Mathematical Combinatorics & Smarandache Multi-Spaces (new edition)

Page 1

I # 6 S A z; —– t U6(x Smarandache ,oK t Let’s Flying by Wing —–Mathematical Combinatorics & Smarandache Multi-Spaces Linfan MAO

(New Expanded Edition)

Chinese Branch Xiquan House 2013


t

&ow / 9. X XK& * 100045 &o V _Rb_: , V _g 9 Rg 9 nL& * 100190 * x5DV_Rj T&g 9 " # '& * 100044 Email: maolinfan@163.com

I # 6 S A z; —– t U6(x Smarandache ,oK Let’s Flying by Wing —–Mathematical Combinatorics & Smarandache Multi-Spaces Linfan MAO

(New Expanded Edition)

Chinese Branch Xiquan House 2013


This book can be ordered in a paper bound reprint from:

Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.Zeeb Road P.O.Box 1346, Ann Arbor MI 48106-1346, USA Tel:1-800-521-0600(Customer Service) http://wwwlib.umi.com/bod

Peer Reviewers: Y.P.Liu, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China. F.Tian, Academy of Mathematics and Systems, Chinese Academy of Sciences, Beijing 100190, P.R.China. J.Y.Yan, Graduate Student College, Chinese Academy of Sciences, Beijing 100083, P.R.China. W.L.He, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China.

Copyright 2013 by Chinese Branch Xiquan House and Linfan Mao

Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/∼smarandache/eBooks-otherformats.htm

ISBN: 978-1-59973-214-5


y" q

Y ?h , M / g , k!



QZ ulg Wy 2*% &ul4 ? M *~ ,?7℄JfK?, *lI%? x kIqi&`y 2*"%Q y Mu SyI"% M&u`0QX<fX!7X{&l1G % M 3Q"#"& : K;3K Æ _4% &l l d r & *X{x f/.yuG {*mf,_Y% & : BdEv 7& *M Xv LT vk S% ;4 ?g?al ( "7Tb)℄ 17 &a7E 4 ℄ 3 &al " z th℄ 8 &f,%g dduq 5 & & S L&ha$hd& w <*y&> y ? %~tU &ma Ts* =? M?uC:% &℄~u ?& l1bG*lTp $ % ? G&%\ji?y E , ?%K,& # 7Tb) ℄ & m %P{ E( y _&℄ &1&#Xf ?Zg X 4a`m, ) ℄ < & &?Q `m&a`m℄g ?l4 ?E %, d& k ?Zgsd3y -%?\7N} ?\S a 7Tb)?&℄ &1!P? \ ?& k?& G ?Zgg,L[%_|?\,=?yz)?i I &,` ?x ?_T o?4&m# o?4?&,f,= ,?O o? J}{r ?N}℄ &...... *_&?uuI$%g~ d+T 4 E *℄J ?N}S [ ( /lI%g Z ? &l =& fm %P{:flG nJ?jf%Jo dDu\A-\A ui#k G`rf l dDuG`-G` ua r \A?Wd%vln Sj%Z a/G`&Zf2&a/ G `F0`%& o7 J ? E(G`& *afmlTrz%z &?,d *k D %rz t _h&?Ud zV& A k S% !& yt ZG%rz:f 2010 10 T&?a { ? =?& a&Sj 10 % J{&0 Æ~ 30 f & %^=z?&dPu S L P& _;&H8*~ z?L ?Db f + b_ / Æ%vg9 "A Collection of Selected Papers on Smarandache Geometries & Combinatorial Maps, I Chinese Branch Xiquan


ii

L

y

:

ihUA bx `N ; –

Smarandache

+ai

`IC`I&2006 $&" *GLk &u*GL%m ,"?{lT7 T℄ o"?$& y G* ?*~ ,?O℄J? Fqi% &`/ng GL%m l1G EX. vg 2006 `I%9 uqFWE & & S=4f? (9 &`l N} G TXQPK}&Z b"y ?S * y&a `m?&? d %l ℄ &8?y %l a (9 y ? S M%\ &esGlg & 5=?S%'+ l&8 D* ?L% :VP x "Let’s Flying by Wing$ &$ I v `IC%hR &S? 10 f %? '{& : lT+z *b_M : Smarandache * ` h& S=b_M u? a Smarandache B6"sd:&8 %lTa :7 Smarandache -'{ %,?'{ {_|,?CV<& }A'{ u ? x2,?N}%VP"Wing of Scientific Research$ g 2010 I 1985 -2010 % 8 89 &m`(yat( bY?*d,

"UBT Æu 2003 *Zgl4 m< ℄ Ko%y G l 9 ?& " `mk?& :af% ?7k?& Æ 9jJ& : i#2rW GL 89 # 4f }%\^&(% f + U_ / Æ&( % f + F Q U_ / * x5Dn % &>Æ)z

"U s T Æu*Zgy ?S&a,jV J{=?& _ [S ZL%l89 9=yaau "lT7T℄ &q 0=k?&iq,) S 7T ~ G oS* o?N} G% Jy J=7 ? %? 9=Uau a` ?w-O {%X l N} w` N}℄ %yV)r~

"U5' H Æu_ 3 T E> = , -9at .? T&Pl f Q&?l)ha .? ?\ 7r&yG44&dq9 , .? T7r&j 50 k?i?l) (Rl= Rlf%,?N} % o & k 7 ? %? * ?'{% 4&`l ,N3 % !g37l G nN}th%? z&lu { 7k ,?7Cdy T,?ry%T ; & du ?yM 7y ? Æ}%lTQ 9 o a n^= &dD3 +# N})& au k { -f,w-N }&"w-f, I -&)2 I?N}&y?f,$Æ +* -M N}% T J& =&w-'{X k t% &l ℄2 Dk?& S ,?jSa` %N}3 &{l/w 7k AryluT ? ry%

Jo&`y ? %G4 EX. House


Xj

iii

T/sTU\W 2Æu 1985 ?a`mE{7E? ?\ =Z ? N} s,d&P&}a?SCV %l8ed&`y ?S ?: D %?\*T T>7E)&T l ed f :& duk {^= G= ??\qY%pS&u `y ?S?\ ?d(l OR

A Forward of SCIENTIFIC ELEMENTS Æu?* SCIENTIFIC ELEMENTS | %l87Q 9 / Smarandache '{u ℄!g1| pV%lA,?N}'{&l ?w-'{luaysd:& Æ?=Kx p_|77l%lA.ya ?:fm%'{&{l<D Smarandache '{* ?% ?w-'{a,?N}: %sd

l=s p l 0% RMI } Æuk a? 3j;E ? v-= < *l w- ?P ?&` ?: i %y_ AzVEl"RMI El$ %Y?& y?S\ r|a =Z ?N} :%l89

"UÆ< Æau "lT7T℄ &q 1_ % o&iq,) S ℄℄Yg℄J[ 7E 4s7p℄J[* zb)~rq Z +p℄ J[&) ? M *℄J~ Z ? *lI E *%g d+T 4* lI%& iJ 9 o z ` % SÆ?&y l J=Mf~ g Æ~r* Nf%;?OV&`l1G %y> 2*(lD%X.

v (vmoUm_ _h Cs T -Smarandache +nJv Æu _a ,jV J{=?[ y E[*?SY?m ?7M *a ao 7n M b_:4<_℄ (. Æ:ZL%l8,K(9 &Sr%uY?p_lp ? %.Sat Ob v*l S- S=yaY? 8H ℄se" Smarandache B6" Smarandache + 2 72 + .V~6" +) (&y?` -M T; f% l ( %[- g 2013 ,EIo 2011 -2012 %yd 4 89 *

5'T: 7 j5O s T(vUo<Æu 4H[w-?7 - d?& _a Np[| ? ?,??O*`m7T℄J?O ?O*N}S* y E[ %ZL 9 M _ÆlxiQ ( * }A T %w -?, -*w- ?&SLw- 7w-E %w-?f :uÆ?=

Æ Æ|7ak ,?=% & 8rM"Kxp_}*w-?=% ` Æ& fl 6" I 0MrM1|(9 A'{y^em/ G%= ,? O ?7_|,?N}O o?ZL&?a4p[ w-?7 - d:%ZL

Combinatorial speculation and combinatorial conjecture for mathematicsÆ" 8


iv

L

y

:

ihUA bx `N ; –

Smarandache

+ai

ZLr|?G l?, *Hj9Tw M _Ælx% 9n$ 9 x TP %'{e"&* y " y A *1 ? g = f ℄ E ^ + J H n ,)'{e"&ÆQ ℄!g J& , Smarandache B6"*Bd_|&y 8 I *_|w-Sh%'{&[- Z a6"%m, 6"7 - rz $ SlF6"%w-Sh&℄~u Poincare {%w- F& +lT 3+ qx #z(/l* 3- + )( % I?S y S` Einstein o1% dn)&9=y?Y? *+ ℄3 %Bb(&flf%N}%,? v

W - $ &1 Q $ $ n 8 L7$Æu s5 G %gr y N?&}a%gryCV&S- z z{1f %l89 9 a u - ) } M ^?& g %KxyV& y #G = z z d"2011-2015$℄ N 9 o h7!)9|A9 %g | Yg kO vq %(7% z z{1Z%t5&[- %g,?ryrz |l%%g5V G rR% Qt5 %gw'7E {gth* GÆ % g -N} %g WO7Ey 9O7E)%gryB r~

L^ATDo& Q $0 v 1Æu G*`m7T℄J?O z j g,S)℄E z j - ?&{$|q ?CV&V[ z jq -hG%l89 &g?a= z z d !) j WZ) } !) j WZ )Z ^ 9 a`& *lA{1q d%z ?| -& z j - g 5{1q %℄7* %&pS z jG`qY7 v, Sz&8v (Kx % (&S- =k - Z℄? - fC| ÆQ .'(ÆQ) ( -#G z j -&_ l -, z jf /& P99f& {f/=Q& f/= & 4s 4s \4sÆ% z j -7E v

$ $q ℄ { 'J5zf"+Æu G z zvn9v Q 7kÆQ l ?&{v ? 9 ? 9Q0}) [vQ z zvf ℄nk l n99 %l89 &a= z z d } ^?&# T %KxyV* f/=&*dDz^l~ D& z% TS D z %E a/`n9=l ℄~xw% T z 9 k z zvf℄n k = 8 n D&`S=l 7x39 T l3%xwf% vQ&yiT a nD9 &fl | S z jf/ g 9 < / z M& HL f ^ % &`y> G4 EX. f :& +lT % S JPu\A7G`%|l l J=& L b*\A "& *F(%\APE( ".(X:,d b*G`℄U&


Xj

v

*v u S" =%lT % z _h%\Ad 1fah%G`&. b Sf % wjf,z^&_h%G` lD 1fahUdG`&b Z w 2?\ ℄ ^ V _ P - +Æ' & -*Z xd mA K I / .+ n&0- J % e( +C; Æ&Myy7y ?S ? *2*LeZ

A x p O l1 pT/`m


%

7Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ?% ?& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ?% ?& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ?%w-. & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ?\ ?%7,ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A Forward of SCIENTIFIC ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 /y NyuW* RMI El . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 ?%℄J& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 -M r%p_lp ? -Smarandache B6" - . . . . . . . . . . . . . . . . . . . . 75 w-? S`m ?M % | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 JOe59P&_|h7 z z{1Z%t5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 {q ?`r&h7 z j -e_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 z zvf℄nk ℄~xw9 vQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 A x 1985-2012 Æ -Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148


H " 5 R y: – f + U_ /, 1-3 $V C U A x "&o V _Rb_: , V _g 9 R& * 100190$ ℄: bnw*℄ f*~=x5Dn(sF_5 ) * K2 0 C F_ Q O V b _>_℄&Q | ( Æ _F R &>_℄&% " |&oV_Rb_: ,V_g9R&> (Ip B&> g9 V _ S0 + / * yD Æ _~ / &_ o 7 P - Q Æ _&6D P - Q ~ { Æ _ + *_ t j&*n7 Q qZ' NJ*x5Dn&F_&S0&&> Abstract: This paper historically recalls that I passed from a construction worker to a researcher in the post-doctoral stations of Chinese Academy of Mathematics and System science, including how to receive the undergraduate diploma in applied mathematics of Peking University learn by myself, how to get to the Northern Jiaotong University for a doctorate in operations research and cybernetics studies with applications, and how to get the post-doctoral position, which shows that there are not only one way to growth and success for students in elementary school. Particularly, it is valuable for those students not getting to a university, or not getting to a favorite university.

Key Words: Construction worker, learn by oneself, growth and success, doctorate.

AMS(2000): 01A25,01A70

â„„ p_ , ?{l Kx%7Tâ„„ , yG=*X7, lrâ„„ &lrk?& / 1999 4 Tf,G m# o?4&2003 6 Tf,,Nth{rZgN} < J (, a_h Q&Zf%u0`7 m ?ualF2 B7=?B7CT%G= v P{k G*lT ? 2003 _lzF(D=j>%~ 8 1 2

e-print: http://zikao.eol.cn


2

L

y

:

ihUA bx `N ; –

Smarandache

+ai

h ? , ?y\, #Sj4Xf 92 ?hG ?\9,, y 0 , ?K,lQ l 7Tb)℄ ℄ , l 7T℄ , l i℄ haB : Q , j l ToGZJG B s ulAeoVJ, 7k a=? 0`% o 6 - ( ^%{v, a ℄ %4p 1, ?Q `mlF7T? ?\ < uq℄ , m %{v 0 _ /ul[?f7T , l[a`m℄g ?l 4+E %, d?\ ? k{rw- ?%N} {7T? G?g?, ?a E℄ 4, G l ~ G s ℄ ℄ 92, h ℄℄=`m% ; G ?H%%Ob℄ VgX, > m X{Æ& u?%El ) h , l E *e"T } /℄ ℄f/&lVG T % o , ?N}d ylV=℄ [ "g?r| >7T -9, dT >℄℄} , a{7T? a E℄ 4% 4H , dFQaT*℄J[ =? rm, 0`7 Gik %{ v4-8, !*u9AN+%E hG%, /u Dj g1 ", `m{G) E>k?& , Gg,?g f :, Am u Y%x , a Y % Te, < | ., d | t "%(47 x , L% o, a7Tg℄ _, , ?t `m ?*`m{G) E>k?& ,Gdp-Gr% ?Zgg,lg9A*?o?4 Z J ?` (Yg%!g lztd, ?a`m ?0 oS &r *n2, r S& ,rk a P? , (%Ur| -9, /u.S lA r%T{:

G )I_T o?4, o` Y Ax a=?%1 e, >h /℄℄~ , g l / 9*Zg3%.\ lz, lz%\A, ?EÆC pSqY, u,C`I, 9 y Hhg % " tQ?\ 9 1 ?, ? / , ` ?x ?_T o?4 T o?4`?Q"u b % *EsgSjQJ"EQ%℄ 4 #P, WSj $& ^?l[ ℄, l[_T?4, G-9 v , < ?\ b , Hh%Sjuu b % g:H7|+Xo, Zg *9nh , '& 3 >h :3 , ℄, y+P vSj # :8g:E'& %; { n8# %S G-9, Æ I, t` r| T o-9E-u= &UuS (& u5 k Rp% l G% 9 G?&?W _4E CM&S- * (QÆ af% o-9%N}7 J=&J o2bY O N} ~℄ ^, at o?4?, T #o2fl ryk %℄3* /u,I 4 o^ N}uy %


h-V`Æ0

3

ZP*9n, ,= ,?O{r o?N}℄ ?u`m{G)E>k?& %lgS *uk?G &(F %?\ v*ÆQ; T ; % o &)I*?_T o?4 d sd ? # %Sjo2(rz, ( larz%fm J=& b f'&~ n^ C *n^ P ^ (lÆ^ #"& Vg l D 5 , % > ? + y D Æ * ^{, 0&%J, ?"l Kx7T℄ y G* l4 ?℄ J< , u w7 , Zf%, lu I +%em * m%℄U


H " 5 R y: – f + b_ /, 4-19 $V t U A x "&o V _Rb_: , V _g 9 R& * 100190 $ ℄: D 1h + & b*℄ f*~=x5DnSKS~=b_ ℄ + asV&{ o &_1( ^~℄x5KoDZ ^ ( Æ _F R&>_℄&^&oV_R B&> g9 C^oAw - pK oDZ0 &b& *℄ 1985 ~ -2006 ~f BV_g 9 + k= V&x*℄ ~7g 9 Sq +)% sV&{ o b_M .# + ls VC: Smarandache * ` hn# +_ 0 NJ*&_", Dn, DV', b_℄, Smarandache K , Smarandache * ` h, b_M .# Abstract: This paper historically recalls each step that I passed from a scaffold erector to a mathematician, including the period in a middle school, in a construction company, in Northern Jiaotong University, also in Chinese Academy of Sciences and in Guoxin Tendering Co.LTD. Achievements of mine on mathematics and engineering management gotten in the period from 1985 to 2006 can be also found. There are many rough and bumpy, also delightful matters on this road. The process for raising the combinatorial conjecture for mathematics and its comparing with Smarandache multi-spaces are also called to mind.

Key Words: Student, worker, engineer, mathematician, Smarandache geometry, Smarandache multi-space, combinatorial conjecture on mathematics.

AMS(2000): 01A25,01A70

1 2

S $)+iU Iz<> ZRYK% ) www.wyszx.cn

2006 3 26 e-print: www.K12.com.cn


h- `Æ0

5

m3 p OO H HT1_l%:I 10 *00 &= ,?O ?7_|,?N}O ZLs &?% On Automorphism Groups of Maps, surfaces and Smarandache Geometries Æ"< 5 4 Y [ C Smarandache K + F*Qe$% o?ZL*M % 7yz &I SNJ \1%Os Perez odayV zZL&yj&ZL % (uq G,9 tZL%&b w- ?VH4|(#!%E &U (l N}S ?ZL Map Geometryl[ &= ,?ON}SO , & ? Rs E X =l &;?* Iseri + Smarandache K e G^ 4`hDY 4 + &H r4 { O % s E-Æ?"*

O % s&* O % s&i K g9s Iseri `3 Smarandache (I+o 81& E +Map GeometryD + ` h e G + :g&* Y D M < v & DM 5 4 v_ - = b_Cv ,t 1`a " K*x::gÆ ?% A|7&l0# w-2 ? ? % o [ X.E % 4 y:u? o?ZL J=%lT% q p_1 % o&?{l4 7T℄ y G* ?℄ & l J=# 4f ? %y 7# P&SL=? Ml ?X[* `?a , ?N} [% | _ )T a5 ?uaE 103 ℄J,\ Ea,jV J{"o$i5 ? G% ??g& / 1976 lg " ?T^= %uÆ-5&2u 103 ℄J,\ E a Jo%A5 ℄664 # ?lg 6elep_ 1T? & J=? J =?*:WbC? &2u&g `|&&OJ8k % iÆ :Wb C? ^= ^&1976 9 T -1978 7 T&?Q :WbC? T^= (} 5) = F? E℄uu +%&g?W zE|&0b b?\&,b --? f%? E℄7E&S=(l[ " Æ?SUN ? 1%,7℄ & % Z 12)) # E ? M %u ℄X[ l M ?:Bt-` Goldbach {~` 1+2 Æ%dn& 0-V`Sf% o;l M&℄~u3R%ZL9 ? 6(k .#Æ, i?` ?.S | af,^=?\?q39j?\ nA\&31 "q3 ?X[ El ?; e "( gH_ `I%^) ^) + &:[%\ i ?L?\%E, :%\ b}& "df ?a31 M f "P QT ( )


6

L

y

:

ihUA bx `N ; –

Smarandache

+ai

:[%\ ?a ? 4℄S 2& f,=??&sg:E( "_ 2& l8 Æ " Q?\&i*a^=4l?M8^l% ?3? &4p?Ml 8 T^= ?3? ) {^=4p k?\G=3J& du?a?Qf, J=?G=4l?M k o2 G= ?z0 t z%E 1977 o^=p&&? ?# <Æ 120 Æ (lT( %% & u3j %X[!* ? %zd 7(O&l?%T u %&l3z W?<Æ ? #^= ??\b T: &lDbf~\ & x \ fl T : % 7 P& du T ?%?\ % lDb ~9 7x &? f ul ? a ?N}=% #&< ^) ?% v.yT & `=?SQ"S r7 v%J0 u}/ T% # %^=z?(dap d9E :), GL u? 5h % i &_ u 103 ℄J,\ A5 ℄6% 5 4i5&GL?Q a= 7T 4p℄J _| {r℄J7E ^=lg? oT?& &?m# iF"%Gz " Jo8 oT ?& =%j 100 &Sep J=??\&j 50 =a 1 C&51-100 a 2 C&{li#?(td Jo=?G 80 1 C?\ #G= M%z?

