ h x7$0 # Ã&#x2020;n $KQ Hoâ&#x201E;&#x201E;B0\ A0\ bu#x 3',vs$)iQ)3G 3 , \+b j, / ?6 j lYT3 #yDT=&Qn,CA XZ#oCAMp# f, Q N<fy g# B f }a , |? Q y/% h bAe, syu ", 3~N _qp %,B 0 )N) $%I` T39& â&#x201E;&#x201E;, yG a , t"= , Ax,RZz â&#x201E;&#x201E;Yo L+
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; lY > 7 7, 4-19
6| Oo_
d/J H â&#x201E;&#x201E; { > Ă&#x2020; >{ D{ >C eĂ&#x2020;#r[ 100190 !
jT%Y>_np-Y s #vh Q l = 9S CF# â&#x201E;&#x201E; = %#k H p %9S H C q r ?AG E
$ nR R >
> R > t y > # H { > Ă&#x2020; | y C e Z * ' p G q\#hH B $ 1985 u -2006 ul |{>C eY0 ' %#O $R"C e# YXU %#k > g Y61 % { Smarandache J - Yzw\ !<v$H>i, F, %k, >%, Smarandache , Smarandache J -, > g :
U
C
Q
â&#x201E;&#x201E;
Q
C C mz
^
s _
â&#x201E;&#x201E;
mz k
H _
Abstract: This paper historically recalls each step that I passed from a scaffold erector to a mathematician, including the period in a middle school, in a construction company, in Northern Jiaotong University, also in Chinese Academy of Sciences and in Guoxin Tendering Co.LTD. Achievements of mine on mathematics and engineering management gotten in the period from 1985 to 2006 can be also found. There are many rough and bumpy, also delightful matters on this road. The process for raising the combinatorial conjecture for mathematics and its comparing with Smarandache multi-spaces are also called to mind.
Key Words: Student, worker, engineer, mathematician, Smarandache geometry, Smarandache multi-space, combinatorial conjecture on mathematics.
AMS(2000): 01A25,01A70
1 2
% ) 1 *J^ } # qb[N " n www.wyszx.cn
2006 3 26 e-print: www.K12.com.cn
n[ ?88
Z{
5
B OO :&:*=gN2E; 10 $00 n# QV$% $ NuV$2-%O l #3 On Automorphism Groups of Maps, surfaces and Smarandache Geometries B aH 8 X Smarandache k Y`B K A! vs O 6`6 Ysi#kQ SNJ 2 e Perez vsF6>"bZO #Y{#O 5 W!TC T mO #EQ r $ :)< ~ # Nu 2-\ v3O |Map GeometryN3i# QV$%2-\%w"Ă&#x2020;Q# $W 63 ~ 6j) NSz#03$ Iseri Y Smarandache k `. r }}Zr Y#VW+%H s wU _ E' 3"$ wU _ # RwU _ #~- C e _ Iseri R t Smarandache 2/ Y j vVO#+ l _ YMap Geometry})Y - ` . YK W #n =} ZU ng m B #4 }g m aH zâ&#x201E;&#x201E;g > 8Dw p ST0J9 { K W 3 bĂ&#x2020;A # Z |)Q r z$W 3 vs { 8;F~ ^ ZEx3Ivs O T3 N !T)Bg & / #3[N) p %,B 0 ) $%I`#bNT3 |) =Q $W > r 7#Hv $i`Nu $ oW,836{8 $2-Qz qf
V sNĂ&#x2020;w
( )
3x6 103 %3{ |N6+K_ !~ [!5Ă&#x2020;p$Ă&#x2020;0 p$$I# 1976 &`I vi~p$â&#x201E;&#x201E;B x xâ&#x201E;&#x201E;E #{ i- 103 %3{ |N6 ![ X% Q p$`Ii N- N)= $r# ! $ !h $o i*M$r#{ JTIDlJ# "q7I V5â&#x201E;&#x201E;|) i* M$r'B bA#1976 & 9 * -1978 & 7 *#3{| i*M$r,B ($ & ) Qb bB$rNexav #T TGZ~ # DRD$K# D Er$r $rNepN#e N3i^|â&#x201E;&#x201E;$\ 5q)$r p% I#W? 0 Q Vn Q vi~ $ > x PL bNi`o E+$98 Goldbach }eGD 1+2 ,Z#Q N 8e k Mi`#Wnx 9 O . $ 8Wâ&#x201E;&#x201E;p , n38 $ \)<k 6 8B $K ! "{$K . K#â&#x201E;&#x201E; i^! k $ Ă&#x2020;~Nu $0\ W viog G\:g&nD? B n B GpĂ&#x2020;#Ez K\â&#x201E;&#x201E;v i3n$K ~VĂ&#x2020;E K\D #\ F= 36â&#x201E;&#x201E; AY`k=i^(x{
6
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
hEz K\ 36p$iyL #t 8 $ #3\Eh i^4 # ?qk|â&#x201E;&#x201E;i^x{$K#â&#x201E;&#x201E;66B N$`qBN $â&#x201E;&#x201E;$Ã&#x2020;# B$`A qn B $â&#x201E;&#x201E;$Ã&#x2020; [B B&Io$K â&#x201E;&#x201E;3#bFx36 { 8 ! $ N$` 1 Xg[ $*<s | Z h 1977 & X [B Q#3 $ )_â&#x201E;&#x201E; 120 â&#x201E;&#x201E; vi N # 1x|?;> . $ > j0h/ #?3 hxo# #N s ` 3_â&#x201E;&#x201E; 3 B $$KE ' #N D=GK\#sqTK\ N{ ' \ 4#bFxn $ $KKI tyN D GO\ =\# ` Bk= xNu $W6 $2- 3 #9& xB $ QHXZ A# t8 $\{"eK QH SZ \x Q vi B s$ Ã&#x2020;6 Ã&#x2020;.* p , CnCx$r~ -a 50#41xvi 103 %3{ | X% 5 )5Ã&#x2020;#Cn {C6 Qp B%34Nu [u%3pN B `I X [â&#x201E;&#x201E;$Q #3- )â&#x201E;&#x201E; g 0: og ![q [â&#x201E;&#x201E; $Q { 100 Q\&:| ! $$K#{ 50 ? 6 1 9#51-100 6 2 9#[?n 3 4%| ![ $ 80 E 1 9$K Q i` s$Z g Co 8Ã&#x2020;V =: So t bNi`h $0:yD#y $ \ D#Cyi 3uN â&#x201E;&#x201E; \ W \QH s f3 X) 1979 &=*g[ $*<#- ) 18 0:
$i`3L ,Nu $â&#x201E;&#x201E; ,>#6 SZ 0\ k I "I} 0\ > $ C e Q# L QB0 0hD 2u{ / 0 rqx~~ 4 \ > N ! 1980 & 4 *3{ W~ ![:|tUSA, XSAf "wpN#3} |$r!r# Q{ 0Y X 1980 & Q Q#9&y e#0"T) \VD `#th $rD 1980 & 7 * 3~+K_ ![*71, & SA 6C, & Ã&#x2020; [|+$9y 0\ B (II)#|SA 0 Q# & B T d xIo$Ke |â&#x201E;&#x201E;Q , siT $K $#sIo h;r=!f > z 7 NuK\
$i` $~ E~ $\3\sm #"= #nX $\ $2 ~ #?b8-~ $ AZD) D #CDu ' \ 4# Ds~eZD &CZA8" NÃ&#x2020; $ Ix#bxâ&#x201E;&#x201E; lS E#=0 =$\yL $ N x hx~ 6uâ&#x201E;&#x201E;i[\ V#y G|
n[ ?88
7
bN%1 #$\ nyQ tsL p $K#B Æ0Q 60 ℄ 8 $\{"#A D=0G jg$℄q M 61+ =. x'℄q M + M 61'p Np * Be Y6 '+ = l q M q l'pNp Be YH ^ si# $ i`lSEFx$\ ,\ i`#bx~ $$ Qz(njj 0 \ 3 ,lSEx6 $i` 0 &I $%I` #bF0 )3 u_ & dj ( ) ? w 1980 & 12 * X%I#| Qp B4N*(v)N [5%# Xvi Q Bk , D 't pN h E9y # %` ! X9# E$K $! y # ; EAW2Æ$|SA 9 { WT $K NZ6{ [E 2)#N)%, x 33 #h Al6J X) bZ # f N { [i#%, xN<y(36Ezf[5# (36 z .{ [~* Cn vih,')k$8gs Y ` CIk$~ !e 0\ > 4 \ + 0\ > % + NÆs8e |℄ 5ZD7Ik # |C 9 CF0)36%,i` 1℄7$K $ Tr z \ÆD?B& # '), D?M(CY,yNaÆX#nC D , 3-[7I 8 Æ W QH 8b\Æ )9rX bi9&j` %Iy g#t0 6I ℄7$K#,K $i` n Gp 5#sT $Kk$ Nu $℄\ vi3k o6 k$$K# C. )3NV{0 Xu AT > zC% &r)E usu|U D #F Cn 3[$)yH $&I ~VÆ#6YyQA > z r B℄ r} B o $ } dB # 3$KNu $3G℄Z ))Qf %I)N&Z # ,F6L&xk1bA%IN\#h 6kI"= xR ,^>N#? $$KAx3 , #sy% |kI # xA 4 XNZ Q Q 0:"T)\VD ` 10 =℄#t0h rD 58 gs #C{ 4 #"3^ %ZNB rD 9&0$ 8 r$K# ,"℄ );D 7#|U $ ( ) s w ~ h ; m u g F qf#=0kIK , f!# Qp B4Q *(^
y Æ
. Æ
K)
8
:
DnS X,h ?hn| –
Smarandache
K .
^ r &I$r N" C K , #3" )NBU p $r# 1983 & 6 * X) Qp B4N*(" C , 4 Q #- ) 1 Q 0: e 0x xU bN Q. zv#Æ0 $ $K ~ Q )r) "C\#1983 & 9 * 1987 & 7 *36U .p$r%I xp &Ip 83-1 9$K b3i`x3 8 $2- BE 3 h6$r $0:yD#1985 &nB6 HV >C e EDl 1!x|E x|g A RMI A#HV >C e#29-32,1 1985! 2!$K $ ℄%#HV >C e#22-23,2 1985! $N.Q [ 1983 & 10 *j#!T8gs I#36U %Ik$=: { {QNu$Kk$ $&I ℄3 b i`T $K) > z 4 \J WzJ g m > H B ℄3#WnxzN#~Cj{#3nN j$K~ W Mk$e5 Y %k$~ !If <H B , $W Bollobas !#Nj$Æ){$Q, 83 {[uzN2-, 6K Q HEj|) 3Ix 6$K tn Ioi=: 3Tu )%N C6 15E6W)= ys S#& x e $ S5) #0$ + =_ % > W MY o' # xC6w>EyQ 123! 132!$ s"$ +i i $ AY . x ~Yn3y& ) $ \ #C{! t sp? t #F 4)6 $QHEbÆ~:℄|?l T3#83 {6 $2- B ZD0\ s)YQH A0\j|)x Ix 2-z / # ? |z Z x /zN N D0\ N `#=: {NNDl6 ( ;G >> p E N. R t `H ) HHY =l (3. ,NQ#s83" ÆtURl%ui |$ #g,E4 R" B h# | R > Y C e $ 6=: {{Q#!TLw z q#3 XZqe R(G) = 2 J| R(G) = r #Cq c (G) = 4, 5 J|N< c (G) = 2r, 2r + 1 t !TLw q#Ch | ` R bANx4 )+ =* x| N`#3y &`m|} c (G) = 2r, 2r + 1 8N<7 zX syo##1 26B( 3 z )YL # RyG`1 D)N R(G) = 3 #? e b6 x n c (x) = 8 7 z#[?k ) { }e 6bN 3 q ) c (G) = 6, 7 N#: Z3o=: #E yD)=NN.v|Nu$O#tC Z )${ bv NNN. V ,xe5 #CFs~)Q 3bA 2
r
r
3
3
n[ ?88
9
N zN2- &#s{ y C 53 , $W Erdos 7= | }e#G 3 2-NQ !TG * 2-#3 |)N N< R#9 &h ( Ab }e#tQH 0\W!℄ }eDJ) og 1987 & >℄ uNH B> ? 2 6 6} \I#3e XbZ%e#13N.O ) e5 C f3 X)bZ%e#s6%E8 R )O 1987 & 11 *#~ QV$%P8 ~KR2- I#3.m)Q ℄zNW {0 3 vs{ QV$%nx $B 8;F~ Cp e3qbNN. D Dl ogbi mr > NN> r| p .Q (~KR2- V,#CqN.( )3 V 3VÆ xEk #e=s Fh?s~)3bAN , bNN.6 mr > E 1990 &opDl viU .p$r (s~3L $#Wnx &{$& ℄lSE6 w ℄# N<FyC3#n 3 =℄ i^ U zÆD ,Nu.Z 4*# U %Ik$ =: NjUN $0\ XQ $`6C Nu $UN9$K#℄6 1986-1987 &#1T X)~KR2- Y6kQ! 7 Kac-Moody J 2 B b U %Ik$S-~ Y k$~ ! 7 B gl 2 B b bu8 3 ` 1O6N ℄ JO |. Mp r0\j|)ypIx
?y6 "Q
( )
& 8 *#3$|) Qp B4N*(#℄6) *( =%3I\ K 8 -K 2 I? Dxeye% vNP e%Q/o A%3e%T3 D Y K \ 36 1989 & -1991 & 8 * XU f$%N`%3pNC &1991 & 10 * -1993 & 12 *℄ K 6 # XU H ℄ D %3pN&1994 & 1 * -12 * - Qp B4N*(=℄*(\ K VV #1994 & 3 *ZZ ℄ %3 &1995 & 1 * -1998 & 9 *-U \ .{ h :%3 # %3 F% ZX QW 6 b< %3&1998 & 10 * -12 *- = h :%3 bN i` $2-FN. 5T FN.Z'Ye%K \ I-#℄6 8Q y.W F N ℄e%K 2- 8k 8 /NYK 2 T 6%3e%C ATyH k K \#sIo6Q e%4 D lp K N. T 6e%K e% %o, C QzDl)g=NN.# snB X) 9S C %lC g9_ r gl o 9S C %l C r 1987
K)
10
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
2 7 ey 9&6Y#$K $ | $ \V.W eHs$Wp 1990 & ` sU ~ nx $&I\V 7$Q # 'j)3 $&I\V.W eH x#3[ 1991 & 4 *Io XU ~ ~ 7 $Q # 1991 &N&1NZ QT)^$ . l $â&#x201E;&#x201E;B BGp JN uP wgâ&#x201E;&#x201E; N â&#x201E;&#x201E;Q3 13 mâ&#x201E;&#x201E;3#e N$`Q Wn g Q OQ :mâ&#x201E;&#x201E; ~$mâ&#x201E;&#x201E;Q) 99 â&#x201E;&#x201E;#Nmâ&#x201E;&#x201E;Q) 98 â&#x201E;&#x201E;#1 U k$ NuD\ ( | f#. QDbA 0:87$ ,{"JTf) bA# | 1993 &EB&Q #31 |)nx $&I&V.W#?Yi;Ă&#x2020; 0B â&#x201E;&#x201E;3 `Q=mâ&#x201E;&#x201E; bNi`F6 XQ Nu$ %e 1988 &6` Ik$ X NH â&#x201E;&#x201E;gmlmzâ&#x201E;&#x201E;!2B &1989 &6A z X >â&#x201E;&#x201E; 3NHB> ?2
1989
â&#x201E;&#x201E;
u & > 3 NH B> ? 2 Tm.S! { UC LG >! h
m
& `#=: { #(3 CNj 1994 & 8 * J X > â&#x201E;&#x201E; \NHB> ?2 #bA3 q ) +& $2- hj{ 3bi W!(|) hamiltonian z 2-E !T8 1991 &Dl6QSzN2 E Gould ~ NN9 .QAa>N. 2,#3E Ă&#x2020;0)NK> hamiltonian z N.#â&#x201E;&#x201E;n6 - %> Ă&#x2020; > p >C e { B 2 EDl X 1994 & >â&#x201E;&#x201E; \NH B> ? 2 si#3.m)=: k $s$#U k$ E~ , CxQ n zN mw, C N A 0&qf23#1x z 6 |tĂ&#x2020;#|tVO#+ M q 5 1G# ^ . 3 1995 &EB&Ă&#x2020;0)U ~ ~ 7$Q " %K B â&#x201E;&#x201E;3Q # 6 * Ă&#x2020; 1993
n[ ?88
11
0)`Ihh# |)U k$=D nx $&I\V.Wo $$s$)#? e `Ihh 1xU k$ E~
1994
u & >
℄ \NHB> ?2 T{- !# H|TPj/h
b i`T 6 mr > >C e { B ;A >{gl > $ `KEDl) 5 N $N. 1994-1998 &36U \ .{ %3q-:5H:%3 vs 3Dl > hamiltonian z NuN.lSEx6bNi`Æ0 } R { ?\-QiY g#R { $ qS#Y viF yH> r)Y|3#G 3 C n %I#QH|Wo hCh NZ3& 4%#1995 & 6U k$k| vs\XQ D#DYn rNQk Q V 3C$T# DlTN. x , \NÆfe$;E Z B\ > Ya ; E t y > bA[ 1996 &j#3 $KZqTvs\8$Q j 1996 &# Qp B4 9Sp W&Q` V3\,#syQ) T > Y C %k N.
O~ k~m! B 1998 &Q )UQxqk$ $%8;F~ vs\
7 h N0
( )
& 4 *#3 8)UQxqk$$K#Io)3 vs\\- E N&* -℄=# D Xk℄$K #n vs$Ksy S bi3 %I>N 6 Qp B4N*(#tCnyr73 $K#D 3xQ)$K`^7-p\ + i veÆ s`3 ',vs$) bAE$K #3 D i%jzZ _<WoIr 1999 & 1 * -2000 & 6 *#3q- QH$%3pC* :%3 &2000 & 7 * -2002 &q-Q Xj ^?-*(h ! \+VayH # Fp ) , 1siIK$Æ&!Qp#[u$Æ%I \+KE vsN.hh $ gm#N xÆ0C Q/K ℄3$Ks1999
12
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
g0:# N gm1xD6$ `KEDlN % N. g63', vs$)u{ =2-%Ih Dl# xq6 Qp B4N*(%IB G&Ă&#x2020;0 NuzN2-%I#^^n D{O|Q Nu$ `KEDl#T_ < %D si#F6UQxqk$8;F~ {{Q#Io) â&#x201E;&#x201E;zNA r
z $K 2- h{xku{3 U k$ E~ %I qfâ&#x201E;&#x201E; O n #6 8vs 3$K B&1 x%NQHGD)N > r zP g R# |){ 9 b R {6 > w > p EDl 6Ă&#x2020;0bN .Q si#DYXZ8Vz 7s/% \N ~m R#b1x { Dl6 > T! E N.Q 6p x $%: AlS%I0\#x[unx $ , D * 2001 &#3nG s$si" )xq$% 7 / > ?A YyHYgl â&#x201E;&#x201E;3#! x E Eâ&#x201E;&#x201E;# 6 LQ%#jZ( !â&#x201E;&#x201E; s $#tgIxyxQ #x yNNâ&#x201E;&#x201E;3N. mĂ&#x2020;â&#x201E;&#x201E; #3 xzN QH# rC â&#x201E;&#x201E;3y)NN> *-xqXR N.x)E #viFh CA#1 xĂ&#x2020;0Nmâ&#x201E;&#x201E;3?W |` i#3 G s$ f 53 ) 90 â&#x201E;&#x201E;#"N< s$ | 80 â&#x201E;&#x201E;1yye)#C C7I$ &m$xqK vs\ 90 â&#x201E;&#x201E;0 :#?3Ax$ $ 6G)s$ 4 Q#3 bNN.XZ |Q NE xq$OEDl#bA1O ) H â&#x201E;&#x201E;H 7> p # R6 B&1DlD{) D s~#1x&m$xq $\6EzDl.QFxâ&#x201E;&#x201E; u 3 ,syMgb N.Q#h D8yENN $.Q tB b DYbx3Dl .Q jxJ B NN.Q# =$` {72 , &C Ă&#x2020;0)yH N{ 2-%I $ 2-1xbA#jxJ yN nlD $ Zz #"= #xl MT M! ,=#41xXZT Ă&#x2020;0Nu$ N.6`KEDl ?3A68;F~ {Q#4Fh L<b lS0\ ~ 6,vs{W! )g=& sm5 o2-* #n vsN. A census of maps on surfaces with given underlying graphs (B 8 X W > l 3HYaH) x-[37I &!QpyD{ , D x%Ix N8 zE r z â&#x201E;&#x201E; P 2-#b6QSEFxI6{7 N.Ă&#x2020;0 x Q 10 )~ XV# NC z bv N #q-vsN.hh" % J xQ $ W QV$% ' ~ 6hh{ 20 `#C 58;F~ "Vmy)3 N. My!#(8;F Y,V #bA hh17H6` ) 3Y|)' ~ #q36vsN. x QH K P | D
n[ ?88
13
NAQSE6bQz K kC ) P I T\m #*&)N%# . 3 &CoQH u8;F~ Z{{{ G $\ yg P # N N NZz# x &yQ)8N. X #s1 rz 4 83ZDNu2pe
y B hE /h o ) J( k e d J b *
R
â&#x201E;&#x201E;h + E
( )
37I vsN. =0\AeH D N{lY#F DN &A i^ lY#bA6vs`I Io Nr)Gvs
m ak
u & zJ > %G g e + a o%W! o U < b * G e T ! J(
2002
W
K)
14
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
& 11 *#6U k$ E~ 7 UN9E#3I) A dynamic talk on maps and graphs on surfacesâ&#x20AC;&#x201C;my group action idea R t aH { H 8 X WY&NY R = p 7 - lYAq l S e! 9r 2-O #Z` |Q s JO-m 2002 & # QV$% $ NuV$2-% )3 vs OÃ&#x2020;#s# B&BIovs 2-%I ~ U 2003 &B g qf#3x| 2003 & 6 * 8 QV$% $ NuV$2-%Io2-%I rI{ 2 #xQ zN2-%I 3,uN C , D[u /zN 2-#36, vs{ => hamiltonian z 2-%IC C qf NZkz# 183"$ sR0 kqY j"C e C q#l n#s ` 0 [ bn 3 =< i^qvs 3h 2-Ã&#x2020; %I2-Ã&#x2020;#siP 7 ,eHIK 2-4 bFn 3XZhI{ &C#[?GDNu 2-%I ulq bgCx8 nC D #36 QV$% $ NuV $2-%I) ZO $ Active problems in maps and graphs on surfaces (aH{ H 8 X WY&NH R" Yj7) 2002
( !j$
â&#x201E;&#x201E; â&#x201E;&#x201E;
m
u 8 & > R NH B{ g >> ? 2 a ( ;p 6e { m h &> uNH B> ? 2 pl R T R -r p #O pl }R F!#+?5 X ) lY} lG#Y â&#x201E;&#x201E; { > Ã&#x2020; | C e q $ vs`IZ #3Nx6&QbA$ 0\#1x 0K k p N) $ 2004
=C
m
z
â&#x201E;&#x201E;
C
n[ ?88
15
muYO H Bp q Ml'*z >pi" I 'b$ 0\FxQ =s ! 03 0\#h 8;F =V2%Ixn â&#x201E;&#x201E; QHI zN0\# =,My! x#38;F QHx|eD $4 #("= ,) b Ă&#x2020;QH#[? J|eC4 GDNuk V20R10)36vs 3%I #bFx37Iz0 NZ eN Y#36 V%`^2 $K r zN4 Z Nu& #6kM â&#x201E;&#x201E;Gp ` z `Gp n ` Yyh z #sIK)a>2- b i DeH#x x rQH2-! $0\#Z` 1 \k qf NN N. Riemann 8 X W Hurwitz l Yg m K W 1xbN&e :â&#x201E;&#x201E;â&#x201E;&#x201E;Y bN N.Ă&#x2020;0 #og\I NH â&#x201E;&#x201E; { > Ă&#x2020; y s $ I{ ? > { > B / #1x ) "%D? -[ 7Ivs # 2-Qk#36 2005 & 4 *Ă&#x2020;0 vs O On Automorphisms of Maps & Surfaces W!yxS r.zNQk N.)#DlS EW! 2)3 = N #?buN rrr723 NĂ&#x2020;A #1x6 r $WM{#G k RQ >> {t} Z T 0 g mz T 0 g m J9# T 0 K W bĂ&#x2020;A 63 vs O I) w# k% %I D G vs O B NQ1x63 smM # 6 â&#x201E;&#x201E;Gp `Gp = x rQH D N{2- $0\ 2005 & 6 *3 X) 2005 H B{ g m > x QN ` " X â&#x201E;&#x201E; ! > ? 2 #sI) An introduction on Smarandache geometries on maps O bNO 36 QV$%I vs O On Automorphism Groups of Maps, Surfaces and Smarandache Geometries {0 )QS 5V Ă&#x2020;E z Smarandache Gp;Njx.Z $N Q.Z vs O Ă&#x2020;0 #3 n D D?#338 r $ bĂ&#x2020;A kt ,*z og6 2005 &B#kQ NWD?Mk3&Ă&#x2020; , 313vs O D )Cn Cny D3 A #pe36O DX > Smarandache Gp 5 !TDXA # Ă&#x2020; 2005 & 6 *6kQ American Research Press D?M opD?