~ : F Z K [ ) l M ?Gz `&4# ?X[D=S% 9&G W?<l73 ℄ %T v) +? 1979 1T o2 G= ?z0&m# 2 4 18 %Gz =? M?℄STl ?3 TM&*4s % k 0 K r( {?8 % k 0 b_ Cg 9 K/[% q( 3 L % q I 3 G x E 2 0 b_ "4l"$) 1980 4 T?2m " JoD /`X5, X5 ?_.7E&?. ? U &f%G&j%d 1980 G&&< {&#9 g, t& E *G)? 1980 7 T1?",jV JoRkHl = X5 aR4==|% ; 8 Bt- % k 0 b < (II)& X5?,j #K/[%ZP b < # /u k?\S=% Æ N, z 9?\G) ?& kT {Sf+T b_ y A =l \ =? M% ?E>bEW?Ssg$g &Zf2& p?S% ?49 E>&l ` E% ?X[la` FGb & b<|: D % 7 P&,b$!Sa`r% ' y `ZGl$ ?% & uiF}% f :&hG4f?S ℄S ?%lT)IE uE[a<3 g;,& ~


h- `Æ0

7

| lÆ&?S* 0& `_<aÆl2?\&y? G& 60 ÆS ` /?SQ"&l0bf; T*dD*S2 O l =+ -S2 O t l-P -, C{ + v- = E 32 O Z'-- P -C{ + q)) z &=? Mf :du?Sf% Sl1% M& uE7?}T [P XB}%; ?T f :ua=? Ml1G*Zg ?℄ %& dG* ?*& N% z (m) Q0Æ Ja5 1980 12 T1? ℄ & = 7Tp lb) l i℄& y %lor:6O/:67E *:C4\&*?℄M,q3 C& :?\ ?q34 &D :laf a X5 - 2m 9?\ (l zaB :+7 f &l4℄ X[/?b=?G&& *v^faN%l y?& Gl7%B &℄ [/lF ?a:[ i& ?a2[ 6/B WGL T ?F IX["m*ha8g ?E $sP% k 0 b_

_ NH k 0 b_SxNH l `S= Æ (a`k 0T&# G%d 4 GdG ?a℄ M k!P?\ ?%oK#Q ?[vg `IL ?&

``IC G l C& G%b , ?5 k % T`8 %℄ 7 v)` g f% o-C < Hh%℄ 4 =& # ag1!P?\&7\=? M% +) (& 9?\ ?e%l ?3g ? M aB ??\& G/W ?l\j2p 0^Mot% b_ y V , 4:( zr `m `+&d GLW?8a > ?Zg%E, &*/O\o% b_ y 9 m!% 4 xb < *?: % xb < )&*??\l ?sd3a a t ℄ l y?&T daz'u ^℄ lS& *aYgZf%u' ;y_&l ??\lu?%T & d# Yg%B}&/u D_ lzG& & Gz9 g, t 10 fÆ& #E *G L8F IX[?&GQ ng&"?4DddlFG < #0 f,G ?\& T !D r`+r& `m ?% (P) +Za5 "/ b9. ~ ~ Æ Æ% |&hGYg GT &= 7Tp d b


L

8

y

:

ihUA bx `N ; –

Smarandache

+ai

) 7G =)Zg? p_, )â„„ G&?=k lF`m7T? & / 1983 6 T = 7Tp lb), )â„„ GhQ& &m# 4 1 %& Gz Sr%#uj `m l= 9O= % s& G ?%?\ "/& 4%,)S&1983 9 T2 1987 7 T?a`mE7? â„„g 7` 7TZg7 83-1 C?\ [ Mu?f, ?N}%^ L[ a? ?Gz `&1985 _a &8b_g 9 :r| "1$/y NyuW RMI El&&8b_g 9 &29-32,1"1985$ "2$?\ ?%7,ed&&8b_g 9 &22-23,2"1985$ }89 { 1983 10 TX&q F IX[Y?&?a`mâ„„g ?ZW0X[, d_|?\ ? ?Zg%3J T Mg??\ b_ y 2 0 b & ? b M b_ 4 < )3J&â„„~u -&"G &?Ll X?\"y [| ?â„„(KX["m{m â„„ ?E $w % ? 4 < "* Hj ? Bollobas P$&lX? j} , `??Q{r -N}, a r7 v:X <s a?\hp k ZW0X[*?g<T - Ga ei: 1T z% ^& ??WS=}T^i44&;*

=sV^b_ ht \ ^ v-Æ&/uGa2H: d"123$7"132$}T4W "* > F" e + + Æ"yi? T ?%g9& QJ/pV %N/pV&da > a ? v: A" e Z % J&`??Qa ?N}=7/a`; D vT ; X )I N} ℄%Sh(9&fl# %0MuSh -=%lTBb; (l h&ZW0X[tQl8r|a >} Æ __ :%-9 `3F&?4& + K = E Æ ?! Tld& `?" X R% ~ E V V > E* d & ( r~7 < b& B~ b_ + g 9 Æ aZW0X[%, d&q z.M "&? #.y8S= R(G) = 2

R(G) = r %~#& 8 c (G) = 4, 5 lF~# c (G) = 2r, 2r + 1 q z. "& E(# AMS ^l)P9 ,TfT ) (lh&? g # c (G) = 2r, 2r + 1 `lFk= . & faLx* 3 % ℄=D zk&S h M` lT R(G) = 3 &ltS= a7 x i# c (x) = 8 %k= &{l D EQ% { a lL[U"a c (G) = 6, 7 %S-&=?y?*ZW0X[% &!9 ` 18-9 l ?Z& dÆ aQ =(l8-9%MJ u℄(KX[&Gd$! (? ^ 2

r

r

3

3


h- `Æ0

9

lTI -N}%y & Q Zg GL8?*HjP ? Erdos (TE1 C# {&X!? N}ld q TT%N}&?# lTlF(S &< E ?1T T {& &$%; uqiE {b " 1987 ao 7q 4<_℄ (.Æa=9SE &?{ zd & =-9 W ℄(KX[ G +? zd & ad:`8S f% ZL 1987 11 T&"= ,?O ;= N}GY?&?!g P I - ?QG*?% o [%= ,?O ?F% X.E G7 ?8 8-9t` r| " F b_ (l8y/w-7)l%9 N}GMV&G8-9\W ?f%M) ?M ?g: &s}z1 d l$! ? ^lT 8-9a F b_ :/ 1990 lr| `mE7? %X[P$!?℄S ?&℄~u=Zj} %3f :a B.G=3&X[lFd ~?&i#?(XÆ% " `m )Vl 9n h & `m℄g ?7ZW0X[lX[- ?; ? M%l ?[-C?\&i* 1986-1987 & g? N}G"maI $O P% Kac-Moody b < qÆ `m℄g ?XWE "m|K ?E $OP %

B < C, ' < qÆ) `/?_h k}alTiF %CV w-; X

z Q0 r v

( )

8 T&?a = 7Tp lb)&Æa 8b)41℄JhS.

s G %3gNObus ℄℄w'E ℄℄ 7*T ℄J℄℄ J =`m% } ?a 1989 -1991 8 T `m C?OlM℄J7E~ ,1991 10 T -1993 12 TT* ^4& `m e> )℄J7E,1994 1 T -12 T = 7Tp lb)1Æb)S. ,,4&1994 3 TdFQgT*℄J [,1995 1 T -1998 9 T `m:oS.AV,\= ~rp℄J[&8℄J ℄?dC* - q~Æ℄J,1998 10 T -12 T =K`tF~rp℄J [ lT M ?N}qlV=℄ qlVy_/℄℄ } * &i* ` b- J BT℄℄ %N} ` "5 QSh#P %N} ) g?a℄J℄℄~ =T >B % } & ka ℄℄ ;r |7T -9 g?a℄℄ ℄℄9~*4 ~ [r| _f8-9& _ x5DV*DM S4 'Q= * x5DV*D4 Q= 1987


L

10

y

:

ihUA bx `N ; –

Smarandache

+ai

4 2 7 "%s < *y&?\ ? t ?℄g,9A%{v 0 _ 1990 1 #$`m{( ?Zgg,%k?& &B X ?m # ?Zgg,9A%{v /u&?{ 1991 4 T k `m{G)E>k ?& & 1991 l lz(& Æ? 99 9 ?ÆQ TQ + :&-7 | .u - 3$Æ J) 13 K3J&S=4l?M&#℄~ " #Z&%HK3="}K3& 99 Æ&lK3& 98 Æ& q`m ?% l ` X[P nT&!*&` ^%Gz`k?% Q"NKT ^& 1993 :L & S &? jt ?ZgZ,9A&ly GF(3J Wd1K3 l Mda %l ? d 1988 aha{ ? R & oM S( oX < .Æ,1989 a5Fy ao7 ) 4< _℄ ( .Æ )

7

~ 7^ ao ) 4 < _℄ ( .Æ"

FL!$

:Jb T" , Æ _$ 1993 =M&ZW0X[Q & ?7GlX/ 1994 8 T NE ao 7j 4<_℄ (.Æ& ^?,8N4 h, % ?N}B aXQ ? % uq\ hamiltonian %N}: q ` 1991 r|a -\1: Gould E l8o 9 uy-9%NT&?!9 G l4y/ hamiltonian %-9&Æ~a H<;_R_ b_g 9 : < )\1:r| 1994 ao7j 4 < _℄ ( .Æ%z &?!g ZW0X[% ?z?&`m ?%3a E , Gu -%Æ G%lT|72_ # |f?& u T dR X&dR 81& t0 y 3l Æ SqÆ. ?/ 1995 :L G `m{G)E>k?& ,Gd D%F(3J& &/ 6 T1 1989


h- `Æ0

11

G lg w&t `m ?Gr% ?Zgg,9A* ??o?4&l S=lg www4 u`m ?%3a E

7j 4<_℄ (.Æ" { H$&^l| \?% T Mg?a F b_ b_g 9 : < y b_: 'b_ )

1994

~ 7^ ao

? M :r| 5 8 ?-9 1994-1998 ?a`m:oS.AV,\= ℄J pNSp℄J[ o L[r|%y/ hamiltonian %l -9f :ua l M G% D~ $A y+ $ &~ :ZES + Æ q( >yp 4 ?&X!? G Lve℄ &&$ vE E lz %td&1995 1a`m ?0 oS &r &rm w-- %& ,r? ? &(%Ur| -9 /uT .SlAT{* * 0 _ + Æ℄F R &>_℄ ^{ 1996 X&?%?\yx oS,?& *rz 1996 &= 7 Tp x5 %℄P ?g & d V b_ + DV'Æl9f% Z!"052$ y / 1998 & ` ?x ? ?O X.E % oS & e) g T 1999 4 T&?f, ` ?x ??\& k ?% oSSI b4l be3f&0b 3?\ & T o?\ b ?%℄ y_ Ua= 7Tp lb)& GL #P?%?\&b ?gd ?\M"E + Sjap% z ? _T o?4 ^b?\ &?U0b ℄ i y<s v # 1999 1 T -2000 6 T&? = v?ds7Mb|p℄ J[,2000 7 T -2002 z(rj b)~rq Sj i >Z &d7l T kz y}A'+ l&{r}A℄ %Sj\ jf% o-9 w(}Tn2&lTu G)℄ 7 D%3J?\ m ( )


12

L

y

:

ihUA bx `N ; –

Smarandache

+ai

#F"Gz&U(lTn2 uba? M :r|lD ~%-9 "a?_T o?4&jU(4fN}℄ E(r|&/u8a= 7Tp lb)℄ y? G%l -N}℄ & `Q l ? M :r|&g< s ~b z &da` ?x ? X.E , d& k I - w2 %?\7N} Q? &j? `m ?3a E ℄ % |iF9B &af, oL[?\%4p - v~` lTy/w-2 % "S &# [%d4 TS ?Qa b_t _ :r| a G 8 9 %z &rm.y` [ %kzh .SlT( %5ÆS & u?Q r|a b_ " m :%v89 *+ ?℄

T f ℄ ; &u{r ?% b2f%Ey % 2001 &?L Tz?z =k ?x?OGk*X[% Yi_^ (YW j & + 'Æ%3J&q3u : :3&,?aGÆd &HzP( 3%z ?& "hu & &)I l83J-9 t 3?&? -% v&S -G%3J l8y/be?x.'(%-9? : & dE #n^& u GlK3Jlu Mi &?% Tz?nT%L8?# 90 Æ&"lF z?# 80 Æ 4 &G WGk }TZK??x N% oS 90 ÆG z&l?lu? ?% a 4z?%ngd&? # 8-9.yt l ?x?Z:r|& ^ W &oK / _ &S a4p r|`Q b $!& uZK??x%?Sa:[r|9 duiFK}% ?T " 89 & *H; :l8 ?9 yh'Drm u?r|%9 = & yG%l89 &4f? ?QSf℄-%' , G >fl %N}℄ ? N} u ^& &G lD |H%? +G&Zf%&u|a % H% f&_ u.y 9 Gl ? -9aM :r| l?la X.E % d&_dE(Bs Tf ; "/aT ojuq( _f %$gu\*N}Ey& T o-9 A census of maps on surfaces with given underlying graphs Æ(< Y [ > E :q4 +5 4) u5 ?k %'+ l `Q%, Ob -` [:w-2 f%Æ ℄ N}& a :duhajS% -9 G??W 10 4E CM& S- * . =(lT( %% & o-9 w,GdO[%u P ? = ,?O%Q` E a wj 20 h&GL8 X.E "M( ? %-9 H& X.X[B M)& ^ED% w Ev*Mf% ? Q` E &8?a o-9= % v r7p # %ObS


h- `Æ0

13

- :a [%fy)) Gf% ya%Y? XgSt?&A' ld& !*?%' * vF& X.E yj, % T?S(4"%p &S-(l D - +&/u d `-9%C9& w- O ;`?a`l N} 7

&> < b % W3 z! K x _ zv \ n

)g,Yb

( )

?k # o-9=U(4f; {v0bfl fm&d0blD%T v " fm& ^a olg? kp_ 4~ o?

Æ.M _B. Æ"0℄:$ W3Gg\ \ n pv _ F K x

2002

~ 7^ ? b_â„„


L

14

y

:

ihUA bx `N ; –

Smarandache

+ai

11 T&a`m ?3a E OP%[-C:&? A dynamic talk on maps and graphs on surfaces–my group action idea Æ"`3 5 4:4^Y [ + B| + ~= 5 - f + eZ'a ;$%o-(N}ZL&yM# z%% eg 2002 1&= ,?O ?7_|,?N}OI ?% o?F & D /4p ^ k o?N}℄ "/`m 2003 ^ = Æ |&?) 2003 6 T f,= ,?O ?7_|,?N}O kN}℄ - [k N} G&u -N}℄ %<s &l GT Ob{rSh -%N}&?aT oj%4fy/ hamiltonian %N}℄ G% | 4lz0[&k X[ `?"*

{T& y 'Z + o 7g 9 DZ&f* G &{ FL-hÆ i#?(Xs% "8 oL[E(N} %℄ N} &z n T {v y %N} ; di#?.yo [%' &{l~`l %N}℄ rf"a n u`% G%b &?a= ,?O ?7_|, ?N}O zZL*

Active problems in maps and graphs on surfaces Æ(54: 4^Y [ + B|&~73U + d ) 2002

R x *

7~ 4<:M b__℄ (. Æ"> }k-j0$: 0 F "7^ao 7 q 4 < _℄ ( .1f T 6^~hm w & 1f$D~=Dn$& t [ jf+ S Æ & -^ V _R Bg 9 DZ 2004

~ 8 V7^ ao


h- `Æ0

15

olgy?&?l)a'& ^}T; & u & p y '^o w /℄ K .~+ %4 < -2 O '- _ b_- n 7M - }T; du 4fz%q 3;?%; & * X.X[%4f,N℄ I% vh -; & 4f H /u&= X.X[% v SH ? ;& Zf% T A v&{l SG ;~`l %,NG G ?a o?L[℄ % B7& du?k [ %lz %m| *y&?a=,OM"fB?\w- - ;y %l ZP&* |'$ Æ + `= [ `= + t /O [))& y uyN} Ob{v&u w- vN}q8 ?; &yM k.S % | 4l8 -9 Riemann Y [ Hurwitz E + M :gÆ u l'{% eem 8 -9 G?& " 7n &o V _R&> >m: B_ V _℄ < Æ& ? W w,d`I 5 Wk o? D%N} &?a 2005 4 T G% o?ZL On Automorphisms of Maps & Surfaces Æuq usw-n - %-9 &Hf :uq \ ?%4f -7&l -7aa#Pf?%lA|7& uaw ? Q&p ~ S b__ VLY " KM 6 " KM *x&% " K:g A|7a?% o?ZL= T &( ~%℄ 0b ~ o?ZL% y?l ua?%$g|' &k $Æ + `= +=4f w- v0 b fl N}% ?; 2005 6 T? 2005 4 < :M b_e 7 t eoX_℄ ( .Æ& An introduction on Smarandache geometries on maps Æ%ZL 8ZL7?a= ,?O % o?ZL On Automorphism Groups of Maps, Surfaces and Smarandache Geometries Æ?QG* Hp ?, :Tw Smarandache + 8 9n=%}8 &9n o?ZL G?&? # 8t` `I&=?`w- ?% A|7 p bÆ "a 2005 ^&I (l `IC ?P J, ? = o?ZLrW GL GL4 9?%|7&7 ?aZL=o (y Smarandache +% ( q o ,9&8 / 2005 6 TaI American Research Press `IC l`I

6 DsTU

( )

o?N}S ?&"/?uq 42 ? &`mE(lF ?n,NthM Iw?{rN}nE? /u ?%b & r 8?)IÆ-a yj?℄


16

L

y

:

ihUA bx `N ; –

Smarandache

+ai

% z(rj b)& #= ,?O ?7_|,?N}O%z &? # *GLve%N} G{rN}â„„ &Fy=k n &lu? {8? aâ„„J7E ;f u\%qY7$g _"H ?a U2 ,nV{ O~ K (l y/â„„J~ %< &tC f*!)zG$,purj % ,Ne5; &â„„~u, .gO'{% |&i#sd,?N} `hj&

~d . ~`l G rj%,Ne5)IhG ,Nâ„„ y 9 ~ -9%'D ~& M ~d . f%l p(% %N}â„„ 5 ,?N}% %& p(%N}lF0b 5-10 % " r|`-9&a

& ^%,N Gg d< 2 a A `hj'{ |d&aYg7a, Nth{r ?N}f :ul^% ?T %Twu '^4z + <℄ q mf +b_g9 &J~ b_g9+>/ Æ& A|7&# = ,?O ?7_|, ?N}O%#P 0b℄~,`%u&I 42* ?a o?ZL=o % (&u ?N}:lT % F7&"y.yi# ?$gp $*8H ℄s l^

5ry l?a o?L[%l |7 "7GL%{v kl* rj [u q(%℄ f&?uqr jS ?vg /W 4fz%& m#" C I Perez oC " Your book is very good. High research you have done. Æ, KF[| ?l4E C " } P g& ÆV Æ Zf%u0b z% T?%'{* T % /ua 2005 &?a`m% F ? = ,?O ?7_|,?N}Oy %l ? d :&`?% A ?w-O|7 l N}℄ f% ZL&m# l3" C Scientia Magna \1lz 8?a 2005 ~#}zZL }8-9f% 9 r| S-?%w-|7 Smarandache +'{&?rm.y`l| ?f% | '% 7w-&{l r 4f % ?; &#Gb_M ^a7I

2*x ?& _ k %N}℄ &z u Smarandache Multi-spaces Theory Æ"Smarandache * B ` h <$&`l| + - M 6|& ?%w-|f% %N}7B7 ?T %8H|u epV(4fT8H&(%uHÆa&(%luH?& "/2 ℄% ehhE , 2 ℄b{!g| T8Hul24K}%r, *2 ℄ %NfNf ?L T8H%+ u 3&7SH8H6"( Æ?&&?&%SH6"+ . u 3&d. / 3 ^&a 8H=% Æ M9z ?L T8H%9~& ?L HL& *HLha?L # % 3


h- `Æ0

17

T+y % :& u6M9 y/6M9&?%|7u2 :% ℄ . # & *HL ha?L|## % +: haG+6"=%6 SM 8i2 : %68bG& *HLh%6"+ i2 %G a 7:&? z rj %%vA!*2 ℄.yx 2 fY v 6M9%|7 { -:<&Smarandache +S Riemannian +&{lS 2 $U u`-& *+fmll)E( x l?rm ?%w--|7&l.y` S SL~io?4f (f%B77 g u/ 2006 3 TaI `I I 2*a }:bÆ g &.yX 9d^ 2006 8 T, ? 4p[ w- ?7 - d, a zd:, ?`?% ?w-O { # % +y w- [%l S f% ZL, # 7d %l3"C&W7d lTBb%Zm, v ua= 0brln ?wO%ry! l d4 ui= G* ?p %lnoq& ( ) E ; +lTG`%,N℄ Pa %#P7y &?d k ?/ 1990 a`mSh&Oi7?zalT7Tb)& m 1993 ^`S ap_f {r ??\7N}% J=&# QkUT [%y * | 2u : } ? v=K4 k? &23 ? &X q℄&:p _ " 4 +f,B 7T℄J?O C?\&1 ? . ~ ~ Æ Æ?\dG= ℄&) 1979 ? GL [ S r Z,9A 2u Aa? rX 0=k?%%*`?.S JJ% |&l vGG`? A*f% T*C & Zu`?r: ?N}! X .g_%