D N k,
x { vs 2- #~ 3W! 42 <)#U h NBk$.V24/$` 3[u2-.~$ xn3 D #QW,u|q3x â&#x201E;&#x201E;E$)Y{3%I Q Xj ^?-*(#sl QV$% $ NuV$2-% s`#30&
( )
16
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
I Cn 2-, [u2-%I uBZ" bgC#Nx3yeq36% 3pN4 =&5 !< smWp j&36 Q nQW|"._~ C |mC Nu> %3C uK#m k= ps? !&Bx {Q V2 â&#x201E;&#x201E; 0\#WnxVK I &e qf#n 3GV$2-B( #y GF yX GDNuk0R Q { V2â&#x201E;&#x201E; x =0)V2%I`Z/ N. % N. b En#y$`GFyX NuIP k 2-%I -[ V$2- KI#IP 2-N< D 5-10 & i^ DlDN.#6Q # bA V2, <1Z%[ ) 6bĂ&#x2020;B( &eqfQ#6kI 6V24 /[u $2-lSExNA 3 , zx l P /Y#; !lY >C e#d R ; >C eY (7 #bĂ&#x2020;A # |) QV$% $ NuV$2 -% r7 DWn{D x#kQG)I (36vs O DX 5#xQS $2-EN yZ #~YXZn $smP 6 kRHinNAZ 3DK ?36vs 3 NuA og Cn eHy ?o {bQzW ! %Isy=#3W!;|){7 3 \Ă&#x2020;. )Q =s #C- g X kQ Perez vsXZ" Your book is very good. High research you have done. & Mk$N)~ XZ"Ă&#x2020; [ rW #r Gu t"= x D(Q s ) 3 &eob Qk x6 2005 &#36U GBk$ QV$% $ NuV$2-%ZAQ Nu$ %eE#83 bĂ&#x2020; $ r A ANu2-%I )O #- )N g X Scientia Magna 2 NZ1q36 2005 &G $ZO $NN. . DDl r3 rA A Smarandache Gp&e#3DYXZ8Mu $ kM J r#[?jD) = $0\# 0 > g m 8 bA6 k QI q #nBIo 2-%IAyI#j\x Smarandache Multi-spaces Theory Smarandache Jj - B!#8Mun Gp NA> i`A# x3 rA 2- p 3 , Axkvt = # a â&#x201E;&#x201E; # Aa x ~ , ,â&#x201E;&#x201E;/= h, , De.m n xNmyu u, h
, My| J=J=) 3nb ! x 3# eD `^ | â&#x201E;&#x201E;x #x eD`^! X x 3#FX k 3 bA#6bu |â&#x201E;&#x201E; > L73nb %#t3nMy|Dn#h DnyI63nM | 3 !Z QkE#b1x.> > .> #3 A x E , yX
n[ ?88
17
Y |#h DnyI63nA | Qk!E I6 !`^ \> n â&#x201E;&#x201E; E, CD #h DnI `^! â&#x201E;&#x201E; , 6b E#3 ys` {9 Ă&#x2020;. , XZqT l<QHY|.> A [ NEu#Smarandache GpH[ Riemannian Gp#[?H[+h#PJ a8N#t6plYANxh |( ?3DY x3 rNA #AXZ8 e Hv%5 $ = 5 p J b\Ă&#x2020;W 2006 & 3 *6kQD? kQI 6 OE*z)b\Ă&#x2020;#XZw\ .Q3 2006 & 8 *, 3 X) B Q r $ zNk%, 6bZ%E, 383 $ r }eA | n GpZA rQz Nu R )O , |) %` N gX, %`N D lq, 1x6 Q D;Ng $ r DK~C. ?bF oxn Q0 $ Q Ngb!uC.
$d
\9 o -pN 0( V2%I`( yIW, r7 > #3Fy 3 1990 & 6U )#a5 3s6N p *(#0 1993 &BD\ 6Bg=&[u $$K 2- T3 # |){7 Qz > oqf { ET$&p $ hWoSuyp1Io${#23 <1Qj);E %#EtU;g&n~r) f 8 p %3$%â&#x201E;&#x201E; 9$K#=& h m u g F $KZ[ 5#x | 1979 &$r kCnb â&#x201E;&#x201E; \wD)&V.W { bĂ&#x2020;63QujZg7 $ 83 \)SS qf#?Wo0 83bĂ&#x2020;y2 omp#"x8 3;E $2-~Cj|)yX ~ Ix ( )
2004
i
u 8 { _ { ( ;p 6e /h
K)
18
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
ZEx3[N)_qp %,!T=& a / B ;E $2- yVK uC T39& â&#x201E;&#x201E; LS#t"= Ax,\Zz â&#x201E;&#x201E;Y 6bN T3 # = #Hv $ 3 oI #83;Ebg,\~Cj|)yX ~ _ Ix 3e#bn Fxn ~ KI
y
V
=$ ? _ Fs{ t_z$
O
iW | p R H r[h i iuH ) f C %k J( v:}9S#0 X D#) O r T > #15 uĂ&#x2020; #9S { > #â&#x201E;&#x201E;)i ^ HYJ N # ),rd _ 1981 u #4 Hx P Y J( U R H Q5\yp $Râ&#x201E;&#x201E; * C #"u s um"U r[ "9 > C [ 9V P> #+â&#x201E;&#x201E; i } > Y)6 G $ W Y - -#) " & $ H{Ă&#x2020; %H ) NgY Kac-Mody J 2 B b r[ C P G > NgY B gl 2 B b > # uv R Y > ? 2 6? B h "9 > x P s #J( O $ b m # \ u -#) s r[h T Ă&#x2020; r[ 6G r[ L> Ă&#x2020;\ C %pb m T C q I? Y C q7 v # )Ik )t > ) " & $ NH â&#x201E;&#x201E; g m l m zâ&#x201E;&#x201E; !2 B > â&#x201E;&#x201E; 3 N H B gl> ? 2 QNH P â&#x201E;&#x201E; !H B> ? 2 \ > ? 2 G 6?H f h B h# mr > ; >{gl > - %> Ă&#x2020; > p \vwW _ H f h >B h 1991 u #J( uv &r[ 4 \C ` > y #V E gl > ; u Zmb Y# X $ r[G > >> y > Q u 0#)py $ H{Ă&#x2020; DY y C ei# g s & $ r[G > yiN > y l Y â&#x201E;&#x201E; 34 & $ # V iba t y#- p-#( Z Bppy y J( M} #~z FY 1#J C r `a $ > >>$lRI i C > YBp#J( Y C q O 0 X 5# ! 1991 u #J Cu f u p-S# $ k{ C ~7 Ă&#x2020; l G{ w a !Pk | [ kj # r[ L> Ă&#x2020; 100 U RY| +l C HX Z # F gl + s X k{ T \< H9 H QC #^Q\< ! 9r[ e v 8 ok < p#JC BCe$?mok*HKxfY wibmlC #m4$,C%
n[ ?88
19
[ok*YH K ` #â&#x201E;&#x201E;â&#x201E;&#x201E; %G $ G # YG . R Q H K E^ r [ PY U H K l C H#) > Ã&#x2020; l$ *l C #iGr[h i iuH ) Cs #):1 $Ze dDqG ` l . d s y J#GG& $ l C #u J ( p + MR IHs$ PN !#: C z 6p NFk\ J C X _r |J #1993 u #u < Ujâ&#x201E;&#x201E; C %k J C z` Y N 5}p | 5p e #)# F $ J( pR v` Y i G| #): > u lâ&#x201E;&#x201E; 1962-2042 #j n # )H,a $ R 1 #C e > } ZC eU 80 & s 2 }#l O F% 0 U 80 & ? _ 1996 p 7 30 ! 50
U
y
f
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; lYg m$ , 7 7, 20-32
6|}) Ho_
d/J H â&#x201E;&#x201E; { > Ă&#x2020; >{ D{ >C eĂ&#x2020;#r[ 100190! : { C Y N C q} < 7#q M ~7<Xp#q M ~7 q ;p E\ C eF vh B Q $ l nR = H B> *# H K H BC eUO H B # UO 2/C e#T~ n O >C eUY ki B w Y C e _ %# \ { C C qHM k 61~7#M k 9 R 3 > {8 +OH# x l`l xH mâ&#x201E;&#x201E; ! C e$ I C q61` Y#p sU5IY C e~7# p { â&#x201E;&#x201E; Q > *? 2 } R 6#+r!W O } O = { C C q*l n ^oYa â&#x201E;&#x201E;=#vhz=|Y p e _ ql !<v: $ r }e r$ â&#x201E;&#x201E;$ â&#x201E;&#x201E;zN Smarandache & e r â&#x201E;&#x201E;Gp N> V2â&#x201E;&#x201E;
jT
Abstract: How to select a research subject or a scientific work is the central objective in researching. Questions such as those of what is valuable? what is unvalued? often bewilder researchers. By recalling my researching process from graphical structure to topological graphs, then to topological manifolds, and then to differential geometry with theoretical physics by Smarandacheâ&#x20AC;&#x2122;s notion and combinatorial speculation of mine, this paper explains how to present an objective and how to establish a system in oneâ&#x20AC;&#x2122;s scientific research. In this process, continuously overlooking these obtained achievements, raising new scientific objectives keeping in step with the frontier in international research world and exchanging ideas with researchers are the key in research of myself, which maybe inspires younger researchers and students.
Key Words: CCM conjecture, combinatorics, topology, topological graphs, Smarandacheâ&#x20AC;&#x2122;s notion, combinatorial theory on multi-spaces, combinatorial differential geometry, theoretical physics, scientific structure. 1 2
%mĂ&#x2020; PUJM-5_ y #_UNAH
2010 e-print: www.paper.edu.cn
n[hn%-88
21
AMS(2000): 01A25,01A70
Z{
V$2- D%Ix"\ "\XZâ&#x201E;&#x201E;0$ Ă&#x2020;Z$Nx$\in "\#ZĂ&#x2020; 0{ D j# |$) 0&Bx* V$2-i "\#nZ !Q S{7#Ă&#x2020;0IP %I#Z$VpN Z , .m7& j0 bv # A 2-jgsy D# D #6 1* ;5jg0\yz 2- ? 2 -y n767I H 0\ $V.4 #?n=[eCa>4 D â&#x201E;&#x201E;# !QS2- v# ? 07I*W 2-QpĂ&#x2020;08V$o, M%C B_ IP %I bxV$2- o#A' b #3e1 ,[u2-%IB; T #C~ r$ zN2-| â&#x201E;&#x201E;zNo â&#x201E;&#x201E;$2-#4~ â&#x201E;&#x201E;$2-| â&#x201E;&#x201E; Gpo N> 2-#y5k 73 y5ZD 2-â&#x201E;&#x201E;\ Q $`x9 2 - 3ON â&#x201E;&#x201E;%# kW-g
> â&#x201E;&#x201E; NH B{ g m >> ? 2 Wqp 7 lSE#bg2-uCâ&#x201E;&#x201E;Y 36 > â&#x201E;&#x201E; NH B{ g m >> ? 2 2006 & 8 *# Ik$!EBI g m { > g mz Combinatorial speculations and the combinatorial conjecture for mathematics!O ZD $ r }e#C-pNm $V$CXZ r . r p 3 ,"L g3b }eMINĂ&#x2020;V$2- g m C$ 1!zGkRQ > z Y{ > #} Z< p ; H i g mY Ă&#x2020; l g m w T 0 J9 + ! t H z #Nw H z N W 2!Ă&#x2020;lgm } Z zâ&#x201E;&#x201E;g > {> B 5 R lg mH K 3WT 0 g mKW # ~9 (Y >{ >8 l= F 7â&#x201E;&#x201E; >gm Combinatorial Mathematics! O IĂ&#x2020; #G) &$`F 3 )=â&#x201E;&#x201E;UN#si6 E3F Q
22
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
G)~ #HvY-QS $ o J Lovasz ~ )x9#"â&#x201E;&#x201E; )3 # s6 ,W!D? aH 8 X{ Smarandache kY`BKA Automorphism Groups of Maps, Surfaces and Smarandache Geometries, kQ American Research Press, 2005 &!o Smarandache J - B Smarandache multi-Space Theory, kQ Hexis#Phoenix, AZ#2006 &!3GE# 2009 &6kQD? g m Y k B HY gl (Combinatorial Geometry with Applications to Field Theory, kQ InfoQuest, 2009) & # x rQHĂ&#x2020;0) r - â&#x201E;&#x201E; - â&#x201E;&#x201E;Gp - N> Np[pN%I
V 4{|(N
3x <[u r$ zN2- $` 1983 &#3{ 6NBp $r $#t , k6 $# x6U %Ik$=: ~ {{Q$K r $#Q , x W M$% k Bollobas I <H B e5 If!sIK8N u`KEDl R 2 1984 & -1998 &b 15 & #3N 6[u2 z / 2-%I 9&bNi`F$KT â&#x201E;&#x201E;$ â&#x201E;&#x201E;9 â&#x201E;&#x201E; p â&#x201E;&#x201E; 3#th GTS82-#?6zNQz#AT 2-Tz J 7 z 7 =| z Hamiltonian zo Cayley z #s6Q `KEDlTN. b`^ N|â&#x201E;&#x201E;2-0R6Q `KE Dl#Nx4 |3',vs`^#Fn3 1 Ă&#x2020;0vs 3 D*IDlN. %# 8vsN.hh biB 2-x7$ #FxI b`^ 2-%IFh # Qk# ,lSEFy FB bu2-%IĂ&#x2020;0 8 $DK V$DK jgx# x36$ `KEDlN.MINĂ&#x2020;M%5.#NĂ&#x2020; J #?bĂ&#x2020;eH|)Et U1g&n lYj{Ag '{'u viQ $ _i. zN2-J5 â&#x201E;&#x201E;D0R# x $ Nu D$ `K8zNN. )kM d k%zN N.:| #W h -p ~# x X vv N< 1iD)I` B Nu T\^^ Q zN V Q !yEQSzN2- 3D J 3 ,o . #EtU1g&n Q $ 8zNN. d xCt1 #Dx { )k%$`y$`42-zN#h N.DlJ ) 9& {Nu$ v j$&6Q \INZ > â&#x201E;&#x201E; H B{ g m > ? 2 # zN$`GD)N ,Z#t3\E(xNu $`m2NDĂ&#x2020;5 X#e 6 =.mNuI # N.Dlo)Y3 4 YNgDC 8BgNtU #bĂ&#x2020; _ IxF 2d e ) gzNDyD2-#DyD!EQS$` 2-{F'h/x^ 2007
n[hn%-88
23
&#3F6N r$NM DT R t . , H BC eY y N k5#nl) 38b 0\ MH#b ( 6Q$ r!WH B g m > Y C e C J.j7#R 6} M 5 #5 q M q℄ > { > G% HY# 7 R #< 7 r J N l R7 | > g m YF#WW <R" ; g m j7; C e#5 Æ 5 ;? p r Y =A TYg m d_ 1 , : l R WW 2 j` + M Yj7$l C eY+ = j7z > { >p q Ml 5'z{ >C e spi " I '℄q M 2 j} 5N b Y 6sY #l RO 1 ÆC eY~ 7 p q Ml 7 | C ei 7 $l TkrX+ = H B }zY#Cl4 R #B sm $R h$ — + } ℄ p g m C eY;Eo N 5e℄ p Yg m C e#Tk z 6pR IKN1 = > G% Y ) .# N N `V# N o\ R" ℄gYH B g m j7 #> u H V T #, Yj7 R l N # N ℄ } Z Bh~g9 > i R ~ aT 0C e BpTkg9 C eY~7 gZ [ > { > Y$ I T 0 # N~ ℄F5 > i R l N WÆ a > ) > { > 6s#+} g m > illPYa #C eg m >R" 0\j7 5N - 4 bY > 3# \t #FY } ) ~ UJ1 = > { > Y ! g |w R w B~7 B > B{ >C eYj7 { H ^ # H g m Y I #T~z >C ep1 I , N ℄Z5v !` Z5 B h { 1' ~J $ T 0R" 2MY o#+z = F !} Np e 5Y r$lSExNmk$0#xn V$u bÆA 6QSEFx|)\ tU |.s#?6Q #EtU1g&n d 0" 06 Ql SEx r$D! #5 \ ℄ lSE1xNm r $0 \ ℄ D )xys r nlys 7& # ?.m7& QH tS_ x#x r nlys GH6 Qsh |yg T5#?x!6 Q$` z #{Cn ) 3a A:2QSx9#q r$MIn V$u A F % |Q $`.s#3 ,-u g m$ , 7 7 #Fa bÆw 8 "Q $2-# V$2-# ?0 $kQ V$ Qk gI
4+N
{ u 3 ℄2-o 1999 & [8;F~ $K ℄zN ℄zN m x2z6 zE #Wnxz6eE 2- G~}8 # N<zN2-ys# ℄zN D2-`:Yn $ n ℄$#Wnx z℄ Ae Qz sm# $%y, h D = $3G#Q 2- ℄zN ,k={! 8;F
24
K)
:
DnS X,h ?hn| –
Smarandache
K .
~ Æ5Ae$\ viNj [8;F~ gG)Æ5# D2-$ 0\#N 2-z6 zE}8 Ar P8&5N 2-ys/}8 P 0\# DxP N zEj z P 0\ 3si2-b$ 0\#t Ae. F aH YvE}qM'{H&NYR }qM' xn ℄ eH#3 28N z6 zE B }8#x Burnside j s/℄ #` DYlSE XZxN r*pP8N z6 zE\0 j z # x 4 zP l SEx6P8z 7s/% y o q x%NQHN<7H |N ℄ *p#? rQHAXZDYNuW
z ℄*p b1x 2003-2004 &3D l6 ZG A g m Q > T! > w > p oZQ gl > { % `KE.Q R {! z z}8A D2-NuW }8#6j zC 2- G~} 8 b6 or P80\ rzÆDog N\ Gross o Tucker l. O H B # D{nÆwk . 2, DD \xe. Fz zr P 8QH# RDYbv +z 2y n o rW$ +zlSEx ℄$ u `^ N W #n XZ6"kM nx bÆeH! &/ |)q #_n)3b$&6NuQS`KEDl x +zQH/= ℄\ N >.Q Æ0vsN. B> l 3HYaH s |vs$) # -)Ndo#b iF i^{L&',vs$)=&I)ujg2-'B 2-0R uZz' DYB %I0R y<~ Wnx 8 QV$% $ NuV$2-%!: 2- [uvs 2- $&#3N z$hbAN 0\#1xO H B U` p q Ml'* O > #l A1 = > H"n $ k IBS' b 0\x|3 vs 2- #Wnx2,)NuQ ℄zNkW I . 4 r"{# ℄zNlSExex r QH2- z -# z rZ b1= 0) o ℄$Wy% 2- ℄zN0\ 6 ℄$WM{# zyTx 2- !9 #e℄ 0\W! |)yg A BZ 2- !9 E 0\6 ℄ $ y%Z # >%IFy%8 ℄$ DK "k _ Ix ℄$ W">" x n- !9 ?[nx|.u#Wnx, .m7& D#[ D . FN<! 9 / [vs|vs #3Nx6 xs/℄ QHP yj z#Cz6 z E}8P =%I6viWgQSN9 V)# XZyDyHz N. t ve F ℄zN6 ℄$ ) #3n|) ℄zN 2-%I#9& >
n[hn%-88
25
"bQz K#F0& XQ zN r$ x9% bFx3[ 2005 &Z 4hyTzNA â&#x201E;&#x201E;zNQz.Q D h . F) â&#x201E;&#x201E;zN B #Fx _0)3ZD $ r }e#h â&#x201E;&#x201E;zNlSE1x z r #0)3 $ r }eN Fq bĂ&#x2020;e H#.`"x $ r }e x â&#x201E;&#x201E;Y6)3 vs O B aH { Klein 8XY`BK #F1x 2005 &36kQD? aH 8 X{ Smarandache k Y`B K A NĂ&#x2020; :Q{5 #CQzb3 $ For applying combinatorics to other branch of mathematics, a good idea is pullback measures on combinatorial objects again, ignored by the classical combinatorics and reconstructed or make combinatorial generalization for the classical mathemat-
and the mechanics, theoretical physics, .... ; R >DFH)53> N#APS
1IR >? /# I R >O4 2 '# 3>>!#+ 3 7 Riemann B %> #(:# <Q R 6Ă&#x2020; ! bĂ&#x2020;&eFx _0)32- n- !9 # ? & 16QS`KEDlN u> r9 Ae3\% s %Qz.Q
ics, such as, the algebra, differential geometry, Riemann geometry,
4{- 5'
& N)kQ~ E4"#n3QA [ r(k Riemannian Gp#s ? e r J 2-%I 2005
V
!Smarandache 5' 36 QV$% $ NuV$2-% vs 2- 2005 & 5 * # N 6 V24/ k$Y%I#h NWr)$` hCH} $|[uvs {%IT NWXj*(%I y q $I wI{G# , y #F NĂ&#x2020;($ >p) b&BkQNWD?M 3{TNa 5 m#-} DĂ&#x2020; Smarandache Gp 5#CnXZ4 36kQD? 3y D ,6vs O Ă&#x2020; $ r A #. 9&y wI[u $2-#tn 37I8 $DK k (t,so#6 $4 7Q x7 x b&=*3Io n vs O #DX)|â&#x201E;&#x201E; 5D )kQ WD?*(# s u36Ă&#x2020; :Q x rA UN) Riemannian z bW*( e=M T 5 #ZD Smarandache Gp#â&#x201E;&#x201E; Riemannian GpJO#pe32- DX
K)
26
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
> 5#sZ) 3a>.Z4* vi Smarandache Gp2-avB #} D /=DbĂ&#x2020;Gp1XZKD ~ =&2- r â&#x201E;&#x201E; h#3KE x r&!Qp2-Cn 0\#DYCnZD N $ A0\ xVz zy5 $h x6Ă&#x2020; DX)b|â&#x201E;&#x201E;2- R D kQ WD?M B #b\Ă&#x2020; 2005 & 5 *6kQopD? bA#6vs 2- si#316kQD?)N\$ & #FPQ)v s 2- 6kQD?& Tt H Smarandache Gp#DYbQzb6k % 2-%I#a>N. I6kQD? 5â&#x201E;&#x201E;# ')3T 2- $ #s A (k Smarandache Gp2- t3bi %I>NW!$|)*(# )y( . 3xYV9DR $`#3 QV$% $ NuV$2-% >4{ C%#sq36kQD? \& . Cn G)4{!T2-#N s`3X ZT Z QV$% $ NuV$2-% DlN. D?& o X$ % e#83 2-%IZ))<kr7
^ Smarandache k Smarandache GpxNĂ&#x2020;>ZMuA' Gp#CD 6bĂ&#x2020;Gp`^ #N \XZsi0 y0 #.xZ$Ă&#x2020;ZEQpy0 #b6! Gp xy $` #: bxNĂ&#x2020;H[e; â&#x201E;&#x201E;N ! Gpâ&#x201E;&#x201E; LgQH u: C . Gp`^#b ,nB`p 3 na n#: } C. xĂ&#x2020; k #F x e t ysbĂ&#x2020;C. Gp`^7N67& # x6, M %CyX b6 7& DKBPR " #oxbĂ&#x2020;C. yC u^ e;& ?, M% "EkQ S pQ-bZAS} ; e;#A_n, M%y5 #_ ), M% { DK 3ZbĂ&#x2020;=g GpDj)#h D"or7& o, M% lS q#Fx $%I` D x %Qp. F x6 Q{ i^ #32-) Smarandache GpW R#Wnx Iseri xVzGp/=D u Smarandache Gp# 3 n6N< zE/= Smarandache Gp# xZD zGp 'sIK 2-
n[hn%-88
27
)a>2- bu2- J) Iseri /=QH#F 3 {2- r â&#x201E;&#x201E;GpiQ )3G
zGplSEN< /=D) 2- ! Smarandache 9 #?8 N< /=D n- ! Smarandache 9 #QSEE { sh -p $ R bi# N)kQ~ 03 k$h Smarandache Gp Finsler Gp Weyl Gp >N Cn[x E. Smarandache Gpn Hv z$Ă&#x2020;Gp#tNx yD $ q 362G `^p Smarandache Gp %I#3j8)# n !9 #s6eEp )S% oU!\#[?N< Ă&#x2020;0) n- ! Smarandache 9 /=%Is$h)E H[>N# |)G)kQ~ .s#s6e: ey N\Ă&#x2020; j )b R {QS 5V Ă&#x2020;E z Smarandache GpN-jx);N Q.Z# e $Nx~3Ă&#x2020;0
t |
! J: (Qa 2-bĂ&#x2020;=g Smarandache Gp#3`m|lSEXZN< bĂ&#x2020; $â&#x201E;&#x201E; N pN#â&#x201E;&#x201E;63$ ZE n % .x.%`^W6Nj# ?QUen /A 6Ă&#x2020;0)GN ,N. #333 eH s)kQI #Cn 53bĂ&#x2020;eHlSExNĂ&#x2020;W Smarandache `^ N Smarandache `^ n $$ys`^ s#e n n k 2 bA#Smarandache GpyTxNĂ&#x2020;W Smarandache `^ [ NEu#, :?o7Rgm ^ #} |â&#x201E;&#x201E; .[ys|..m 7&#C |NuPz R#? 6, .m|.M(xo# #bo6 H F _ B1[ ^$~ g87& o#.m#6RyxPz # 1n xB .m R :o#CB 7& Wl s?r#bFxQSE &. X Z~Yu\ N> uN N Theory of Everything! h tN< QHys`^ s?yTxN ?r0\#7Hnx 7& %Z ys`^ sXZ =Ă&#x2020;Qp#?bĂ&#x2020; â&#x201E;&#x201E;1 D r.xzNQH BZ3Nx. Smarandache `^xNĂ&#x2020;O r N#? 3Y{ZD $ r }e eHy ?r yT3. # $ r }exNĂ&#x2020;XZljsP N#~YXZj{P $ r N?y n76?r sb Ă&#x2020;z E !T2-#s33 A Nu: #3 2006 & 4 *6kQD?) B\ & Smarandache J - B #Hv)3> n `^ Smarandache Gp
zGp #VzGp Qz 2- R#e k|aY{F6kQNa$ `K
28
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
EDl 6Nuj. jXZ #b|& ZXN` n GpQz &
|-
! ( 5' N> #Wnxj N nx D%:x Riemannian Gp#BZeDq Smarandache Gp.Ez $ r 'nx N> 2-#[A.m7&# Ă&#x2020; 0Nu 2-%Ix##y1 #bFx3Nx8kQG)~ v 2-p ZD ^`k [ 2006 & 8 *36 > â&#x201E;&#x201E; Ng m >{ H B> ? 2 EZD $ r }eu #3Nx6 p r Riemannian Gp%I#6e#~l`^3 GEZD) r9 'sI 2-8l xAEu#D1x9 6 r / Q `^ r# x1 ) â&#x201E;&#x201E; r9 o â&#x201E;&#x201E; r9 uâ&#x201E;&#x201E; {`2- r9 â&#x201E;&#x201E; #6 d- q #3\% s % â&#x201E;&#x201E;Wl 5# `2- â&#x201E;&#x201E; r 9 â&#x201E;&#x201E; #6k% S% â&#x201E;&#x201E; T Riemannian .% /Q3 â&#x201E;&#x201E; 2- Rl #bĂ&#x2020;2-8l: 9 oz / # = R Dsi x9 oz Nu{j { F#bFx3B$`M| #h b x r \{z NNb Qk N. g m2/WY k B Geometrical theory on combinatorial manifold ! g 50 G# 2007 &BĂ&#x2020;0 3 ,. bNN. ) r â&#x201E;&#x201E;Gp 3G# xv|)kQ Trans. Amer. Math. Soc. E#e=y[o# 53 { `K5+ â&#x201E;&#x201E;Gp m=&u KDyĂ&#x2020;#pe3 veCK> 3 G)kQI #0 u$ K> > Smarandache 9 N. Cn 53k. N\Gp â&#x201E;&#x201E; $ `K b N.#3 xqbN.Qv)T V ,xK> e#2\N)y Gp$W C D)^ XZ#A bNN. : e=| 3D{op â&#x201E;&#x201E;#tsiy)Na?z\qs r 3b s~b\`KxD \ QH|bN.Q IP #!T e=UZ Z#B - 50% \xry)?z\ bN.Q 2007 &6b\`KEKD )bZ~*#XubĂ&#x2020;IP .Q6NuP i^ < `KECy$`K h$Nx .Q na8; &BxP i^'<#eV ,oI`%Ca 8; &=x8. Y Q$`N.g &...... #63N)s$ peQ#3 kQI C%#(0 kD 36kQP N\`K#&mK $ r N > Qz N.o9 .Q ogY{36lQD?)N\N.? > g m B h <( I ) Selected Papers on Mathematical Combinatorics!, xA x â&#x201E;&#x201E; ! > g m International Journal of Mathematical Combinatorics! l.