2004

~ 8 V:)D

j^>}k-j0%


18

L

y

:

ihUA bx `N ; –

Smarandache

+ai

y:u?{l4Kx7Tâ„„ q f %& oy r: ?N}% y & J< 7 (& Zf2lu S +%em a lT J=&4 fX[&SL=?L[%X[*2*&`?r: n S! X .g_% f ?{& 8du TE>% % O* Q0 gDU_ - S*

tUV = \ ~Ko * > "F AV &?( l IDV' K x Dx5&- ) * & x V b_&15 ~ t &x5:b_SS " b & + *w, & 4Js 1981 ~ &2&Æz + K x% ~Ko sj ℄ X ~ a bD& ~ ~t % * KQx_3D ^ x8z_ & S 1 > !b_ + I g q + ` h ^ 3(h& Y7^ & V RSx&?/w + Kac-Mody b < qÆC * D z Æ _/w +

/ < C, ' < qÆ_ &% M ;* ` + _℄ ( . < b Qx_3Æz &K x H N℄L&*j~h& ^ *>

R * rt Æ Æ * 1 N _R 0 DVXH N℄b DZ I9 + DZ 5& tQ?3b_ Y7^ R &oM S( oX < .Æ ao 7 ) 4 < C, '_℄ ( .Æ 7 & R oX4 < _℄ ( .Æ0 _℄ ( .%* Æ. & b<b&$^ F b_ yb_: 'b_ H<;_R_ 0 N t q s& bb_ < b 1991 ~3&K xM;7^ *K20 CF_QO&8F 'b_ ℄~ ( + S>5 ) * Æ _ __>_℄ ~ k& Q & V R , + k> g9"&*; 17^ * Æ _&>"|_ Q O f - 34 z &\ , > q 5 Rk>& w 1h& *1 Q&> ÆK xzDj&i_Æn+` &KD

1 5 j*

_b_> f~(&U Æ ^Ogb_ + *1&K x+ N℄DZx- ) !tS5 1991 ~ &K D v ~ 1hES n V g ℄ 4' Æa ℄ f : C Bgm C #Æ&%^ * K1 N _R 100 W = W g *D& ) SH '" (N℄ 5 ) n V N " + n0 ~Æ

&xIKo QC Sq 0~Æ$ 7x * j bJ 3+$!ga 1&K D g 9 ~+$^ Q P + Q Z H *DN℄&~ (DV


h- `Æ0

19

+

Æ +Æ

W +$^ QF g&Soâ„„ S G4| Q g/C ^ * K f Q*D&& 8 4' b*DNâ„„& p * "F & ?ID & xl j t Z e Gt 1 7& ^ h *Dv K - t~(r7*4zw m& D T-/ne + K D5 s vD&1993 ~ & #; # #SDV' K D FL wUDX B UX{& SH K -~ FL " BT & {3 ~ S 1962-2042 &dC *&

A > AV Æ E ÆÆ V x q ) d _ + x + Æ E r 5 j*

~sQ l &g 9 b_ Y g 9 % 80 z \O~&fx x- % 80 z Æ Q0 "1996 ' 7 30 M$ 50


H " 5 R y: – f + M C /, 20-32 $V6( I A x "&o V _Rb_: , V _g 9 R& * 100190$ ℄: Vg+RwDZD\ &2 O ℄ )X&2 O ℄ * y ℄XJJ n jAg 9 nL b *℄ f*~=4 < _}& Q4 < g 9 % %4< &\% %(Ig 9 &"i* %_g9%N K < t + g 9 sV&j _ ^ V gDZ&z l ℄ &z x ~ _ V &&* \ E Ff * \ oXg 9 >mDZ lFL + & - P% t + g 9℄ &%C1:oB_} ( D`u& 4X xD V gDZ}S t mj +5 S & b _ d .- ; 5 3 Z' NJ: ?w-O { w-? I? I - Smarandache ' { w-$Æ + -M ,Ne5 Abstract: How to select a research subject or a scientific work is the central objective in researching. Questions such as those of what is valuable? what is unvalued? often bewilder researchers. By recalling my researching process from graphical structure to topological graphs, then to topological manifolds, and then to differential geometry with theoretical physics by Smarandache’s notion and combinatorial speculation of mine, this paper explains how to present an objective and how to establish a system in one’s scientific research. In this process, continuously overlooking these obtained achievements, raising new scientific objectives keeping in step with the frontier in international research world and exchanging ideas with researchers are the key in research of myself, which maybe inspires younger researchers and students.

Key Words: CCM conjecture, combinatorics, topology, topological graphs, Smarandache’s notion, combinatorial theory on multi-spaces, combinatorial differential geometry, theoretical physics, scientific structure.

AMS(2000): 01A25,01A70 1 2

< + ,8`s -> SE

2010 e-print: www.paper.edu.cn


h-N DÆ0

21

m3 ,?N}% b℄ u= = .yÆG}T$z*lu?S %= & y G [b %rz&t ?4*d,puRlf%,?N} %= & yb Y jS& G p(℄ &y?,7Ex2aG ℄!gk o*zd =& DN}dD Bb&Bb%&a/ kRl ℄dD; +#N} l tN} u ak ÆY%; ?,n ;&l f{SGuy ;T ℄ Æ&bY N} s&fl#Gk R℄%N} l G`,?* ℄Cd ( F f% p(℄ u,?N}% | e&?{ T {rN}℄ Fr %& "w-?=% -N} I -* I?N}&_" I?N} $Æ +* -M N}& ℄ Dk? ℄a` %N}3 7 ? ? %N}iJTl7ed&7 e}

ao 7n 4 < :M b__℄ ( . Z 5 f :& nN}& em/?a ao 7n 4 < :M b__℄ ( .Æ "2006 8 T&{ ?$:F % M n#:b_M .#Æ"Combinatorial speculations and the combinatorial conjecture for mathematics$ZL=a`% ? w-O {& +lK ?,? .yf%w-Onf%w-B7 ?T Z℄ "= T { lA,?N}% M n#Æ * "1$_p ~S b_ + V _&Y \e- K M jf4'M < " K*x z s3K n#& K wg "2$4'M vY _- = b_ V_** ^~ E M Q:q " KM :g& i x > + b_ V _ f=nO S b_M Æ"Combinatorial Mathematics$ ZL ?& 4=y ? q7?f% XÆ[-&z a :?d7 4E &SLm ?pOO[ Lovasz E f% ? &Z!D ?% & aT uq`I% 54 Y [: Smarandache K +F*Qe "Automorphism Groups of Maps, Surfaces and Smarandache Geometries, I American Research


L

22

y

:

ihUA bx `N ; –

Smarandache

+ai

$* Smarandache *`h < "Smarandache multi-Space Theory, I Hexis&Phoenix, AZ&2006 $sd:&/ 2009 aI `I M N K C,^H< & + ' (Combinatorial Geometry with Applications to Field Theory, I InfoQuest, 2009) ZP& w- v G w- - I - $Æ + - -M % -F 7E℄ Press, 2005

_ "U5'T ?uFg{rw-?= -N}%? 1983 &?QmalF7T? ?& T %1 a/ ?&/ua`m℄g ?ZW0E , d?\w- ?& #T%uy [|?O%Æ% Bollobas P ? 4 < "℄(Kw $ y `l M :r|%S ff%9f 1984 -1998 15 =&?l3a{ rf %Sh(9N}℄ < l Md?\ I? $Æ # $Æ#l )3J& E(~ J,N}&la - [&lg?N} %a & k= E1C# Hamiltonian * Cayley )& a M :r| -9 M"%l ÆN}G a M :%r|&l)P9 ?_T oM"&di? k j G oL[0bb r|-9% ~&f, o-9 w F(N}ukM%&dug1% M"%N}℄ dE(a % & T f :d | y N}℄ G?` ?ry ,?ry(dD & u=a? M :r|-9 lACdN!&lA vDÆ&l A{v :p :_ ifmXQlu#QQQK} ? VKx!* -N}N( |`G &/u ?Vl Ob? M ` --9f% |' 4 ~ -9e ÆJ&N2E( + "& u * ^ N q ÆlÆQ r yhl XgS * - +d Y : -N}fJr ?T k !*&:p :_ i ? V` --9% 4uzJq &H)I 3 ~? M _N} -& *-9r|N} < ?Ql ? w' H} a lz ao4 < :M _℄ ( .Æ&* S -? ~` l Ddn& sg:Pul X? ÆflO5i &Sr%a7f!gl 2*& *-9r|*D s^hR ln` f,p_lp ?& A S f d % $AS$ vD -b bN}&b bY: ? %N} t- 7u4D% 2007 &?qalTw-?-Rer `3 C4 < g 9 + n Q ÆlTri& | ?` T; % v& e\ *d*


h-N DÆ0

23

4X 4 < 6M b_ + g 9 * ^* d &`uDht3&32 O ZS b_ V _ Æ ℄&& + SL ~&\ *w f T U d _M + n&II\~7y M z d ℄g 9 &3 t 3℄ - K=A " + M 8 D.C\ f T II*/ dFL t + d *fg 9 + =d _ b_ V _-2 O 's-_ V _g 9 1- n 7M -S2 O */dDRw n + 7 + t JbSf T xj*l t g 9 + ℄ -2 O ' U d g 9 "5wf # ' I ) = < D _+ &hf ~ &g :~ bqÆ— JJDo w M g 9 + I w3{o w + M g 9 &# ' T-~(w| =b_ Æ ℄& + ? &*wW F &*w A~7 - =+ 4 < 6M d * &_ 4K Æ&( 7 + d ~ E w 7&*w S$ Y q <biM _"~ i \ 5 " Kg 9 *1 # 'M g 9 + ℄ ℄ b_6 V _ +>m"K&*w Sn _"f~Ewg 5_ , b_6V_ 7& D M _"S|~ +5 &g 9 M _~7k 0 d J*Rw 2 + b_:q&G 3bSn + v f ? i *7* =b_ V _ +q m d O ~ O ** ℄ ** b_6** V _g 9 + d : q& & q M + M &" i_ b_g 9 XlM JW*wS>U Y (5 >U < b b:l~H i * " K~7n + x I & _=nqmDP-{s+ w-?f :ulK ?;&u T,?&m A|7a :du g p # !z&la &:p :_ iv1 4ZJ%1##a = f :uw-?rJ2&pX% - f : ulKw-%?; - eW` zw-e" | z%k ~#&fl!gk % v q %u& w -e" | z~#%~va= E(# 4"% N&luYa ? ?[ && GL%? ?u K=f ? &8w-? T,?&m%|7d d# ? !z&?T D&* M C / Æ&du A. ` J ?N}&x2,?N}&flG* ? ,?p ("h m "U 3 T ?% IN}k/ 1999 [{ X.E ?\ I - I -%( u N} a [:%(9&℄~u aS:% 2- Rnm,(9&7lF -N} z& I -0bN} ? I?&℄~u [Æ℄ S(9 [ %$g& ?14 *0bFf% ?sd& N} I -% fQJ / X.)E %5i S?S lX[{ X.E %(" 45i&ObN}}℄; &l℄N} a


24

L

y

:

ihUA bx `N ; –

Smarandache

+ai

[:m,%(9 HQ ;, l℄N} zhm,% ; &Obu W Dl℄ [:zX2 % ; ?z N} }℄; & 7l{ | 5 4Sb + #D2 O-:4B| + ` D2 O- Æ℄%{v&? f`lT a [:%F(m,& Burnside f%zhÆ℄& rmf : .y lT( bl ;lT a [:SG%zX2 &/ua>2 f :ua ; %kzh L% * x3 - vlFEv# lTb} bl&lw- vl.yrml ℄ 2 ℄b}bl u 2003-2004 ?r |a gÆ dM [ b_ " m b_t _ * 'b_ :Sx )M :9 S %QJ % [m,lObN}l ℄ (9%m,&*HT[ * % 2- Rnm ,) a(*HQ ;; "(lg Gross * Tucker P% 9% %4 < &X`Q .Æ?f%! NT `r7gu{ | % [HQ ; v&S rm =%:F (f4p% *w-at :F f :u I?=,;6"%lT℄ ~#& 8.yaZ |' A{vqh o# "a& i ? } al M :r|% :F vhhO$ Æ| -(y9 G o-9 <> E :q4 +5 4 t o?4?& #. l:^& d( "Qz'_T o?41 dDN}-F#N}G (u + rmF(℄ G $ s! ℄~uf,= ,?O ?7_|,?N}OY= k N}G{r o?N}%} &?l3 a ^lT; & u %4 < %4-2O'- ^ %_&r =b_&nD ( - T; ) ?% o?N}S &℄~uNT l I - %P a> ( "Q& I -f :u{ w-% vN} [(a&f% [C%w-0M h G % I? d N} I -; a I? Q& [ ub3 % 2- + #&SÆ℄; uq# 4"%T Fy 2- + #:%; a I ?= ddB}&(y℄ d d` I?%ry(Z % f I? ZyV%u n- + # l{ CV<&℄~u ℄!gk V0b&Gs0b | lF+ % #Sh { o o?&?l)a zhÆ℄% v zX2 & a [ :m, 4f℄ a u l &U.y ` > .-9 {| I -a I?=%24?&?u- I -%N}℄ &< Uy V [%fy&d# -7w-? ? d du?{ 2005 y ?_E - I - [9 %ObE


h-N DÆ0

25

| I -%y r%&d)I G ?a` ?w-O {& * I -f : u [%w-O&G ?% ?w-O {lT(o}" A{ v&n "u ?w-O {E")Iema ?% o?ZL < 5 4: Klein Y[+F*Q &d u 2005 ?aI `I% 5 4 Y [ : Smarandache K +F*Qe l 4H jQ=& d[ [Q* For applying combinatorics to other branch of mathematics, a good idea is pullback measures on combinatorial objects again, ignored by the classical combinatorics and reconstructed or make combinatorial generalization for the classical mathemat-

and the mechanics, theoretical physics, .... "#w{M _ '3, b_ &~(S{ + w v D^M _g 9 1&) ^ - = M _& N +V &_ - = b__ V &z b N K Riemann K C _ <t ... 0"K*x6M :g $ A'{d)I G ?N} n- + #&flh ka M :r|l y/w- # Ssg zA [9 ics, such as, the algebra, differential geometry, Riemann geometry,

P "U |?&

7l4I E % :tK&i?d {w-\ Riemannian +& flf%Sw- %N}â„„ 2005

"_$Smarandache ?& ?a= ,?O ?7_|,?N}O% o?N}/ 2005 5 T1S & p_am,Nth ? ℄ &E(l 4M I EMv. a {r o?j℄ %l zb)℄ 8 ? *(gQ~&T #4[ & d(lA ? V$_ % ^I l `ICW?Q l :i#2& D.b =( Smarandache +% (&GL.yhR?aI `I ?4 9T a o?ZL%vA ?w-%|7&!*< (g{r ?N}& 8=k ` ?ry%0T p $ &a ? ; d73w /u 1T? kB o?ZL&o Æ (rW I v `Ib)& L&?a =4H w-|7[- Riemannian [ b)%s} Ji?&a` Smarandache +Li Riemannian + &7 ?N}?o (y (& aaW?uy9nh % Smarandache +N}u ^)&. b hh` A + .y r "/f N}w- I%E &?\ /


L

26

y

:

ihUA bx `N ; –

Smarandache

+ai

w-'+ lN}GL%; &rmGLa`%lT0T ; [2 4( a /ua =o ÆN}S ?rWI v `IC y & g / 2005 5 TaI l`I ^&a o?N}S z &? aI `I lg? ZP&dpd o?N}S aI `IZP%g/ If Smarandache +&rm [ a ~%N}℄ &uy-9 P aI `IF(|&7 ? 9N} ? & D\ Smarandache +N} ? %℄ y_uqa b)&* V!*?u ,C`I%? &?7= ,?O ?7_|,?N}O(y 8~& 8?aI `I%vgZP/WGL 4 q N}&l3z ?. y 9y= ,?O ?7_|,?N}O r|-9 `IZP* ? d &`?%N}℄ aa | #P

U Smarandache K Smarandache +ulAYFl|| % +& b a A +6"=&l Td .yz Gl7 Gl&nuy}Ay: l Gl& aq8 +=u M I %&p # ulAS Bd%e_ q8 +iF℄"&$v ( X(9% +6"& 7 LFM % Æ u &p #.( X% u I%&d u {% $ A X% +6"E-ak V&Uua ℄C d . a k VryFn'%Jo& u A X7 7&"%Bd, l ℄Cd=9 7= e y =4+ %Bd&l i ℄Cd ℄ Pd& f ℄Cdf 7ry ?d Ax % +T & *HZ$-k V* ℄Cd%f ~G&du ?℄ 0b D~ l | % /uaIdQ% "e&?N} Smarandache +u(S &℄~u Iseri [ +hh`%v Smarandache +& ? # alF [:hh Smarandache +&/ua`2 +%: y uyN} N} Iseri %hh v&d*??QN}w-$Æ + d sd 2-


h-N DÆ0

27

2 +f :lF(2hh` 2- + Smarandache #&l`/lF(% hh` n- + Smarandache #& :bD(\ E( + ?S & l4I E ;? a Smarandache +7 Finsler + Weyl +%y_ GL{) :!* Smarandache + 8SL?[}A +& l)W ` ? "a XR/?a e"6"7l Smarandache +%℄ &? , . n + #& aS:7l ~1*i+|&{llF(2 G n- + Smarandache #hh℄ a : S y_&# 4I E %!z& aS=?s %lg = TS rj Hp ?, :Tw Smarandache +le 8 &9n& S=}8u"? G% "m$+nJ5'v N} Ax % Smarandache +&? g f :.ylF(2f% A ?e_%7E&i*=}Ty:% T ;nuV~6" alX&flV [S (%Sh (9 a G 8℄--9?&?=?%{vL$ I 2*& GLL8? A{vf :ulA℄ % Smarandache B6" lT Smarandache B6"D * n T}} z6"% &S= n /)/ 2 ^&Smarandache + ulA℄ % Smarandache B6" { -:<& ℄ Hz*kIn2%r5&. Æ2 n{ zCV!g k & # l :[S &lta ℄!gCV Pu %& *P % H n ,ÆF[ %Æ?! vD`k % !g&* u:[%&v 8 uF(!gS %p*& F(k %*℄ % -& du :h !*. y"y S -M %|l -"Theory of Everything$%E lF(&$ z6"% ulT -; &Ev /k %D~0 M z6"% .y(4fA l&l A Æ 0bXR/w-nu - v Fy?l)!* Smarandache B6"ulA w- -&lt7?yja`% ? w-O {%{v kl- ?!*& ?w-O {ulA.yf/ pl % -&"y.y pl % ?w- -l u a -% T$[ : q N}& =?%|7f%_|pS&?/ 2006 4 TaI `I 4pg ZP Smarandache * ` h < &SL ?y/ B6" Smarandache + 2 + . [ +) [%N}S &S= yjqaI l ? M :r| al 9D C =& ZPdC- D(* + [%ZP


L

28

y

:

ihUA bx `N ; –

Smarandache

+ai

"P$5' |?& -M &℄~u o1 -= %Ob℄ u Riemannian +&Fy{ b8 Smarandache +n:[ ?w- / -M N}&1|!gk & Gl D(N}℄ uLL k%& du?l)`I 4E w'%N} wa`%>4 0 { 2006 8 T?a ao 7n M b_:4 < _℄ ( .Æ:a` ?w -O {&?&?l)a2 7lw- Riemannian +℄ &a $! 6"s d:a` w- #: *N}` )|:<&H u #aWDw-Sh d%6"w-&/u ( Iw- #*$Æw- #&Æ j N}w- # % I(9&* d- qx(&sg zA I℄ ) (&? N}$Æw #%$Æ(9&* ~1 ~1 $Æ p2 Riemannian V~ Sh J )$Æ(9 N}S |a& AN}` ( #* Sh B(9&4fS 0bz #* %l ,z \ | & du?yM %& * uw-%gQ[r 4l8 T %-9 M ( I +K < Æ"Geometrical theory on combinatorial manifold $4 50 1e&/ 2007 ^ G ?T !* 8-9<D w-$Æ +%sd&/u I Trans. Amer. Math. Soc. :&s}41^& L8?rj8M uF%$Æ +J21 & r &7 ?9 SG M ?W 4I 2* &;u ? MI y/ Smarandache #%-9 GL L8?ÆV(lg +7 I%? M I ℄-9&?/u8 89