n[hn%-88
29
K l b\`K1[2 Q. #`Kdz xtz J<z r#1 [2 x r&e2- $ > A > bĂ&#x2020; Q^$&e kQI y$ `D #bl 6kQQ%zĂ&#x2020;D " OĂ&#x2020;uN `Ki uhC~CnĂ&#x2020; 0 3bdAx ve"%#s QV$% $ NuV$% N#G Z
V% r) e=#si`K F 1DY6e O GE QV$% $ NuV$% >4{yr7#s`Z QV$%C A FNu l< e=#fq >`K I e" rol lu 5<6) l< OE b\`K 2007 &g*6kQopPK# {DlQSE x r &e2-! $o N> .QiI)N.Dl |( QH| rj Q3p o2- D#3 E ) r9 E T JS% 5â&#x201E;&#x201E; /Q3 5 r9 Ae6 r2|`^.2|`^ }8# ZA Lie % U!\ N r J 2-# |)NkK Zz R#bA 1B{Ă&#x2020;0) r â&#x201E;&#x201E;Gp Nâ&#x201E;&#x201E;N pN%I#s 2009 & 9 *6kQD?) r â&#x201E;&#x201E;GpAe6 N nx \& z NZ x#bv p r9 E U!\ NB x ox â&#x201E;&#x201E;zN +zQH#CNĂ&#x2020;% z u `^ â&#x201E;&#x201E;Gp 4 r rQH
4{Qa8Q
Gp2- x > 2-Z)i` Smarandache Gpx\2 J a8 NoV Z) $ ZD 38 N> 2-o 2006 &#8xN) $uV 6 Smarandache J - B B NQ#B{UN) Smarandache G p J a8N >N M N#ZA $ >N 5 h vi h N up r â&#x201E;&#x201E;Gp#7H[ $E8V P8 UN#BZĂ&#x2020; x r 2-# > RFh |`KEDl |) 2009 &#!T=&= 2-# r â&#x201E;&#x201E;Gp Np[W!fpj{)# > JS%P8W!XZy le Y#3 Io&Q Einstein J a 8NoV i`0\ lSE# r â&#x201E;&#x201E;!9 V Z))NĂ&#x2020; $ #C -pN H r9 XZMIN V #}yT D3e j 9 MIN > B s#Einstein J a8N #lSExNĂ&#x2020;7&KIyZ, ` (T ^$&e#xN< "#1x{ > KI $Q36B QN lY pnN g# ri` Einstein j Q3n CAl ' ! Einstein j Q3 ,# rj Q3n JS%Q3#}yTbi J
30
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
r â&#x201E;&#x201E;9 E J ri`#lSE1[2NĂ&#x2020;, 87&.mb64^ ^$&e#bFx 6 Q5nNu^$ I#6 5 VWâ&#x201E;&#x201E; Bâ&#x201E;&#x201E;Y 6bĂ&#x2020;.mQ#, 87& % RlSE x l R N|â&#x201E;&#x201E;#CN Pz R#? l R# , .m| Dw2 =# Y#3ZD6 ri` #E D_< Einstein J a8 # D_<Kq #q1 "#1x{ ri`> KI $Q36~n `^vq|e j 0`^ g Q pyg#b , 8 7& .mo, 3 nxN bA# J rj Q311[)! Einstein j Q3 LT{# xW! | Nu! j Einstein Q3 #6 Schwarzschild 8- Reissner-Nordstrom # x rQHXxu /= r Einstein j Q3 NuW #8 rj " b Ă&#x2020;&e# TDY63 NN> r9 E JQ3 N.#: #kQNa > $ `K &Z V7p 7 Special Report!&mKDNN3 g m d Y z1 Relativity in Combinatorial Gravitational Fields! .Q# P )bĂ&#x2020; rj A ! j >N lSE#bĂ&#x2020; r &e XZ nx 8KM r#p r Yang-Mills Q3# ?x 5> 2- 3 2009 &6kQD? g m Y k B HY gl \& )Nu B{Q #bQz Nu3G0\ D A#F k 2-D `^
7 ?KHR!q
$: ,Bg=&B;T 2-~C#S V$2-#Wnx P V$2-#E b NĂ&#x2020;V$_& T # yINĂ&#x2020;g 2-&Co$ &e {y.#Nu iâ&#x201E;&#x201E;FO~3QW!0 DlN. G â&#x201E;&#x201E; sjZ 3# ysbv 99% (y P#8 "V$ , M%h )fIx Dn.xp p #2 R s K\&.x!2QS`KE NN.Q#GIN 1 2Dl& .x Xw- nyj&DlN.D %?Râ&#x201E;&#x201E; #IuI&......#KY # jg \bĂ&#x2020;Ylxz S& bv V2â&#x201E;&#x201E; #HvV23 r V2 %IXZQH Qz 0\#F V2, 7R2 owI 0\ Tx!\0\#Bk= V2, %4E W G B`7G V2, # Wnx2-3GV$, p Nxx ym ul 3 =s$h y|V 23 #y yWp2- Wp XQ $ x9#h Cn Tx,# TD _<\+ 2008 &#36 Mk$ &~ o2-\NZ$ O # jx)N)+i8, %â&#x201E;&#x201E; Ă&#x2020;Z â&#x201E;&#x201E; C"#, lSEâ&#x201E;&#x201E; = Ă&#x2020;Z# NĂ&#x2020;
n[hn%-88
31
xn` \P0\#Cjz# W d& BÆ-N &ej{, lj#℄6 ~ & =ÆAxP=&e#℄6i 6 ZO #3 5m #2- $V$lSE1x2-^$#) b)+i℄ =Æ# W! A)!N 3G EÆp 4 6R D 2i%jz# g##2-y) $V$ ` )t DK|)BgNtU#>2-52-$0xyYl # y6 [uNu ÆZ %I#T Ag\P0\4O$ 2- BZ# Agk= V2, !\ 0\#nCn7 :u{xp VK Q D%I ?V2!\XV#4 y4 A0)3 C ` q 9&jZ3 X VY) = V &W XV#t ys$I &'#sYCn1N s~℄ \OÆ, ℄\% $VDKm{yZ ? xW ℄\OÆ,6OÆO .x8OÆ,V2%I ) ;5e℄\Zz bÆGH#vb=0$ ℄ D℄7#ZAx>N; mumD\ ! k|Nu , ℄\ yi 3 4 &?NuIP ℄\#WnxNu &$`ZD NuIP ℄\#he,^ >Ny|)#XV` My!.7H e8V$DK Ix? y|4 3Nxh OÆTQ V23 # D hx3 2-%I#Wnx& N . D?#Nx |kQNu4/4 bAXZ "= i^2-Nu8 $. V$DKC _ ℄\?yx j&Qm D N. %D 3 ,o #[uV$2- B D{Zx2-`82-%I *+s$` u_& RX ug 2-&e#?yrSA 6k$.V24/[uwI2-#bFx;5N ,[uV$2-I6Ez )+i℄ ÆZ N Dj0 eZ#Q 8V2, k$~ XZ4 #Nx &2Q $ DK# ÆB( &e#yi9 2-`[u u1Vl ℄\2-#y$`FyX GNu d V$DK k℄\ bFx=0Q P 0RH# CQDgQ W ;'{'k N D h 2007 &3F6N NM D)N Rt SCI B h k5#8Q V2XZ℄ )& #e N3 6Q$ =FH℄O ℄p 5Nf2Y#}:R" g,kN{> )8 YpL f2 Æ #wM Z SCI Bh # ) R = > R = > *# ℄{ > C qY )A Y Qus q w1 Æ )<#p YeA} m uZ s #M Yang-Mills i}+ XYR= _ CFR|;CeR"{F Hs`B {F ~g`B RYJ G~7#+ }{ >C eY N Gy#O } >C e < 7Y 3 bÆA 6Q G&F yH Z 2008 & #kQ%I $% =) % F D.#KX x SCI {jXZV2%I#L8e V23 4 <.
32
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
3 G)kQI Fyi 3UN ,0\ bĂ&#x2020;XZâ&#x201E;&#x201E;NlSE x)NĂ&#x2020;jx J N.$ VN #eĂ&#x2020;0`$ V YN#bx<yV$ #Fx m| #h SCI {jP8 DP7 xN.jxJ#)fyLAN. $ V#jxJ yTl T`XZ N{GNu%I#l ,TbNN. ,â&#x201E;&#x201E; =?W BZ#6Ry AV2, Wnx[u3GV$2- , p 0\#y g x SCI N.{jXZV2%I QH#3ny M|Nuk QSqf I P %Izt kQ w T! $O e Rabounski ~ 2006 &F6 $OE â&#x201E;&#x201E;n xl.oH.Dl)Nd {>C e` n;E ${> FYF< Declaration of academic freedom: scientific human rights! V$M% *I # |)QS V$ _i>" C{D$ { >C eY }u Y#sVwY&{ > % { > j7 C eW} \Y ` n Y#s<X } AF \ 7 &{ >B hY }` n Y# q Fâ&#x201E;&#x201E;_C& T# R d 6 F e ~ms B hY # qUB hY SCI EI \1'z T 0 \ &Bp{ >C e N n F â&#x201E;&#x201E; YVW S, q | j" F Y p u t F VWY C e#+} OR { > C q*Y< {_ y\ , M% 8|BgNtU# & yX4\4! 0\2 0 # , T : &87& yso#[uT= O 7&KI +" > Yi#V$2[ D 7&o, M%v DK -s {#bxBgNtUV$7RDKo ep? , M%(xn b!uC#Fxj V2, D u_&s,Z e k0\ ZY. Q $`n-y
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; > > Yeâ&#x201E;&#x201E;8 , 33-36
O; O| ~"/
d/J (qZ! 8^ = "8 83-1 a = h) $ xx{ zNu D $ ' # Axx{Ls 'u^ a > ! b$|â&#x201E;&#x201E;sm/0) $ 3\ 5 ? hK\ 6 C 3n0xB$ â&#x201E;&#x201E;B0\ A0\ #=` 4 u N 3n$K $ T3 BZ#3nD$g $#>lxT4$K ' K\ o#$KQH \. 1Y0\# r7I$K $ â&#x201E;&#x201E;%#Ou^|.m# s$n aCU r{ $ 3\ 'q ~ {" $KN #nT 8 < â&#x201E;&#x201E;BNQ D)CAN ' :xXZ z # XZ 7 DG z{#Zf xA ! |eD ^ 0a â&#x20AC;&#x201C; gm#bi3n ' >lB 6#h gm# xx{ neD ' 3G 6 S x l| 0 ? |y 0 w #T4b # TD$! l| 0 ? |y 0 w b Dgm#h -pN w (XZy0 a + bi p#6E
#R6E) a 6= 0 w #6 2 + 5i, 5 â&#x2C6;&#x2019; i, · · ·# 6E) a = b = 0 <0 qTZEâ&#x201E;&#x201E;B#3ns~ S lSE1x l| 0 #6 5i, â&#x2C6;&#x2019; i, · · · u $ #BZ Hy Ã&#x2020; #.`9 #t8C Ix |a &#b6$KT3 xo Yl N '#} 6x i oâ&#x201E;&#x201E;%|C Zz ?3n8N ' x( #\R1xN & n T3 ulE#} v3nM|N ' :â&#x201E;&#x201E;Ixi#8D %~.8l Eâ&#x201E;&#x201E; :â&#x201E;&#x201E; $ l 6#B$ 5â&#x201E;&#x201E; s$ bmâ&#x201E;&#x201E; !# D h1x8<^ -Ck5Ã&#x2020; % #1, "2 1985
V N:
4 3
3 4
1
K)
34
:
DnS X,h ?hn| –
Smarandache
K .
'ZA~D?lYD{ NV&eQH yx 37I ℄%x#$K<^Ae LsD &en:2 5℄sm 5 ? nS8#Wnx$Æ) 5℄NQ # n. ℄%NQ 5℄ : → 5 i → 9 &e#Dx ℄Y) 5 ℄ 3\&e <^ IxbiF=℄WqD{) bi4{ ,NQ<^ # g#8C 1y xrS 8z )#?DSZ =#R p# 5 8 > 'XZ℄ L #[?S8 a> 'u^ N#bx$K $ < D QH 6#$Æw NQ#8 ÆÆ ' ℄ #1 ( , n 6= 0, m, n ∈ Z) m n
w (a + bi)
l
(b = 0)
(b 6= 0)
7
(a 6= 0) S (a = 0)
bÆ℄ L 3n3 ' $KkS.oJ.DK 8T4Nu $s mxy gI $KN '#3L &Q $ jgDZDb '# 6# 5i > Nu 'o ` Q3 u a> Xen Hl E g$s N h#bn ` Q3 T3X6~$s N o h 0 l
#b1 )5i ' Y #Dn 65i $s 0 X #1b D GÆg #n ` Q3 / GÆg 65i ( LsD{#b1 \)5i =Æg 9xbA r# z"1[2NÆ[:℄|?l $ QH! qTbA &Q#n3 "g $K u, | f> $ ' Q& { xLs 'u^ a N $KN # TD.! `&#8C
: N:
?
?[f^9
35
xA & N{D. F Ix â&#x20AC;&#x201C; D A)CA 0\&B x$K D q T4) q # n &m3q &CZ D{# N{ #gmo N >N 6#37$ â&#x201E;&#x201E; z QA $ M ^ i) f (x) y7- [a, b] W : &ii)f (a) = f (b) &iii)f (x) u7(a, b) p }T# (a, b) p AYC R e c #uX f (c) = 0. qTZ D q &C#s~) gm Ix gm i) Kq) f (x) 6 [a, b] E Xg<ko<pz&gm ii) AKq) f (x) 6 (a, b) E N c g<z&gm iii) AKq) f (c) N b6 bA# 7\AV #1 f (c) = 0 bF4Zx3â&#x201E;&#x201E; %| $ 0u K\lSEFx #}yTDylâ&#x201E;&#x201E;\ A D \ $ $ N! wK+;B$ sm& B!* 3n3+ â&#x201E;&#x201E;B0\ A0\ 8 &\ {"#b$ (yX \ yI e e 8l D{$T * oK\ 8 * o #Dnx \ 3G#N<s$(% Z"`#Bâ&#x201E;&#x201E; xZ{ T K\#D xI NÃ&#x2020; K?: : #b8 \x<y 36$K
'{'SZ .m|# `m p 7I \ #8 \xm< d u p 7I \ #NQzx! 87I \QHXZ: Z & 5NQz#D=[Ã&#x2020;K Dl n, Nug \QH Z â&#x201E;&#x201E;#x u! ~*PW \QH N{=l7I 37I \ljl # bAG R# IP7I \&C b DlY6$ N! HNu D K\ N # XZ?1 bu N > K\ h i^ 6# s â&#x2C6;&#x161; â&#x20AC;²
â&#x20AC;²
â&#x20AC;²
Z
:s~
[ln(x +
ln(x + 1 + x2 ) , 1 + x2
â&#x2C6;&#x161;
1 + x2 )]â&#x20AC;² = â&#x2C6;&#x161;
N# y 5â&#x201E;&#x201E; 0\1Xp/? $ Z
s
1 1 + x2
â&#x2C6;&#x161; Z q â&#x2C6;&#x161; â&#x2C6;&#x161; ln(x + 1 + x2 ) 2 )d ln(x + = ln(x + 1 + x 1 + x2 ) 1 + x2 â&#x2C6;&#x161; 2 3 = ln 2 (x + 1 + x2 ) + C. 3
K)
36
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
B!Q!Nuâ&#x201E;&#x201E; *W K\ H#6 ,0\ XZ i 6Dq r| p$ : $eeâ&#x201E;&#x201E;\ 8
n X
kCnk = n2nâ&#x2C6;&#x2019;1 ,
k=1
n X
Cnk = 2n
k=1
q QH#1%e|n[ 1+
n X
Cnk xk = (1 + x)n
k=1
DD#$dT8 x {#46 x = 1 1s n X
kCnk = n2nâ&#x2C6;&#x2019;1 .
k=1
:u# ' oK\ $Kx$K $ = uyXâ&#x201E;&#x201E; uNâ&#x201E;&#x201E; z Z s$n"` x#3n$g $ByxN rN T31XZÃ&#x2020;0 #b = ZLw =, =e = #[? y5Z $â&#x201E;&#x201E; $K %
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; A Foreword of SCIENTIFIC ELEMENTS, 37-38 A Foreword of SCIENTIFIC ELEMENTS Linfan Mao (Chinese Academy of Mathematics and System Science, Beijing, 100190, P.R.China)
Scienceâ&#x20AC;&#x2122;s function is realizing the natural world and developing our society in coordination with its laws. For thousands years, mankind has never stopped his steps for exploring its behaviors of all kinds. Today, the advanced science and technology have enabled mankind to handle a few events in the society of mankind by the knowledge on natural world. But many questions in different fields on the natural world have no an answer, even some looks clear questions for the Universe, for example, what is true colors of the Universe, for instance its dimension? what is the real face of an event appeared in the natural world, for instance the electromagnetism? how many dimensions has it? Different people standing on different views will differently answers these questions. For being short of knowledge, we can not even distinguish which is the right answer. Today, we have known two heartening mathematical theories for sciences. One of them is the Smarandache multi-space theory came into being by purely logic. Another is the mathematical combinatorics motivated by a combinatorial speculation, i.e., every mathematical science can be reconstructed from or made by combinatorialization. Why are they important? We all know a famous proverb, i.e., the six blind men and an elephant. These blind men were asked to determine what an elephant looked like by feeling different parts of the elephantâ&#x20AC;&#x2122;s body. The man touched the elephantâ&#x20AC;&#x2122;s leg, tail, trunk, ear, belly or tusk claims itâ&#x20AC;&#x2122;s like a pillar, a rope, a tree branch, a hand fan, a wall or a solid pipe, respectively. They entered into an endless argument. Each of them insisted his view right. All of you are right! A wise man explains to them: why are you telling it differently is because each one of you touched the
K)
38
:
DnS X,h ?hn| –
Smarandache
K .
different part of the elephant. So, actually the elephant has all those features what you all said. That is to say an elephant is nothing but a union of those claims of six blind men, i.e., a Smarandache multi-space with some combinatorial structures. The situation for one realizing the behaviors of natural world is analogous to the blind men determining what an elephant looks like. L.F.Mao said Smarandache multi-spaces being a right theory for the natural world once in an open lecture. For a quick glance at the applications of Smarandache’s notion to mathematics, physics and other sciences, this book selects 12 papers for showing applied fields of Smarandache’s notion, such as those of Smarandache multi-spaces, Smarandache geometries, Neutrosophy,
to mathematics, physics, logic, cosmology.
Although
each application is a quite elementary application, we already experience its great potential. Author(s) is assumed for responsibility on his (their) papers selected in this books and not meaning that the editors completely agree the view point in each paper. The Scientific Elements is a serial collections in publication, maybe with different title. All papers on applications of Smarandache’s notion to scientific fields are welcome and can directly sent to the editors by an email.
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; & } RMI , 39-44
bh
4 M f-2 RMI d/J (qZ! 8^ = "8 83-1 a = h)
x JE ox_x#g 2- #=â&#x201E;&#x201E;Wq)Nu D $&e qN â&#x201E;&#x201E; K0Nâ&#x201E;&#x201E; h7 E #qT2-E |â&#x201E;&#x201E; #bx7 E N 2 -â&#x201E;&#x201E; 3\&e ?x JE 0x)bN&e x=|â&#x201E;&#x201E; N$1, cos x, sin x, cos 2x, sin 2x, ¡ ¡ ¡ , cos nx, sin nx, ¡ ¡ ¡ ox q `â&#x201E;&#x201E; f (x) N ` 2Ď&#x20AC; #yx 2Ď&#x20AC; i#XZj n 0bĂ&#x2020; q!-*p$ 1 a0 = Ď&#x20AC;
K0)7 E $
Z
Ď&#x20AC;
f (x)dx,
â&#x2C6;&#x2019;Ď&#x20AC;
1 bk = Ď&#x20AC;
Z
1 ak = Ď&#x20AC;
Ď&#x20AC; â&#x2C6;&#x2019;Ď&#x20AC;
Z
Ď&#x20AC;
f (x) cos kxdx, â&#x2C6;&#x2019;Ď&#x20AC;
f (x) sin kxdx, (k = 1, 2, 3, ¡ ¡ ¡) â&#x2C6;&#x17E;
a0 X + (ak cos kx + bk sin kx). 2 k=1
8 Y `â&#x201E;&#x201E; XZ xNĂ&#x2020; Jâ&#x201E;&#x201E; QH#g0 `â&#x201E;&#x201E; #[?_X ZK0x|E B* Jâ&#x201E;&#x201E; # 5u1x$8 [a, b] E Y `â&#x201E;&#x201E; F (x)# N â&#x201E;&#x201E; F â&#x2C6;&#x2014; (x)#n 8-` x â&#x2C6;&#x2C6; [a, b]#( F â&#x2C6;&#x2014; (x) = F (x)# ? F â&#x2C6;&#x2014; (x) x E #Z (b â&#x2C6;&#x2019; a) ` â&#x201E;&#x201E; T 1 D6 [â&#x2C6;&#x2019;Ď&#x20AC;, Ď&#x20AC;] Eq f (x) = x KI x|E #3nXZT J f (x) $ [3]
2
f â&#x2C6;&#x2014; (x) =
(
x2 , 2
x â&#x2C6;&#x2C6; [â&#x2C6;&#x2019;Ď&#x20AC;, Ď&#x20AC;],
(x â&#x2C6;&#x2019; 2kĎ&#x20AC;) , x 6â&#x2C6;&#x2C6; [â&#x2C6;&#x2019;Ď&#x20AC;, Ď&#x20AC;],
b #k xn #n |x â&#x2C6;&#x2019; 2kĎ&#x20AC;| â&#x2030;¤ Ď&#x20AC; #A f â&#x2C6;&#x2014; (x) xZ 2Ď&#x20AC; ` `â&#x201E;&#x201E; #ez jkQGz 1 $ -Ck5Ă&#x2020; % #1, "1 1985 1
K)
40
.... ... ... ... ... ... ... ... .. â&#x2C6;&#x2019;5Ï&#x20AC;
.... ... ... ... ... ... ... ... ..
.... ... ... ... ... ... ... ... .. â&#x2C6;&#x2019;3Ï&#x20AC;
.... ... ... ... ... ... ... ... ..
.... ... ... ... ... ... ... ... .. â&#x2C6;&#x2019;Ï&#x20AC;
:
DnS X,h ?hn| â&#x20AC;&#x201C;
y
6
.... ... ... ... ... ... ... ... .. O Ï&#x20AC;
.... ... ... ... ... ... ... ... ..
.... ... ... ... ... ... ... ... .. 3Ï&#x20AC;
.... ... ... ... ... ... ... ... .. 5Ï&#x20AC;
.... ... ... ... ... ... ... ... ..
-
Smarandache
x
( 6 l EK0x JE $ 1
bA#3nXZq f â&#x2C6;&#x2014; (x)
Z 1 Ï&#x20AC; 2 2 f â&#x2C6;&#x2014; (x)dx = x dx = Ï&#x20AC; 2 , Ï&#x20AC; â&#x2C6;&#x2019;Ï&#x20AC; 3 â&#x2C6;&#x2019;Ï&#x20AC; Z Z 1 Ï&#x20AC; 1 Ï&#x20AC; 2 (â&#x2C6;&#x2019;1)n an = f â&#x2C6;&#x2014; (x) cos nxdx = x cos nxdx = 4 Ã&#x2014; , Ï&#x20AC; â&#x2C6;&#x2019;Ï&#x20AC; Ï&#x20AC; â&#x2C6;&#x2019;Ï&#x20AC; n2 Z Z 1 Ï&#x20AC; 1 Ï&#x20AC; 2 bn = f â&#x2C6;&#x2014; (x) sin nxdx = x sin nxdx = 0. Ï&#x20AC; â&#x2C6;&#x2019;Ï&#x20AC; Ï&#x20AC; â&#x2C6;&#x2019;Ï&#x20AC; 1 a0 = Ï&#x20AC;
9s
Z
Ï&#x20AC;
â&#x2C6;&#x17E; X 2 (â&#x2C6;&#x2019;1)n f â&#x2C6;&#x2014; (x) = Ï&#x20AC; 2 + 4 cos nx. 3 n n=1
YE f â&#x2C6;&#x2014; (x) Wn #6 [â&#x2C6;&#x2019;Ï&#x20AC;, Ï&#x20AC;] E#1
â&#x2C6;&#x17E; X 2 2 (â&#x2C6;&#x2019;1)n cos nx. f (x) = f â&#x2C6;&#x2014; (x) = Ï&#x20AC; + 4 3 n n=1
bA#3n1 |) f (x) x JKIp 2 x JE E +h#xpzlq1x$ p2- â&#x201E;&#x201E; f (x) J - `â&#x201E;&#x201E; f (x) â&#x2C6;&#x2014;
2- f (x) â&#x2C6;&#x2014;
?
| f (x) W â&#x2C6;&#x2014;
?
| f (x) â&#x2C6;&#x2014;
K .