MJ u M%Os&%gl44( % +? GW` 4D%C & DI 8-9 =?s} W?rQ l%I & z 0 l I[ x$ ? $! gM ub % &$ 89 % p(&q 7s}[ U &y?5 50% % #0 I[ 89 2007 a gM : ` ( zEE& & A p(%9 al pl "Fg%M : M '% E *luI %9 ℄~u`vD,pupl "Qg&SMJ * u `vD,1u`JF F) ? -9U},...... )&a?l4z?%7 d&? 7I 2*8~&C; OR?aI pllgM &ZK ' ?w-7 M [%-9*o (9 "yj?a `I lg-9 b_M < b\( I ) "Selected Papers on Mathematical Combinatorics$, /u D o Xb_M [ Æ"International Journal of Mathematical Combinatorics$% 9 *|a gM [ f= 9O&M [ / 7N| f%w-&[


h-N DÆ0

29

f w-'{N} ? M 8H M% AF Æ?'{ I 2*4M O &j| aI

d f%V" F |l%M $)r~ "GL G ? rluw's,d& 7= ,?O ?7_|,?Op_&X! y= ,OlT 4% s}&z M W k`maS } e: = ,?O ?7_|,?O%(y 4#P&z y= ,?O~ 7 W_|B 7fY| s}&t8(yM Y? s, * JZr) (wa 8fY | }: gM / 2007 _TaI lp &*?Qr| : w'{N}q8 ?* -M %9 -9r|% x &$ w- o1 J7l*N}0b&?,!9f% w- #:%p2 & ~ uÆ Sh J iw- # Saw- y6"n y6"=%m,& y Lie Oi+| -%w- )N}&# l 4( +%S & ^ ^ G w-$Æ + -e_%7E℄ & / 2009 9 TaI `I w-$Æ + Sa1-=% vgZP +#la%u& =7lw- # :Oi+| -F % u I -=:F v& lA ,;6"7 $Æ +(tS-%w- v

z "Uv (v

+N}%r%u*M N}aa 6e" Smarandache +ugf* u`-* %8Haa ?e"a`% ?` -M %N}k/ 2006 &aZ P Smarandache * ` h < y?l &?^ [- Smarandache +7 u`-%y_ M -&y 78H?%y_) ( * UE(_|7lw -$Æ +&Ev{ ?:` %8Hf% ;7[-&Fy = u( %D( N}&(yS dE(t M :r| 2009 &q 1 f%N}&w-$Æ + -F uq 7XQ &( y% & ~ ;uq.y0Jf℄ *y&?,B k'& Einstein % u `-* % 6; f :&w-"$Æ$ #* %1aa lA ?e"& +lT Lw- #.y lT %1&. 0b=S=%HT # l TM 1 CFD$&Einstein u`-/ %&f :ulAk % y % 1 *\r%Æ?'{& lÆQ"& u\ M %% ? JaF( &_=% |m#l l3 vD&w- 6=% Einstein o J 8n^| -7q8 % Einstein o J℄-&w- o1 J * & ~ J&. % & *w-$Æ #:% &


30

L

y

:

ihUA bx `N ; –

Smarandache

+ai

w- 6&f :[ flA ℄`k !g a r(%Æ?'{& du a= p l Æ?P &*Xi% '( - =Fem% a A!gd& ℄ `k %#~S f : u fS %l Æ& lT:[S &l fS L F ℄!g %b.\%f&*y&?a`aw- 6=&b0b<s Einstein % u`(E &U0b<sA E &x3%"& u\ w- 6M % % ? Ja" T6" S=HTwG6"%uWd#l u& 7 ℄` k %!g* ℄ Æ ul3% ^& ?%w- o1 J [ q 8% Einstein o1 J z Q&j uq# %l q8 o1 Einstein J %T&* Schwarzschild `DT Reissner-Nordstrom T)& w- v. &

hhw- Einstein o1 J%l ℄ T&`w- o1%%*f%e A'{& g`ma?%l8y/w- #:% & J%-9&=?&I l M ? M _ y 8 5Æ"Special Report$ZK `l8?% M

H+ _NH Æ"Relativity in Combinatorial Gravitational Fields$%9 &ya / Aw- o1 7q8 o1%y_ f :& Aw-1%'{U.y /` |1f%w-&7lw- Yang-Mills J&fl /miM N} ? 2009 aI `I% M N K C,^H < & + ' vgZP=f% l ^ VD& [U(l sd; 0bT &d(F %N}r\6"

& j5LjY $ y} auT p_f Fr %N}! &J ,?N}&℄~uEp(,?N}& bo2(lA,? NoK &Ua lA"%N}' *? '{ j & l GeqZ!? uqG*r|-9% LH Æ oÆ y*&& $ = 99% P /Ep&` J,?x2 ℄CdE(*! HLnu 9 P& N}S )z/y\ ,nuYf M :ll89 &< l79f fr |,nu*C(D * 0H r|-9b ~l<} :Z& ,......&yy) )&*dD.S Am u+#J'% =(,Ne5&SL,Ns^#R , N℄ C v) [%; &d(,N GkI49*(g ; guq ; & f ,N G%℄hb℄ AFWE ,N G& ℄~uN}sd,? G <+l)uT %rf ?%4fz? *t , Ns^& # _N} _ %? ? & *GL gu & gb <sSj0 2008 &?aF{[| ?Wy E[*N}Slz? ZL=& l4j ` ℄ e%$zNÆ G"& ℄f :Æ*1T$z&4l$ u h /S ; & i&℄ E:,4p$5lD'{ ℄f/&i*


h-N DÆ0

31

E[ s[),41$luph'{&i* avzZL=&?L8tC&N} ?,?f : uN}Æ?&4/ 4j Æ℄=%41$& /uqT q sd%:$7T ; * U0b f ℄ i&vD& N} ?,? l ypVry p_lp &kfUiN}?;u mf%&U * {rl + $z%℄ &gT "S ; _T? N} Fy&T " f ,N Gq

; &iGLE?u& u7l, p % b℄ l,Nq CM&hR hR lG s^~ % < Hzs^C M 4f( %Z f%CM& $?g(Z_& GL lD$!3 F %3 d*?,ryÆQ F l uAX3 F aF ZL=%/ nu`F ,N℄ % T ℄S3 + A~v&sohG? V%Æ OÆ &y Ny_r?Kr2rS q30 l X>H%3 U (s^h R,ll p(%3 &℄~ul y ? a`%l p(3 & S ; y_ 4&CM , HnEvA#S`,?ry% l# hR ?l)E(F ,Ns^&ObE u?%N}℄ &℄~uZP 9%`I&l)# I l thhR ^.y(Zf% "N}l ` ?n ,?ry ( f%3 l *H &(0b%-9 ~r\ ?T k #&{r,?N}%yObjauN} `N}℄ % 2 M *& N I &"%N}'{&l s D/a ?n,Nth{r(gN}& du ℄l T {r,?N}ha:[v4j Æ℄=uT$z%lTObzd Sz& `,N G ?E[%C t5&l)5Pf ? ry&v A `hj%'{& ygN} {rv Y B%3 N}& M d .

~l ( /,?ry% 3 duhG p (G >&7R r

+ QQQ %lTObE 2007 ?qalT-R=r lT `3 SCI < bÆ%ri&` ,NC e5f% 'D&S=l[Q*d* =nrS ^o w CRw : + &D{~7* ( q | V _ a + w x : * t & z SCI < bb a~=_36~=_}& S V _DZ + a ^ ~ 0 y O l t ,a &- + D^b. ~ &z Yang-Mills H>D [ + ~= D hn T d ℄g 9 ~7:n z r7Fg :n z E Fg ` + * Æ℄ & 0DV_g9+Rwpv&xDb_g9\ + * ?% A|7a h d( > Q 2008 1&I ℄g ?d)14 d4qp r9&4C SCI ,zC ,N℄ &z`S7,Ns^hRwf ?% 4I 2*d 7?[-℄-; AC e_f : lA


32

L

y

:

ihUA bx `N ; –

Smarandache

+ai

&G%-9? lDG&S G ? G% E& u| ,?%&du !l%& * SCI ,z ;Obn %u-9 &&*! B -9%? & &G |a? .yfl ~l ℄ &|aT 8-9% iF flu Fy&* T ,N G ℄~u{rsd,?N}% G <; & 9u SCI -9,zC ,N℄ % v&?L4} l % ( |% p(℄ [p I t " m ?ZOs Rabounski E / 2006 qa8?Z: Æ~ 9*v9r| l V_g 9 F*Zi*V_n + n_Æ"Declaration of academic freedom: scientific human rights$%3,?Cd%b & ,?V%KxyV G,`* V _g 9 + n#D M + &n $ d + ,V _℄^ V _d g 9 D 0+ F * + &n_L$D'(nL 0 HX ,V _ < b +q DF* + &* y nS u `&6 4n { i CK < b +q &* y < b + SCI EI 0 l~ _ , " K 0H ,*1 V_g9 wVSn z . +'(a, *y Bo 7{n z+ -a 3n z '(+ g 9 & D Q ~℄ V _DZ} + _ : v 0 ℄Cdf, p_lp &Tv ._ShJ); % LB&7 ℄

.< `k % $ &{r f( /k %%jJ(y y &,?N} Gs0b7k * â„„Cd Ary ezf & up_lp ,?kIry* S%N/ â„„Cd` %oq& &duHT,N G0b7& N dn S 6% ; dyy97 ? LeZ


H " 5 R y: – _ b_ +;1 ., 33-36 U0 t UV℄X 3 A x ( ) PJw ^2%w 83-1 p^!) ?=%D u QTwl Bb% ?: %&D lu Qz : &" %uHyp"(9$% } Æ$ghG ?%sg ( lT \ %r% (a/)℄?LZ F?%D D ÆQ; T ; % o&1 (t2| l/?L?\ ?% J= Fy&?Lb?" ?&y1u ?\: D \ % ?\ v g9? y; &S-k ?\ ?%ed&T ~l!g& 7z?LHu8[ _ ) UT/ ?=%sg: x3"D Q"a ?\lTD & gKlKÆ2ÆQl d8D W` n^lT: ".u.yM %&U.yX D M` T Q& yt/)| T$ SbB}D =%rDG – n2& ?L T: %y 1Fa& *D =%n2& u Q ~SH: %sd k* ySbÆu

4,S 0 i S,*S 0 + bÆ& TD & gbXU 4,S 0 i S, *S 0 + bÆ TBbn2& * +lT. P.y G a + bi %#l&a: D =& b a 6= 0 %. &* 2 + 5i, 5 − i, · · ·&, b a = b = 0 % |X~# x y:ÆQ&?L$! ySbÆf : u 4,S 0 + SbÆ&* 5i, − i, · · · ) ( ?D &^zIf T&n < T& `G% > & a?\ J=u 3m lT: &.(a % = ed G% + l?L`lT: % ? T&gI ulTA75f% J rf:&. ( ?L lT: % e &`H% T d"9l| :T* e% ?# k*&^?$uÆ%z? # K3}H&ObE u`|r%: D8q{` <Y >M| %2!1985# 4 3

3 4

1


L

34

y

:

ihUA bx `N ; –

Smarandache

+ai

y "Hl|m`Q%l\'{ v T ?k %edu&?\|r S z `%'{ =f$uÆ$g%u\lK5J,&℄~u? DuÆl ?& ! edldDuÆ=%

8 → U → Z? Æ%'{&H)Iem $u Æ%sg'{ |r% dXÆkm`Q _QB7ld|r%D & vD&`G% T u s%l[ T &lbJ0%f& (#l&,( ( `(y: yiF w&{lJ, Tuy: &"%p_& u?\ ?%|Bb% v k*&? . l &`UA %: f%iF& (  ( ( , n 6= 0, m, n ∈ Z)               

. (a + bi)           

f

    (b = 0)      

1 (b 6= 0)

m n

E             

1 (a 6= 0) s1 (a = 0)

AiF7 w(R/?L=: %?\ JV* Vry ` _|% ?$ gu4("h% ?\lT: &?℄S'& ?=*dDba` T: &k*&7 (y %l : *Tt( JwVsuy * Cvf9: 9u0$ %_ 7 3 ~& i#Tt( Jw% J.a"0$ %_ *3 ~wG% |=f %& ( %: y &bi#a =T0$ G*. & o2D H% AuW&i#Tt( Jw=Y4% AuWa =P z `Q& .S %1AuW"Q<u ^( &e[ [ flA{ e Z % ? v$ x ^%'&&i? Z"2?\( <iÆ% ?: m bv%/ UT/ D uz : &"%uHp_% ?\lTD & gb HD % '&


` `-<2 /

35

`Gf%)| T,fl b | D % – HT n^%; ,y? u ?\H%"a D %"a&U 8ZK="a' ax`Q&fl a n2*S%y_ k*&?k?$Æ=+D =%/oD *

zq i) xb f (x) ^ Xh [a, b] Y,ii)f (a) = f (b) ,iii)f (x) ^ M Xh (a, b) w Y # &f^ (a, b) w ^~ ; c &: ) f (c) = 0. Æ x axH%"a' &$! D =n2% n2 i) V" f (x) a [a, b] : . | *| +,n2 ii) lV" f (x) a (a, b) :%l7 c |+,n2 iii) lV" f (c) lD a ^&X o4D & ( f (c) = 0 d_zu?e d ?%LV( \ f :duD &. H 3g=D v^Bb T (}Tr%*"l$ .\ vF?%$g,"p$Ey?LÆj2ÆQ; T ; % o `=ZS Q"& }Tr%P .B} T a p{ p{%` Ob,? %b D D *\ `/b D *D &HLuT %sd&lFz?PdWyV &y|B}%uyj T %\ &H33u *lAy\l=T="& `T u| j% ?a?\ =QQQJ02!g &( g27lk % T 8 f Æ&`/T u2|( %r 7lk % T 8 f Æ&l [uq3`k %T v ypS ax, l [&bf{ =r|%~ %l "%T v=a ℄Æ& v q8 % "Rp℄7%T v fl Xfk % 8 f Æ ?k %T f/|a& ^~%S pk %T ' Ob|ma* "l$ÆYl Bb%\ %S-?&3.yCY7 S-(y%\ %T % " k*& s √ ′

Z

.$!

[ln(x +

ln(x + 1 + x2 ) , 1 + x2

1 + x2 )]′ = √

%S-& DuÆ%; . "lT* Z

s

1 1 + x2

√ Z q √ √ ln(x + 1 + x2 ) 2 )d ln(x + = ln(x + 1 + x 1 + x2 ) 1 + x2 √ 2 3 = ln 2 (x + 1 + x2 ) + C. 3


L

36

y

:

ihUA bx `N ; –

Smarandache

+ai

"p$ Ul iFRâ„„%\ %Tv&aTâ„„-; =3.yX. *b" aw-7)l* . a{S3g=`

n X

kCnk = n2n−1 ,

k=1

n X

Cnk = 2n

k=1

%"a v& d{ { 1+

n X

Cnk xk = (1 + x)n

k=1

`r&}rg` x &_ x = 1 $ n X

kCnk = n2n−1 .

k=1

p&&: D *\ %?\u?\ ?%1TV .Æ%|le +#a &z?LV %u&?L?" ? ulT l% J .y G%&o2(f zz. fT f{ fy&{l ℄aG ?3%?\9~


H " 5 R y: – A Foreword of SCIENTIFIC ELEMENTS, 37-38 A Foreword of SCIENTIFIC ELEMENTS Linfan Mao (Chinese Academy of Mathematics and System Science, Beijing, 100190, P.R.China)

Science’s function is realizing the natural world and developing our society in coordination with its laws. For thousands years, mankind has never stopped his steps for exploring its behaviors of all kinds. Today, the advanced science and technology have enabled mankind to handle a few events in the society of mankind by the knowledge on natural world. But many questions in different fields on the natural world have no an answer, even some looks clear questions for the Universe, for example, what is true colors of the Universe, for instance its dimension? what is the real face of an event appeared in the natural world, for instance the electromagnetism? how many dimensions has it? Different people standing on different views will differently answers these questions. For being short of knowledge, we can not even distinguish which is the right answer. Today, we have known two heartening mathematical theories for sciences. One of them is the Smarandache multi-space theory came into being by purely logic. Another is the mathematical combinatorics motivated by a combinatorial speculation, i.e., every mathematical science can be reconstructed from or made by combinatorialization. Why are they important? We all know a famous proverb, i.e., the six blind men and an elephant. These blind men were asked to determine what an elephant looked like by feeling different parts of the elephant’s body. The man touched the elephant’s leg, tail, trunk, ear, belly or tusk claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a solid pipe, respectively. They entered into an endless argument. Each of them insisted his view right. All of you are right! A wise man explains to them: why are you telling it differently is because each one of you touched the


L

38

y

:

ihUA bx `N ; –

Smarandache

+ai

different part of the elephant. So, actually the elephant has all those features what you all said. That is to say an elephant is nothing but a union of those claims of six blind men, i.e., a Smarandache multi-space with some combinatorial structures. The situation for one realizing the behaviors of natural world is analogous to the blind men determining what an elephant looks like. L.F.Mao said Smarandache multi-spaces being a right theory for the natural world once in an open lecture. For a quick glance at the applications of Smarandache’s notion to mathematics, physics and other sciences, this book selects 12 papers for showing applied fields of Smarandache’s notion, such as those of Smarandache multi-spaces, Smarandache geometries, Neutrosophy,

to mathematics, physics, logic, cosmology.

Although

each application is a quite elementary application, we already experience its great potential. Author(s) is assumed for responsibility on his (their) papers selected in this books and not meaning that the editors completely agree the view point in each paper. The Scientific Elements is a serial collections in publication, maybe with different title. All papers on applications of Smarandache’s notion to scientific fields are welcome and can directly sent to the editors by an email.


H " 5 R y: – HHb r H %C RMI Hf, 39-44 m > t q m !1; RMI ~ A x ( ) PJw ^2%w 83-1 p^!) /eh *NKN$uW%N}=&XÆkm l Bb% ?'{ 8 lT yGl ~E &x N} %(9# %(9& uE -=N} %sg'{ l/eh Z l'{ j 1C _*1, cos x, sin x, cos 2x, sin 2x, ¡ ¡ ¡ , cos nx, sin nx, ¡ ¡ ¡ % ?(8DM f (x)"E DM* 2Ď€ & u 2Ď€ &.y f WOG A~G$5bl* 1 a0 = Ď€

yG E *

Z

Ď€

f (x)dx,

âˆ’Ď€

1 bk = π

Z

1 ak = π

Ď€ âˆ’Ď€

Z

Ď€

f (x) cos kxdx, âˆ’Ď€

f (x) sin kxdx, (k = 1, 2, 3, ¡ ¡ ¡) ∞

a0 X + (ak cos kx + bk sin kx). 2 k=1

`/ DM .y lA D % v&uGDM &{l~. yyG/y F5 %D &(Q& u*`D 7 [a, b] :% DM F (x)&B D lT F ∗ (x)&i#` x ∈ [a, b]&P( F ∗ (x) = F (x)& l F ∗ (x) uD ; G:%&y (b − a) *DM% { 1 ba [âˆ’Ď€, Ď€] :8 f (x) = x y */y &?L.yg f (x) % D * [3]

2

f ∗ (x) =

(

x2 , 2

x ∈ [âˆ’Ď€, Ď€],

(x − 2kĎ€) , x 6∈ [âˆ’Ď€, Ď€],

e&k u &i# |x − 2kĎ€| ≤ Ď€ &l f ∗ (x) uy 2Ď€ *DM%DM &S 0de 1 * D8q{` <Y >M| %1!1985# 1


L

40

.... ... ... ... ... ... ... ... .. −5π

.... ... ... ... ... ... ... ... ..

.... ... ... ... ... ... ... ... .. −3π

.... ... ... ... ... ... ... ... ..

.... ... ... ... ... ... ... ... .. −π

y

:

ihUA bx `N ;

y

6

.... ... ... ... ... ... ... ... .. O π

–

.... ... ... ... ... ... ... ... ..

.... ... ... ... ... ... ... ... .. 3Ï€

.... ... ... ... ... ... ... ... ..

.... ... ... ... ... ... ... ... .. 5Ï€

-

Smarandache

x

1 ^&?L.y8 f ∗ (x) a fG:yG/eh *

Z 1 π 2 2 f ∗ (x)dx = x dx = π 2 , π −π 3 −π Z Z 1 π 1 π 2 (−1)n an = f ∗ (x) cos nxdx = x cos nxdx = 4 × , π −π π −π n2 Z Z 1 π 1 π 2 bn = f ∗ (x) sin nxdx = x sin nxdx = 0. π −π π −π 1 a0 = π

t$

Z

Ï€

∞ X 2 (−1)n f ∗ (x) = π 2 + 4 cos nx. 3 n n=1

y t/ f ∗ (x) ℄~2&a [−π, π] :& (

∞ X 2 2 (−1)n cos nx. f (x) = f ∗ (x) = π + 4 3 n n=1

^&?L # f (x) %/ehy l -\//eh =%: ,~& F |m u* N}% f (x) D - DM f (x) ∗

N} f (x) ∗

#

? f ∗ (x)

%(9 â„„k

#

? f ∗ (x)

%(9

+ai


!II sI &D

RMI

Ig

41

?==.\%Z;\O* l ; ( Z;%~v&u$-,?N} % % lNyuW uj lsg'{ e&?L( Y?ydNyuWaT3 _ $Æ J=% NyuW* Z +∞

f (x)e−pt dt.

L[f (x)] = F (p) =

0

SBb( g|maG(4fT^%(9& â„„(i#$Æ J\O* J g&x ;&?L.# L[f (n) (t)] = pn F (p) − {pn−1 f (0) + pn−2 f ′ (0) + ¡ ¡ ¡ + f (n−1) (0)}.

"y&` l3_ GLt($Æ J

dn y dn−1 dy + a +¡¡¡+ + an y = f (x), 1 n n−1 dx dx dx R +∞ y(x) → F (p) = 0 f (x)e−pt dt

.b ,NyuW* & .yOGlTy L[y(x)] * 0$ %lCt( J& ^ .yT# L[y(x)]&{l ( y(x) = L {L[y(x)]} { 2 NyuW J y�(x)+2y (x)+2y(x) = e %<sn2 y(0) = y (0) = 0 %T i) ,NyuW L[y(x)] = Y &` J}X NyuW&V y(0) = y (0) = 0 &#y/ Y % J 1 ′

−x

−1

′

′

p2 + 2pY + 2Y =

ii)

T:[% J (* Y =

iii)

(p2

p+1

.

1 1 p+1 = − . + 2p + 2)(p + 1) p + 1 (p + 1)2 + 1

Ny uW (

y(x) = e−x − e−x cos x = e−x (1 − cos x).