' ~
RMI
41
$ 3w2 08( 5N4 r08 GH#xorV$2-KI ?x|g ox xbN3\&e b #3n r IZQx|g 6 N ℄Q3 nx x|g $ Z +∞
f (x)e−pt dt.
L[f (x)] = F (p) =
0
e D TlY6C =f} #buW n ℄Q3( n Q 3 T#qTP8#3nX L[f (n) (t)] = pn F (p) − {pn−1 f (0) + pn−2 f ′ (0) + · · · + f (n−1) (0)}.
~Y#8-N N ` ℄Q3 dn y dn−1 dy + a + · · · + + an y = f (x), 1 dxn dxn−1 dx
}Dj8x|g $y(x) → F (p) = R f (x)e dt#1XZ 0N Z L[y(x)] $s N ` Q3#bA1XZ L[y(x)]#[?1 y(x) = L {L[y(x)]} T 2 xx|g Q3 y”(x) + 2y (x) + 2y(x) = e _<gm y(0) = y (0) = 0 I i) j8x|g L[y(x)] = Y #8Q3$0 x|g #"` y(0) = y (0) = 0 # > Y n Q3 +∞ 0
−pt
−1
′
−x
′
′
p2 + 2pY + 2Y = ii)
Ez n Q31 $ Y =
iii)
1 . p+1
(p2
1 p+1 1 = − . + 2p + 2)(p + 1) p + 1 (p + 1)2 + 1
x|$g 1 y(x) = e−x − e−x cos x = e−x (1 − cos x).
bÆ HXZ pzlq6Q $ [4]
K)
42
DnS X,h ?hn|
:
â&#x20AC;&#x201C;
Smarandache
K .
x|g - lâ&#x201E;&#x201E; n â&#x201E;&#x201E;
â&#x201E;&#x201E;Q3 ?
?
x|g
â&#x201E;&#x201E;Q3
n Q3
lâ&#x201E;&#x201E;
7Nxx JE # xx|g #e3\&e(x"JO NÃ&#x2020;&e :â&#x201E;&#x201E; nx b1x $QHN >NsKL9 A#A RMI A : [1]
>lR=bpf X YR HK D S #M^q(UR=}lj\ A : S j \N jG S , } Z S A _ R lY > ^ f j X = A(X) ? l1 Ã&#x2020; # ~A _ J tj \|}^ X = A (X ) ?l1 Ã&#x2020; â&#x2C6;&#x2014;
â&#x2C6;&#x2014;
â&#x2C6;&#x2014;
â&#x2C6;&#x2019;1
â&#x2C6;&#x2014;
bNT3Xxpzlq $ A
S
? X
â&#x2C6;&#x2019;1
A
-
Sâ&#x2C6;&#x2014;
? Xâ&#x2C6;&#x2014;
Ax $ _i0x QH A D :â&#x201E;&#x201E;0x6 $Ã&#x2020; 4 (XZM| RMI
T 3 & $ B Bâ&#x201E;&#x201E; Ã&#x2020;u BGp#e A0\ 3\&e1x RMI A 0x :xpzlq#n3nXZ F M|bN $
' ~
RMI
Gp>N0\
43
n lq -
n >N0\
?
?
Gp z | Ã&#x2020;Gp>N
n P8
| Ã&#x2020;n >N
6 N ` â&#x201E;&#x201E;Q3i#Fx RMI A :â&#x201E;&#x201E;0x#epzlq6Q$ N hZ` â&#x201E;&#x201E;Q3 { g - Wl=hp ?
â&#x201E;&#x201E;Q3
?
8n>N
Q3
Wl=hp
T 4 n rN #yH A0\ QHx RMI A :â&#x201E;&#x201E;0x b r INQe â&#x201E;&#x201E; \0â&#x201E;&#x201E; ! QH B* â&#x201E;&#x201E; QH#1x3N 7^ ,${u } = {u , u , · · · , u , · · ·} 8n pvE [2]
n
u(t) =
X
1
2
n
uiti
iâ&#x2030;¥0
o eut =
X iâ&#x2030;¥0
ti ui , i!
s& u := u {`- _ â&#x201E;&#x201E; # `- { â&#x201E;&#x201E; !#& qT2-_ â&#x201E;&#x201E; o{ â&#x201E;&#x201E; #4qTEz 8n>N#L9${#1XZ | , {u } Ã&#x2020; pzlq $ i
i
n
K)
44
?
â&#x20AC;&#x201C;
X
08
1XZ xbĂ&#x2020; â&#x201E;&#x201E;
uiti
iâ&#x2030;Ľ0
A atu(t) =
X
aui ti+1 ,
iâ&#x2030;Ľ0
bt2 u(t) =
X
bui ti+2 .
iâ&#x2030;Ľ0
BZ
u(t) â&#x2C6;&#x2019; atu(t) â&#x2C6;&#x2019; bt2 u(t) = u0 + u1 t â&#x2C6;&#x2019; au0 t +
7 , {u } L>N#1
X iâ&#x2030;Ľ0
(ui+2 â&#x2C6;&#x2019; aui+1 â&#x2C6;&#x2019; bui ).
n
(1 â&#x2C6;&#x2019; at â&#x2C6;&#x2019; bt2 )u(t) = u0 + (u1 â&#x2C6;&#x2019; au0 )t.
BZ#
u(t) =
N 1 â&#x2C6;&#x2019; at â&#x2C6;&#x2019; bt
2
u0 + (u1 â&#x2C6;&#x2019; au0 )t . 1 â&#x2C6;&#x2019; at â&#x2C6;&#x2019; bt2
#A
= (1 â&#x2C6;&#x2019; r1 t)(1 â&#x2C6;&#x2019; r2 t) 1 u1 â&#x2C6;&#x2019; au0 + r1 u0 u1 â&#x2C6;&#x2019; au0 + r2 u0 u(t) = â&#x2C6;&#x2019; . r1 â&#x2C6;&#x2019; r2 1 â&#x2C6;&#x2019; r1 t 1 â&#x2C6;&#x2019; r2 t
q u(t) KI0vE #1
un = (B â&#x2C6;&#x2019; aA) Ă&#x2014;
K .
vE Ă&#x2020;
= aun+1 + bun , u0 = A, u1 = B u(t) =
Smarandache
vE 0\ ?
8nHA
, n+2
DnS X,h ?hn|
:
8nHA -
,0\
6# â&#x201E;&#x201E;Q3 u QH N
r1n â&#x2C6;&#x2019; r2n r n+1 â&#x2C6;&#x2019; r2n+1 +AĂ&#x2014; 1 . r1 â&#x2C6;&#x2019; r2 r1 â&#x2C6;&#x2019; r2
' ~
RMI
45
Wn #8 ~ 5 Xt f0\|I , {F √}#h F =√F + 1− 5 1+ 5 F #F = F = 1 #9 A = B = 1, a = b = 1 r = , r = , BZ 2 2 n
n−2
2
1
Fn =
1
r1n+1
r2n+1
− r1 − r2
√ !n+1 1 1+ 5 =√ − 2 5
n
n−1
2
√ !n+1 1− 5 . 2
bxN ,)% p5# , {F } -Nh(xn #&? F "xqT7 {lq n
wT z
$ kG Z [1] $QH"u [2] T\ ' rN E [3] ;/k$ $N $℄B Q [4] &I$r'Yqx~~ $ +
n
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; lY C %7 7, 46-74
6| po_
d/J (H â&#x201E;&#x201E; ' E # #r[#100045)
jTi lvhC B C%k 9_M 9 Q l =9SCF#â&#x201E;&#x201E;_Qm Y C %k i' H
u z # â&#x201E;&#x201E;_ f â&#x201E;&#x201E; V % %k#;U > w % V% > *â&#x201E;&#x201E; R a C
0P# V Ă&#x2020; â&#x201E;&#x201E; R aY0 ' %#{ F.Y u p N #â&#x201E;&#x201E; R > q* p # { F'rpF v p| 5,yrYF > . u W } #z # Y.Y u qpR lYK3q l !<v$9S F#_ i#l g9_ #l # 9 #' J #' E 0P Ck :
P
$
R
! C iC T ! _ = = C RB = i C C C
i
T
Abstract: This paper historically recalls each rough step that I passed from a construction worker to a professor in mathematician and engineer management, including the period being a worker in First Company of China Construction Second Engineering Bureau, an entrusted student in Beijing Urban Construction School, an engineer in First Company of China Construction Second Engineering Bureau, a general engineer in the Construction Department of Chinese Law Committee, a consultor, a deputy general engineer in the Guoxin Tendering Co., Ltd and a deputy secretary general in China Tendering & Bidding Association, which is encouraged by to become a mathematician beginning when I was a student in an elementary school, also inspired by being a sincerity man with honesty and duty. This paper is more contributed to success of younger researchers and students.
Key Words: Construction worker, entrusted student, construction management plan, construction technology, construction management, project bidding agency, teacher in bidding.
n[D&88
Z{
47
%3C #Nxx3WoIro , $$K 2- !N{!#Fx3 l P /Y#; !lY >C e#d R ; >C eY (7 :℄|( 2009 &NZ %3XjC*#3nB $ u ' E #℄RE#31 ' E g. K \ 4#qTk%lSD\ Xj 0/ )P ℄Bou # jj)$ - Q℄ # =$ 0 23#^^,6Cn6lS%I | 0\ou/#l(3 `k 3 r7I8 ' E ZA , R! #NNI)℄Bo h#$ n^^lqy Y #$|) ,6℄5 6 $!I CE# vC* C* -83"$ s =~pl Q S $R ?~1 #pY H, #pY H,?# p Y%\j#R o oa ?#?N T $ # \ + R ?=~z $> Ya %I=g&#3[N p %,# !"C \ e%kI%3 pNr)3p:%3 oXj*(h ! &W t:% 3 #x|? $ > o%3C &W$` NR ~ o Iv%tsÆ NR# , H&i` D0 N $%I` >#" ,4lG, \ ℄Guo ?l $K.uyX℄
V ?y
& $& Q#9&C"T)D ℄ `#t3o h j8k$r m$K 1981 & 9 *#SA~pNi 6v&h rD Q\ " %# 3 X)℄b#th ZD #} !: oNu5Æ6vi{ %I r)
Qp B4/*( 0i% 1981 & 12 *# Qp B4N*( kM X%#Z_<%3pN D v& 12 * 25 2#3 X)%I# =eD*( 5ÆNj{|)vi6SA
Qp B4N*( bNZ X%I & +g=,#*(6SA 9* % v) `$ * 8 ~ #s-Qmr ℄E%Æ 1982 &R # %8 ~ #3Z℄E|) Qp B4N*(=I1 6#%Æx[5%# 3Nj℄| *(=I # 4-5 )5Æ { i- Q p B4=*(~ V #7"F Qp B4N*(~ V i) X #D 6%IE[:NQ3 Cny[:3#h [5%${`N& (ol#sij * 8Xw Bg= z#!k %+g= #℄eD%Æ 3vie$ %#h { 1x %DR#eK [% tFoxh h [u7Ie[u %Æ#n3 {D &I$rS=? g,\ 1980 1981
48
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
4Ă&#x2020;%Ip , m ;5 bY xT#3Io)3 p %,\- j` %, xNj#|SA't =`% E9 bxN t i onh #p N%`gâ&#x201E;&#x201E; S# K D j#I r %Ă&#x2020; [5%#! DX9q{ [fg# z %e%Z)%Iz N *%I #%4XEs 34|)+g= # <)#h vi N * \+\F1xgb1 z 3A j*[%4 7: z 0[ $ Ă&#x2020; vi Ă&#x2020;yfV#N\ 200-300 G Ă&#x2020;#} G|z1 [Q{ 1981 &R 36SA Ă&#x2020; [ Q# B T d #N\ 700 =G #F} )=k =z!#`Q #57Nj x bi#3j$ NZ~'t|SA~ #4[ SA~ (&{ 9 { W#j* NZSA~ Ă&#x2020; [Ă&#x2020;#â&#x201E;&#x201E;6 Q # 4\ >dB N {0 ;r=!f > z 7 G.Birkhoff o S.MacLane A Survey of Modern Algebra (4th edition) Weixuan Li H B 1x6b i`[ B \zNĂ&#x2020;#Nx| 1984 &!:U %Ik$= : ~ $KzN#3 3D,! vio E> ljxb< Nj0 M%kUN #,n[ D $K. sm#Zyn!NpN D Qp B4N*( %Cj). w K9#~G) . {o 82 k$\uâ&#x201E;&#x201E;#$KB n B Gp . â&#x201E;&#x201E; 3 X)GZwK #31 h bD4 mu#h box36 $i`$ Bg â&#x201E;&#x201E;3 x x Ei^$K"I}~ 0\ > $ C e $ K $r 5â&#x201E;&#x201E;~3#s 2 h;r=!f > z 7 E Nu K\ = %(s~3 $3Gg#Q9 F$`Y3UNNuB $ 0\ ?bNi`# $ $ Gl3G#Fn 3,TyHâ&#x201E;&#x201E; Ă&#x2020;#8 {3XZ O6N â&#x201E;&#x201E; JO |.M8 $0\iQ)N 3G#â&#x201E;&#x201E;6 N y Q 3o $L H N{nx ,8gs H > > 4 \ + # E z u QP8.q d # u Q " f P8QH.q QH# x I`y)Nd 8gs yl1 3$)Nd lq |#siO{C
D? H > > % + (3ZZ`k# { (3yĂ&#x2020;X#83 \)<k 4 #CF0)3bNi` 1â&#x201E;&#x201E;77$ Tr t3 \w%Ix[5%#3 DT g\w%I# ? +37I [ 5% Gh3\(D* #Nx4[5#6CC { [ED O/#6{ ED ;&BxGr N { #NQD j{#s/!&=x6 z kE em p ~*DNZ|)#f Ez , ! 2 )G * #33\
n[D&88
49
EXZ_<bGhD )# x!2eC x ) [5 fN%I Kq qL43Gxy,+#[%9 gG *i^6 qL43G r,[ fN%I# r,[~N) %3 NP#℄ K # ^; 50cm #{; 60cm fNT3 # |Qz em Cm ;5 C7H D{#h , \7HA #Ju)#%, xO-bx D O i _ ; [5 4` E9 K X9#Xu E7$#J )#NZ%^ F#3y7 6qL45 [E 2)# Q{#g6[5℄ u#{ >^ ℄ m hD` bZ #KxfNGgr { [#%, xN<(%,636 z .[* 1982 & L N`#3 + { [fN%I#%^ F3[{ [ EQ{#J|N)
℄E| %I k$\ Cyy #03 %3 N ez4#6 xqL4 xO?R xg B #3NN ) I#: Ck ; M2C# Wq#3y~ |Ni 7$n V` i+ M A *W u _ R i E'b 7I6 $i` yDo ` FJyao) i`8 3` B x~ $ \ # yWG> qs(d#? NJ( q yWi e – bxCvi =,"T ,bN\y 2|n,8# G #Fy 2|n, - 2005 & 10 *#v34Z$| $i`\+ Qi#b) W! t#3(s$m23|C
{lg)8C *& 1982 & #!TQ oQm#3 (o) bNi`# =si X%I , x$m>N#.x 0)gN %Æ#℄6 e% #D2W` # .x >N &I$rS=#Z ${ x [uK C %I biNueD *( 5ÆW^^ $)e{ B6*( 3 X%IixZ Qp B4/*( 5Æ { #Yi Qp B4/*(W!'m#h XZ x >N#} R 7I g 0) 3A 4 XNZ Q#Z g[5%bÆye uyDN\ wI 1983 & 7 * Q{#3Æ)$ * uY6WwK#0Y Q XÆ Q# ℄ X Z#$|SA't % #3NzT 2[5%&Nz:2 Q0:<2* z Rye&# Q℄ *z #3"T)D ℄ ` 10 =℄#e $Q) 110 ℄# _℄)#XZ" NB e k$ $K $.nx $) bÆ7$#3 T [u2[5%# 2Zk$D bN&1*8M1DT )#3 h |k$ D qs# 8$7 ) vi6')k$-~ 8gs q #C"3 ℄ 6')^ h0\#^ %ZNBk$D 1* # Qp B4N*( U .~pN$r Ng# (CnD2" C 3 K , # 9| r%I xp p 6 &I
K)
50
:
DnS X,h ?hn| –
Smarandache
K .
`+& $K h $K 6U #3ye x6U 4%$K $# xO XbZ" C bi*( G X$K#sZY g 0 ,y=# x*( v) . $4 Q 3:℄6 N #bA - )|U .~pN$r%I xp &I$K 4% 1983 & 9 * 9 2#3oN)%, xNj# E)~SAI U ,&#s~b)%, xm2{|)W!~SA :|U Qp B4N*(:| B`#3 2~*( v|mI Nd I |$rO|#Io)"C\\- bu&y=,03# X)=Z Q# jgjZ(E)D ℄ `th N Bk$D 3 3 5Cn#1980 & Z Q0:#3XZE M %r#t3y $`#"O $G (x4z%3 4z = *m&I#h ZD xo & $Z#NQzD J # 10-20%#Xu3yxn `I\#yLzv&5 NQz#3Fx & 4#1xE)D `syN ;#xk 8k$rm# 1DM$rxk$`X#) 3e#bF oxQ rX\#6[Q~ Q W ?0
.
s 1983 & 9 * 10 2#3op{|U .~pN$rp 83-1 9#I N "C\# XU ~ &I$ruNQ D Gg s$NjIo) `+& &I$ K bB$rlSEx~U p %3$%℄D{ NB$r#vi U ~ pN" %#$rG)r o D ℄~ k({! U p %3$% `& x#Bg=& #C 2010 &B#3 0 )U p %3$% WU~ #y sxkb1xMMu > U .~pN$rxNBZ j &I$r#BZ N$&$ # 3\E(x ℄3# ℄ ℄3 D rNu 9&6Y#3 N$& x 0i|$rm℄#`)$Æ)yx4[u[5%)#4%{uy℄ N * i^#$r os$1s~3 $ > 0:Wng# \1 yxm℄#t3 x℄7 m si# 5')k$ 8gs #3|U bB $r$K)#(C 3 IG)C6U s$#Zf36$K $T3 0\ gÆ~ C f)$)#N)xU %Ik$ =: # N)xU %I $% + # `3h kTz#h 3! QJ## Cy)d F h |C $ ?=: A[ 1984 &RLIo#Nx{{23 $$ K#bFx3 { 1 Æ0U ~ ~ 7$Q BQV #sx Q U Qxqk$vs2-\ D h
n[D&88
51
6U .~pN$r$K`^#3â&#x201E;&#x201E;eCs$k 3-4 <# I y4s# |ex~ $ l N $ ~* $ / $ p $oe%K G) N3i^ #Nu 0 $ #"3bAg 0: jg%{U .p$ r $# $ 5Cn3 W$#"3 {xN %,# 4%D{ XNu &I$K#â&#x201E;&#x201E;6% Ev%,D =#h j , C ;H(yNA $K x k { 9SDH #e HGpyTx6 $ â&#x201E;&#x201E;G p3GE# N{vq|VzE R#$j{hjgu &p zAx6 HG p 3GE#6p N |)\ & Qxvq >#â&#x201E;&#x201E;6p Vzz#1 x6Nd) E\ kQ Vvq R&?" EÃ&#x2020;z#Ax[ Ã&#x2020;B6) Qx\ zvq R 36 $i` 8y xav; # vi > O-3 8l ' O h #b ,&!l#y$2! p ># t$Kp z#E xu^ D^P`g # D Kyj0 T/â&#x201E;&#x201E;#b83 x 2 RD 5# D g7I { y8KE G * #6 D Q#T/83\EXZT>#[?XZ DNS_<D p z) 3 6 $KT$&l #3G8â&#x201E;&#x201E; #?Yi!:=: $K2 - H B Nâ&#x201E;&#x201E;# [n3$gl #h viQ zN2-
j{#[ D,,k% QSE*IDl l..Z Q vi$r x xk W0$% 3f~ #eX&%D yxy=#tl. Hu Wng#Xul 8 H * #j H (% 3nP â&#x201E;&#x201E;B# i xâ&#x201E;&#x201E; wâ&#x201E;&#x201E;# N{u Nu < < HZA3Sâ&#x201E;&#x201E;B#n 3l VD yl#6B&E3G l $K #3W!XZ,!Dl6QS`K#6 H B R > Ez l.&IN.) $KR6p $#n38R6 /=olq )x( ) &? Ã&#x2020;*( / /o /=mâ&#x201E;&#x201E;#A (3 N{ ) $ (x#siF N{) )6p /NPT3 x $ P8YNoP8QH#bFx3$|
Qp B4N*([uK C #6 /P8QzLzv N D h $Kp ~* p e%K â&#x201E;&#x201E;3# WYD36SA't %3 T $&%3pN zv#7Nxp 4z p ~* p 0T.B0T# xe% %[ e%QH#3 HW! ) = .m# ux [B { s$Dg =#8 Q Ã&#x2020; > *( m mN %3e%QH#6' t r n %Ã&#x2020; T# Ax T&4â&#x201E;&#x201E;6 >z#n s$h hkT#ys~n CA #3As~DlSEj2+*( 5n Ix#6 Q.x6 z# j{ n
K)
52
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
?e% v C Nâ&#x201E;&#x201E; TP #Aog x3!:=: $K <H B 6\ lj NĂ&#x2020;:â&#x201E;&#x201E;nx#% R=>NA e%i^ T AK f >#bx3 h ns$o D #36bNi`â&#x201E;&#x201E; #&m s$nuTNZ 8 r n *j7 {} H #ZI sm N{w= bm â&#x201E;&#x201E; {0)3$| Qp B4N*([uK C 3G#Cey%3e% v NP 3xT|e%Y %IT$&# ) .m 4{|&I$r$K # ~ljEâ&#x201E;&#x201E; N $KQp ?6&I~ â&#x201E;&#x201E;N # x~ $x 8&I $r$K#8B$&Iâ&#x201E;&#x201E;G h .m N<$r%6$KN3i^ v$ \ &Iâ&#x201E;&#x201E; lK \ lK# ~ N|lj F p$H# IB Z # t{`8 B$sm# ?{{lj" , C U .~pN$r"C`^#r)j& 3k$rx 400 = z " C \#si3j* 36 \+\ $rWYi#3 %$|SA't % # Y {!6N 4J G) % 5 #h 3E$`^ \+\ x~CnD 3O|U !I
6 d
8 [&I$r`I $\{"#6pq6$rB$&Ismnx e%C #x j % p&I`I $\([ DQH 0\&8kI{"#CAeH$\6 kI C i^#ZnCn 1l3 yne%C #xj kI[ D 1987 & 7 *#3 "C\- #$|) Qp B4N*([u%3K C # x )B&i^#1yn)%3e%C #*75qj)p %3K C !bC V 1987 & 7 *3~U .~pN$r$K #â&#x201E;&#x201E;E|) =%3I\ K 89rK #ErN) %3 |?U O%%3 vi %3 h I%# tY{W!F% Nu%3#U ~.px/DNxy eF%4*# ~xF% zy_<D B*F%z#1x6 NPz~E#qe%T3 D\ NPg"# x.8 .zLs6NPz~E#Zf ,6I 0\# D) F%lqiXZ 8 3|% Nh-?1xĂ&#x2020;0Nu%3 F%z#8[F%z Ij0oN Pg" 5 3 Nm8Y{n,Ă&#x2020;0 F%zj"o" xkLs)NPg"# si Hz~ENu x j"QH !TP 8#DY#l Nu D N
V
Xe
n[D&88
53
Pg" 5h 6lLs6F%zE# x )aX. F%4*B Tx )x/C |m 1987 & # vE? 3|U +KkR%3[u{`%30 Y%I# e%Y Vzz ZAEV 0p%3NP#be^ &m|U N Ws5p \ C Q #Er~*|m 0 1987 &B#QW?e; 4 v4K #U +KkR%3,8)U ~ N Kn ph # NP $K FC8ne% ogbiU O%I%pNe qR< me<u^ N %3#3 $|)U O%% #|? h K C bx3*7|?K C N %3 vÆ%3e%zV #3 Ioey%3e% vNP viG h eye% vNP %:Æ#} Nu eDleT e% vNPX) Q# %3\Rsyw2#e / +Æp[ _ /#-[$r$T e% v C # [eD%3e% vNP#3Æ 0) %3e% vNP ey%I#!T%3I -%3 Vms` #xyC * ik#QDe%6y %3K C T3 #6Nu %3 {{Q#3 n$%)CA Ae %T3 DY ÆK 0\#℄6z~E e; Q#RDDY# DZD ACH(NPr).X&4℄6e% ! | Æn 0\ &? >r[ { [ NPAxe e% vNPb T P8 &|)+ 3A DErp Nr) + ~*"A I /e% Nu!℄ 9&%3\Ryw2#toxb %3#n3 z) )N p[ - d % 3 e% v C QH#8 {[uK C ZA , l30 iQ)3G !bC tx 1988 & #U O% N %3F% 1989 &B#3 $|U +KkR%
#Yi %3o6 n p|)ZQ%3e%#3℄%|? E%R%3K 0Y#&m|?z~%Voeyee% vNP%I ox6b h E#36e U O% N e% vNP3GE#!T)"X0 e% vNPey * o > /P8# {eye% vNP ye%K : N.iQ) 3G bZ0 * #Fn7IT5) Qp %3:*(eye% vNP 5oQH#CNaÆn e% vNP 5 HHv$ e P7& %3 q& e%| #Hve%Q/" e%3 ℄ e%3 .P Qx0 4 z & e%0YA%IP & Dh e%QH& e%:Vzzz & h xP & DK de#Hv %Kqde , nSde Æ gLe %deov %30\K de & ~z ~l 6b h #!T /P8
=
K)
54
:
DnS X,h ?hn| –
Smarandache
K .