ATv.yMF |m*d * NyuW- % 3$Æ J [4]

?

$Æ J%T NyuW

T J

?


L

42

y

:

ihUA bx `N ; –

Smarandache

+ai

E-u/eh &UuNyuW&Ssg'{PuZ %lA'{% e u ? v-=%y_ AzVGl& RMI El : > E ~=w- l H, X + ` Q , S &zq y y % ~= Y E # A { S # |6# G S , f Y S (s~ E+ b_ v m l #, X = A(X) Elt & i(s{oG|# Ym X = A (X ) Elt l J. F |m** [1]

∗

∗

∗

−1

A

S

?

X

A−1

-

∗

S∗

? X∗

Elu ?=KxZ % vEl H% eZ a ?A%UT ; P.y { 3 =Z ? 4p"4pÆ"A< %TQ +&ST ; %sg'{ u RMI El%Z . F |m&i?L.y| 2 l7* +y_; |m- y_; RMI

?

?

;

# lA +y_ +Tw # lA y_ aT3_ t($Æ J &du RMI El% eZ &SF |m*d* 3_ Vzt($Æ J , uW- ℄ f~l ?

?

T J

$Æ J%T ` y_ ℄ f~l%X


!II sI &D

RMI

Ig

43

{ 4 h w--=& >T ; % vu RMI El% eZ e( Y?ldS=%m "SG $% v F5m v& u=lTEr *{u } = {u , u , · · · , u , · · ·} ` /# lW X [2]

1

n

2

n

uiti

u(t) =

i≥0

*

ut

e =

X i≥0

ti ui , i!

PD u := u "j D*Km &? D*,m $& ?x N}Km *,m &_x :[%` y_&zVaQ& .y# {u } %lA( 9 F |m** ` vl- W ; ; i

i

n

?

?

` vl W %lA(9

%(9 k*&T+Æ J u v E

n+2

Z;

= aun+1 + bun , u0 = A, u1 = B u(t) =

X

.y Am %

uiti

i≥0

l( atu(t) =

X

aui ti+1 ,

i≥0

bt2 u(t) =

X

bui ti+2 .

i≥0

Fy

u(t) − atu(t) − bt2 u(t) = u0 + u1 t − au0 t +

X {u } %6 y_& (

X i≥0

(ui+2 − aui+1 − bui ).

n

(1 − at − bt2 )u(t) = u0 + (u1 − au0 )t.


L

44

Fy& 2

:

ihUA bx `N ; –

Smarandache

+ai

u0 + (u1 − au0 )t . 1 − at − bt2

u(t) =

E 1 − at − bt

y

&l(

= (1 − r1 t)(1 − r2 t) u1 − au0 + r1 u0 u1 − au0 + r2 u0 1 u(t) = − . r1 − r2 1 − r1 t 1 − r2 t

8 u(t) y GW & (

un = (B − aA) Ă—

r1n − r2n r n+1 − r2n+1 +AĂ— 1 . r1 − r2 r1 − r2

℄~2&`/" i r% vT; h% {F √}& ( F =√F + 1+ 5 1− 5 F &F = F = 1 &t( A = B = 1, a = b = 1 t r = , r = , Fy 2 2 n

n−2

2

1

Fn =

1

r1n+1

r2n+1

− r1 − r2



√ !n+1 1  1+ 5 =√ − 2 5

n

n−1

2

 √ !n+1 1− 5 . 2

ulTy D1%li& {F } = l~Pu & l F ux E Q|m% n

*.℄2h2 [1] 3j; ? v=< [2] ) 2 - w-- :" [3] { ? ?_ ?ÆQ = d" [4] =)Zg? _/x E ? 4,"

n


H " 5 R y: – f + DV /, 45-73 $V = A x (&ow / 9.& * &100045) ℄: b *℄ f ~=x5Dn&-s . ~ + & - V " *D4zDV' x ℄:xIDV' w Ko( l - 8 ℄ IDV'& % Ab_ t DVb 8℄_}S~ T Kz9. X XKS~ + k=sV&:=nL ~ 1( wSS~ =b_DZ}-`&C:=nZ4Xn

XB U v4 + $_ VY*Y &_ S0+L ~ .-~E+ qZ' NJ*x5Dn&V "&*DM S&*DNâ„„&:xb &w &w / Kz ' Abstract: This paper historically recalls each rough step that I passed from a construction worker to a professor in mathematician and engineer management, including the period being a worker in First Company of China Construction Second Engineering Bureau, an entrusted student in Beijing Urban Construction School, an engineer in First Company of China Construction Second Engineering Bureau, a general engineer in the Construction Department of Chinese Law Committee, a consultor, a deputy general engineer in the Guoxin Tendering Co., Ltd and a deputy secretary general in China Tendering & Bidding Association, which is encouraged by to become a mathematician beginning when I was a student in an elementary school, also inspired by being a sincerity man with honesty and duty. This paper is more contributed to success of younger researchers and students.

Key Words: Construction worker, entrusted student, construction management plan, construction technology, construction management, project bidding agency, teacher in bidding.


46

L

y

:

ihUA bx `N ; –

Smarandache

+ai

m3 ℄J~ &l)u? v #*T ??\7N}%q QJ&du? ' ^4z + <℄ q mf + b_g 9 &J~ b_g 9 + > / Æ% e x 2009 lz℄J z)E&? _*?G<T w / v &3W:&? w / v n9 D% 7 P&x ~f rS% z j7kf% a3%ÆQ *<T& X ?G%eb d3?&4f?G#'f?& GLaf ℄ =< %; *Ko& C?% 0 ?S-k ` w / v % Ty T %uIqi&ll ÆQ*T &?GL |m 1y%&?

BtÆ aaUh% :&w')E%l)E= O `?"* { ℄ 1f S aD ~ $ ℄ Q l &- + ^r T&- + ^r $&$- + rAP&~ I * I5 ^$&$| V &j _ ~ ℄ _ _L + [ Æ℄ 1_ &?{lT7T℄ &iq,)S ℄℄Yg℄J[ 7E 4s7p℄J[* zb)~rq Z +p℄J[&) ? M *℄J~ Z ? *lI E *%g d +T 4*lI&7T y> Ml1bG*lT ?℄ (y&Z7T M f~ gÆ~r* Nf%;?OVV .Æ

_ Q0Æ J 1980 1981 q9} G&&< 9 Æ t& ?k E , ? K?\ 1981 9 T&X5{7E %a E(*G %&S==kG ℄&? e'& E(d &. Y=mu*l i5a 2u℄ % 4= 7Tp b)< ℄ 1981 12 T&= 7Tp lb)f% |' ℄&y<s℄J7E%0b 12 T 25 %&? ℄ &74fSHb)%i5lXQ aX5% = 7Tp lb) lz ℄ %y (,_f &b)aX5 - :6 ℄2w' *M}TT%,6E>& D&(-Q? Æ-℄A 1982 rN?&y℄,6E>S &?dÆ- = 7Tp lb)1h: ^&℄Au i℄&7?lXÆ 8b)1h%&U( 4-5 4i5 2u =

7Tp 1b)E>,4& "q7= 7Tp lb)E>,4 T &b a℄ : uld? GL4 u?& * i℄? Ml \ B&z H T% , R(p_fCi&zeD~,_f℄&iSH℄AG ? {?q ℄& *2u uq℄`I&S ~G d u *E {rk {{r% ℄A&i??Qb Zg? Jhl9u S


h-EWÆ0

47

℄ % 4 Æ Ei)o % >&? k ?%7T℄ SI Hh 7℄ [/lX& X5O/:61M℄2:C ulTpV % D~r&7 E℄M_Æb &*V:6r:rz& *'R℄A% i℄&q30b C8B "&*?[%q℄℄℄aa℄ [ 4lTT℄ S &℄h ::^? ,_fC& eG | & * lTT%Sj d u_P:Ci ? DHT{℄h= HCi j8 ?℄% " % 4tt&lg 200-300 e% &.0I Ci 8dQ 1981 rN ?aX5 K ;8%K/[% b < # &lg 700 fe% P&d.I 1A fi$&Wd%&ublX??Wmu &?H}Dlz"O/ X5{ &_{ X5{ \=j - 2m &HT lzX5{ K ;8 &i*K/ [% 20b_ < 4l" j2p{Sf+T% b_ y A G.Birkhoff * S.MacLane % A Survey of Modern Algebra (4th edition) Weixuan Li % 4 < ) ua T M8% y?vg - &l) 1984 Y=`m℄g ?Z W0E ?\ -&? =HTH ?:y/f/u'Y %(lzd%Cd [-S & LGs0b ?\9O$g&yv q 7E%0b = 7Tp lb)*y℄MX 9O \C&" 4 b9Æj* 82 [% ?S<3&?\^) ^) +)9O3 J z \?&? E(ob_ t<& * u?a=? M? %y"%3J /uj : "?\{?8E % k 0 b_ Cg 9 ? \G)? %$uÆEJ& fT {Sf+T b_ y A :%l y \ 4fy℄P$!?% ?sd"&dC?dM ?[-l ^) ?=% ; l l M&=? ?%rfsd&di#?T >3 &`?Q?.y }alTiF %CV ` ?; d lDsd&i* T -=% D J* ? wv%fl ) TF IX[% &_b_ _ NH & #: [( 2 ;n"a(\O&( 2 U(Z(t% ; vn"a v&/u W l F IX[4B W?a l |m &z QGBB `I% &_b_SxNH ?aa 0&?Q, ? C&`?.S | ng&GdG ? l M k!Pk?%oK#Q ?%g(℄ u i℄&?0bg<"g(℄ &fl ℄j?k i℄( ~sg`bEy&lu i&a``ZZ%B :b }:&aB >:b %r,pu S4%lXB >&ldb lXQ& :U,1ua2[ : ;2) " blz 4&t/:[% IU Zy TT?&?sg


48

L

y

:

ihUA bx `N ; –

Smarandache

+ai

:.y<s ~b &/uYfSG[/ 7 :6U℄ i% E℄ *V":6`*tsd?04_& ℄C(" TT "af%`*tsd #C % E℄ &8#C "l4X℄J[E &iFV &l>= " ( 50cm & 60cm E J=&> d[%;2 ~2 Ei) Evt`Q& * XgEvxf &NV &℄ [/`D u B dxO*s℄Æ% i >h :C i C& & :k?&N\ &lz℄"+W&? k 2a`*tNB : f &+7>dQ&"a iiFV&B HJ%iFC E` y ?&yu E _SG%B &℄ [/lFPd4 ?a2[6/ 1982 Æ%lh&? 7:6 _,B E℄ &℄"+W?{B :dQ&3 l4BBÆ- :6℄ % ?S G4h1&;?:6%℄J E ℄Æ &*uu`*t uu uuu:F)&?llf% Y?&=?G 6 r fGL %a &? " l :*t ' FL > t^ Qb Vs~"E- 7k a=? M%0`*X[%M!dN u$ G= M` ?M!yG%uE ?%D=SX[& f Q Æ_ L n ^& w K x y Q > {Æ– uG 74f " %Q lS l3~ ` %X!&d l3~ % 2005 10 T& ?_za =? MSj%2 & 4X[ uq p&? z?Æf? G%n2j| `G%0' 1982 1&q & *&(&? j\ l M&4fz ℄ % j Æy_&nuAWG "l7%℄A&i*W℄℄G&& &Of t)& nu y_ Zg? Jh&y aQ? )I{r ~ ℄ l SH b)%i5u Aa S2mFab) ? ℄ uy= 7Tp b) i5 Q%&y = 7Tp b)uq> &E(.yj %y_&. ' k 9udZ ? D_ lzG&&y9u i℄ A {*&0`lS%(g 1983 7 TG&j&? }TT%r a .\&d G& G&& Æ U. y&a X5O/:6℄2?&?l[ 9<f i℄,l[ fG&Gzg%b Æ S &G&Æ bÆ?&?9 Æ t 10 fÆ&S= ?& 110 Æ&hA<Æ &.y=klF {% ? ?\ ?n ? j kM&? 9{rf i℄&)fd ? l :TT b &?UE(I ?% x$& ,?E! 7 a ? E%F IX[x &G"?%Æ a 4DE; &4D ddlF ? % :T1&= 7Tp lb)7`mE{7E? p_"& GLOf, )℄ 3 G&%C 8 ℄g7` 7T 7TW Zg


h-EWÆ0

49

f%*M, %?\ *?\2a`m&?4{j a`m%td?\ ?&/ uZ z, )℄ b)eX! ?\& yy9udZ% 4f& /ub)w' 99 ?hQ& ?pÆ 4l & ^ jm# `m E{7E? ℄g7` 7TZg?\%td 1983 9 T 9 %&?*l4℄ [ /lX&': "X5 `m%l=& " 4℄ [/ÆfQ uq"X5 D `m%= 7Tp lb)p 4ph&?tf"b)w' K %l Y ? ? Z & k ,)SSI 4f ;?& 1zG&&*dDHzP: Æ t E(l F ? ? ?L8GL&1980 vzG&Gz&?.y:[|℄O & ? M &=Z%1M APut ℄J t 5h℄% KZg&E(d u 3 %,?}z&l [ &+& 10-20%& &? u [lgS& z s, l [&?duh a>& u: t lD r&u f, ? K& b ? u M ?{& d4 u G S&a8 {1d%℄ 39 m +Z 1983 9 T 10 %&? lQ `mE{7E? 7 83-1 C& *l ,) S&7 `m{=)Zg? |l& % _ z?lX k *M, % Zg?\ F? f :u"`m7T℄J?OÆ`Q%lF? & n / `m{7E,Gd&? 4 4*Ob 3E[ PQJ/`m7T℄J?O ( '%u&p_f ?& 2010 ^&?('G* `m7T℄J?O%℄?E & $u u &=%yp `mE{7E? ulFyG=*X7%=)Zg? &Fy4l? ?%& sg:PuG=3J&(%iG=3JUb( l < *y&?4l? Uu d ? t3&ly? _{r i℄ &tdQ& | lTT% "&? X[*z? $!?% ? M Gz℄~"&Xg t3& ?Uu!P t z &L8 ?%F IX[&? `m F ? ?\ & GW?Y? 4Ga`m%z?&yt?a?\ ? J=(; " E G + }4&l4u`m℄g ?%ZW0X[&U(l4u`m℄g ?O%BC&X[&? ?E(0 [& *a?U%2 NL&WG d E( G%a lZW0X[l{ 1984 rÆ k&l), f?% ?? \& du??Q k j G`m{G)E>k?& F&,r& )I& ` ?x ? oN}S%ObE


50

L

y

:

ihUA bx `N ; –

Smarandache

+ai

a`mE{7E? ?\M"&?iSGz? 3-4 ?&7X[h#4'b& SuE ? 9 -o? o? Sho? 7T?*℄℄ % 4X [ l[ "?&l X[; ?X[&"? ^"%Gz*dDdQ`mE7? ?& ?X[L8GL?%at&"?EQulT℄ &(td`Q _| %Zg?\&ia℄2: ℄ bp4f& *HT % %rvP l^ ?\ v K :x5 4 &S=%Mv + uaG= ?=%le +sd:&fl [:S &?XQEdDK},7T5 luaMv +%sd:&a7TlD 4Hs ?f%q) %.M&i*7T [ & uan:44:Hs? d% S ,l{=%-\ &lu{C\Fa4 4f%%q)Hs?f%%![ S ?a=? M%l #uu fH%& %M X[`D?%l _ZbÆ& 7T '+B& M /#l(y& ?\7T5 &b djM`~atn &Uby\ zd% 0e& `? uTZx bgy(i&,b9uk EQ% l\ TT?&aX[%O Rd& 0lsg:.y y&{l.yM`l <sb %7T ? aG=?\ } 9&sd;iF+%&ly Y=ZW0X[?\N } 4 < l3&,Gi??" 9& * % -N}BBX &Gs0 bVT ~% :b r|% 99n # ? %u q Z?O% :q > &Sxe~b u4f& 99v<#℄~"& & 9X[`9 v,~(R?&HT9v7Pd*?La3ÆQ&( Uj 31 3&fl < Tl }Æ 4Æ%9vy [1ÆQ&i#? 9 o44B&ap sd 9?\S &?uq.yTHr|a M &* 4 < [ } b_ ) :[% 9Zg-9 ?\ C7T?&i?` C%hh*|m( ?% T,lC\i S h CSh*qSh1K3&l, ?fl T ?%` &z dfl T a7TShE J= %o?e" ; E* ; v& du?a = 7Tp lb){r ~ &aSh ; [z s%lTObE ?\7T 7T℄℄ )3J&,km`?aX5O/:6℄J 7 } ℄J7E% s&E-u7Tt 7T 7TG>nLG>&Uu℄℄ ℄z7℄℄ v&?2>uq( 4f (!g&F&)I{^=Q%z?b"4 f&` C\ eH i \T Kn h[ %Q)℄J℄℄ v&aO /:6(%'R~%℄A< &(%l)I< ,_i*MeH &~%z? * E0 & $! 8n^ M&?l$!Hf :Xf_i %(℄% &a 1dnua![&MXQ#


h-EWÆ0

51

l℄℄w'7~ l3=% 2 N&l ",u?Y=ZW0X[?\% ? 4 < aS.f/=%lA e &℄7%0}y_l7℄℄ "%g? I(y& u?%p~ z?*X[%b &?a l M3?&ZK *z?L< lz 6 z l *Gd : r 4Æ&y *$g%fl MX K 3?QG ?a = 7Tp lb){r ~ %sd& s ℄J℄℄w' E ?ug ℄℄m1℄ } &( (!g?_Q Zg? ?\%& / "f/:T* -%?\ l laZgE>e_=& u"=?)If,Zg ? ?\&`F?Zg3 AE( (!g lF? da?\l[ "?w'? Sf%Zg3%f\7S.f\& /" - f/% l?v& V6*lÆ& j `/I F?$g&fl, f/Z(j/ )℄ `mE{7E? ,)M"& 4H *? ? ? 400 fCi%, )℄

&z ?HTU( 36 C%Sj ? &?Uda X5O/:6℄2& EQUalT7 % 4y℄H8*~& *?:?M"%Sj u"GLO ? `mUh%

P rJ

`B{Zg? lg%?SQ"&*+8a? F?Zg$g /℄℄~ &uHT℄`7Zglg%?SPGs0b&$%; ,`YgQ"&n^*> ?SaYg%)℄ "&yiGL kB52v ℄℄~ &uHTYgGs%b 1987 7 T&?%,)SIS &a = 7Tp lb){r℄J ~ & L "& v ℄J℄℄~ &RkN X 7T℄J ~ "_$ ℄_ a 1987 7 T?"`mE{7E? ?\S &Æ- 41℄JhS. s o- G&--l4X℄J[3j`m:omO℄J ℄JUE( ℄& yjuq ℄%l ℄J&`m{E7 7 l) S ℄h & "u ℄ <sb F5 ℄ & uaEE 0:&8℄℄ J=rS%E uZ& 9l n z aE 0:&yt/? ah lT; &0b T ℄fG .y) ` ? ℄2%4l~ N u Gl ℄J% ℄ &` ℄ 5 zd*E uZ ( ?Kl(`yj~ G% ℄ zV*"au z E uZ& z ÆY 0:l 3 %zV v q a32)`&rm f(l Bb%E


52

L

y

:

ihUA bx `N ; –

Smarandache

+ai

uZ (E(*fz a ℄ :&/uf% i n,9 ℄h y?r? W 7~ K 1987 1&w':ZA? `m,j e℄J{rjM℄Jd ℄ &f%℄℄m1 [Æ4y -\% 7℄JE & S"UZK `ml .i7TS.68 &*&-- KEp 1987 ^& C*vDh. h e&`m,j e℄J , `m{4l 4uV7~r&EE %} OJ u℄℄ " `m:omO ℄7ES 7K &"%q_U℄J&?,a `m:omO℄2&3j8~r%