x) d{ [℄N#F x)l ℄N K %[#8Kqe% % %`# _%3e%0\j|)N Ix#si7IFIo$% x $ s >r,℄N { [P8 # ? Ae% | NuK 0\ e% vNPeÆ #E DI e%T3 K 0\ C NPg" #%I 8a8 -#3bio60Y X”> ℄ hNH B> ? 2 ” NN .Q 63 D Q#% s D3 ) 8 6?oik#?vi x 286 386 p 1989 & 3 `^#3o6U +KkR% #6% E! XZM|W r$\62 i[z.m Q;T#t6 ;+ N #h vJ S# r)y yWY#ZS` |) 1989 & #n pK |)W!3\e%| )#36Y K C %IF3\ #x Æ >4* #3 (|)QN %
#T [uK C %I !bCje U f$%%3#x3 ,p e%K V;k0 # K P N h 1987 & #QWIo?e; 4 v4K #e%-?{!eH#t8k Q kI{"#-?0&yH 6bN vQ#1989 & # Qp B4N*(=I 5 )U f$%N`b r)%3 pN-?#bxN e%%`g℄ S# si Kq$\6 1991 & L I$# x 0 l C pN N h vE,636b % |?e%K C #?pNr)NQ#og N)U .~ pN$r℄3 $ `I s$ ~$<3Ge%#o EQkÆ# B`% v E > DY3G" | DY)e1Uz %!℄#% |) %\)|mIE ey!℄|) wI Q/ HW*( BZy !# s$Njl NPr) s` )_e%, w*( !℄A0)3 %I#Fn3s~)Kq%3 %#Ee e%P #F 6e%T3 t % C de#?brx ISO9000 %. q℄N m &e bN&#U ~pN" %6 ~IKr)%3 z %C J%I#U f$%%3,8)b h #e NhQm#1xC `D8QEQm#yD `k&si#QEFD8C ` Qm#sD QD Zb r)G h ,s ~n CgG nyb #%3I℄C % K G s G`0Yb 4* Y#3T )N l#(eLsDEQE b Zb >N#& ,8 G b V #Y,xE8 N-hGa#t:8lgD) kQm `& ~
Ne
n[D&88
55
b : k%E#bGa4* |)^ N)4{6%E"~$ sR q y hr $ #sRwRwr[ L>ÆCaYp #j i} yhE mI% s ${"3nhYu |)b l>#3 u4 4a#h yTx nyb ?0i0Y Na4*?W#sh 6lSC T3 nx ~ U f$%N`%3b r)%3siI%# > [* %k#) >NW y S#b1 DP86%3E >r[ uXZ #jgi^XZ Q{ 8 ( /P8 #3 x)BZr, QH#Ck" > E
BZr,#e ) Ay D QH#bAkk _) > [* NZ L J ! 8e%/p P8#Xu[ 9S 9Sl C `KED ) k% ℄#n38Y Nu0i Ne /P8W!2 H $\kRe%T3 # Æ<>y"*( x 10 * 30 2#`o Ov2B ,. 2Q 6 C .#CT*( z OaX *( N$MXZN2Q 8 C .#t v2 E ,. |)2Q 11 C . 9&6<>EX ) 5K,#t B` E;b #DYy *( | $#s 6 Q{ $`*( y(;#bx NZ %u9#} Y*( z O s {℄B h# NP% s C%I CH ℄ ?- #bNÆ*( 6y B * | E# |) E + y sE℄ *( 1990 & #N)Nj%I su 53#"U ~ NÆ ~ 7$Q # yxE$#x -[&IV Q 1XZ) x#3nNj| H ~ 4(0 F #0[)Q k oQ xÆ 3" &Ixnx $#3G℄O 6 H ~ 4#&I3Go&I℄A6U k$ Y#%Iu #3Io0Y B &+*ao/*a Q V bN& L# )KqU f$% 1991 &$\ 8$#%3IIoP B& De% G EVh #e 100m y.W Fe%6|)eu23 Q y.W F Ne%QH $Æ, NÆx6 NQ|fN{ [, 6 N,+ ) Er FG Æ y *( #t ee% h .x #siNZ Lx[*=#Lm0\k; NÆx6 zr FG Æ y *( # NP . 6tR |,+ r[#W L+L v # x φ = 25mm Ix #[ z xL+ 3 NZ℄ NP,+) #gIx6 z℄ 5℄ Ne% %#si _fN Nr[ N|℄\x#! x φ = 25mm 6e%T3 D # Q{ hH4Z x#} NZ L m8%30\ biQ Nup K 2-4/Io2-\ φ = 48mm v #" o
o
o
3
56
K)
:
DnS X,h ?hn| –
Smarandache
K .
x φ = 48 × 3.5mm 27h C^n φ = 25mm I r #bA X6 e% $ φ = 48 × 3.5mm CI [C#[?v %3e%0\ Y iNu CW!\ D)A4#t6 %3e% h nxT sA #y. W F NZ℄Fh xTbÆ v Qp B44 ) 1 V23 #4 xbÆ v Z℄y.W F 100m Ne%K 2-slj U f$%%3#2--?7&S|)3 wE n NZ℄ %g 105t#l 3yC.N 1.2#NP"l3- 126t Y#3 )k% /P8 L+P8ol< "# ?Æ0)n Z℄ Nu#CZ℄[ L+Z℄Nu o I%[NP%I BNP Z℄[ x 16 i I={[#r,EQ$ "#e E " v rK#Q " x , , KXG#ZSZ℄T3 v i & E` M30 O # x )e EQ #Zf 6Z℄T3 ,+o {&L+Nu"x %3e%
NÆL+ H 24 L+L v 7tR C.z #si6 23 i E M n#Z n g hNPB 6U f$% 100m y.W F NZ℄ |0(nx !TZ℄0Y Z ℄ o Z℄o N1) Z ℄%[# NB 1) NPj 31.40m ) #N- i 7 `i^# Q h e%K 2-GD)N ,Z U f$% 100m y.W F NZ℄NP B - ) 1991 & Qp B4VK {B s#?vi3 &`I =&=N #w-FyTxN K ?W 38Z℄NuNPAee% ): #b1 x 1992 &℄nDl6 w ` C % r[ L> Æ 100m [kjl C o 9 S{ r[ L> Æ [ kjl C $N.Q y.W F e%#xI)U f$%N`%3% 6 %3e% #-[ n bU%# q y #l s> e% A#3 )n℄e %P #ey)e% vNPs vle#[?Kq) 1991 & \I$ 3
3
3
3
q℄ L G > U f$%N`%3e%#n3NuT4)%℄%3e% vQH {#
n[D&88
57
C 1996 &n 9S 2 MGajM u&#38U f$%N`%3e% v ): #b1x D6C e 9S C %l C g9_ r gl
> R C %l C g9 _ Bg& 2010 &#v34Z$|bB$r#Yi$rW 1995 & eD$ rrs#" (!fk$i 3 s$ 53#"3vig NPeZâ&#x201E;&#x201E;%[ $ry.W F#W!6 2009 & E)#h k D IDx#sih) %[ #W!y D4r*N NKGgr F)#3y J#F4Z |)VK { % !bCm X U f$% 100m y.W Fe% 0(#n3N(0 )*( DK 6 1991 & 10 *#3 {|) Qp B4N*(=I 1e%6-K 6 # ~rNN h K C DK0siq|G h K C %I#HvU V â&#x201E;&#x201E;r uh * R U ~x/Do Q O2-%V2I?< %3 U V â&#x201E;&#x201E;r uh * Re% $ #N x 50m j0 u8 10m hHh 8 SY=ZA 8e% .&4N 1x) 8EQ 62m# 1.5m 4 | 2.3m! 7I n *( k"
~ !Câ&#x201E;&#x201E;\# P 3
ok <
Kq 8NY#NP x)=~S`#Nx 8 W'Q NÃ&#x2020; (S }*&Bx /7S # x C28 E X UEA wrHWM S *( #eNY E â&#x2030;¥ B8 &=x 8 | x 3 : 7 $b#bv B3G x 8 /NY Y#3 ,)k%4*#s[Ã&#x2020; &m[$ jp 9SwY ' D N Ã&#x2020;2,#8kâ&#x201E;&#x201E;5*( -h P8Ade ) SZ ) # xA [ /-hP8oe%deKq$ QzKq u8 h 8 /SY= !T / -hP8#3#.G 8 /o*( 7R*%y%{ /I-# xD % -[R e%P #Ã&#x2020;Bde ve% vi#%3I -%3 xkâ&#x201E;&#x201E;5*( -h P8QH#P8 D
K)
58
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
NxrSR*( /e7R*%%{ 50m j0 u8 /I-#y2B x33^|C C* 4P8NZ 3oC-[P8{ #-sC% Y >N # )N Q;i^ P8)Ni#l R*( /7R1<Z
Ne7R*%{ I-# Y{3 P8 RN # xA 6deKq { ZQ#qs% 0Y*( y 6e%deQz#3QH)NN, K de#H v 8: > ) 8 j *( NYe%AN-# ,bzNA\ de NZy â&#x2C6;&#x2019;1.68m ZQ|) *( #Hv 8 >oN|â&#x201E;&#x201E;8 # pe ._<NP . vZE8 y # Y#6 T|),+)iw| m&si# Kqe /NY#jZy C DNZ y Ã&#x2020;0#-[ ; .Q A#~Uk 8-y #Ai6W*( t # *( ## K) u8 h 8 /7S e% % 8EQ 62m 7I n *( k"e%{#3T NP)e >r ,[# x Ï&#x2020; = 48 Ã&#x2014; 3.5mm [CfN ^; 600mm Ã&#x2014; 800mm#{; 1200mm r,[s ) /P8##.r,[_<e%D 7I n *( " N e%>luI#1xD#K7I n Ã&#x2020; 6W) 0##y h*( y T"e) Y#3D % -[NP ` WA#6k"Ej 1 rx Ã&#x2020;8e )) ; 6*( y {#%3I v %b T3 # -% 3 8 k" r,[ZD)U #. [5 JE)#"vi't qL4 3G . YI " . y=#r,[ ^; 500mm#{; 600mm# D 3w8NQ 3w8 /0x, #skCI)Kq *( y T3 # b) %3 7|% E ) M#M|e%, W 7I n S x%IAx6*( g|Sx . v# x8-Sx A#8" 7I n Ã&#x2020;ei# N Sx#ZKq n Sxy%=0*( 4|n Tk ? = !TU f$% 100m N â&#x201E;&#x201E;NuNPZAYI 62m 7I n *( k"e%#3W s)CAq $ nx e%C #siF. 4) jg %3 NPavK # h16 x $ yNA â&#x201E;&#x201E;6 >r ,[ NP x r"P8 #P8 Qf#tgâ&#x201E;&#x201E;K &? x "P8 #P8G w2N #t lS qâ&#x201E;&#x201E; #si" v %3e%0\ U V â&#x201E;&#x201E;r 50m j0 u8 /SY=e%K #ZAe 62m 7I n *( k"e%K {Z3oX y)$NN.#â&#x201E;&#x201E;n6 9S{ o 9S EKD 1992 &S`#U ~x/D%3I%#z8NK Ã&#x2020;p[ /#6pv e% 3
n[D&88
59
3e%0\6|)K , z{#Wnx D8 { [ ##Ze H[*Lm\x#Z{ 8eD% e%#[?#Ke%%` bNi`#U ~ W! Nue%r)6 x d[e%K #} D$Æ[*#& xy > Z℄Z_<e%%IzD tCA[ NP8|lS Ish XZ i !< 3 e%6G)su|~ N % A)NZ#${ 1e 4D N3 G#. d[K yTx!e"P8 nx D x)jÆy *( T3
Z Æ L8 .x 1x$ [CIr,#s *( 5x # ? 0N / $℄N !TP8#3NPD)U ~x/D E d[# se D)e%Q/ v%3le 1992 & L# Qp B4 vK w-X %I#h &`I _:&# 3Yi w-0xK # %3 (yx Y#3O G x XE %3 1XZ) |*(K V(0#|?Yh%I su 53#"3 % 3 DbNQl1XZ)#y%b60\&"*(G)4{o6QH &6 K 4 GDyD,Z =)K Z ℄ %3 #31xe N yTC "#= ,CZ X yk#3P%34y%s`#(3 0Y#h 3 `I 5 &# $)suW`I 8 &) b& 3$SA{ W# f|4t:%3 9S{ eÆb C* )NT hÆ0U f$% 100m N ℄NuNPs0(nx vU V ℄r u h * RoU ~x/D %3K C #si A)e N uK #3 Cy H#CF83 NuK P %I N ) O ^ O|)bZK w-X #3 5C*(WD3OO)w-#(C7`NQ#3v isys~Cx%34w-XV" % - G * 3|%34I%# CC * 8VCi#C 53#"Z 3 ℄ E%3 #MOOl s~OO x %3 #Æ0 K P %Iv&_<Z gm G& #x|*(N)su 53#3 s~ Zw-XV Nu:℄u E" Zw-XV#N*( Ax pQ0 #C( $)suZ %3 #h Cn`Ii^℄3 =&#si# 3*( U%3 p Xx(N* (! he| x#36%34K 4 Z ##"T) $)su 6XV% E#Æb vV ) *(OO DZ , ~* # j3 OO~*# I)3bu&6e%K P QzÆ0 Nu D%I#s". N*(OO = ), #3 gm_<%34Z ℄ gm#lqs`3Z ℄ %3 m|C `k# XXV" % N*(! g℄2B#h b XXV%{# 3
60
K)
:
DnS X,h ?hn| –
Smarandache
K .
*(4{95R AyN &{e #COj{"$ # ) R Q = FH# J( Y }l Y M ^ s H℄) G e < ;7#j" B OR l G e <;7 Æb "$ J( Y C ql $ I#O XU $ C %kYH}#j" B CqO p $ Y#N p" p kN*(! $)su mZ #Æb B lq)yL8 `k B ! ℄X"vQ#s`3n= ,Z ℄ %3 bmu {0)N*(Nu4{ q#b)! $|U 1 C," 6V J( { C %k , T p q M R #: d W b;E℄) { ?l SE#3 Æb >N xN K , %344{ %I>N#}yTbG &Æ0 K P %I=#6C e 9S{ EDl K N.=# ? |)C >"#3nu^lSEsh " N{ x 6 #b){ Qp B 4 &WW!Vtg=&) 3 ,o #36 Qp B4N*(%I g=&^#uBZ 16e%K 4 up #Wnx {6U \ .
%3 D?lY# C6bNi`83 > or7x℄yI bA#1993 & 3 *#63 &`I:&=N i#31 eDNu\V`I_ :&# 6K C E N 0: suNj- )%3 w- viK w-x %4<. x#3 %4[ { j* 84 N(|)%3 B %4` 124 |)bN&;*#qT7$Q #3- )U ~ ~ 7$Q " %oU k$ r=D nx $&I&V.W si6w- %4o r.W= Qz- d#Wnx%4 0)j* 124 #n30)*( Nu, D/8 l 3Fx {G& s~#Qk h , ^xD 7YlbiW!|)av0 3.#Gy"`1% |{7eDGQz i2 ?36bNi`&e av rS#h X-pN7#Z }DggA2e%K kI Ae%K \#1% |4{ o x# ysbik Q e%kIoI6( `#eC 4 x,4 o℄E . oI6 BE 3#3 bÆeHyor * ( 9#bFx=03B A I Qp B4N*( x h ! n6 H 1993 &QB&#*( 4/ #q%3I ℄*(I NE!Nm8r ) 1994 & 1 *#3$|)℄*(q-\ K VV h )% E Æ# n`1xI% 6~EOo#3L? yKE g6 Xj* e%\ b # M|Nu%3e% q biQWW!Io6%3pN4 j8Xjvj*m4 #yTsyKM#v
7
n[D&88
61
iXj,e j 3\Ej# j, A Ix#bA#vj, 'Q0I1 y>l) idj%I~*(!oVtw v#*(K Vo℄*( 8V℄n eyvje% vNPk ovjOZ.m ! x6Ij{N`K gB Z # ~*(4{5> QvjZ %` >l{j ik Vvj.m#dj% ID | B`E;: E Æ0#y g 3bi Nh D%I#1xErvjeye% vNPk #bx3 h jZvj# He%z N<} D=`i^1XZ-[Xj.m D #Æ0e % vNPk ey%I bN&#3T )g= %3 vj%I U . N`%3~ZQ,v4pN#vji^y1#Xj{j vjOZ e% vNP 5 |e%z #3 x)$`1Æ0)e% vNPk ey#x C* ik) ?%3 8OZAx)g=`# ~!oV G)su X9X eyÆ#Eny\Æ3#"sA vj%I#3}x=`#?CnAx) g=`#J ) Ij `#*(! m23o*(!oV ℄*(! G ,Nj |I DC{ %e XIj%e Xvj #Q U p%? Qp N4 G *( IDC6K i^ vIj%e#4{uÆ #~IDCN )%I, d#N) OZ#N)6w>EQD j #~j vj,? x#A vj, K j T Z 3n?|) 3 i#C = K j v ivj.m I VyN# xx y # x k#?3n e% vNPAx x ik6 16 I~E {z$ vj, e% vNP#7Nx k p# x jtRCyg 3 Dikg e% vNPk #-[e P 7 %3 q e%| De%QH DK de Z #6 > x k > <> xl r,℄N *( x7 *( F Qx0 D 5#Z w4 ) ,# #!oV "GWvj, #3K j Bg bNi`#%3j xXZvjOZ DP7#N<vj,(%qT Æ 3 |B j z#BZvjOZN<( y=#?IDC e3%3x
Qp B4N*({e%#. bA8R5 m % gI#h ZQ,N<(s ~ Qp %3:*( bA#6B # j,T3 #3eys 7 D e % vNPk 1L)zv#bF0)IDC3 j,# Qp B4N*( DP7o8 "H bN& vj! #n3B{`m|6 P CT!N℄ #XjvjW !6# 5HCT3 D N Ix)#?|)M% ~ !N `#7U
K)
62
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
Dq"XD z ~ 4!E Ix bFx3 { 8Xjn 4/[uXj %I N D h â&#x201E;&#x201E;!bC V n 1995 &R # Qp B4N*(5 |),8U ~ 9511 %3 U \ . 3G%3e%-? *(28 6 5~e /%3o+ + {%3e%#BZ8n %3e% vWn #&m? )*(G)Ze%C h , 0 )h ! |#? 3 h t:%3 #:%3 A~â&#x201E;&#x201E;*( :%3 q- bx3e%K C g| f N h #Fx3B S #e% Q6pN NP \ oe% +Q n=â&#x201E;&#x201E;D ee%K 4{ N h
sE
r[h i iuH ) |% E s~#3nG Cx6â&#x201E;&#x201E;*( |6F#t6e%C E ( N I#x l 7 # 7 s [ , 36â&#x201E;&#x201E;*(\ K V-V N&# 2d b w)83{"Jm ) og Qp %3:*(6 f e%#*(G)4{e6b h C pE uyZ#13bG ,? D{ ph ! |# Rl #G ,u^ Erxav4s #bFx Qp B4 N*(6U Ã&#x2020;0 N 9s %3 G ,R 1{|)% Yi%3 z w%I h Ã&#x2020;0#%3e% F6C T3 #} I%{ Nu0Y%I#â&#x201E;&#x201E;6#ErpNr)
0i 10Kv E N ,+%I#3NP) E N 3GZAe%0pxR#Ã&#x2020;0 x %,e% 1995 & 3 *#e% |C #XZ 3Ge%) tbih w%Ih ( Ã&#x2020;0#}D% 4zDDZf#~ 3 1%D{>|e%#bAGZ#N x| 1995 & 5 *B#6 9 # ErQ# Io3_ QI II Ã&#x2020; I
n[D&88
63
## Æ Y)) # v,% b)&I6e% vih ! |} r|ÆQ h ! o3= ,#3Ge%T3 Wn g#j=`1DL2zN `K9# B` D[ E9 n\ D #6e%: . Q#3e) Y )e% .P P B N`y Zle NZ#3J2%,x{0 poQ|)GgrS )b #b o)bI %#(\ , /#h ,% b %3\ExR%,7I34#K , N<yxQ|b b bF { %3e%#36pN NP \ oe% +Q ” 4{e%K iQ) 3G QI P| 6 *Q' # Y D0Y%3 /e%P #eye% vNP#Io /e%0Y /e% x)$KF #NK) 3_ #6 QI T3 W!Æ0)e3Ge%& NK) |E# 3_d`y## D lNPe3G# Y#3" )"8 )3G#!T $o) /P8#" ))( . *( . E#NP)EÆ#63_I { ,% )# Æ0) F 3G e%# {%3 /e%~*Qx0 iQ)3G Y # DSl /e%6 ?5HQ/ h ! N) % O)$`# hOQ{#%In y{ Cy2B#og E3zK9#3"##(C E7Q {#34!CONZ E#33C^|3 C* #$ ,Ndk #Nd&`# B O|) ?5H0\ 3(CM|k4 si 5C#Cx3oh ! $ ,[eC% e"T{ j ,N\ |bgk h X xy= #bZ xKYC , 4% 6R%I4n y{# 0eC,{4{5H6# 8C6*( N\X (% qf# C$ D=&#yD )Gkz 5HZ ?d )bZ4% B`E9#M|CW!6_ v%,W` 0Y e% ) h ! y J#N403 xjgQH(CIo 5< h3_I D?#ZA pNr)6G * u Er# Qp B4N*( 6 1995 & 6 * QI si# 5 ) %3 /A+{+ e%-? 3bi℄-:5HQ:%3 #|? %3:5HK C %3T 23 ℄Hr) )e%pN#3n7IA5q%3 /oB+ e%-? p[ d > x x w> I k >℄N#<>x w>l ℄N#e NP (zC~3 ,Æ0 e%A-[ C$ e%3 (#BZ Q *( e% %avg U \ . %3gBÆZQx U ? *( C*<Æ#? *(4{Wn> %3 K q# E>{! %|% MNM N`# Q =ÆG 5m m y C40 *( # Kq*( y %#yDYe1U
64
K)
:
DnS X,h ?hn| –
Smarandache
K .
z Yl#3Q|) Q=Æ#{ %,y *( y|NBi#N %,Q{ ^3#"N) U ? *( 4{63C* 3 3 %,G "`uh # $|C* NM# {x? *(t:!N ApC* - C 03# jgy*( 3 D 7Q|_ { #(%, 1 ) 3 5C#p / Nu>l|) %xKq%3 /, >l#6bNZm y C40 *( #bu>l|)b )_e%#[?Kqe % C83 bÆ'I TSl.s#F~YXS)a ^ ) - e%| Æi#h >=Z (#Xu Æ . g #%, xNu0 > 6 D|)R # .y1# R=0)*( y T3 DYW Yl } { %,3WD|℄XE )bZ~*#y y v X% >ZK qe% % bA#%3[ E+ÆIo1 x k >)
E /e%|g+Æi#U ~pN" % v%3 %kb #?x|) U \ . %3 Y#*( ℄*(:%3 o|?\ ! y2 B# G`|% )_Y +\ n K 4*# {y !6% 24 p iM2%, b {N`#30 F)m6b Æ # 6p"%I N)s$i) #(C m6 i X C03%3 % 0\Y#3"h # De(CnHb N%#h % bG` p b , B`#G)*(4{{ t2b {|% %e SK# 10$ i }J( ' 3 |%e #C!3"$ __ A l $ #l O j $R +r #s + 0 X D l R |K 9 p-#s<R #l R w R wi 0$ 3 xm2Cn |gNÆM)NQ1 )#(G)*(4{ | f#ys~3 p" , bANÆ>N t~ h ! |G ,Cx℄*( 6F8l#℄*(4{syMg3nG , 1996 & 7 * #℄*( v, \ b #{|U \ . %3# D %K 6 <ÆE7Q NIbf# xID8h ! |4{950 En 200 Er#b *x%3 .oe% %Bg N *#N-Æ0)+Æ /e% g1yx")#h |s # { "xEn#h ! |G 9 50 (eyq 3lSEW 1995 &QB&- )U k$oU ~ ~ 7$Q " %=D nx $&I\V.Wo $$s$)#F0Y6 Qp B4N*( ` Q ) Z XZ~Y |*( x#tbNZ℄*(83 nG , IE#n34NZ$| {h &Q F N 0\#1x ℄ p P # } }? N C q1Si} Z XU e Y )#XUj" 'M{yxbA 3b 7I N\4ID? Fox~ b h#n3QA [ 1996 & 9 *aI
n[D&88
65
o0Y2-\ 8$Q 96Y#3Nx\2 R 7| B 0 #i R l N Y 100% Y z 0e A#BZ6% E0 Gg { gjh%I#Z! g*( d }yT E$|W# xI i^wK(â&#x201E;&#x201E;#0Y2-\8$Q 1996 & 9 * %3 â&#x201E;&#x201E; /e%Ã&#x2020;#3nIo v /m %I bN& 11 *Q'#pNr)Io" +{*(#ApI -(3!C Q +{* ( hApI -8Q C`Ku#3nG :[, (y) Q C`#(Z Q Ã&#x2020;1 $|U # R )s vi 11 *Q' U W!y )#; i 3L)$mdR# XNm V# R|) 1 *)# x )Nmd R# |)EW# l6J*#}g x E EW50*([)Nm â&#x201E;&#x201E; sQNOxW #|Wd 8y#X |)=.#4`B ,. 31 C #EW[ RpFy )#}g [)Nmz*JN â&#x201E;&#x201E; #bA 8y !:ApI -Ã&#x2020;0)Q s Q G , {Nx33bmuv0sO#"3L2 ` Rp |)=.# RNC;NC[Rp FoxbNZ! #n38 y i C ) #Fs~) H ;o H | xCAN$u o
m [HT +/h
`m,4u(B/h
3bi6pN NP \ oe% 2 #j NZ \ .%e1x~3 7\I IÃ&#x2020;% #~3 7QDn #& xy ik#4â&#x201E;&#x201E;D %r)le \ *(7|% E G)\ %3 C*163 C* #CnlSEF0)36%3 %C b De%0\# Tm 3 `k#4-3 `k I 1996 & `#3nIo v %3C U|E Qg Oe% N`#N)\ %3 53# Nz Ã&#x2020;nâ&#x201E;&#x201E;D\ )G r T)# Ux > .y1#?%, x JI )NQ1Ior ># 0Yy E|*( C(3 MNQ#D I `k(%,I g1XZ) m Ã&#x2020;C #3 Q|3_ M#R 6CB" 33v9 % ^|C* zz KX)N:#(C v%,3 > Q{ : #!T /P8 #3 )N
66
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
aq`z#(Cn6T) ) X` 12cm >#siK )`h . I Ã&#x2020; #3 7 v)b ##.h 0\ # 5\ %3 MNM C"$ l$ #l *s \ %3 N) 60 =< %3 'g #N3i^ :\>NyJg#h C8Nu0\J. )#tC!3 >Nyg N`#C 53D I% #0Y$W ) 30 ) h#& 0C$`y$` 3 pN\ *(N % v\ #Y{ *(N)h :\{% YT3#G 3! CNj \ #t3bi &6 Q2-\ I% #BZhhnC b) %3 m3" #_dhn N G` #3m2C{|) 3pN\ *(# CI)jf#s )N %3-t:\ b %31x QH$%V2I?<# vi I6%3{`0Y#Y woe%z h Ã&#x2020;0 C {F0)36UQ xqk$',vs$)`^#6 QH$%3pC* -:%3 T`^
r[h i iuH ) Q d ){ /h +{e%`^#pNr)x { )` X%A,+r) V2 pNr) >N#bW*(ym[:5Hr) uNC #Nx3 32 \ .!3&O #3 5Cyx2B N`#36%3 b e% q#;| Ã&#x2020;i#% 53 bW*(6 Ã&#x2020;<>E I)N 1m Ã&#x2014; 1.8m %#30% #3nxyxh-z ~ C 7C~%d#C"7)#) o: -z~ 7 #h0\ Cm23M) NQbW*( I C~%d# Ã&#x2020; 5)yH ogbN`~3 v \ .%e# /NP|?,{|% #(3DEE%IzMNMe% q ; | Ã&#x2020;i#3W mE|` ,+*( I %dIM)NQ#s 5E3n-N P 7 b%6jg Q#,+r)Xm)=H# 5)=H <> Ã&#x2020; Ey 2B#03 jgy |Cne% 3 5E#bW*(xpNr){ #*o# \1yp[:Hr) C \ .%E#b) /%3 yy[o KXb W` ,+*(#"bW*( A O F' t # 5 dWu $jM G R = p#, x$jM| 3 O#AY 5N A _ F = ' t # kYD R T + 3 $E l}Npg m4 j 5dYH K U> $ #C) R` g [ m| /NP| ?,bA #:\ %3 6%Ex Qg)` %3n% 15 `#siD b
n[D&88
67
W*(yDSZb \ 6 |IE #bW*(=Q ,im# s~xh yp:Hr)C B bZ #bW*(4Fy y-:5H{6 u) 1997 & `#pNr)x { )%3E +{m S,m~ S,m X%#siD +{*( -[{ VrZ x )0rs xÆrs # bWS,m +{*( ErNxyxyg#gGW+{*( {k3 -# 3 # N AttR0y e b& `# Kq Le%#pNr ) v* *(Z{)1#< ,. 30 C B&IR# `,+ NumIo ug (bWS,m |% I #bWS,m "x `)1# ,.J B #yx X% 0\#y$`I 3}g v +{*( NUmg l6Jk#7H #% 1(,3mE z> # RDYm~X % x xm2 L >~# x1(%,G|3 C* 3M g℄\o# DNS~ ZyQN~{6#qsB +{*(#60\I Æu{#h 3 { 6y0kbWS,m ry\x bQbWS,m 2B)#{,Y3 q>N 3"##T DQ/#3Y{)n B m Q{#si X% m_<QWj0 #3 Qgy\{6 bWS,m } s`qB m Q{#si6 X ~* %C B * #bWS,m qTpNr)#BÆ\ :Hr)N j| b m X% %##.X%%[r #3 E xDs`kery\ x {6 %3 1998 & 7 *F%#T v)pN NP \ oe% < oU ~ %\):O m<#CNZ< r # % EX z## { %3X 6 b< h iQ)3G b& 9 *a#3Q )UQxqk$xq0 $% vs2-\# xIo)Nd',$), Ndi% 0Y o
s# N.0d? "Q
QH$%V2I?<%3 1997 & h# $%4{T |U \ .
%3Q T$Z# 3F n H#s$ZBÆ3 X) %3 NPQ/N q%#3 Æ > ;5, K.# QH$%4{7Q Sqf#Cny!% 3pN#G YN)!%3pN %3 ogY{3 f| 3pN\ *( 'g %3 I \ nl# b %3{`0YI)yH%I#6 QH$% 3pC* g qf CnC% N s`UÆ3 QH$%3pC* :%3 bi3W!s~QE)UQxqk$ vs#}yTopD qsÆ h DQ{ BZ#3lSEx6 1998 & `1Io QH$%V2I?< pNG%I#}yTvi%3 I68e%r)Q Xjvj 3#yx3``
K)
68
%
:
DnS X,h ?hn| –
Smarandache
K .
& 12 *#3 |)UQxqk$vs2-\ 8$qsÆ tv3 2 8$qsÆ *(,uV Qi#Cn eQ)#"xDG)4{2-NQ A y Q 3y2B# el6y 1Vw G` #*(,uVqs3 C #(3TxN : C ` M > #a Æ Q veEz" )*( y5q3',vs$) -p\x#sih -p\+\.\+wi ~ G&{ 3N e ',vs$)#3fy 6veÆExQ)7I 8 G& # v3 |vs$)i#y=,"jbmu#(" Qp B4N*(h 8 #y $`7!, #h 6vi#CfxQ %,F 3\\+\#bFx=036X jn *(%I`^#y p-p Qp B4N*(! t! D h ',vs$) N&3G℄=#g63yx`` QH$%% #N<N $Z#30\ A)1 #bn 3XZ Æ0vs2-\ N& ℄3 $K {#C 2004 &# QH$% Nu4{e6 %33GEj84 #4D p+Æ#(3D2 A DB K 4*#3DYviNPg" < QD Cx3nlpNr)x 8 3|% Ei#N<TE%Izb NQ Ko %#& k\ *(oe% r)℄nxpNu"`uh#4 3pC* s C%NQ u 1X)#% Iy8 S %33G-;ÆNP#tN` pN E+Æ# $Æx BZ pG0Y Æ<>y *( i#NP e%Ch QH Æ 5 ÆNfd a0\# %\)O s DY #D % n%n Y#3-[N<%3n p8 5 K QH#D:)Nan Q/#~NP e%x8 y %3+{e%{#3pC* - 3Nj# )+{%3 Gmu#& H$%% i)N O #Æ % l Q{#Zf%3 8+{e% y G`#% 1KqQ{) 3pC* - !3"#Z % O uh#O =mu Nm |.X1ye)#bNZN-EO) 8 mu#}yT6Iwy) N< {J( C %kUl $Z | bAN< # R% 1 |K0) C " rmJ s Y ^ 5 HI* o06 #$%% ZD Ækl
zo z{z | xw? 3 3pC* -o$%eCG)s k% 5# | hwx sR n # x4h, 5) 3pC* -pe3Z& WRa#!% peNQ G` N Q;#% |% b %I#3NdD% M% #Nd CxO 30CxkMTqP ,rY E #C"MT 3" XpR = aF#i} " = 4 C TN R = y )'^ Y -#a X W $ \ P ℄℄ =Ga#j -r_i}Æ l q G SX Ya X i ) X 3 2 5C#p 1998
n[D&88
69
+{ | xw6?iy X#N<x 'u Wn06 Q#h % ,m{+\ #?H$%I N $ v#6+{g E#"= #D( , | % m 4)3 `&#;ik3pC* -xp"$ G>Y X 3 < #s i V%2 B s l^#l ,) $ oh 3b3i^ %I6Q?%4>u?C 4 N Z# n 3 {i% WXjn *( 5 )NKC*<pNh C #h h pNr)kQC4) #ZD) C J( Ã&#x2020; * + = f T gm
7 mgyQ Q
QH$%V2I?<%3 1999 & F%#: =) dN# BÃ&#x2020; p< 2000 & 5 * N`#3&m3pCN)t -"j)QWP" 0 )NW Xj*(# x E I3 bWXj*(%I E"3XZNx76H$%%I# "3 %I>NW!(| QH$%C* 3 5C#3yL l6N Q7 uXG#h V2I?<W!F% qTE jf#6 *(:! I)3 ! # {|)bW*(-h ! #vibW*( 6U 4 qIkR C*#:| %FyT=g=, 3bi',vs$) 8) B&#W! 8&Iâ&#x201E;&#x201E;$K#j :Q; X{ v N UN91XZ)#`Q 1x7I$K{ AQ Nu$` G \l.& , Q.Z# Ã&#x2020;0`IN.G0Y#bFn 3 <1i^6b WXj*([un I?) Xjn xNÃ&#x2020;p y un #eKQ Q HKoKM . mWn=#7" Q B=k NVHIâ&#x201E;&#x201E;N Y#8h ! HIHKop
V 2 D 3 |bWXj*(i#*(:! .)3NV H v F [ Jiâ&#x201E;&#x201E;' E >Ã&#x2020; #3$K)D D 5#ZA 2000 &QWP"=zNu |6A r|mKQ ~ Y{[uTg=& e%C #si Tvj#B ZT4Xjvj HK83{"yxNm u 3 ,A"x r vXjn % I#qTlj#8 >gn \o 4=Z L& 8â&#x201E;&#x201E;oâ&#x201E;&#x201E;B#ZXST4 bFx3 u&XZS8|D u XjvjHIHK N D h ?=& %3C lj#Fn 3{*(N *16%3XjQzJA)w|#snlXj , Nu%3Xjh Xj+" 2001 &#*(5 ) |"C*<%3#,63|? %3Xj hb |" W
)#G)*(4{N4 3DyS 3b h Gg Y#N =* i^ #3 Dk |"C*<pNC C* >4{&O# Cn
70
K)
:
DnS X,h ?hn| –
Smarandache
K .
%I, UNXj.m Dgn NZ# |C*<pNC C* -03# %3e%Xji# y 8Y 3_e% r)[:NQ#℄66X℄CH CX 2 ℄#h |4{{% b lR)3_e%r) 3"#}DCZD{ b r)X℄#3Pn,y%L8#t L)HI H A#6R vj,v 5#%=0Xjd7 m3bA"#C. ~ # x g)Ce6Xj.m
b r)X℄ D N`E;#3 2 |BÆ 8 e%kIvj ℄moXj.m6 p\)4 /C )Y/# $|C* # |C*<pNC C* s { #"Cn
|QW, | Na,V.m#8CnBÆvj 8 e%r) ), V #e 3 r), V yr # D[ C Y/ b`Q;#3( C*<pNC C* N)t - 2, |ba.m wkm#!3Nj p \)4/C Y/ l;|kmdi#3y&ej, |ba.mE N3 , y #h DE)"= r),Vyr #85N r)kX9kuX#byx ,V.mn G #6R9MD %=0y#qf 30b)t -#4> h 4uQ#Bg 6bawkmEX 4uQ C$|C* X 4uQ 3nN j p\)|mCY/ #qbaX W B8 .mk|?Y/ , Dq)NQ1 ${) |C*<e%Xj $ * N`#C*<pNC C* -Æ36N#og, |j ba.m I F6 #3kCZAYu# CN483lq |#. 3 Xqw)Cn%I %3Xji#C*<pNC C* - | " #6Xj{kXj" %0 I) 5 vjr) 3\ q#sG 6s gmQ#%3 ~ e% kIe% CuÆ #3 )"o#s 5Xj" %#C y I Xj P7# -Xj.m Xjj0oQH8vj.m XVo℄ bZ Xj#e% vNP x x.j#Ce yDYvj, -#dzEvj, -FW!x~dE)# xyseijmvj,#(Xj" % XVo℄ N)&WÆ0)XV # "qC XV R(3MNM s03#Cb 6 N 3 ivjxyxpNr)eD #3"x b)&W: fqXVlx )%I, bNxx3BZ! #1xXj,G e j vj,#b x!X j" %NZXVBz vj, Xjn Xj," #=O6" , |.&Q0\#^" ,2ex`!
u#tbsy`%2XZh A G-pu#?bv #PHG " n w?lSExK " , d BV|( =i #" ,ZDNu H K D (n ,le# xh Cnys~ R 0 bi#}Du F#k
n[D&88
71
= " ,(y%℄7Ik U R X%&^%3e%Xj#Xj,#
j, j, Ce#D j,3 QI S %3 h (~Xj,5
DH# j,ys` B #6Xj,ZD6 jZ3GEDX 100 gm Q# j,s`)Xj, D #yQ)w=ve~ Qx8 Q 3| C Xj u i# 3 Qx w=ve 3M#3 Z`m|)0\ 0 3 5CbÆ H#" | <0 m B _%H 1 j7#NTRiR : s j: } G#R l p Gd j pd F s & C - f W |5($H F 100 T# Cd F 61 W j# ;E | Ws + = f m F |)0\ 0 #03CgC 3"$ ^( p 1;Y - #a > Æ #j = f CH F; k#s =lYM } Z { 0 B )3 pe#3nF~YXS)_Y - Xjn T3 #PH I PHC Xj.mY/x- p\)|m -# ??1Y/i^ KqXj 3 N|( NZ#6Æ0)NB$rwp%3 \ Xj # p\)|m -!3"$ l Z ℄ s (lg 6$u : o #H ^ } ' h7 20 : Z s u C 53#v %3\ Xj#N < 10 `E 1qT>NOÆIj#Cn y yK0 qTbZ%3\ Xj#C 83 2 g #. 3xN PHCu , { %3e%Xj#*zXj R #Nuh j vj, 23#y(3;#D(3 z Cnh, j ", h 3 z"Xj" %h fCn j ",#bu,y # U ,6 IbZXj+" x#6 p\)|m C* 2#y(3$|! I#oxb) -D3 ) CAi v 7DBi #7# |)bu, u NZ#N psv4h Xj# Q p\)|mN)4{ |EE `# e 5 vj,Xj&W r# 3i 3biW!x*(t:%3 &W C* - 3 e#Xj&Wx6 p\)|m p &Wh ? #D 5 FxCnx 5vj,1XZ)# jg D)~Y3#1x 0C C 53# Cn ?D Xj&W#6XjIo 30 ℄ Z{x7Hs~ #Z{iI H# bNZ? &W1I[)#h &W? NuS|-p,Z{s~Xj&W r Cpe"$ s F = `2p 7 #N 5V% sR H V% H.9#ld R #l R i6VV% ℄ M $ 3"$ } Z Y _ nt } s d Y#s ℄+7| N (LN N G | s M ^ p FE$#4 } s Gp R l p d #j p F s Z q+ = f # ℄ ℄ % - _ 29 f .\ h Y l#3 E^ f Y V%?qÆ t 3 p R Q Y V% + M p > s 3I ÆR lY
K)
72
:
DnS X,h ?hn| –
Smarandache
K .
b)4{m 83" && J #l \ _ $
h Xj #b vj,s h j#l b)4{sh kb vj,xAXj&W r b)4{ - {N`#3|C C* MC#si#vC, -#h F gG ,6Cb ) EDu bu&#3NxL Nu[uXjn I? I # F= 5 `a i # sXjvjHIHK Z 7RI?2 N wI~ xGgXjn I? Dgm Nu[I, h7R2 yr#:. }DxXj, D 1N D℄ Y6Xj.m #:. }Dx p\), ZD gm1N DD bÆb[ Y Xjn uI DK#F ) Æ ' J } `f9 N
ys#bv N D 1x8buD gmxkrHT ;5# ? A xk Cn D .gm#bxj [I` D Q
m& KU P
℄ g s 2002 & #3- )UQxqk$%$vs$)#s |)6 QV$%[uvs 2- 4% g6vs 2-6i^E3XZ7IG #BZ2-u 06QW P"bWXj*(%I 3biW![I?|m |)&WC* -t -#Io [uXjvjp 2-#{{h ! KM II? %I 2003 & 1 *#3 * (h ! I) C %l C ' =r #bx3 NZ [I, wIC*# 9&!<y<#tY bW*(j& I?C*#(x~3o&WC* eCG) s 5q #3 u C %l C ' + { Y z Nm℄ bau {! N{n 6kQNWD?MD?#0) *(I?C*~~#b1x H ℄C %9 _l C ' + { Y z \Æ 2004 &S`#pN|~ ( N)I *(:%3 i #"pN|NW C*4/6 6CN XjvjI?2U%#G Y ,&mu ' E *(G)4{(y # x,63 u 2 pi℄ bx3 NZ Xjvj I u HI℄ u 0Y)gG`#s8HI > D"` uh )j" 6 RO6 ` |.Mp Zu℄#3 , Z ℄lSEym|#yT3gn 5GX ?W#t" |) %` *.4T bF" )vi ' E G%I xn76NuHIK $K bZXjvj2U%Z # =[ubQzC* s Fs~)3#sBÆ3 NuI?C*9 ℄#3bi x #x3 Xj*(h ! I?C*ey ~~#C H ℄C %9_l C ' + { Y z #N< rXjvjHIHK o%3NP \ e%o0> 0u 1-1.5 `i^
n[D&88
73
&#QWDK " KM%3Xjvj # vey Q FIDIC ℄N.m#C 2007 &=z H v F [ Ji℄ [l C ' ^ < dh7 o H vF[Ji℄ [l C' h7 CnY)G ,T ey)NaB #& vNuI &WUN 36 Z%EZ) = pe#n3 {x )b $a.m ey%I#0)b$a.mAenx{ Dey&W 2007 &$a .m!QW 9 |" rD.=z 3biy&`m|#338XjvjHIHK olN!<~ [I, #8 n Xjvj I DK7U%j|KMo _ Ix x#36 2007 & V )Xj*( %I# QXjvjv% N#s 2008 & &Qoop0 v%N %I, 2008 &B#QWDK "A b$aj0.m G%e#Y)G)e & W℄% u#3 5 N)s |?4 V.m u uT3 #DY 3 Nj|?4 V.m )s u yg#?Cn,6u E F 6 6 g $Q s G Nu 3peCnb$Q ,u#Zwgy| G QWDK " s F. E F 6 6 u yg CnpebNQ~3{u# ?box3 I#h E F 6 6 lSExHI r%3e%W NVX jvj3 K 3 rHIK #8 E F 6 6 g. 5# rNulS / )S8|D u # |) %` _i p oxbNZuK#n3 Z6Q Xjvj I |)<kZ )t~* -4!x℄%IC"%Fe6CNZj0.mC*9#k X G%e )t~D K " G)s l(`k# R dNX pe 2 J y= #Cn. 3 uK℄ orm d% nCn D #3 C*9u )4 V.m Xj .m Q℄ #Nus N4/0)t~xCC s #0Cn[ Y{ # )z' E C q- ~ $ #sN4lqu℄ 58Cn %Iy lD bN&36Q N-I) 60 uK#m g|) , 2009 &B#WDN r)FG e[u%3C , vNZ `$` XjC*# x 9_ C % C % # 0M ) Y 2008 ?!o HvF [ Ji℄ [lC' h7 2007 &?! N`~U?p k$ N)~ u ) 9_ C%C%#0M )Y 2008 ?!#e LA)Xj PZorsC 5 G ) q u℄ 5 w# x7|? vC* $) 3C% 3(Cn3 $K^Q 3M)NQ# 5Cny% w#$) B BU B`uÆ℄#e
N) 83"$ w s _ Æ Y= _ #l ,L )sR" = k=~ p LJ $ H ^ Wv sR u=#i s Y=~ p L } q{ )J $ # ℄ s B |=Y}r4 q i Y z )bNZ!<#36 {u℄i#(%uT 5$ #3 u 2005
74
K)
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
yTx Z #x Z 7Iuâ&#x201E;&#x201E; 5o D6 / #h o uâ&#x201E;&#x201E; 5x +63 5 3 ,o 3 $2-I , k#?3[u%3C I r 3#M Ix[u $2- !Nr #ye"6$ 4 si- ) bv ' * pF v p| x \#?yik 0:#Ai n , ,\M7k" j â&#x201E;&#x201E; #Ax3 1[N p %,DK|6 # ?lY,\Zz |(oQH b56bg=<i: 7IN\i"$ tm p u~ p t> #Qm~ # m ~ Ã&#x2020;#um~6: ^ #3 m~ # m~ ) ( # w l 3e#blSE x3nj ,#Wnx k , ,\y[ si#bFx3nj , 0 K I# Djj H&Ae~ ` #h &xQW ${ G
4 A
gl qâ&#x201E;&#x201E; â&#x20AC;&#x201C; B w d Y m R z# >, 75-97
9 [ W t O
Rb R |
8 Smarandche J:Qa d/J (G \ z = =z Cz =B d "qZ 100190)
â&#x2C6;&#x2014;
jTY IGD W=z# # m Juv#
B w > % R ;B t 9 w > R R B Theory of everything +I 5 Jw > % Y z #t W z# b 05# ! #+i} B w H B M- B Y: w > %Bp ^ sU#9 +IGD R B Y n e t > % Np 9 { = z g Y > B #l ) R Y #i} m R z#Y w >Y â&#x201E;&#x201E;9 Ă&#x2020;$ #ND C e { !Y_ t > % Np 9 m R z#Y > B r!W#w > %} q 02# B{ M- B 9 YBp# > % O 9 $R I} Z 7â&#x201E;&#x201E; m R z# >Y B #+i}SmarandacheJ - B # gl Yz 2} B w > %( 5Y#OB#qâ&#x201E;&#x201E; R I > B # X D B w Y 5 5 N X| vhYN Nf Y t DaLZ+ R B Y is^ C eYN N j7 N N Z N NC e# \, H} Z w1g > : %H UYKoq l vhN N 9 t q* ( W P 1eY R vVO [16] HY % u
.
=
m
WĂ&#x2020;
â&#x201E;&#x201E;
_
{
"/ ^
The Mathematics of 21st Century Aroused by Theoretical Physics Abstract. Begin with 20s in last century, physicists devote their works to establish a unified field theory for physics, i.e., the Theory of Everything. The
E5=\b Mfl =zGA= >1 2006 % 8 )"_ " Hj# n*J^ } #N 2006 % 3 ) e-print: G \ z A g "200607-91 1
2
K)
76
:
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
aim is near in 1980s while the String/M-theory has been established. They also realize the bottleneck for developing the String/M-theory is there are no applicable mathematical theory for their research works.
the Problem is
that 21st-century mathematics has not been invented yet , They said. In fact, mathematician has established a new theory, i.e., the Smarandache multi-space theory applicable for their needing while the the String/M-theory was established. The purpose of this paper is to survey its historical background, main thoughts, research problems, approaches and some results based on the monograph [16] of mine. We can find the central role of combinatorial speculation in this process.
!>v$ kRH N#M- N# `^# zGp#SmarandacheG p##.%`^Gp#FinslerGp P% AMS(2000): 03C05, 05C15, 51D20,51H20, 51P05, 83C05,83E50
§1. 1.1.
`v`llI s{ N3 8QĂ&#x2020;J
%K`^ x m {y#Q$ = x, m = y # = z #AN %K`^XZx = {y#CJj (x, y, z) &"K`^ x m i^{y#6RQ i^g% t#AN "K`^XZ xJj (x, y, z, t) {y %K`^Aeg k z 1.1 qi^MIN g #A, 6 N iZM| KlSEx n N z (section)
z 1.1. JjN i^g , \ \+ljl #, \+ `^ Ez"K`^xN #C , \+ `^x 3 ! #6RXEi^g%#Ax 4 ! , b1x Einstein i `A
Cx e
[ nS{$ ?