~ u?Rk3j ~ %4lT℄J w' ℄J℄℄ M)?&? ks ℄J℄℄w'E AE(s ℄℄w'E %℄ &.(l SHf℄ %℄℄w'E .a &&8℄JgI .\&SSh*,$F #ooSh&5 ? ? %℄℄w'7~ & SH℄J℄℄w'E &? G 8℄J℄℄w'E %s ℄ &q ℄JhO ℄J[M(z ?&?0M b| Æ&dr℄℄^*% 8℄J ~ J=&al X℄J[%, d&?K5?d n^T ℄ ℄ J=`m%UA ; &i* 0:(Bd%2 & brm&Uba`T Mv E 4!.,_i*℄℄=q3< %C\ W; ),leH# B %E lus5℄℄w'E o2g% ;%, _,L[lUb--7 E 4f%_, =^ h Sh℄℄=%l q) < ℄JgI .\& u T℄J&i? [ T lTF - )oo℄ J%℄℄w'7~ v&`?Q{r ~ y T %B5G4 d sd "m$ ℄ z HN3 1988 1&`m:omOp_U℄J ℄ 1989 ^&?,a `m,j e ℄2&y 8℄J af%uV7 4yd℄J℄℄&?Æ℄3j2: ℄J

d &ZK3j 0dM*s S℄℄w'E ℄ ua T~r:&?a s5`m:omOp_U℄℄w'E sd:&q Z LQ%℄℄w'E s Ey*(y%Sh ;&*?Qs ℄℄w'E ℄℄ pS -9 d sd zLQ%Ey&dik N = 7T℄Jpb)s ℄℄w'E % (* v& l %℄℄w'E (2>SL* s5n , ℄J: G, ℄℄ &SL℄℄ 7=k ℄℄[NÆ ℄℄J7 fV N q)Z

t ), ℄℄d ℄ N, Ob~r℄℄ v, ℄℄p [ Æ4, U~0 N, Ob ℄&SL9~V" ℄ 4 ℄ G 5 Æ℄℄ ℄*=+℄JGg ℄), 5 5| a T~r=&q Sh


h-EWÆ0

53

; :B e_&d B,ee_) ℄z&`V"℄℄ 9~ ℄M&NV℄J℄℄GgX lD% &z k d k?d o? e"(O f%eH#Ce_ B ;)&flT ℄℄=< %l ; ℄℄w'E s ?&b0bh ℄℄ J=% ; M E uZ 9 &℄ U;u`z.&? ad ”ao 7 < 4 < _℄ ( .” %l8 9 a?%b d&℄2:~|%z1O?f% , I* Æ&l % :~ u 286 386 )Xl:~ 1989 ) rÆM"&? a`m,j e℄2&a℄2:q3.y = G ?S f:W{1EKqdr & a ,Æ?%lD & #sNb & 4 # &y 1989 1&uV7 D% 4uqsg℄℄ 4&?ay% ~ ℄ dsgS &?I (yh ?&?,\ dlT℄ 2& 9{r ~ ℄ "P$ ℄/ T `m C?O℄J&u?T 7T℄℄ r GÆ&f% p %l T~r 1987 1& kC*vDh. h e&℄℄ NQJ*>& ` " (YgQ"& N# > a l#sd&1989 1&= 7Tp lb) 1hNI `m C?OlMPT 4℄J%7E N& ulT℄℄℄M_Æb &z *V"?Sa 1991 Æ j ?&, K*DÆ7E%lT~r w':4 ?a T℄23j℄℄ ~ &l7E 4l & "(l4`mE {7E? i? }[lg%z? E? sd℄℄& ?:d 5&4ph℄4w',beH?rmsd{X `m =3[)9~ q&℄2 9~ Q Khs s q 4,.h 7"0 i pz T$&7z?lX #E 4%z Q ℄℄ G, .i qlG ?%B7℄ &di?$! V"℄J9~&bs5℄℄ N &;0a℄℄ J= ( %9~957~ ℄&l au ISO9000 9~! "e_%( '{ l &`m{7E,Gda { y 4℄J [9~~ ℄ &`m C?O℄J , ')~r&S=(l~&(& u~ b`d &(& ` 0,z &d db`~ f%&(& b( d') 4 AE( $ ! 8nD~ * 0')&℄JhÆ~9~ % Tz1q9 hd ') h *y&?gM lT|& Sz `:d %')7d')y_& ? ,


L

54

y

:

ihUA bx `N ; –

Smarandache

+ai

T'),r& g:l leE & p;| ` &(% ' { ')pS d:& h # 4D l4 ad:"!*

{T L jd* Q 4 * &{T O ~ O * 1 N _RD 5+ X v &o* > Dd* Q E Æt d %z1aQ"?L yr# ')w|[&? ( MYM7& *v u * 0')l d %l h lu& E(af ~ J=i "/`m C?OlM℄JPT 4℄Jz ℄&eH 0 ~ &a y_k#4b & 0b ;a℄J:%eH# u .y,&dD ".y ,dQf,D\ Sh ;?&? pz#C% v& {%eH,b?f %pz#C&S144l 0b% v& ^ NV eH %lz(z( & q3`℄℄h7f% ;& &{ x5N℄ x5*D )M :T ~℄Æ&i?`m1l (E℄%Sh ;uq% ÆY ?SeW℄℄ J=& $ H Vi u 10 T 30 %&h^AZ %y+ 7V* d 6 C V&8>i AJ}i %i #L .y# d 8 C V& % :%7V+ d 15 C V < a H: ; siV7& 4ph :I')&rm T%i L& taIdQ%}hi v& u lz9~rt&.# i AJ}%z1QÆQE &7E O%z18~h Mv Æ|j ?& l$i a T?LTT ,b&I' 4|b<{? B Tz-i%i 1990 1&l4lX℄ %zrL8?&"`m{(lAG)E>k?& & :?&)I5 Zg,r& .y /u&?LlX L E> C; | ?&j8 & D*& ?=k%Zgu ?&sd3Z a L E> &Zgsd*Zg3la`m ? *y&℄ &1&? kd 4p ,T * T %& ,r l GÆ&* V"`m C?O 1991 ?S j,?&℄Jh k N 4p 0b℄℄% T-\~r&S=% 100m b- J℄℄ r%J

b- J ℄℄ v(}A, lAua d EB , a 4_ 44:#e QrC\ Ti & 95S℄℄U~oVuT}7&z lz (z f&Q Gg ; U(lAua2[#e QrC\ Ti &℄G 2E pV?a{IB 4_"C# & 4jFk e℄B& φ = 25mm % HC N>&{2[j jFE = aT2E 4_44&"hua2[iF (|95 ℄℄9~&z NV E # %l Æ & 7u φ = 25mm %HCa℄℄ J=0bKNsO&sOdQ%HCEv_zj &. lz(Q ,℄JGg o

o

o

3


h-EWÆ0

55

l 7T N}th kN}S. φ = 48mm %Lee℄B& φ = 48 × 3.5mm %^<E C~f φ = 25mm %HC *Le#>& ^ .aLe℄℄=a φ = 48 × 3.5mm C~ * ~&{l=+℄J℄℄Gg y l 68uqS.` ^t& aLe℄J℄℄=UE(i z^2& b - J aTdE( A "e℄B = 7Tp hR 1 C,Ns ^&hR A "e℄BaT b- J 100m ℄℄ N} f// `m C?O℄J&N} Nk 1 ?% : T aTB~ 105t&' ^ X_ 1.2&E J'^5 126t 95 *y&?f% ~CSh ; jF ;*fYe &fl G TaT _|& aT ?> jFaT_| ?7* ℄zE ℄ FE %aT 16 $ C5 1B &#C:d}TT{&S=:T{*e℄B# &dT{ /444 Vl &y aT J=e℄B L,?>: I M30 . & *;qI:d?>&yt/aaT J=4_*, ,jF_|= Le℄J℄℄ =%lAjF95L 24 TjFk e℄BS{I XÆ4&z a 23 $?> :qIl ℄&y# ?> ouO 8~E y a`m C?O 100m b J aT=# G` q aTd a T 3aT* 4)a T℄z& y 4/E zG 31.40m 44&lei 7 h "&* 8~ ℄℄ %N}~` lDdn `m C?O 100m b- J aTE y m# 1991 = 7Tp , f p):&l ?=Zlg 1 fl 7&(Dd ulT Glu ?`aT_|E S℄℄f% pS& u 1992 Æ~r|a e DV % * 1 N _R 100m gmC#*DÆ* x 5 V N % * 1 N _Rgm C #*DÆv}89 b- J%℄℄&N `m C?OlM℄JO W ℄J℄℄ 7o&5 * % & lg \8g&S >gÆ%℄℄El&?f% e℄ ℄ N&s ℄℄w'E w'f℄&{lV" 1991 S ? 3

3

3

3

R L - N Æ _3J


L

56

y

:

ihUA bx `N ; –

Smarandache

+ai

`m C?OlM℄J℄℄&i?_| e℄J℄℄w' v ?Q& 1996 x5N℄ \1C/Y%C4&P&?``m C?OlM℄J℄℄ w'f% pS& u aGOs% x5DV*DM S4 'Q= =% _3~(DV*DM I SÆ p_ ?% 2010 & ?_za F? &y ? u/ 1995 7SH? - &Z * PqC ? ?%z?L8?&"? = E SaT℄z %? b- J&uqa 2009 ,b & *vA20b9 H &z a ℄z%P &uq 0b_ RE4l _SG% J &?4 &d_z , f %o~ "z$ ℄ # ; Atq w V x `m C?O 100m b- J℄℄%G`&i?lRG* b)%Ob

q< 1991 10 T&? dQ = 7Tp lb)1h4:â„„â„„^ ^4&" llT~r% ~ ryGz 3 T~r% ~ â„„ &SL `mq Fe & o Ey `m{ 7 *= =mN}O,NgN )â„„ J `mq Fe & o Ey â„„â„„(}T}7&lTu 50m zd& Q 10m oLo Q% P y Qâ„„â„„oV,_lT u4/ Q: 4 62m&G 1.5m" G 2.3m$%EvSA oi { 3

+$!ga *V" Q#P&E 1! t&lu Q !w[d l$} ,puShk & C28 UEA .-0 % i &S#P ) ≥ B8 ,1u Q1 3 : 7 [ aj& =ysd%u QSh#P *y&?)V ~h & { ;ZK8a qPP% x5t + b l NT&` eui % 95 ; ℄( FJ0% T&/u D{S h ;*℄℄ ℄V"}T [V"& Q o Q%Sh P q Sh ;&? ! T Q%Sh*i kI ~ d 3Sh &/ub


h-EWÆ0

57

℄45 D%℄℄ N& 7 ℄w'℄℄ &℄JhO ℄J[ eui 95 ; v& ;#`%S -u s'i ShSkI ~d 3 50m zd& QSh &4f / u=? G%Mb|_ ;lz ?*G5 ; I&ez8~ ) (y_ &I lTdI ",B ; lx&|a 'i ShkI sy /#SkI ~ 3% &7yj?% ;S l3&/u Da ℄V"%j ad&x$℄4d i T a℄℄ ℄ [&?&$ l_ % ℄&S L QU eHD4 Q1zG95 i #P℄℄ # &!78ÆE #) ℄ 4lz T −1.68m yd 4%i &SL Q1H*l ÆQp& SpV<sE pV?w'y:Qp% T&*y&aI 44_ >- Æ,z &*V"SSh#P&Hz T 0blz( T G&5

g

? Æ%El&"` {`D T& i U &f%i ℄G& V & Q o Q%Shk ℄℄9~ Q: 4 62m %EvSA oi {℄℄j&?g%E SeH# C & φ = 48 × 3.5mm ~ El>" 600mm × 800mm& 1200mm %#C f% Sh ;& !#C <s℄℄b EvSA oi {( lT℄℄y1&h& ub VEvSA o\% 44d & i TrJS44 *y&?b ℄45 E tf% ^&a {:HR 1 S C \`Sf% 44vD ai Tj&℄Jhw'%9~') J=&O ℄ J[`8 {%#C a` s &!* il>NU &" O/:6`*t sd%;V7yh%{GV+ f&#C l>= " 500mm& 600mm& b ?.;ld ?.;?Sh#u4 %& G V" i T J=& 4X℄J[uk ℄2:f% ) & ℄℄4 ? EvSA o N℄ luai ℄G NpV?w'& `D N%El&`{ Ev SA o\s$&Klf% N&yV"A o N dhGi o l A q `m C?O 100m BT_|E y yh 62m 4%EvSA o i {℄℄&?uÆ$ n^8o?e" /℄℄~ &z d a> * dD(%℄J[%E u V &E a/ %o?e" l^ i*eH# C %E (#{ ;e"& ;F t& _ÆV ,l q9{ ;e "& ;<$.\l7& 7f ~GiFIh&z Z(j/=+℄J℄℄Gg `mq Fe 50m zd& Q%Sh P ℄℄ &y S 62m EvS A oi {℄℄ ?Qy?*5B% }8-9&Æ~a x5 V 3


58

L

y

:

ihUA bx `N ; –

Smarandache

+ai

N * x5N℄ : r 1992 fh&`m{ 7 ℄J ℄&[`l G$F Sh&*+=+S℄ J℄℄Gg G%[j&℄~u0b` l> B f%9|&y* > Q &aj%,SH℄7℄℄&{l V℄℄℄M l M&`m{ uq(l ℄℄ 4a %: ℄℄ &.0b}$ & ? vC f%aTy<s℄℄℄ [b n^{ - ; f E(.yX.% qY ?7℄℄^ 4zr 5hlT℄2 | lz&aQ? {a>H% -s d&!*%: u<m{ ;e"% Hj H$ Ti J =A7%C\?Tk,"Cn)I }X ~ #C& 7i QiNI&f l#GlT:D%o?e_ q ;&?E ` `m{ 7 o:%%: & s5` ℄℄ 7w'℄Jf℄ 1992 GÆ&= 7Tp w' (DCD℄ & *=Zlg <H & ?y %(D#u G&qR ℄J[P u *y&?Z%X!u C:R ℄J[ .y b) ,C;&3jy~℄ %zrL8?&"?%R ℄ J[ 0bjld| .y & d a; ,"b) 4 a&$Wh a

;~` `dn%14 GFQgT*℄J[&? uS=lT G ,"&1T FQ%. ( &m ℄J dz & ?(T d & *? lg 5 &v}4zrulg 8 1?aX52m & t +p℄J[ x5 V N Osd `%Mb | lY G`m C?O 100m BT_|E G` w'`m q Fe & o Ey *`m{ 7 )℄J ~ &z T S=l }7&?7G4ÆY&Gd`?%l p ℄ (lD% T TQ" T z (DCD&?L8Gb)uO?FZ (D& G ld&? $!Gu℄J (DCM,Gd%O TT?? ℄J d& GM b|B G &GL8?&"y*?gTG ℄J[ & FZ| $!FZ%u ℄J[& G% p ℄ <sFQn2 ?&) b)l4zrL8?&? $!vz(DCM%l er~ I"vz(DCM&lb)D%Elu n Æ& v}4zrFQ*℄J [& *GLlg "i?41 &z &W?b) ?℄J[% < .u lb )q E{ %u&?a℄J ;%Q!LL9 v}4zr aCMd :&d `w'M) Ub)FZ0bFQ% % ?&tX?%FZ &Y ? ? a℄℄ p [ G%l Ob℄ & "!*lb)FZ%1 3


h-EWÆ0

59

4 G=&?%n2<s℄J FQgT%n2&|mz ?FQgT*℄J[ t G% 0& CM,Gd%lb)q _Æf & * 7 CMdj& b) Ci D%El l3 'j{?&G}XQ"*

I&^ T =n&& K x+ N℄g DSE + zq { rS G K#; v&o ℄* x~ E G K #; v Æd `"*

K x+ N℄DZf &o ℄* DZxX * & -7E F Æ0lb)q *v}4zro FQ&d `y?|m z`% 0 y?q eC, ;&z ?L1T FQgT*℄J[ 2r?QG l b)l % & 4q a `m? 7G " * ' K x :DV " #-2O` & O . I 5 S j Æ lf :&?7d `%y _ ulT G7℄J %℄ y_&. G% p ℄ f&aGOs% x5 V N :r|% -9f&fl# G%yV&?L&" f : E(Zfl %? *_& 4j= 7Tp %XZ uqvp_f ?T k &?a= 7Tp lb)℄ %_f "&&Fy ka ℄℄ ;( 7 &℄~u?Qa`m:oS.AV= ℄J=%`3|m& 7Ga l M`?%yR*#PuÆ % ^&1993 3 T&a?=ZlgH fl7 &? 7SGl g,lg< H &ta ~ :(lDGz%zrlXm# ℄J[(D (Du 7℄hwf% /u&?%℄h{EQ%HT 84 ClR ℄J[%y+℄ht 124 C l T&x k?& &?m# `m{G)E>k?& ,G d*`m ?p-Gr% ?ZgZ,9A z a(D ℄h*G 9A1T [m# &℄~u℄hAG HT 124 C&i?G b) l % W` ?du?Q $!& lb) A

Y G"% # NOS m uq u LB%JV&< V d Q kSH [% r l?a l M'{Uu s&y*.b""xN℄℄

*YgT ℄℄ } & d B}*B & $ " ( ℄℄Yg ha\"M&S~ t5 t5*Æ-5V) ha9P%^ L [&?% A{v $-8b)%O & duhG?y Da = 7Tp lb)%)IE "&$Z 7 r j 1993 dL &b)f%th9P&8℄Jh9*Æb) *l q (; 4 1994 1 T&?a Æb) S. ,,4 E( ℄2:%:J& h u d a0:T &?zl # \ "a HT%℄℄S.')&U


60

L

y

:

ihUA bx `N ; –

Smarandache

+ai

l ℄J℄℄~G uq ka℄J7E ; , z zz t5& |& z s5%z1sg:X D=z % D & ^& z %(dZ 4y1 v z℄ "b)q , w'&b) ,*Æb)A;,Æ~ s z℄℄w'E D* zZ 92 q3ua zjlhie_p7y?& "b) HDd z ℄M)y1,z? Æ \ z92& z℄ b< 4ph:IH7|+ G&4 = ? (l~Ob℄ & u-- zs ℄℄w'E D& u?%p~ Hz z&ÆY℄℄ ?lF.0b1h " .y5 z92%b & G℄ ℄w'E D%s ℄ l &?g? 7 _fT℄J% z℄ `m{EFlM℄J" h7E& z "4Y&Cz,z( zZ ℄℄w'E ) ( t ℄℄ ?&? }h G ℄℄w'E D% s &?WMb| Æ l℄JA;Z l _fh& "q ,% 4zr C 7s &IL4pp?&"z^% z℄ &?. 1h&lGLl _fh&N\ zvh&b)q Æf?*b)q ,4 Æb)q ) T lX? r8,D%d | zd z%& #U(`m7℄ = 7T l % Tb) r8a D% "w' zd & < Q?&" r8l 4℄ G, &l47Z &l4a2H: 7zS ?&"HT z Z g& DU z 7 z%g?z7 ?LZ 3 $& 41T7 z z92%5 l&(%u)I %&(% %Æ&l?L%℄℄w 'E lu :~ Æa 16 0: j[}T z %℄℄w'E &E-u Æ #l&Uu7z " ?t` Æ"%℄℄w'E D&5 s5n ℄J:G ℄℄ Ob℄℄ v Ob ℄%z7&*eH C5D " eH H B,e#Ce_ i kJi J?q)Z )O b (&aDÆ 2f% ;T&S ?&q ,4" z =&? z7 #y" l M&℄Jz1uC zZ %Obn &lF z Pdx UA [t y?%z1 +&Fy zZ lFP+ f&l r8,{=℄J?W=

7Tp lb)Qâ„„â„„&!* ^` i% d("h& * lFP$ != 7Tâ„„Jpb) ^&ay? D=z J=&?s uk7`%â„„ â„„w'E D z s& dG r8==z D*= 7Tp lb) %Obn *` "v


h-EWÆ0

61

l % zqi&i?^ g a( N%8>q e5=& z zu qa DNS8 J=r\lD% &l CdO {1q %_h&Es H8Z r\ O{1hJ-4% du??Qf, z th{r z ℄ %lTObE " $ ℄_ Z 7af)E 1995 rN?&= 7Tp lb)NI ,`m{ 9511 Æ℄J%`m :oS.AV= sd℄J℄℄ N b)fT7a/NTS?9%Sh℄J*_ ,_x℄J℄℄&Fy` T℄J℄℄w'℄~B}&ZKZA b) 4y℄℄ ~ *p~% GGl ~rq &ZA?*~r+p℄J[&p℄J[l"Æ b)p℄J[ u?℄℄ ~ B %lT~r&du?FO %& ℄℄ a7E E *℄℄ r Æ= XÆr\S℄℄ %l T~r

* > "F AV &? ℄2: $!&?L T uaÆb) & a℄℄~ :,P(l D4h&u ' *P&7 1* Æ% " = 7T℄Jpb) % ( l v Æ℄℄&b)Ob {a T~r~ el:( F& = T ZA `Qw7~rq &S |a& T &"%--uu 'b%& du= 7 Tp lb)a`m G%4lT - q~Æ℄J T rN? Q ℄2 y ℄JF[%,f℄ UE( G&℄J℄℄ 9daM J=&. f% ℄j%l d ℄ &i*&--7E 4f%

10Kv -: %4_℄ &?E 8-: %sdy ℄℄ 7 & G ??W℄ ℄℄ 1995 3 T&℄℄ 9 M &.yf%sd℄℄ ,f℄ E (?1 G&.b℄2t r`Q|&5h ` d`Qu-℄℄& ^ z&l