`v u {xa i Qa P7, v& A #Wnx
â&#x20AC;&#x201C;Smarandche
K . C
77
1.2.
j Q3#> $Wp ) k RH N#bĂ&#x2020; N. # j! N , `-K C. -`^#b `^: ` gm g #nb C. % `^D\)RH r03\ 5 zW %# , %-KQ#3\ 5r0)BBGĂ&#x2020; r> # 6!T 137 ^& 9 0) ` jR P7 Hawking A #RH \T3 , oA0" R ([6] â&#x2C6;&#x2019; [7])#6 z 1.2 Bq Einstein
z 1.2. oA 0" z 1.3 # P{ ) ~kRHIo 9 HW#x \ `, A | T3
z 1.3. kRH T3
78
K) :
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
P 7k R H N P 8 R # u\ Z 9 T3k 6Q $ y ) k R HIo N ` ` ^#N & 137 ^ &{ R H o , #D joi ^ 0 D 7^ ,.o7^k u. { y xW s $ o> KI" vi q i ^ [Y R HIo #` ^F [Y B =HWw k vOIĂ&#x2020;y ) i ^ 10â&#x2C6;&#x2019;43 | #u.x 1093kg/m3 #,. v | 1032K bi C.? 8- #} i ^ ` ^ o ` x%VĂ&#x2020;y ) i ^ 10â&#x2C6;&#x2019;35 | #,. v | 1028K# D\) Z P U #ex( 6 10â&#x2C6;&#x2019;32 | i^ Dk) 1050 X PUjj) , 5 \ #bi9& j W [u N â&#x201E;&#x201E; D{ #t ~ %T # ; o U ( $â&#x201E;&#x201E;I # \ 5 F h â&#x201E;&#x201E; b N i` 5 y | T3k% #=0 5K= L 5 #e ,. v # 5oL 5a Q~ #17Q)} 5o 5 ? G M y |L 5 y 8- Yi {{Ă&#x2020;y ) i ^ 10â&#x2C6;&#x2019;6 | #,. 1014K & |{Ă&#x2020;y )i^ 10â&#x2C6;&#x2019;2 | #,. 1012K &b`^# I x ;I x o UI x n â&#x201E;&#x201E;I DY) Ă&#x2020; 5 #~ ,.y 1010 K Z E!# 5 \bi ^ (x < 1 #DnqTa J,?a ( # 5bi hDY Ă&#x2020;y )i^ 1 â&#x2C6;&#x2019; 10 | #,.v & 1010 â&#x2C6;&#x2019; 5 Ă&#x2014; 109K# 5oL 5 5 oo 5a iQ~ # \)k% H5 5 ZA L 5 #3\ 5Io r0 5m # % Z H5nK pDY (,nQ At o / / 6 b % r) $JoĂ&#x2020;y ) i ^ 3 â&#x201E;&#x201E; #,. v & 109K#x(HW|& 1 H&kp # =0> r0 X #mL n nd &B pi # % 5 oH5 â&#x201E;&#x201E; &g |) 10â&#x2C6;&#x2019;9 #nKu.0&k > u. U{ 2 Ă&#x2020;y )B pi #,. v | 108K# Ă&#x2020; 56a J,
h % y < Wy a ( H% Q~E !#[bij, Ă&#x2020; 5 .1 / ~ bi,.0&y #H5 <1 % 2 ;-p18 0 5 #3 ` 5 I #B Z vih X DY 5 B 8rĂ&#x2020;y )i^ 1000 â&#x2C6;&#x2019; 2000 & #,.v & 105K#> u.Iok n Ku. ~ HW #H5|g-p N 6 N
0 5! i( q h j j =_ t n ?ne t Dk? % e p #~ 3.: HW ? n Dk #buH5 t F 1 y 5Dk? % y 5 e p 8rw D s'jsN )i^ 105 & #,.v & 5000K#> ,.Io
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
79
nK,. #B oB 3\ 5 â&#x201E;&#x201E; z K 7| k&!T N5 & #~ R HB` \ H5 %1 v |) y < Z2 ; 5W 9 D 5 3. # b i1 8)H5o 5a â&#x201E;&#x201E; Yin #C g 0)x #,.k& v 3000K [biIo # 5Io 0 #t F } \ 2 2 # x6 N | 0 #6| | 0 #| 0 # | | \) 7 y s ,. "Tj " 2Ax6" R D . N J, R D 0 F<Jo ) i ^ 10 & #nK,. v & 100K#> ,. 1K PF! *F KF1 k>+s? )) i ^ 10 & #,. v & 12K#J` n 03n {A | $ nzA ) i ^ 10 & #nK,. v & 3K# N> ,.& 10 K 1.3. `vxaiQaZs{ N3 N> l < > 2 - l > ~ =Ă&#x2020;> 5 #C 5 e EiY u oQiY d /0 Bgt U BDY)$Ă&#x2020;{ 5u ^ a I x N #b1x Einstein a8No Dirac %5 $ a8Nx{ j N #N<x 2 - > $& ?%5 $ x> A 5I x N #H v U mU ;mU b +Ă&#x2020;I x /0) 5u ^ a I x 3\ I x [E tU Bg&nIo # => $W#H v Einstein \,Nx u N b+Ă&#x2020; 3\ I x #C u N a8No%5 $#p > $ ku N N #C .Z
! DY Theory of Everything !T 80 =& 2 - #0\ N xh | _ A 0\ 6 J a8Nx> ~A N #6 i tN J ? N w % #e Y N> x â&#x201E;&#x201E; z &?%5 $ x> A N #6 5 5 5 #e Y N> x >â&#x201E;&#x201E; z ? A :2S8 2 - #m{), .m4 N u 0\ #â&#x201E;&#x201E; 6 }M}\RY E'M ^ \R #p|Y = }M'â&#x201E;&#x201E;q M F w U )}M' F i HY}MY^ \t|Y',YMF A Hâ&#x201E;&#x201E;Y 3 ^ E' Einstein P 7eZD J a8 $(pw Y= G^ y Hop BY/wo t $ R = D Y7 pV 1 i d YG k w !g} }7 Y p ) j Q3 #C 8
9
10
5
1 R¾ν â&#x2C6;&#x2019; Rg¾ν + Îťg¾ν = â&#x2C6;&#x2019;8Ď&#x20AC;GT¾ν . 2
r $ , C u # +uâ&#x201E;&#x201E; 10 l.y p #}MHG k Re i R = eYG k t 4
K) :
80
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
s #Robertson-Walker |) j Q3 N Ă&#x2020; 8- ds2 = â&#x2C6;&#x2019;c2 dt2 + a2 (t)[
dr 2 + r 2 (dθ2 + sin2 θdĎ&#x2022;2 )]. 1 â&#x2C6;&#x2019; Kr 2
a n - Friedmann !T=& `.A #Hubble 6 1929 DY #, 3! x N 2 dX 3HW #9Q j Q3 X 3HW 0)> $W D Qk #C e _<g m da > 0, dt
d2 a > 0. dt2
a(t) = tÂľ ,
b(t) = tν,
3ns~ #: b # Âľ=
A Kasner .K
3Âą
p
p 3m(m + 2) 3 â&#x2C6;&#x201C; 3m(m + 2) ,ν = , 3(m + 3) 3(m + 3)
ds2 = â&#x2C6;&#x2019;dt2 + a(t)2 d2R3 + b(t)2 ds2 (T m )
Q3 4 + m ! ` N< qQ #b sy D 4 !X3H W t x i ^ ( T 8- g Einstein
t â&#x2020;&#x2019; t+â&#x2C6;&#x17E; â&#x2C6;&#x2019; t, a(t) = (t+â&#x2C6;&#x17E; â&#x2C6;&#x2019; t)Âľ ,
3n | N 4 ! X 3HW #h
da(t) > 0, dt
d2 a(t) > 0. dt2
Bgt U DY M- N AE 0\ ) 3 G b N N Y N 5 y x ?x! y s p-a #C72 p Qk . 5` ^#b p xN on 1-a N< -I #2-a -I Xa z 1.4 D) 1- 2- A e0"
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
6 ?
?
-
6
6 ?
(a)
6
6 ?
81
6
?
?
(b)
z 1.4. 0" P 7 M N # P\Ioi ` ^ ! x 11 ! #k R HIo # e 4 Qk!6 B = wS 4 P #?5 7 Qk!A6 B => ?p #b A 03n `M | 4 !~A oM yk 7 ! A 4 !~A I x or Einstein j Q3 #? 7 ! A I x or xYQ3 # ~ Y |Qzb N Q 1.1 M- B Yp }R = O= eq8R = 7 ^ - R Y 4 ^ - R nx 1.1 o ` ^ E " j g m# 3nX Z |TownsendWohlfarth 4 ! X 3HW 7
4
ds2 = eâ&#x2C6;&#x2019;mĎ&#x2020;(t) (â&#x2C6;&#x2019;S 6 dt2 + S 2 dx23 ) + rC2 e2Ď&#x2020;(t) ds2Hm ,
b Ď&#x2020;(t) =
1 (ln K(t) â&#x2C6;&#x2019; 3Îť0 t), mâ&#x2C6;&#x2019;1
K(t) =
m
m+2
S 2 = K mâ&#x2C6;&#x2019;1 eâ&#x2C6;&#x2019; mâ&#x2C6;&#x2019;1 Îť0 t
Îť0 Îśrc , (m â&#x2C6;&#x2019; 1) sin[Îť0 Îś|t + t1 |]
b Îś = p3 + 6/m. i ^ Ď&#x201A; _< dĎ&#x201A; = S (t)dt#A X 3HW g m o > 0 C |_< z P 8 l #: m = 7 AHW h 5 3.04 3
d2 S dĎ&#x201A; 2
dS dĎ&#x201A;
>0
K) :
82
x
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
[ $| . u# 1.1 l S E y x ?x` ^#~ Y j S $ 0\
} C +MRI > - # H O= ek b- R = 1 ^ZWY -' x l #6Rb A $ ` ^ b6 # D N y x3n2 \ + M | ` ^#Fy x3n6! $ k T ` ^# 66 3 !` ` ^ #j X Zl q (x, y, z) #D y X H [ N ! k 1 5` ^ tJ: TQH N r 0\ $ §2. Smarandache
1 + 1 =?
67& N #3ns~ 1+1=2 6 2 08â&#x201E;&#x201E;N #3n s~ 1+1=10#b 10 lSE x 2 h 6 2 08â&#x201E;&#x201E;N } $ 08 2 0 o 1#e08 KA 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10.
P 7 k uk ^ ^ $ &e #3n xN Ă&#x2020; L&! <$ &e ([18] â&#x2C6;&#x2019; [20]) { Mpb 0\ # â&#x201E;&#x201E;B 1 + 1 = 2 . 6= 2 3ns~ 1, 2, 3, 4, 5, ¡ ¡ ¡ b A /07& N N 6b N #P 7 KI #j - {z 12 T #C 2 T 3#Q 2â&#x20AC;˛ = 3 s A#3â&#x20AC;˛ = 4, 4â&#x20AC;˛ = 5, ¡ ¡ ¡ b A 3n1 |)
si |)
1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, ¡ ¡ ¡ ;
1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5, 1 + 5 = 6, ¡ ¡ ¡
b AN u08 p [?6bĂ&#x2020;7& 08â&#x201E;&#x201E;NQ #3n} | 1 + 1 = 2 N Y6 #3n$:NQ08 N ? r S #8 â&#x2C6;&#x20AC;x, y â&#x2C6;&#x2C6; S, xâ&#x2C6;&#x2014;y = z # ` &x S Eb6 N 2 r s K â&#x2C6;&#x2014; : S Ă&#x2014; S â&#x2020;&#x2019; S #n
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
83
â&#x2C6;&#x2014;(x, y) = z.
xz Qp #3nX Zx z 3 bĂ&#x2020;>N6VzE l qD{ T 3 S j x VzE l q #6R S n #A6VzE1 n y -` & $ x, z u ^ N g k`3 #6Rb6 N y n x â&#x2C6;&#x2014; y = z, 3n6bg `3E j E â&#x2C6;&#x2014;y #- `3 #6z 2.1 Bq
z 2.1. ` A v QH " ` bĂ&#x2020;8 n x 1 â&#x2C6;&#x2019; 1 Q S 8 n z G[S] Y6 #6R3neY| N _< 1 + 1 = 3 08Nu #3nX Z T D 1 + 1, 2 + 1, ¡ ¡ ¡ Bz s qTz { Ă&#x2020;0 Y 2.1 R = J D (A; â&#x2014;Ś) â&#x201E;&#x201E;MRYOC R = j\ Ě&#x; : A â&#x2020;&#x2019; A uXz â&#x2C6;&#x20AC;a, b â&#x2C6;&#x2C6; A #?N a â&#x2014;Ś b â&#x2C6;&#x2C6; A # C R = \RY c â&#x2C6;&#x2C6; A, c â&#x2014;Ś Ě&#x;(b) â&#x2C6;&#x2C6; A # ga Ě&#x; â&#x201E;&#x201E;MRj\ 3ny5 â&#x201E;&#x201E; | Z Q> n Nu (A; â&#x2014;Ś) z G[A] >N N R Q 2.1 _ (A; â&#x2014;Ś) â&#x201E;&#x201E;R = J D # (i) O (A; â&#x2014;Ś) WC R = MRj\ Ě&#x; # G[A] }R = Euler H 7 #O G[A] }R = Euler H # (A; â&#x2014;Ś) }R = MR % D (ii) O (A; â&#x2014;Ś) }R = S>YJ % D # G[A] H O= keY1uâ&#x201E;&#x201E; |A| & =Q #M ^ (A; â&#x2014;Ś) W ; = # # G[A] }R = S>YJ 2- H- O= ke m R =~ uX Bke7-Y{â&#x201E;&#x201E; z 2- { # 7â&#x201E;&#x201E;B 8 ^ #X Z xN Ă&#x2020; ^z QpK DB 08 R #z 2.2 D) |S| = 3 $Ă&#x2020;08â&#x201E;&#x201E;N
K) :
84
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
z 2.2. 3 X H08z
~ z 2.2(a)
1+1 = 2, 1+2 = 3, 1+3 = 1; 2+1 = 3, 2+2 = 1, 2+3 = 2; 3+1 = 1, 3+2 = 2, 3+3 = 3.
~ z 2.2(b) 1+1 = 3, 1+2 = 1, 1+3 = 2; 2+1 = 1, 2+2 = 2, 2+3 = 3; 3+1 = 2, 3+2 = 3, 3+3 = 1.
8 N ? r S, |S| = n#X Z 6eE n Ã&#x2020; y s 08â&#x201E;&#x201E;N b A 3n 1X Z 6 N ? rEsi D h Ã&#x2020;08 #h â&#x2030;¤ n ? | N h- 08â&#x201E;&#x201E;N (S; â&#x2014;¦ , â&#x2014;¦ , · · · , â&#x2014;¦ ) 6! n $ #%xr N 08â&#x201E;&#x201E;N # â&#x201E;&#x201E; Cx 2 08â&#x201E;&#x201E;N N< #3n N Smarandache n- ` ^ 6Q Y 2.2 R = n- J - P#l_â&#x201E;&#x201E; n = m A , A , · · · , A Y 3
3
1
2
h
1
X
=
n [
2
n
Ai
i=1
- O= m A Wtl_ $ RI % â&#x2014;¦ uX (A , â&#x2014;¦ ) â&#x201E;&#x201E;R = J 8 #+ n â&#x201E;&#x201E;2 1 #1 â&#x2030;¤ i â&#x2030;¤ n 6 ` ^ p [ Q #3nX Z N{ J! n $ % A k%` ^ '? | % A k%` ^ ' #s |a n n / Y 2.3 _ Re = S R â&#x201E;&#x201E;R = StY m- J - #-zG^1 i, j, i 6= j, 1 â&#x2030;¤ e #?N gY %H ^ tC i, j â&#x2030;¤ m, (R ; + , Ã&#x2014; ) â&#x201E;&#x201E;R =~ -zG^ â&#x2C6;&#x20AC;x, y, z â&#x2C6;&#x2C6; R # p i
i
m
i
i=1
i
i
i
i
i
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
(x +i y) +j z = x +i (y +j z),
Z
85
(x Ã&#x2014;i y) Ã&#x2014;j z = x Ã&#x2014;i (y Ã&#x2014;j z)
x Ã&#x2014;i (y +j z) = x Ã&#x2014;i y +j x Ã&#x2014;i z, (y +j z) Ã&#x2014;i x = y Ã&#x2014;i x +j z Ã&#x2014;i x,
Re â&#x201E;&#x201E;R = m- J ~ OzG^1 i, 1 â&#x2030;¤ i â&#x2030;¤ m, (R; + , Ã&#x2014; ) }R = # Re â&#x201E;&#x201E;R = m- J Y 2.4 _ Ve = S V â&#x201E;&#x201E;R=StY m- J - # % mâ&#x201E;&#x201E; O(Ve ) = {(+Ë&#x2122; , · ) | 1 â&#x2030;¤ S F â&#x201E;&#x201E;R = J # % m â&#x201E;&#x201E; O(Fe) = {(+ , Ã&#x2014; ) | 1 â&#x2030;¤ i â&#x2030;¤ k} O i â&#x2030;¤ m} #Fe = zG^1 i, j, 1 â&#x2030;¤ i, j â&#x2030;¤ k G^ â&#x2C6;&#x20AC;a, b, c â&#x2C6;&#x2C6; Ve , k , k â&#x2C6;&#x2C6; Fe, ?NzgY %H ^ C # Ë&#x2122; , · ) â&#x201E;&#x201E; F WY # - # # & â&#x201E;&#x201E; +Ë&#x2122; # # $ â&#x201E;&#x201E; · & (i) (V ; + i
i
k
i
i
i
i=1
k
i
i
i
i=1
1
i
i
i
2
i
i
i
Ë&#x2122; i b)+ Ë&#x2122; j c = a+ Ë&#x2122; i (b+ Ë&#x2122; j c); (ii) (a+
(iii) (k1 +i k2 ) ·j a = k1 +i (k2 ·j a); Ve Fe k #
â&#x201E;&#x201E;J WY J - # â&#x201E;&#x201E; (Ve ; Fe) ~ Y3ns~ #M- N ` ^ l S Ex N Ã&#x2020; ` ^ Q 2.2 _ P = (x , x , · · · , x ) â&#x201E;&#x201E; n- ^ } - R HYR = e zG^1 s, 1 â&#x2030;¤ s â&#x2030;¤ n #e P k b R = s Y_ - 4 \ " ` 2|` ^ R b6 j 0 3 e = (1, 0, 0, · · · , 0), e = (0, 1, 0, · · · , 0), · · ·, e = (0, · · · , 0, 1, 0, · · · , 0) ( i 1 #e 0), · · ·, e = (0, 0, · · · , 0, 1) n R - ` (x , x , · · · , x ) X Zl q 1
2
n
n
n
1
2
n
i
n
1
2
n
(x1 , x2 , · · · , xn ) = x1 e1 + x2 e2 + · · · + xn en
F = {a , b , c , · · · , d ; i â&#x2030;¥ 1}#3n N k%` ^ i
i
i
i
Râ&#x2C6;&#x2019; = (V, +new , â&#x2014;¦new ),
b V = {x , x , · · · , x } y d_ i #3n Y x , x , · · · , x x* #C :b 6j% a , a , · · · , a n 1
1
2
2
n
s
1
2
s
K) :
86
A a
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
a1 â&#x2014;Śnew x1 +new a2 â&#x2014;Śnew x2 +new ¡ ¡ ¡ +new as â&#x2014;Śnew xs = 0,
1
= a2 = ¡ ¡ ¡ = 0new
b6 j % b , c , ¡ ¡ ¡ , d #1 â&#x2030;¤ i â&#x2030;¤ s#n i
i
i
xs+1 = b1 â&#x2014;Śnew x1 +new b2 â&#x2014;Śnew x2 +new ¡ ¡ ¡ +new bs â&#x2014;Śnew xs ; xs+2 = c1 â&#x2014;Śnew x1 +new c2 â&#x2014;Śnew x2 +new ¡ ¡ ¡ +new cs â&#x2014;Śnew xs ; ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡; xn = d1 â&#x2014;Śnew x1 +new d2 â&#x2014;Śnew x2 +new ¡ ¡ ¡ +new ds â&#x2014;Śnew xs .
[?3n | P E N s- !5` ^ â&#x2122;Ž *a 2.1 _ P â&#x201E;&#x201E; } - R HYR = e C R = _ -8 & n
uX R
â&#x2C6;&#x2019; â&#x2C6;&#x2019; â&#x2C6;&#x2019; Râ&#x2C6;&#x2019; 0 â&#x160;&#x201A; R1 â&#x160;&#x201A; ¡ ¡ ¡ â&#x160;&#x201A; Rnâ&#x2C6;&#x2019;1 â&#x160;&#x201A; Rn
â&#x2C6;&#x2019; n
= {P }
-_ - R Y^ â&#x201E;&#x201E; n â&#x2C6;&#x2019; i#+ 1 â&#x2030;¤ i â&#x2030;¤ n â&#x2C6;&#x2019; i
(^ (5' 3.1. Smarandache 5' Smarandache k x N Ă&#x2020;BJO Y2 G p #e 5\ { s LobachevshyBolyai G p Riemann G p Finsler G p #eDD x x L \ g n2| G p 8 n *N 3n T $ : N Q2| G p A G p Riemann G p P T3 2| G p * â&#x201E;&#x201E;N ~ Qzb:g*N 0 $ (1) O= eU O= )Yezl}Zd; & (2)O ;; q}Zs D & (3)ZG^eâ&#x201E;&#x201E;H) #A _ G k> lY - Re}ZqR & (4)(p;Bq \ & §3.
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
87
B Xp MpR;; { -" ;; ? #- $R;; YR (?Y "p B7 i t " ;B # s" ;; z +R ?, MH 3.1 (x (5)
z 3.1. N gx` $g y V x`a x b #â&#x2C6; a + â&#x2C6; b < 180 B N g*Nq- 2| :*N #D X Z x Q zbĂ&#x2020; QH $ _> l; QYRe # C R;; { > lY; ? 7[2|*N* zZ { #,n N x e :*N yn I *NDY #DM E l6n x N \ Y # = $W x {+g*Nq :*N # t N xh 0( x ,e x eC Y Nn^2| :*N #b< | * â&#x201E;&#x201E;N xkĂ&#x2020;Y#xkb6e; g/t U#Lobachevshy o Bolyai Riemann â&#x201E;&#x201E;n xy s Y N n2| :*N - 0( Cn x Y Nâ&#x201E;&#x201E; n x $ Lobachevshy-Bolyai Y N $_> l; QYRe #AYC " ;; { > lY ; ? Riemann Y N $_> l; QYRe # C ; { > lY; ? Riemann Y N | h 6 ~ YX Zp ` G p # ` Z Einstein x ea8N j i` #C3j MI N `` ^ sA #3nxkX Z N{ g 2|*N | G p?\ 2| G p Lobachevshy-Bolyai G p Riemann G po Finsler G p'.Z [16] A) b 0\ 0\ A nx Smarandache G p&e? p #.%` ^G p # b 8 Smarandache G pI N D I6Q #Q N 4 I#.%` ^G p Smarandache G p H [u B k k \h k o k +Ă&#x2020; #â&#x201E;&#x201E; n P 7 y s *N p e #u B k x *N 2|*N 1!- 4!ZA Qzp N g*N $ (P â&#x2C6;&#x2019; 1) AYC R;; i, ; QYRe #uXâ&#x201E;&#x201E; _, eY; t{+; O
88
K) :
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
; ? & (P â&#x2C6;&#x2019; 2! AYC R;; i, ; QYRe #uXâ&#x201E;&#x201E; _, e C R;; {+;; ? & (P â&#x2C6;&#x2019; 3) AYC R;; i, ; QYRe #uXâ&#x201E;&#x201E; _, e C p Y k ;; {+;; ? #k â&#x2030;¥ 2 & (P â&#x2C6;&#x2019; 4) AYC R;; i, ; QYRe #uXâ&#x201E;&#x201E; _, e Cs ;; {+;; ? & (P â&#x2C6;&#x2019; 5) AYC R;; i, ; QYRe #uXâ&#x201E;&#x201E; _, eYG k ; t{ +;; ? k x * â&#x201E;&#x201E;Nxk 2| G p 5 g*N 1 . #C xZ Q N g . g*N n2|*N 8 n *N $ (â&#x2C6;&#x2019;1) _> lYG^ " e RlC R;; & (â&#x2C6;&#x2019;2) C R;; q s D & (â&#x2C6;&#x2019;3) > lRe i R = r # Rl}Z x 1R = & (â&#x2C6;&#x2019;4) ;B Rl \ & (â&#x2C6;&#x2019;5) _> l; QYRe # RlC R;; { > lY; ?
\h k x * â&#x201E;&#x201E;Nxk K qG p N g . g*N #a n x Q *N n $ (C â&#x2C6;&#x2019; 1) AYC " ;; N p; k b"=> lYe & (C â&#x2C6;&#x2019; 2) _ A, B, C â&#x201E;&#x201E;Q = J Ye #D, E â&#x201E;&#x201E; "= Be O A, D, C i B, E, C Qe J # A _ A, B Y; {A _ D, E Y; ? & (C â&#x2C6;&#x2019; 3) O ;; A| b p "= BYe
k x * â&#x201E;&#x201E;Nxk Hilbert * â&#x201E;&#x201E;N N g . g*N Y 3.1 R =H _ â&#x201E;&#x201E;Smarandache lY #O BR = -HBp 1# # # AYZ " IZW w # R =b p Smarandache l H _Y k â&#x201E;&#x201E;Smarandache k Qzb 5 ZA Qz$p l Smarandache G px_ i b6 T 3.1 N A, B, C 2|VzE= y-` # x` 2|VzEqT A, B, C
rgN x` A3n | N Smarandache Gp h 2| G p* â&#x201E;&#x201E; Na â&#x201E;&#x201E; #e $g*Nx Smarandache k
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
89
2| :*NY6 â&#x201E;&#x201E; _ R;; QYRe #C R; C ; 0 t , ;; B n Y Nx` L !T C V x` AB " ` !T-p N y 6 AB E rg N gx`V L#?!Tx` AB E -p N C y b6 V L x` #6z 3.2(a) Bq (ii) *Nâ&#x201E;&#x201E; _ G^ "= BeC R;; Y6 â&#x201E;&#x201E; _ G^ "= BeC R ;; C ; n " ` !T$ D, E #b D, E A, B, C N # 6 C -` #6z 3.2(b) Bq #rg N gx`!T D, E ?8- ` $ 6x` AB F, G .y A, B, C N -` $ G, H C y b6!TDn x ` #6z 3.2(b) Bq (i)
z 3.2. s- x` q f (' â&#x201E;&#x201E; $ N y " O= 8 X *â&#x201E;&#x201E;4 X # *B t 4 X WP; 2p = p #O"= p7-Ă&#x2020;lR = Q X T _! & *B t 4 X WP; q = p # O= pĂ&#x2020;l F wp IY{J{ m $*â&#x201E;&#x201E;}l 8 X # < l_â&#x201E;&#x201E; p &s *â&#x201E;&#x201E; }l 8 X # < l_â&#x201E;&#x201E; q b X k ` &x N Qx z k% 7 2 z0" N $ |DD xk g k% Qk xAEs~ zxX k # ?\ â&#x201E;&#x201E; 5#mAx y X k #6z 3.3 Bq #e (a) d I ~z #(b) Ir \ â&#x201E;&#x201E; 5#m 3.2
z 3.3. \ â&#x201E;&#x201E; 5#m 0
K) :
90
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
zx z N Ă&#x2020; â&#x201E;&#x201E; #v 7 2bĂ&#x2020; â&#x201E;&#x201E; q z d I # | j zkCs B 9 D = {(x, y)|x + y â&#x2030;¤ 1} Tutte 1973 & D) z n # x [12] # z Q Y 3.2 R=aH M = (X , P)#l_â&#x201E;&#x201E; 3 m X Y j( Kx, x â&#x2C6;&#x2C6; X Y s HJ Y X WYR = vC P #- G e X Y H 1 iH 2#+ K = {1.Îą, β, ιβ} â&#x201E;&#x201E; Klein 4- A #(d P â&#x201E;&#x201E; vC # C 21 k, uX 2
2
ι,β
ι,β
Q 1 $ÎąP = P â&#x2C6;&#x2019;1Îą; Q 2 $A ΨJ = hÎą, β, Pi XÎą,β W}" P7 3.2 # z ozâ&#x201E;&#x201E; n P o Pιβ Ix XÎą,β E | -WM~ &d Klein 4- % K Ix XÎą,β E | M~ xEuler-Poincar´e* p #3n | P k x = Îąx
|V (M)| â&#x2C6;&#x2019; |E(M)| + |F (M)| = Ď&#x2021;(M),
b V (M), E(M), F (M) â&#x201E;&#x201E; nl q z M ? d? oz ?#Ď&#x2021;(M ) l q
z M Euler r #e z z M B}8 z Euler r - N
z M = (X , P) x }l Y #: % Ψ = hιβ, Pi 6 X ExXw # kA- }l Y ι,β
I
ι,β
z 3.4. z D 6 Kelin zE }8 I N 5 #z 3.4 D)z D 6 Kelin zE N }8 #X Z x z M = (X , P) l q6Q #b 0.4.0
0.4.0
ι,β
Xι,β =
[
{e, ιe, βe, ιβe},
eâ&#x2C6;&#x2C6;{x,y,z,w}
P = (x, y, z, w)(ιβx, ιβy, βz, βw)
Cx e [ nS{$ ? â&#x20AC;&#x201C;Smarandche K
. C
91
Ă&#x2014; (Îąx, Îąw, Îąz, Îąy)(βx, ιβw, ιβz, βy).
z 3.4 z 2 v
1
βw), (βx, ιβw, ιβz, βy)}, 4
= {(x, y, z, w), (ιx, ιw, ιz, ιy)}, v2 = {(ιβx, ιβy, βz,
gd e
1
= {x, ιx, βx, ιβx}, e2 = {y, ιy, βy, ιβy}, e3 =
ZA 2 z f2 = {(x, ιβy, z, βy, ιx, ιβw), (βx, ιw, ιβx, y, βz, ιy)}, f2 = {(βw, ιz), (w, ιβz)} #e Euler r
{z, ιz, βz, ιβz}, e4 = {w, ιw, βw, ιβw}
Ď&#x2021;(M) = 2 â&#x2C6;&#x2019; 4 + 2 = 0
% Ψ = hιβ, Pi 6 X EXw b A 1[n | . |z D 6 Klein zE }8 A :2 N> 2 - D#3n X ZN< QHz6` ^ZA = z E }8 z6 zE }8 6Q Y 3.3 _H G Yke m op y V (G) = S V , + zG^1 1 â&#x2030;¤ i, j â&#x2030;¤ T k #V V = â&#x2C6;&#x2026; #s S , S , ¡ ¡ ¡ , S â&#x201E;&#x201E;u # - E HY k = 8 X #k â&#x2030;Ľ 1 OC R = 1-1 :j\ Ď&#x20AC; : G â&#x2020;&#x2019; E uXzG^1 i, 1 â&#x2030;¤ i â&#x2030;¤ k #Ď&#x20AC;| }R = XNS \ Ď&#x20AC;(hV i) HY O= A B t D = {(x, y)|x + y â&#x2030;¤ 1} # Ď&#x20AC;(G) } G 8 X S , S , ¡ ¡ ¡ , S WYJ&N 3.3 z S , S , ¡ ¡ ¡ , S ` ^ ) 8 }8 q f vb6 N Ă&#x2020;6, S , S , ¡ ¡ ¡ , S #n 8- ` n j, 1 â&#x2030;¤ j â&#x2030;¤ k #S x S 5` ^ i #- G 6 S , S , ¡ ¡ ¡ , S E pb J&N > z # Qz N Q 3.1 R = H G 4UX P â&#x160;&#x192; P â&#x160;&#x192; ¡ ¡ ¡ â&#x160;&#x192; P C Y pb J&NO,RO H G C y G = G #uXzG^1 i, 1 < i < s, (i) G } X Y & S (ii) zG^ â&#x2C6;&#x20AC;v â&#x2C6;&#x2C6; V (G ), N (x) â&#x160;&#x2020; ( V (G )). I
0.4.0
ι,β
k
i
j=1
i
1
j
2
k
hVi i
i
2
i
1
2
k
1
i1 1
i2
2
k
ik
2
2
ij
ij+1
k
1
s
2
s
i
i=1
i
i+1
i
G
j
j=iâ&#x2C6;&#x2019;1
(5' aH k x6 z 3 GE/ p Smarandache G p #si F x N r $ ! $ +m z G p ' T6.Z [13] ZD #: 6.Z [14] â&#x2C6;&#x2019; [16] # W n x [16] )P 2 - #e 6Q Y 3.4 aH M O=ke u, u â&#x2C6;&#x2C6; V (M) W#xR=r Âľ(u), Âľ(u)Ď (u)(mod2Ď&#x20AC;)# 3.3
M
K) :
92
DnS X,h ?hn| –
Smarandache
K .
℄R = aH k #µ(u) ℄e u YB _ 7 78 X WY 8 7 _ R = =X ~ , aH k s{J p{J z 3.5 D)x`LT zE b ℄ | .℄ k ( (A p (#a n # u - 2| o (M, µ)
z 3.5. x`LT . 2| o 6 3 !` ^ CxX Z lY #b lY n 2|` ^ #CyN xVx #EY 1x2| z 3.6 D)b= Æ 6 3 !` ^ lYQH, z u #v 2| ? w
z 3.6. 2| o 6 3- !` ^ lY Q 3.1 pJ sJaH k HtC u B k k \h ki k q k .Z [16] f #3nQz IVz z G p 6 bÆ #y X Z 6 Ev |h 5℄ # X ZD u ^ d x N ℄ #b A 8 N{ VzEn `g℄ ` ℄ 66Vz z G p
b A N $ X aH k s3; 7 _ aH 7 _ Ye℄ } e I N 5 #z 3.7 D) 3 o+z℄ N ÆVz z G p #e d E z l 2 X |h 5℄ z
Cx e [ nS{$ ? –Smarandche K
. C
93
z 3.7. N Vz z G p 5 z 3.8 D)z 3.7 Vz z G p x` # , #z 3.9
D) Vz z G p G Æ= d
z 3.8. Vz z G p x`
z 3.9. Vz z G p = d / YJ:5' Einstein J a8N5 5 )` ^ 6 j I x Qx #W H` Fy #b N 6l S A W ! |ql z G p &el S EX ZN< N . %` ^ E #C 6 .%` ^ j Ev N k%? p #.%` ^G p Y 4.1 . U 8A '8 ρ '" #W ⊆ U *C ∀u ∈ U #, IA §4.
K) :
94
DnS X,h ?hn| –
Smarandache
K .
&=E- ω : u → ω(u)#K$ # *CL3 n, n ≥ 1#ω(u) ∈ R 0 *C M3 ǫ > 0 # IA 3 δ > 0 A v ∈ W , ρ(u − v) < δ 0 ρ(ω(u) − ω(v)) < ǫ J, U = W # U 8A 9 '" # 8 (U, ω) &, IM3 N > 0 0 ∀w ∈ W , ρ(w) ≤ N #J U 8A G 9 '" # 8 (U , ω) " ` ω x |h 5℄ i #[#.%` ^ 3n | Einstein ` ^ f #3nUN#Vz G p ω |h5℄ # T Qz$ r N Q 4.1 _ ` X (P, ω) WY " e u i v RlC } ^_WY; Q 4.2 R=` X (P, ω) W #O C } e # (P, ω) O=et℄N e O= et℄ 8e 8 Vzn ` #A 6Q R Q 4.3 ` X (P, ω) WC J 8 F (x, y) = 0 ℄_7 D HYe (x , y ) O-RO F (x , y ) = 0 -zG^ ∀(x, y) ∈ D # n
−
0
0
0
0
(π −
ω(x, y) dy )(1 + ( )2 ) = sign(x, y). 2 dx
Y6 #3n4 $ |#.%` ^ E P 7 4.1#8 N m- 9 M o- ` ∀u ∈ M # U = W = M #n = 1 ω(u) N H ℄ A3n |9 M E #9 G p (M , ω) 3ns~ #9 M E Minkowski _<6Qg m N ℄ F : m
m
m
m
m
m
M m → [0, +∞)
6 M \ {0} EIIH & (ii) F x 1- hZ #C 8- ` u ∈ M o λ > 0 # F (λu) = λF (u) & (iii) 8- ` ∀y ∈ M \ {0} #_<g m (i) F
m
m
m
gy (u, v) =
1 ∂ 2 F 2 (y + su + tv) |t=s=0 2 ∂s∂t
.
8- ` g : M × M → R xo Finsler2 /l S E1xv ) Minkowski M 9 #:℄{ u 1x9 M A e ` ^ E N ℄ F : T M → [0, +∞) s _<6Qg m y
m
m
m
m
Cx e [ nS{$ ? โ Smarandche K
. C
95
6 T M \ {0} = S{T M \ {0} : x โ M } EIIH & (ii) 8- ` โ x โ M #F | โ [0, +โ ) x N Minkowski M I #.%` ^G p N W #8- ` x โ M #3n" ฯ (x) = F (x) A #.%` ^G p (M , ฯ ) x N Finsler 9 #W n #6R ฯ (x) = g (y, y) = F (x, y) #A (M , ฯ ) 1x Riemann 9 b A#3n1 |Q N Q 4.4 `u # - k (M , ฯ )#R a #Smarandache k Hk b Finsler k # ~k b Riemann k m
(i) F
x
m
m
m
Tx M m
m
m
2
x
m
m
LTBViRE{3 BgNtU N> $2 -ZD)k% D2 - 0\ #b 3n ,6 G Qa8Q3 5.1 p|Y=}M'โ q M F $ )}M -'+} {d R8 -p R' R &X Z 7 #v&1/ = #b1x.Z [10] V A #F x> $ _ i A Einstein 5 5 )` ^ 6 j I x Qx #[ ร ` E u 2|` ^ 6 lt x y b6 [l < A | . #, A . |7&
ร a? y xe \ R #7Nx !` ^ x !` ^s K| 4 !`^#.Z [16] 8YW uB { Z ! โ G p x k%\Z QH P | N uW TKA N< 2 - ` ^n ( 8#.% `^ (M , ฯ ) 2- 3 YVx` ^ 2 -X Z DY # H6 $ E/ V
b6 #t, { A QH7HA | Qa8Q3 5.2 F i Y}M^ U`}|Y'} p ' BgtU N> DKo6(, g v&{ 0 ` ^ A' #[? q f2 $ g N u N> $W "x 5y' " l R eA 6VF -Y`nuU`}|Y 6v N l< gm Q #D b 0\ N u #h , M y | A y | CJ=) V N . ` ^ ! x 10#M N ` ^ ! x 11 :ร W s V . "V NCxe < ^ ?H > $W o6 2 - F- N ` ^ ! x 12 A :2bร &e #X Zp N< ` ^ ! N 2 - Einstein Q3 #6b N E # $W ;6)> $W z ยง5.
m
K) :
96
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
Qa8Q3 5.3 F qMEW TN q p E'a4W} C RIiw}Z 4 ^TN 3 ^ 3 ^TN 2 ^ -' w%lSEx Einstein Q36y s.Kg m Q f N Qz #> $W . w%b68k j #1 H` Fy #-p>â&#x201E;&#x201E; y S8w% C qZ $-0 ;P [6]-[7]!&si> $W } w%x y s y si` " #h , ) N > KI6w% Cdt w%a8 # N> N Ă&#x2020; 4 % #eWlx-p>â&#x201E;&#x201E;C7H 8 4 % 6R>Iw% 4 % â&#x201E;&#x201E; #3 n1 % DY$`Cx7 | #D j si1x6< #B Z w% 4 % n x N$ u b A , #W n x d 7 q y p )w% =K> 6 Ex_ i b6 #6 s tZ =K> N #y Nx> . x $ C$ j j,n <1.m =& Z { # $ N x â&#x201E;&#x201E; 7>â&#x201E;&#x201E;0 " K yg b N 3\ A [ NE.mi`L> #b F0" K g m { 0\ #Cy / â&#x201E;&#x201E; 0"0\ ~ Ym{ $ 0\x ([16]) $ (1)UnH K > #?l i "H}ilY #i "} ilY T0 (2):H&NU|^ - p #Ce -} zY= (3)9 HY - o > 8> $ {" # D 6 E ) Y 1 g eK \> # ?DYei`L> KI Qa8Q3 5.4 F a4W}Z(UWwE E' . > . % N xx> $ N *m \ A :2, 8` ^ ! .m g#b 0\ Fg 2 d w2 6R` ^ ! â&#x2030;Ľ 11# g.> 1 yN I6 , M | Qk!E #Fy X 6 EY|D B bu( P | , .m V l <K Z kG1 [1] A.D.Aleksandrov and V.A.Zalgaller, Intrinsic Geometry of Surfaces, American Mathematical Society, Providence, Rhode Island, 1976. [2] I.Antoniadis, Physics with large extra dimensions: String theory under experimental test, Current Science, Vol.81, No.12, 25(2001),1609-1613 [3]
+_Ro+!|, Y k =_, U k $ D ? M, 2001.
Cx e [ nS{$ ? –Smarandche K
. C
97
[4] M.J.Duff, A layman’s guide to M-theory, arXiv: hep-th/9805177, v3, 2 July(1998).
\ L E, z B { } k, V $ D ? M, U , 2005. [6] S.Hawking, p-2t, V K D ? M,2005. [7] S.Hawking, ^ | Y}M, V K D ? M,2005. [5]
[8] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,2002. [9] H.Iseri, Partially Paradoxist Smarandache Geometries, http://www.gallup.unm. edu/˜smarandache/Howard-Iseri-paper.htm. [10] M.Kaku, Hyperspace: A Scientific Odyssey through Parallel Universe, Time Warps and 10th Dimension, Oxford Univ. Press. [11] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics Magazine, Aurora, Canada, Vol.12(2003) [12] Y.P.Liu, Enumerative Theory of Maps, Kluwer Academic Publishers, Dordrecht/ Boston/ London, 1999. [13] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73. [14] L.F.Mao, A new view of combinatorial maps by Smarandache’s notion, arXiv: math.GM/0506232. [15] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
#
[16] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ 2006. [17] F.Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000. [18] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999. [19] F.Smarandache, Neutrosophy, a new Branch of Philosophy, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 297384. [20] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 385-438.
4gl qâ&#x201E;&#x201E; A â&#x20AC;&#x201C; J( 1985-2010 uB O f9, 98-103
d\ 1985-2010 qbxo` p 1. x| E x| g A RMI A #HV >Ce #29-32,1 1985! 2. $ K $ â&#x201E;&#x201E; %#HV >Ce #22-23,2 1985! 1990 p 1985
1.
The maximum size of r-partite subgraphs of a K3-free graph,
1990),417-424.
mr >, 4
p 1. U f $ % 100m3 N â&#x201E;&#x201E;e% #w`C % #1 1992! 2. X r !U V â&#x201E;&#x201E;r 50m j 0 u 8 /NYe% #9S{ #4 1992! 1993 p 1. X r ! U V â&#x201E;&#x201E;r 62m 7I n * ( k"e% #9S{ #1 1993! 1994 p 1. =: r !R(G)=3 7 z / 2 - #;A >{gl > #Vol. 10 DK!(1994),88-98 2. Hamiltonian graphs with constraints on vertices degree in a subgraphs pair, %>Ă&#x2020;>p #Vol. 15 DK!(1994),79-90 1995 p 1. X r !U V â&#x201E;&#x201E;r u 8NY * ( /e% #9S #5 1995! 1992
+: % K) 1985-2010 wCPg:
99
u 8 /NYe% K #H â&#x201E;&#x201E; rl{ # ^ G<g 95 ?!#1995 3. x k9) v [u N â&#x201E;&#x201E;e% K #H â&#x201E;&#x201E; rl{ # ^ G<g 95 2.
?!#1995
p 1. B (7 z Bk d #{Uh_{ G>>p #Vol. 23 DK!(1996), 1996
2. * ( U h â&#x201E;&#x201E;B A S #9S{ #2 1996!
6-10
1997 1.
p
C Ae y Ă&#x2020; p e% , S Q /#9SU> #11 1997!
1998
p
1. A localization of Diracâ&#x20AC;&#x2122;s theorem for hamiltonian graphs,
>Ce{ B #Vol.18,
2(1998),188-190.
* ( U h â&#x201E;&#x201E;B A S #9S #9 1998! 3. C Ae y Ă&#x2020; p e% , S Q /#9S{ #1 1998! 2.
p 1. $ r N `%3e% v:N P#Gaj e$9S C %l C g9_ r gl # Q p % I D ? M #1999 2. u 8%3e% vN P# W o e$9S C %l C g9_ r gl #
Q p % I D ? M #1999 3. U V â&#x201E;&#x201E;r u 8NY * ( /e%, Q p %3:*( e$9S C % l C r (2), Q p % I D ? M #1999 2000 p 1. 4 | Fan g m N J #8 ) k G>>p `B{>e!#Vol. 26 #3(2000), 1999
25-28
U \ . e% % C #9S{ #2 2000! 3. U \ . +{%3e% #9S C %l C r (7), Q p % I D ? M #1999 2.
K) :
100
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
p 1. 8 ; Fr ! UuA:z N 4 | =â&#x201E;&#x201E;g m#8 ) k G>>p `B{>e!#Vol. 27 #2(2001), 18-22 2. (with Liu Yanpei)On the eccentricity value sequence of a simple graph, om k G>>p `B{>e!, 4(2001), 13-18 2001
3. (with Liu Yanpei)An approach for constructing 3-connected non-hamiltonian cubic maps on surfaces,OR Transactions, 4(2001), 1-7. 2002
p
1. A census of maps on surfaces with given underlying graphs, A Doctorial Dissertation, Northern Jiaotong University, 2002. 2. On the panfactorical property of Cayley graphs, 390
>Ce{ B, 3(2002), 383-
.~* x TXR Ă&#x2020;K #H â&#x201E;&#x201E;H7 >p, 3 2002!, 88-91 4. Localized neighborhood unions condition for hamiltonian graphs, om k G> >p `B{>e), 1(2002), 16-22 2003 p 1. (with Liu Yanpei) New automorphism groups identity of trees, >T!, 5(2002), 3.
113-117
2. (with Liu Yanpei)Group action approach for enumerating maps on surfaces, J. Applied Math. & Computing, Vol.13(2003), No.1-2, 201-215.
8 ; Fr ! z X k}8 j X # >w >p, 3 2003!,287293 4. 8fr ! ; â&#x2030;Ľ 2 4 | g m UuA:z #om k G>>p `B{>e!, 1(2003),17-21 3.
2004
p
1. (with Yanpei Liu)A new approach for enumerating maps on orientable surfaces, Australasian J. Combinatorics, Vol.30(2004), 247-259.
r !Riemann zE Hurwitz r J #H â&#x201E;&#x201E; {>Ă&#x2020; y s $ I{? >{> B / B h #2004 & 12 *,75-89 2.
+: % K) 1985-2010 wCPg: 2005
101
p
1. (with Feng Tian)On oriented 2-factorable graphs, J.Applied Math. & Computing, Vol.17(2005), No.1-2, 25-38. 2. (with Liu Yanpei and Tian Feng)Automorphisms of maps with a given underlying graph and their application to enumeration,Acta.Math.Sinica, Vol.21, 2(2005), 225236.
Hâ&#x201E;&#x201E;{>Ă&#x2020; y s p 7 #2005.6.
3. On Automorphisms of Maps and Klein Surfaces,
4. A new view of combinatorial maps by Smarandacheâ&#x20AC;&#x2122; notion, e-print: arXiv: math.GM/0506232. 5. Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005. 6. On automorphism groups of maps, surfaces and Smarandache geometries, Scientia Magna, Vol.1(2005), No.2, 55-73. 7. Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005), No.2,120133. 2006
p
1. with Yanpei Liu and Erling Wei) The semi-arc automorphism group of a graph with application to map enumeration, Graphs and Combinatorics, Vol.22, No.1 (2006), 93-101. 2. Smarandache Multi-Space Theory, Hexis, Phoenix, American 2006. 3.
H â&#x201E;&#x201E;C %9_ f l C ' +{Y z â&#x20AC;&#x201C;Smarandache J -'
` .,
Xiquan Publishing House, 2006. 4. On algebraic multi-group spaces, Scientia Magna, Vol.2,No.1(2006), 64-70. 5. On multi-metric spaces, Scientia Magna, Vol.2,No.1(2006), 87-94. 6. On algebraic multi-ring spaces, Scientia Magna, Vol.2,No.2(2006), 48-54. 7. On algebraic multi-vector spaces, Scientia Magna, Vol.2,No.2(2006), 1-6. 8.
N> j D Bg N t U $ Smarandache ` ^ N #H â&#x201E;&#x201E; { B h
$200607-91 9. X j X Z â&#x201E;&#x201E;N $ A â&#x201E;&#x201E;B, H â&#x201E;&#x201E; { B h $200607-112
10. Combinatorial speculation and the combinatorial conjecture for mathematics, arXiv: math.GM/0606702 and Sciencepaper Online:200607-128.
K) :
102
DnS X,h ?hn| â&#x20AC;&#x201C;
Smarandache
K .
11. A multi-space model for Chinese bidding evaluation with analyzing, arXiv: math.GM/0605495. 12. Smarandache
`^Aa> $ r N, kâ&#x201E;&#x201E;S Op e Smarandache j
7Ce , High American Press#2006. 2007 p
1. Geometrical theory on combinatorial manifolds, JP J. Geometry and Topology, Vol.7, 1(2007), 65-113. 2. An introduction to Smarandache multi-spaces and mathematical combinatorics, Scientia Magna, Vol.3, 1(2007), No.1, 54-80. 3. Combinatorial speculation and combinatorial conjecture for mathematics, International J. Math.Combin., Vol.1,2007, 1-19. 4. Pseudo-manifold geometries with applications, International J. Math.Combin., Vol.1,2007, 45-58. 5. A combinatorially generalized Stokes theorem on integration, International J. Math.Combin., Vol.1,2007, 67-86. 6. Smarandache geometries & map theory with applications(I), Chinese Branch Xiquan House, 2007. 7. Differential geometry on Smarandache n-manifolds, in Y.Fu, L.Mao and M.Bencze ed. Scientific Elements(I), 1-17. 8. Combinatorially differential geometry, in Y.Fu, L.Mao and M.Bencze ed. Scientific Elements(I), 155-195. 9.
C %9_ f '
2008
Ă&#x2020; L B {r4, American Research Press, 2007.
p
1. Curvature Equations on Combinatorial Manifolds with Applications to Theoret-
#
ical Physics International J. Mathem.Combin., Vol.1, 2008,16-35.
#
2. Combinatorially Riemannian Submanifolds International J. Math.Combin., Vol.2, 2008, 23-45.
#
3. Extending Homomorphism Theorem to Multi-Systems International J. Math.Combin., Vol.3, 2008,1-27.
#
4. Actions of Multi-groups on Finite Sets International J. Mathe.Combin., Vol.3, 2008, 111-121.
+: % K) 1985-2010 wCPg: 2009
103
p #
1. Topological Multi-groups and Multi-fields International J. Math.Combin., Vol.1, 2009, 8-17.
#
2. Euclidean Pseudo-Geometry on Rn International J. Math.Combin., Vol.1, 2009, 90-95.
"X j v j ~ y 5;kKM #H â&#x201E;&#x201E; 9_p #2009 & 1 * 24 2 4. QX j 0, w I VQ r{ ~~ u+ - ' Ă&#x2020; L Y z t e!#
Q P D ? M #2009 3.
5. Combinatorial Fields - An Introduction, International J. Math.Combin., Vol.3, 2009, 01-22. 6. Combinatorial Geometry with Application to Field Theory, InfoQuest Press, 2009. 2010
p
1. Relativity in Combinatorial Gravitational Fields, Progress in Physics, Vol.3,2010, 39-50.
u ' k:P y $ =T â&#x20AC;&#x201C; X j 0 / â&#x201E;&#x201E;B e!# Q P D ? M #2010 &
2. 2010
3. A Combinatorial Decomposition of Euclidean Spaces Rn with Contribution to Visibility, International J. Math. Combin., Vol.1, 2010, 47-64.
4. Labeling, Covering and Decomposing of Graphs â&#x20AC;&#x201C; Smarandache s Notion in Graph Theory, International J. Math. Combin., Vol.3, 2010, 108-124.
[Æ $ #% $v s $v s #kQ $% XN #kQ Q S $ r2 e 2006 &8"kQ Who’s Who #~ | QV K N.6` z $ ` # Y Q W D " Cv % QX j v j v % tsÆ QV $ %C A FNu l < 2 -, #U p %3 $ % ` w ~ 2 -\{ 1962 & 12 * 31 2D\ +K_ ? ~ #1978-1980 &+K_ ! $ 80 E 1 9$ K &1981 & -1998 &6 Q p B%34%I #T q-T K K 6 V h :%3 w &1998 & 10 * -2000 & 6 *- QH$%3pC * :%3 &2000 & 7 * -2007 & 12 *Q Xj ^?-*( # -h ! & WC * -ot:%3 w &e ^ 1999 & -2002 & U Q x qk $ ', v s $ ) #2003 & -2005 & QV $ %C A FNu 2 - [u v s 2 -%I &2008 & 1 * # QX j v j v % tsÆ =& 2 -%I D? 6 $ N> o%3 p N 4 #T 6Q N u $ K>ED l Smarandache G p ℄ G p N> r z z No%3pNC N. 60 =N #6kQD ? T=\ $$ & $ \ %3Xj 0 N& oN\N.?#6l QD ?N\ $N.? [ 2007 & 10 *Io # e QS $ r\Æ MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) # V\Æ W !6kQ e= D ? ) 10 > 6Q ) 2 \k p %3C p %3e% vN P l nx o p %3e%l II o VII! e y &x , -oQ j 0 e%Xj4 V. m 2007 ?!o , -oQ j 0e%X j . m 2007 ?!A en x { De y& W&2008 &jq- QX j w I VQ r{ ~ ~ {{" % " X j 0 / ℄B N Vr{ ~~ t e# 2010 &X j w I VQ wK{{ u X j 0 / ℄B e
Abstract: This book is for young students, words of one mathematician, also being a physicist and an engineer to young students. By recalling each of his growth and success steps, beginning as a construction worker, obtained a certification of undergraduate learn by himself and a doctorâ&#x20AC;&#x2122;s degree in university, after then continuously overlooking these obtained achievements, raising new scientific objectives in mathematics and physics by Smarandacheâ&#x20AC;&#x2122;s notion and combinatorial principle for his research, tell us the truth that
all roads lead to Rome , which maybe inspires younger researchers and students.
s1jT aw M[ x % # [ "w M ( > # = nB U # $2<l # U M Q # _pS6Q "7 % # [! H_pS M M+-P, #a (d }M o $ + "pS6# /[U#H"rYr # Q`P7Ă&#x2020; #q&+ ur #( "Y 5 zU #1, x4j 62 "x4 w ?qn Smarandache %d 6HYC dM\[ # = 1 , S2 "t ( ff}BpPW / tB "7x Ij % # [/ 9 8 n h H w
ISBN 1-59973-032-4
53995>
9 781599 730325