62

L

y

:

ihUA bx `N ; –

Smarandache

+ai

) 1995 5 T^&a;G s*%--d& ks5 g $ S ?& D GD℄44&w' ℄ 8℄Zg^℄℄ ~rq .( # ~rq *?1T &sd℄℄ J=℄~ =&H1h b*f+l hiC&4phUb 3:C %b &a℄℄pfV95d&?s GD ℄℄℄fV N 8 Ny?lh +2#yf℄ (lz&? f℄ QZ % Ed _SJ%℄81&')Gp*℄8 9~& GnK& * ℄ 89~sg:u'℄ k = & GlF d 8 ') d *?Q8℄J℄℄&?a7E E *℄℄ r Æ= ℄℄ d s d A 6 TdBS &*y0bd ℄JSh℄℄ N&s ℄℄w 'E & kf%Sh℄℄d Sh℄℄ } J?&l 4/s5 &a J=uq G Ssd℄℄,U(l 4/F{C:&7s5rt L& 0biBE Ssd&*y&?=k rl"℄sd&q o?*℄Sh ;&= k ℄x 4V i pV) &E -\&as5 S jf% ℄ ℄& G 8J?sd%℄℄&*?Q℄JSh℄℄ q)Z d sd y &U0b1fSh℄℄^VNNS 7 ~rq 7l4X℄4T }h& ETdQ&℄ u: j G4f & "?:?+iC&?"& G : d Q&?_YGTlz :&?=G ?%Mb|&}T lr&(&lr h& y?T VNNS; ? G z L8G&Gu?*~rq }T {SG℄2m= Q% HT lS=< D %~r. (u f%& z uymGT o%(jtd * ℄ _u: j&WGSG Q NS^& `Gab) lS. Pd( |& Ga b1'& b* Ai%NS Q l\ ztd 4ph:C& Guqa51w'℄ t d ?9℄℄ ~rq 4 &l_;? dD v G k(u|( s5 `3&y 77E 4a TT%Vs--&= 7Tp lb) a 1995 6 T S %z & jNI 8℄JSh _x_,℄℄ N ? T pNS p℄J[&3j8℄JpNS ~ 8℄Jg?( 23 T ÆS 4 7 ℄℄7E&?Lk lN ℄JSh*^_,℄℄ N F Q )ooeH %uL>H5 %D" eHe_& HuL>HB,ee_&S E g "?T G ℄℄l5 FR}T℄℄[D\&Fy2d|i %℄℄9~u " `m:oS.AV= ℄J_p$yduK`:o b)%Mb $&

b) â„„~y â„„Jfy~G& :2 q3d â„„2e l (lh&2d


h-EWÆ0

63

1$ XG 5m %( Q C40 i &*V"i T9~& `m =3 [%m &?d 2d1$&,\℄ Ti lL &lT℄ dQ ?&"l4K`:o b)% a?Mb|)? ?N7℄ TV r~ ?&?ba Mb| l &EQu b)+pq [ ℄7Mb|%O G ;?&*dD i ?Ubukd 51,\& ℄ < % ?L8G&7 TSh=%l y1 4%9~uV"℄JSh4 %y1&* lz( Q T C40 i & y1 4o2Q ℄℄&{lV"S9~ G`?% Awgo KJ|!z&d"y J uH"% T7 ℄℄ $ & eHfzD\& & $GV%uO&℄ l eH aG` 4<I&BV k&S hG i T J=`m em ,e? .#,\℄ = ` Æ_b ( zEE& # w'B ℄D"eHyV "℄℄9~ ^&℄J{2:,$ k % eH 2:Sh℄℄ _,$ &`m{7E,Gdw'℄J9~ ')&Zg `m:oS.AV= ℄J *y&b) Æb)p℄J[*3jS.%q 4f &q9 h ℄2Q m1| 6S h &(%6 #Ua℄2 24 f℄ | ')jlh&?;| Æ^')%w4) &Wa7,℄ % l4z? T:Q& GWÆ^% T G;?℄J9~(; 6&?"E (&Ob{ GL>')ld& *℄2 h* I')wI# YY% 4 ph& 4b) j ? f')wQ ℄2d | B1 &w4 ;* n ℄ DK x-Æ?f d |?&GY?"*

nDAfj &fxd ~ e N L&{ - ) * f T * d 71h&{ \~?&f T O ~ O> K Æ?/uÆfGL _l$ ld S & 4b) nT& $!?77,% U( ^l$y_ "/~rq T uÆb)% ` &Æb) "?L T 1996 7 T1&Æb)w'4 S.')&Q `m:oS.AV= ℄J& )``℄i alT $: d%lh t&/u ``~rq CiGG sD 200 C%s & TTu℄JfV*℄℄9~y"%lTT&le G ,$ Sh℄℄ = " &E(# :g&WQ% usD&~rq TC iGGP{ x ?f :u/ 1995 dL m# `m ?*`m{G)E> k?& ,GdGr% ?Zgg,9A* ??o?4&dd a= 7T p lb)4M℄ d Ey*.y"y# b)%B & lzÆb)` ?L T %hs&i?_lz'&EQE({| %lT; & u^o-4z& D*D wDZl >Y )% { + a&)% #;<.- Q u ^ ?o2


L

64

y

:

ihUA bx `N ; –

Smarandache

+ai

*k %lS_ ` k d u"/ TE &i?d { 1996 9 T kd N}S%,?& <*y&?l)gf ~vBVg-&> ~ E w ( 100% + -{Æ%El&Fya℄2:#i ~" ,\"H~℄ &y+G"b) %j . :a &j g1 ".\`3&d N}S,?& 1996 9 T1℄JOeSh℄℄ &?L kw''GSh\T℄ l 11 TdB&7E 4 k=k_xb)&℄7hO ?YG {m&*_xb ) ℄7hO `&* tVV&?L T={ GP T&* t&Py* {m&* a `m&S Q 11 TdB%`muq4^ &r% =?k }2Ap& l2 \&S {m &/u l2A p&) : & faN &."j : : ?pb)8 l24/e8 $dl}u {& :U `0&.) 1J&>hyG7V 31 C &: 8 %p%d % &.",8 l2[ Ul7%e8& ^ ;ZpY=℄7hO G &* z &*% T ?Ql)=? 2r G T&"?kfGh% p%& 1J&S l rl 8p% d u lzqi&i?` Q DÆ A gÆ) 9( % T&d$! K i 3 +Æ K i / Æ 1un^lar o

tsC+V` % ? a7E E *℄℄ r Æ=(fFG%#!&HDlz% r ÆS.AVd u"?OP % d?&"?X & ??0 Æ&_ÆrW d 4f℄ b) ℄2:% 4 ℄J[Mb a? RpMb|&GLf :dG ?a℄J9~~ %(oR ')`℄℄; & gt ?% 0&_5?% 0 h 1996 Gh&?L kw'8℄JR `C:2du:}℄℄ lh&l4 ℄J[L8?&(l[o%C\ erS _S%r4&RsueHBV k&l℄ u &h ld k#eH& d T: i G ? ld&`Th 0 ℄ h " .y t G%Q&??bd s5* & *GF" ?= C%℄4 Mb|55 s * & !%


h-EWÆ0

65

4C l & G?bw'â„„ =eH,dQ =?&q CSh ;?&?M l m & GLar4%44 12mm ;%CH&z D 4V h ?&?ukw' ')& !E(; ?&L8 â„„J[ l G"*

* ' &f A { Æ ℄J[=(l4 60 f?%X℄J[G2 F&l[ "7 p y_ N"& *G`l ; N! & GY?%y_4" (lh&G L8?ba ℄2&d a ℄X ?;| E & ?;GM M =g 7E b)lT℄2 &yj8b)l4~rp Q℄2 ?&X!?Y GlX< & ? % 'a/&N}S a ℄2&FyE G 4X ℄J[t?"?&<: l h?&?ÆfGQ =g7E b)& WG +& lT℄J +p T℄J u= v?d,NgN & Uha℄JjMd &m1,f*℄℄ UE( G G?QdG ?a` ?x ?_T o?4M"&a= v?ds7Mb| p℄J[%gMJ9

* > "F AV &?B i E % _x℄℄M"&7E 4)I,D 6A ℄ 4_ 4 f77E 4% y_& b) t{pNS 4%|l~ &l)?%?4 S.AVY?eZ ?&?L8G f lh&?a℄J ')℄℄~G&r $ &℄4L8? b)a $ H: lT 1m × 1.8m %M&?;℄4&?Lu uE5 0WGA ~!M:&G" &44*U 5 0A %&E; GÆf? ld b) %~!M:&C\s℄ > " lh"?w' r ÆS .AVd &ShE 3j Q ℄2?& ?,I:℄ [ l ℄℄~G r $ &?℄2ÆI 6A4_b) %M:h ld& L8I?L5E A %8MadD2 &4_ 4 C f>&O℄ f>X HC\) I4 f &;?*dD 5-GL℄℄ ?L8I& b)u7E 4,D%& ^& Xg %{pS 4%~ S.AVd:& 4Sh℄J[4 1^24C 6A4_b)&" b) Afx* w &^ , t M oO Æ ~= J &J \ oOd0 & RwA S =w & I{+,~b *: E fDP-wv~ o g ,t + Qba &h TFL#w v h Æt ShE 3


66

L

y

:

ihUA bx `N ; –

Smarandache

+ai

j ^%Q&p ℄J[ad:)Id 6A℄Ju℄ 15 h&z b b) `J0')% hs?& b)f t& $!u * %pS 4~ F3 y?& b)_d A 5pNS, %r 1997 h&7E 4)I,D ℄J:%_xK lK" El lK6 ℄&z b U_xb)7865 ,D% S QgEap-z g -z?& lK67U_xb)%--l) u4"&" _xb)&Q ?La& ?f%AT?&(l79| # { Gh&*V"GÆ℄℄&7E 4w' ob)aja & 7Vh 30 C 4p r&Gh4_%l K k ( u# lK6 ℄2h & lK6"uGha &| 7VN GF3& u6e ℄%; & M h ?."w'U_xb)f%, ( lÆKu#faN &Ev, &℄4 =K:%[H >&S rmK ℄ %uÆf 5%H &/u ℄ K ?%Mb| ? ?_ÆS^&t `l 0l0 dl!, &x$F(_xb)&a; h &j&E(?%, d lK6#0 d lK6f &Q ? xy_ ?"& gt` 7&=yja %F(KWdQ&z ℄%K<s zd ?&? d 0 , lK6.#z 8F(KWdQ&z a6 p 9~~ LTT?& lK6x 7E 4&_ pS 4l X E')K% ℄9~& ! ℄℄z-Q?&? !9g`z S#0

%, 8℄J/ 1998 7 T ℄&g?w' 7E E *℄℄ r ÆY *`m{9~ Qp}%(Y& lzY -Q&9~) CD* |&*?Q8 ℄JC* - q~Æ~r d sd 9 T &?& ` ?x ??xZ

?O% oN}S&/u k lr_T?4, lr ℄%d o

z ) qT26 QV v

= v?d,NgN ℄J/ 1997 l~&8?d g? `m:oS. AV= ℄J&* }z&7?dK5ÆY& }z_ ? 8℄J%E 7-"d&?%vA 8 U Æ%OV&W= v?d dFJ |&GL H℄J7E&X! l4H℄J7E%℄J[ "yj? + =g7E b )%2 FX℄J[ * |&* T℄JjMd >℄ &a= v ?ds7Mb|(F"% | GL8~?l3z ? ?*= v?ds7Mb |%p℄J[ ?uq$!&: ` ?x ?% o&. l x$ UE(rdQ Fy&?f :ua 1998 h k*= v?d,NgN


h-EWÆ0

67

%7E~℄ &. ℄JUha`℄℄ 4&* z zL[& ? hh ℄2 1998 12 T&?t ` ?x ? oN}S%,?x$ ?tf ,?x$ b) r,; &GLW;d &"ub 4 N}ld D; ; ?4f & {fa % v( h?&b) r,x$? M 9& ?gglT DF =F_ 9 X ? ; :[Va b) N ?_T o?4% + &z E( +Sj nSj p "/ Q ?l { _T o?4&?! $B2a :gd k % l ?& ?t o?4 &4f "X 2r&P"= 7Tp lb)E(To& M U & *a & tudE℄ d(sgSj _T o?4%4l sd3f&"a? hh = v?d℄2&lFl D T}z&=; T %& i#?.y j G oN}S4l %3J ?\ ?Q& 2004 &= v?d%l {aE℄Jsd: ,h^&_o 7,$& ?Off% A`F( h &?rm E uZ Y ) u? |7E 4g%l ? ℄2: &lFg:℄ [')ldfy*9~& ? b)*℄℄ 4Æ~? l V r~&_7s7Mb|%z18~ld?9r~ . &℄ ;b 8℄Jsd5 $E & lM 7E2:,$&?}$u*pz9 7~d % B$ H Ti &E ℄℄ E(&$B$QiO\# n; &9~ Q}%z1rm?&b ℄2u℄ 9 *y&?5 lF℄Ju V7`Qi%VG v&` l 9 7&"E ℄℄gl?*% 8℄J_x℄℄j&s7Mb|O 7?lX D _x℄J=% 2r& ?Wv?dd4 lTZL& d4iBDdQ&yt℄Jf,_x℄℄ h&d4 4mdQ s7Mb|O G 2Y?"&y Wd4ZLr~&Z 12r (l2# !. & lzle:Z 8 2r&. a lÆ : K x DV' E B(Æ ^lÆQ&S d4 4d G " .K U* { + ÆtÆ *pAv%^B(*L9(&?dd4a` $ s2 [*o[x[ 23IEO s7Mb|O *?dSG 4z1 d4f Q&# % .u {T * G Æ&/u_E AfQ s7Mb|O 7 ?yZ I &Yd47 ld h?%lTdI&d4 ℄2')℄ &?lr,d4 ℄2&lr7G?T ?;Gu : 4 + 'iÆ&G" ?" [ -~= 4 1&> D = D " |~=>!℄CmS + h&5 [ :A R oo ,K=ÆG&o hmD > D4' k ;G +5 [ E [ Æ?IfL8G&7T|


68

L

y

:

ihUA bx `N ; –

Smarandache

+ai

_x 2R3 4dO&lF /(V(G ℄~L9%2 & *dW ÆQF{% &lv?d *lT? (w'&a_x Q:&Zf2&b us d4ta> ?% '&r s7Mb|O ? "*

R? Æ # + ;P ;&{ 8℄ < E h&f*f℄ Æ *? [ "%℄ a NOtyrN~ (lD Q& i#?? Q ℄%v z b) jNI l Mb 7E~r~ & *vT~r% 7E 4 ~ T?&a` h K x t % =( l b Æ%n2

& $Ov Z W = v?d,NgN ℄J/ 1999 1 ℄&=?,9h {rlKE(% p$ 2000 5 T%lh& ts7Ml4+O "X , Gl l zb)&/u IY?? zb)℄ I"?.yl) av?d ℄ &"?%℄ y_uq\ = v?dMb| ?L8G&? ℄S alT 2 Er.~& *,NgN uq ℄ x I% +&a78b)pq Y? ?%qi?& jQ b) ~rq & b)Ua`m^'Kx M eMb&p %G℄d 1_f ? _T o?4f, 4p &uqf,Zg3?\&HD DHdI [w'%lT[-C .y &Wd% uk ?\ [ l ? % g 9ZP )V &9n&* Glg-9~d & di#?(sk "a zb){r gN z ulA! (4p%`r %*&S 2 (v * |(9 2℄~f& "( y" %l\v%e_ *y&`~rq v%v *! (fFG%b ?B zb) &b)pq / ?l\ & n ^ O ow / v aX &??\ H%Ob (&y 2000 ,GÆl p- K "/yj{r _f %℄℄~ &z , 7 z&F y z z%v `?Q" ul2}r ?T lZuS-w' z ℄ &x f/&`(ynD% * Pfzf%z' `i*ÆQ&y J du?h .yJ,l`2<T z zv%v %lTObE lf % ℄J~ f/&di#?Qb)lTT a℄J z [w C& | z 7l ℄J z~r%CzjJ 2001 &b)NI l ,Mb ℄J&4 ?3j8℄J z T , %℄ 24& 4b) l_N7?b q1o2= T~r~" *y&lT fT% "e&?30b 8 ,Mb 7E~ Mb|(y eZ&7GL%


h-EWÆ0

69

℄ G[- z92%ObnD lz&8 Mb 7E~ Mb|O ;?& ℄J℄℄ z & `mf%s5℄℄% 4 uld&i*aCÆMv=W G 2 Æ& * Q℄2')| s5℄℄ 4 ?"&.bGa`QW T 4 Æ&m ~ dz`& &z v%=% K ÆEl&* ( z 8&dhG z\A t? ^"&G!*(! &/u9u G{a z92= * T 4 Æ%b lh:I&?tf8 _ 8 T℄℄Yg z% 2* z92a%! Qt hM 7&Ba Mb|&8 Mb 7E~ Mb|%z1Q:Q&"GL BB 4 %l 4M92&`GL_ z% 8 T℄℄ 4f% 4 M)&S=( 3 T 44 M) -Q&0bB M 7 9 hdI&? Mb 7E~ Mb|l4+O tf4 92%.Æ2&Y?lX %! QthM 7 Br K: &? {X4 92:(l[Q-A & *Hb "1T 44M -Q &` lT 4 dI&x& u 4M92 8~%&* l` dhG | | ?; 4+O &tye(E (tV &y" a .Æ2: ;tV Ga Mb| ;tV ??Ll X %! Q KM 7 9&8 ; < Y Æpl%92 3j 7% G `m ld aQ 8 Mb ℄℄ zS }TT?%lh&Mb 7E~ Mb|O ?O~& "4 X 92%h4da1&? Ga yr& Gl_`?|m &!*?%dOR GL℄ % B 8℄JCz &Mb 7E~ Mb|O 4%, &aCzj Cz, GdGGY? 5 T z 4%sg~G& X!az)n2d&℄J "l℄℄ Yg℄℄ G< Q?&??bf% Z & L8Cz,Gd&G%Q * Cz%n &05 z92=%Czzd* v` z92f%CM*iF z Cz&℄℄w'E %u6z& S= `m z D& [: z % Dduq 0 : & zs$zg z & Cz,Gdf%CM*iF (l4Z G CM?&OJ8G%CMS ? l ;?&G e 4l% 3 $ zu u7E 4{b%&?7 7 4Z =?t8CM|? W ℄ G l)u?Fa8%& u z X!S=z% z &o2uq Cz,GdlzCMy % z z z , &f}a, %CV'&; &f, f{uhq 2 %r& 1f.yE(El%~ +r&l =&nv#%, (jf :uVG, j %y x 4f =&, a`l &v& %b f℄&33u *GL $!? %LB( &.b<| &


70

L

y

:

ihUA bx `N ; –

Smarandache

+ai

f , P d!P 0 `ml5p6 ℄="℄J℄℄ z& z D= z ?7=z f%8 &b =z = ℄J)~r\" z %rS&=z z y?&a z a`a=z sd:o 100 C%n2 d&=z z z %b & d X " gl; ? 86M z?9r~ &64= gE% X W? &?l0 g ; %LB ( ?L8G A%*&v&" G ^4 K *sV&*.l d & F~ n ~ { # 6D } p&~ E .- } p S o 1 SnL. q { ^^DNh( l d " & n 100 F&.h SnL l d&. {^ =(lU, Æ 64t?d ; %LB(&;?nDM ?"*

m - q l℄ + )d9 a ,P*t-+&o K=( l h& n℄ {&{ E+ ℄ Y 7: 6 Æ64y ? w ?%7 &?Ld"y J ky z J=&nv nvM z92 7um#%! Q K & flCY 7 " V" zfJ%(l x lz&a G lF? M7℄J z?&%! Q K%O Y?"* f$ S { .yfw > M QY v & qD q w bv 20 0 M ÆG,L8?& 2℄J z&l F 10 h|+ x y_F z&GLU # 4d x z℄J z&G `?(fQ " &!*?ulTnvMr% ?Q8℄J℄℄ z&bÆCz S ?&l E=z% z 'f?& ?r&b ?Tw|GLE *=z= = %E ?Tw"Cz,GdE( +GL*=z== & <&Rs ( a zCzjJ /u&a%! Q K%Mb| 'f& ?a U h& u 4O O?T ' G W 2 `F :Q& s*5- % r%* (lz&lT!) h~r z&2 %! Q Kl4 I : & {L8l z CzZ &W? :Q ? uqub)+p℄J[ Z Mb|O ? {&CzZ ua%! Q Kw7%Z >=Z %&bL8 duGL)IL8 z .y &*dDUb ! ?& )I;G GL8?& GLveZ`%CzZ &aCz k 30 Æ?yjuEv$!%&aj ?L& lzZ %Z & *Z Z _| - + aj$!CzZ G7 "*

{ = R 5&wU8℄ {T Ko 8℄ f &gZ&f ~ &fT > ' 8℄ a Æ?"*

Y + *s*3D { + &{ S vB w[ /w p B zq-n/w& D^ { } p1~ E .- S&o 1 n .j { ^O v 9Z =( l & So℄ q )V 29 } $_ bj E & /C( l + 8℄ y t N3 -`, S + 8℄ f tX.> { t ~ E+


h-EWÆ0

71

Æ 4 t?`?" << y K &f _ n Æ 8~rCz?& T z E(=z&|a 4 E( T z CzZ 4 a % jlh&? G%Mb| G&z W1G4 a & *q(" T aG T44:`r &?l)℄SLZl {r z gN%2*& "$RF "Æ& Æ$ z zv%v aGkIgN49 (g!"u~" z gN% bn2 l {g G kI49 &p!*.bu z %b lDbe ma z92=&p!*.bu%! Q Ga`%n2 lDb{ A?{ ( / z rg%ry&dR4 VvA w D o`wÆ%-A $& =%lTBbTN u` b n2u -vg% ℄&fl Du wGL%b nn2& uHT{g 0bW %

$L^+VU[

1&?m# ` ?x ?℄? o?4& # a= ,?O{r o?N}%td "a o?N}a ":?.yk ~O&FyN}&1#a

, zb)℄ ? uq{gN KA Z Mb| +O & k{r z z! N}&, ~rq | gN)℄ 2003 1 T&? *b)~rq DV*Dw ℄Æ& u?4lz*{g Gf%%(g )E&< qY s& y? b)H %gN)E&Pu"?*Z Mb|S G 4z1N %&?O< DV*Dw NH:f yÆlK3 < ? Qqfl aI l `IC`I&G 8b)gN)EE & u &o DVx *Dw NH:f y vg 2004 fh&7E {1)%l4h4Wb)p℄J[ :Q&"7E l )Etham MlT z zgNN[d&X! T ZK< w / v b) 4 P4 &/u4 ? < 2 T 3 u?4lz* z z%g < v%3 < d " h& `v%=(y0bV %r~f% zV * }a_h%CV vz<3&?T vz 3f :4!l& =nD (< / lu& # 7d % n d"a w / v ; ℄ U uu al v% D%?\ z z zN[dy?&4f{r [)E%z1d$! ?& _ ? *l gN)EC 3&? %&u?* zb)~rq gN)Es % E & &oDVx *Dw NH:f y &lFS- z zv%v *℄JE ℄℄*pM j< 1-1.5 h " 2002


L

72

y

:

ihUA bx `N ; –

Smarandache

+ai

& ry9P,* |℄J z z%*&w's = % FIDIC e_92& 2007 GÆ% & n ^ O o *Dw C;E bv * & n ^ O o *Dw bv GL T g%s l ^J& ?w 'l g Z [- ?avzd:a Ff%,97 &i??Q)I 7 } zd92%s ℄ &G } 92 Si ,{%Obs Z 2007 } zd92q 9 T ,p-r9GÆ ? g &=?` z z v%v % T*f|qYEW{g G&`/ T z z%g%ryEsdX |* f /u&?a 2007 1v zb)%℄ &7= z z

dp_& / 2008 ok lG*8 dl ℄ G 2008 ^& ry9P,℄N } zd92%; d & 4s5Z Æ℄ <&?7 l4z13jhQAM92%;< < J=&rm7? lX3jhQAM92%v4z1<#4"&lGL4 <T / nT Æ

wv Æ} %z1<+l ?7 GL } WT <&yX ; r%

ry9P,%z1d!* / nT Æ<# " GL7 l "?Q<& l u?%4h& * / nT Æf :uv%S-℄J℄℄℄7%l\ z zJ7( D ?S-v% D&` / nT Æ%n9 (&S-l f 7kf% J,l`%<T& 7d %KxS u lz< &i?% Qa z z%g# | aG {b ehJ?|℄ ~,dd{ Mlzzd92)EC& ; d % {r y9P,% 4z1 C 0&S C:lx27 R K &> Æ&GL!*? %< iF$-tC:1 GL%b &?*)EC<T hQAM92 z 92 d3?&l z1Ul_ ; {?~M%z1&;GL{ue Q%X [& _ w / DZ Z Æ& l_|m<3 (`GL%℄ 4(Zr l ?a le h 60 1< &tC 2009 ^& lT 4dX!*S{r℄J~ % w'lz*M}h% z)E&B7u x DVDV O Saj } "2008 I$* & n ^ O o *Dw bv "2007 I$ 4lh"L\7T ?%l4E <T x DVDV O Saj } "2008 I$&S=B z *-z~ ( 4 4 <3 (B.&/u 3jw')E%}4 47?8~ ? GL= ?\j W? ld&L8GL dB.&}4 4L Ls 4ph< 3&S =l4 4`?"* O { q s t + &f$ ? {T = y ' ℄ w x* q r { ~ M &> q { + ℄ w x* Y y : * & S { C d + D4s 9Z f y Æ( lzqY&?a?Q<3 &PdrgL8?G&?%< 2005


h-EWÆ0

73

uTaD& /a&k <3 (*0b %7k& * %<3 (u _a?~ie% ?T k = ?N} *T %1 &l={râ„„J~ *'R [& u{r ?N}%q #Q& { a}T ;z m# = ZA Xn

XBÆuXg&l DGz& A T % S w ZGrz :f&lu? k{lT7T℄ ry *_&flfm S +% x* v 8iaP_f? pSk lS "*

o.-q i - 3_& . i &r. i*7&q.i b &).ili&*.i ? B&*6A Æ?{& f : u?LHT &℄~u(1 % % S z & du?LHT %G4 %&0b Xy> SE> %B}& *y u %0Q7X!


H " 5 R y: – < t q+n .~?Zb_, 74-96 w )wnpVn ` ` i D t U Smarandche+nJv A x (%n U ^Qa^9 + U ^f 8 Q% ) 100190)

∗

℄. =?Z n . ~ M ;& < t _℄~ 3x t _ +~(Æ,~ < &GTheory of everything (1U^K t _℄ + &3 =?Zg ktS5& > D <t & < C M- < + x t _℄*1Æ7 % &x ( Æ ,~ < + t ; ^3b_ ℄ P -x : _ + b_ < &' T + j&> D n .~?Z + t _ - x 3 t & S,g 9 : q m + 0 ^3b_℄$ P x 3 n .~?Z + b_ < 4X &t _℄ Y y *Oo&^ < : M- < x + *1&b_℄xx ~( Y O S n .~?Z b_+ < & >DSmarandache*`h < &, ' +_ , D < t _℄ 1U + & g&ZS~(b_ < &, , [ O < t + RUwg )d b + /w l +^3 , 5 ~ <+ F" / g9+/wd n# /w v C/wg 9 Sq 0, &Y OlM b_n#^,x sV&3 %+ : I Z' b/wZ/3Z}> & ^ R olu + ~ 81 [16] & + , / The Mathematics of 21st Century Aroused by Theoretical Physics Abstract. Begin with 20s in last century, physicists devote their works to establish a unified field theory for physics, i.e., the Theory of Everything. The

p``n6m L a^93;^\ '-!2006 8 S%g`%z >#)+iU I z<>YK!2006 3 S# e-print: %n U M ; aâ„„ %200607-91 1

2


=u

r-o/ [ `

–Smarandche

+ai

=

75

aim is near in 1980s while the String/M-theory has been established. They also realize the bottleneck for developing the String/M-theory is there are no applicable mathematical theory for their research works.

Æ

the Problem is

that 21st-century mathematics has not been invented yet , They said. In fact, mathematician has established a new theory, i.e., the Smarandache multi-space theory applicable for their needing while the the String/M-theory was established. The purpose of this paper is to survey its historical background, main thoughts, research problems, approaches and some results based on the monograph [16] of mine. We can find the central role of combinatorial speculation in this process.

PJ*8H â„„s -&M- -&B6"&2 +&Smarandache +&.V~6" +&Finsler + |u# AMS(2000): 03C05, 05C15, 51D20,51H20, 51P05, 83C05,83E50 §1.

y- " J DU s T!

(v a n uO6" 4 C G\ & *4 = x, C = y &G = z &llTuO6". y 1T f%\ & z (x, y, z) ,JO6" 4 C G "\ &* "u~* t&llTJO6".y z (x, y, z, t) \ uO6" Su O0 1.1 8 " lTuO G&l â„„allT 0 %8H#Of :u T8H%lTM[ (section) 1.1.

1.1. z_% "uO â„„%S.Sjf/|a& â„„Sj%8H6"7:[JO6"ul3%& â„„Sj%6"u 3 +%&* : "u~&lu 4 +%, u Einstein % 6|


L

76

y

:

ihUA bx `N ; –

Smarandache

+ai

y-I Z UN Æv n ℄ e %|*&℄~u Einstein % o1 J&M ? 7l 8H % ℄s -& A -!*&8HXJ/lTh-/ 6aO% X a6"& T6" ( 6 Vn2%uO&i T X% ( ~% 6"rS ℄ s -Gsgmi w ~&G7G ~aOd&sgmi-G y^ A( M9&aq h 137 } %VO#G _h%% 8H n Hawking %|7&℄s.S J℄-/ =^'ZJ%S ([6] − [7])&* 1.2 Fm 1.2.

1.2. =^'%ZJ 1.3 =&ya\ 8H" â„„s k%VO70 &)2.S_h â„„| ## %8H J

1.3. 8H â„„s% J


=u

r-o/ [ `

–Smarandche

+ai

=

77

n â„„s -% ;S &8H Sy?%VO J 3*d* 9\ /8H â„„s k/lT 6 6"&lTP 137 } jâ„„s% Ek l Æ&H%Xk "* 0 H(ErG%7V*Er %VV rjU u$ % ?*M % %"a %~G "{yâ„„s k&6"d{y 0 M 4slaO / " 10 â„„&VVu 10 kg/m &7V= 10 K %8 H Xlt`D&.( " 6"* 61 N _ aO / " 10 â„„&7V= 10 K&8HrS z[ &S)x a 10 â„„% " o 10 b [ X rn %mi.S& < ou{|l%oÆa`Q& "/ ~ G&po /o*:uoPU0Æ &. S%midE( Æ l MBi 7% J ~f%&hGBi)f/z Bi&S?7V=+&) r%Bi*zBiu< _& d .(=i*9i l A zBi% `D%m %8H =3aO / " 10 â„„&7V* 10 K , >3aO / " 10 â„„&7V* 10 K , M"&p / *:u K5 Æ 8H=`m UAmi&"/7V4G"10 K y:$&mi%S "Pu|Y%&HLx uH3`luH\O&Ei UE`m TaO / " 1 − 10 â„„&7V=2P 10 − 5 Ă— 10 K&9i*z9i :i * :iu< _&.S ~% i =$iy z=$i&sgmi kS -GEi(& ~y i"A%#l`m ( LVD$|pV*8HSh% oa ed-) K;aO / " 3 Æ?&7V=2P 10 K&)x0 P 1 &( h1GM9-G* &(z \,L ?&(9~%mi * i %iP 10 &"AVV# /M9VV ~3s~f baO /L ?&7V=+ 10 K&UAmiauH3`= ~ su uH\O">~% _b $&{ X, 8H=UAmi % V /:D "/ 7V# 4G& i(sk% ~r> +Y #G%E i&=? %:iT &Fy E(. `mEi \O('aO / " 1000 − 2000 &7V=2P 10 K&M9VV k /" AVV "/8H%0 & i +l7"k*lTBB#G%Ei$ P8 Æ% X%fKY liS 4o l ~* &"/Æ%5V=8H%0 lK5o & i% 4d â„„o l ~ â„„* ('L ` T) Dr / " 10 &7V=2P 5000K&M97V k −43

93

−35

−32

3

32

28

50

−6

14

−2

12

10

10

9

9

−9

8

5

5


L y: ihUA bx

78

–

`N ;

Smarandache

+ai

+/"A7V&yB*yz%sgmi %i+VP7D Pq l? &" ℄s^M.S% i% ~ = syr>EiN2yrEi%JV&8H f, i*EiuHÆa%Æ & 8HuG a%&7V P=* 3000K { k&Ei k#G& d. .SFz%C4 2/FB%C4& vua _ 7 #G?&a7 #G%&7 #G?&U7 .S Uk z%7V 9 q%ZBC4lua9 ℄rn _%3` ℄r=#G% G1K; / " 10 &"A7V=2P 100K&M97V* 1K u G * G LG :Z 4 ,D 5 // " 10 &7V=2P 12K&N6 K5#G?L?Q|# %~t $:Wh / " 10 &"A7V=2P 3K& _M97VP 10 K 1.3. y -N Æv m DUs T! -M 7fYM N}|aM9"1AM9mi& :i e :?/ u *d? / d hG p_p ^`m }A\ mi&"uH % -& u Einstein %u`-* Dirac %~io? u`-u\ o% -&lF /N}8HM ?,l~io?uy/$|mi o% -&SL:uo p(uo /(uo ,A ohG mi&"uH %sg o {:Tp p_ k&4fM ? &SL Einstein g l)3o/|l ,Asg o& |lu`-*~io?&7lM ?% |l -& 9n =q3`m%Theory of Everything q 80 f %N}&; l)E(# H< T ; %}7a/ u`-uy/9|8H% -&* /_ N\_ 2 M)&S EM9uq9ÆÆ%,l~io?uy/$|8H% -&*:i 9 i =i)&S EM9ua2ÆÆ% ltK=fJ,N}&ÆQ ℄!g ;%l ; &i* <-DQ~+ E-z q *Q~&-d = <--S2 On zO*% , <-n z" 3 , &+<-+Ub03d - + zn z(J r S+ 3 U EEinstein n Sa`% u`(E * -t j 7 ^ p Æ7Q &E- *+I<*) E *^~ = 1+ X w d N + p t 5 D*Y X

+7l o1 J& 8

9

10

5

1 R¾ν − Rg¾ν + Îťg¾ν = −8Ď€GT¾ν . 2

S-8H?E , V aVS 10 l.y 1&<-& p ~; ~ = ;+ p *L 4


=u

r-o/ [ `

–Smarandche

+ai

=

79

nE &Robertson-Walker# o1 J%lA `DT ds2 = −c2 dt2 + a2 (t)[

dr 2 + r 2 (dθ2 + sin2 θdĎ•2 )]. 1 − Kr 2

u %8HD* Friedmann 8H q f %h9|*&Hubble a 1929 rm& â„„ U%8HulT% 50 %8H&tV o1 J% 50 TG M ? %Ob & S0<sn2 ?L$!&.

da > 0, dt

d2 a > 0. dt2

a(t) = tÂľ ,

b(t) = tν,

e& Âľ=

l Kasner V

3Âą

p

p 3m(m + 2) 3 ∓ 3m(m + 2) ,ν = , 3(m + 3) 3(m + 3)

ds2 = −dt2 + a(t)2 d2R3 + b(t)2 ds2 (T m )

* Einstein 1 J% 4 + m + 6T lF~Gd& TT W` 4 + 50 T "\r`DuW t → t+∞ − t, a(t) = (t+∞ − t)Âľ ,

?L# lT 4 +% 50 T& *

da(t) > 0, dt

d2 a(t) > 0. dt2

p_p i`m% M- -*T : ; <D sd l - Emi u97lu+ z% p-f & Sf p T (4V%i6"& e p ulT 1-f lFD &2-f D [f 1.4 =W` 1- f 2- f SZJ


L y: ihUA bx

80

6 ?

?

`N ;

6

Smarandache

+ai

6 ?

(a)

6

6 ?

-

–

6

?

?

(b)

1.4. f%ZJ n M -&8HpS k %vT #6"+ u 11 +%& â„„s k?& S= 4 T +a %M PG&l 7 T +la C & ^#G?L_h # % 4 +9|8H* 0% 7 +$|8H 4 +9|8H % o$- Einstein o1 J&l 7 +$|8H % o$--N/ J& "y# d[ TS- bv 1.1 M- < +1`D~ = ^ Q = ;H Y ~ = 7 U` h R + 4 U` h R D 1.1 * 6":%9 o%bOn2&?L.y# TownsendWohlfarth"% 4 + 50 8He" 7

4

e

ds2 = e−mφ(t) (−S 6 dt2 + S 2 dx23 ) + rC2 e2φ(t) ds2Hm ,

φ(t) =

t

1 (ln K(t) − 3Îť0 t), m−1

K(t) =

m

m+2

S 2 = K m−1 e− m−1 Îť0 t

Îť0 Îśrc , (m − 1) sin[Îť0 Îś|t + t1 |]

e Μ = p3 + 6/m. " ς <s dς = S (t)dt&l 50 8H%n2 * > 0 # <s + ;|a&. m = 7 l0 i* 3.04 3

d2 S dς 2

dS dς

>0


=u

u

r-o/ [ `

–Smarandche

+ai

=

81

{ ?CV<&D 1.1 =%7f : u7lu6"&"y J% ?;

D ^ t~(b_` h &, & Q = ;{ w # ~ = 1 U +` h) |a&* ^% ?6" a&vHlD u?L%3Sj= # % 6"&d u?Laq8 ?=<0 %6"&k*a 3 +t(6"=&HT7. y|m* (x, y, z)&H . S lT+ /)/ 1 %i6" +nJ g&$lT( %; * §2. Smarandache

1 + 1 =?

ak _=&?L$! 1+1=2 a 2 f5Z;e_=&?LU$! 1+1=10& e% 10 f :Uu 2 *a 2 f5Z;e_=.(}TZ;C4 0 * 1&SZ; l* 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10.

n D& D)/4DÆ%Æ?'{&?L lA z'+% ! %Æ '{ ([18] − [20]) QB T; &B ÆQ 1 + 1 = 2 n 6= 2 ?L$! 1, 2, 3, 4, 5, · · · ^% hGk _ N a T _=&n % %&HT D*j[b f% %? & 2 %? * 3& * 2 = 3 z ^&3 = 4, 4 = 5, · · · ^?L # ′

′

′

z U#

1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, · · · ;

1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5, 1 + 5 = 6, · · ·

^l Z;)l {la Ak %Z;e_d&?L. # 1 + 1 = 2 % S- ma&?LauldZ;%D WDlT - S &` ∀x, y ∈ S, D x∗y = z & 'u S : alT 2 CS- A ∗ : S × S → S &i#


82

L y: ihUA bx

–

`N ;

Smarandache

+ai

∗(x, y) = z.

T% l&?L.y = Ay_a [:|m`Q g= S =% HTC [:%7|m&* S =( n TC&la [: n T et%7, }T7 x, z &"qIln( t[&* alTC y i# x ∗ y = z, ?La n t[:z: ∗y &D*8t[%ÆB&* 2.1 Fm

2.1. qt -Æ v V A` u 1 − 1 % S ` % * G[S] ma&* ?L{ lT <s 1 + 1 = 3 %Z;_|&?L.ygW` 1 + 1, 2 + 1, ¡ ¡ ¡ )^+ x TQ G

b f 2.1 ~ = b , (A; â—Ś) OS ~+ } ^~ = # Ě&#x; : A → A :)_ ∀a, b ∈ A & w a â—Ś b ∈ A &f ^~ = Q~+G c ∈ A, c â—Ś Ě&#x;(b) ∈ A & 5O Ě&#x; S ~# ?L4(|# ydy/ _| (A; â—Ś) 7 G[A] %y_%lTS

bv 2.1 (A; â—Ś) S~ = b ,&f (i) } (A; â—Ś) ^~ = ~# Ě&#x; &f G[A] D~ = Euler 4 { &} G[A] D~ = Euler 4&f (A; â—Ś) D~ = ~Yx , (ii) } (A; â—Ś) D~ = E a + bYx ,&f G[A] & Q = C;+lVS |A| , B&z q (A; â—Ś) / â„„7 S &f G[A] D~ = E a +* 2- 4 KQ = C;j ~ =" :)**C; h + S _ 2- &{ g `/(rTC%~#&.y lA(r % l D`F(Z;S & 2.2 W` |S| = 3 %}AZ;e_


=u

r-o/ [ `

–Smarandche

+ai

=

83

2.2. 3 TC% vZ;

" 2.2(a) (

1+1 = 2, 1+2 = 3, 1+3 = 1; 2+1 = 3, 2+2 = 1, 2+3 = 2; 3+1 = 1, 3+2 = 2, 3+3 = 3.

" 2.2(b) ( 1+1 = 3, 1+2 = 1, 1+3 = 2; 2+1 = 1, 2+2 = 2, 2+3 = 3; 3+1 = 2, 3+2 = 3, 3+3 = 1.

`lT - S, |S| = n&.yaS:D n A z%Z;e_ ^?L .yalT -:z D ` h AZ;&h ≤ n l# lT h- BZ;e_ (S; â—¦ , â—¦ , · · · , â—¦ ) aq8 ?=& u l%Z;e_&T ; e) u 2 B Z;e_ lF2&?LD lT Smarandache n- B6"*d b f 2.2 ~ = n- *` h P&E S n =A A , A , · · · , A +% 3

3

1

2

h

1

X

=

n [

2

n

Ai

i=1

KQ =A Ai LE ~(Yx â—¦i :) (Ai, â—¦i) S~ = b & n S

b&1 ≤ i ≤ n aB6"%F d&?L.yfl q8 ?= T ; ~6" %: l# B BT B; B ~6"%: & # u % Sh bf 2.3 Re = S R S~=E + m- *`h &K_p Æ b i, j, i 6= j, 1 ≤ e & w +Yx q L i, j ≤ m, (R ; + , × ) S~ =" K _ p ÆG ∀x, y, z ∈ R ^&fm

i

i=1

i

i

i


L y: ihUA bx

84

(x +i y) +j z = x +i (y +j z),

C

–

`N ;

Smarandache

+ai

(x ×i y) ×j z = x ×i (y ×j z)

x ×i (y +j z) = x ×i y +j x ×i z, (y +j z) ×i x = y ×i x +j z ×i x,

fO Re S~ = m- * " } _ p Æ b i, 1 ≤ i ≤ m, (R; + , × ) D~ = &fO Re S~ = m- * b f 2.4 Ve = S V S~ = E + m- *` h &, Yx A S O(Ve ) = S Ë™ , · ) | 1 ≤ i ≤ m} &Fe = F S~ = * &, Yx A S O(Fe) = {(+ , × ) | 1 ≤ {(+ i ≤ k} } _ p Æ b i, j, 1 ≤ i, j ≤ k C p ÆG ∀a, b, c ∈ Ve , k , k ∈ Fe, w_ +Yx q ^&f Ë™ , · ) S F +* ` h &, * ^ vS +Ë™ Æ& TvS · Æ, (i) (V ; + i

i

k

i

i=1

k

i

i

i

i

i

i=1

1

i

i

i

i

2

i

i

Ë™ i b)+ Ë™ j c = a+ Ë™ i (b+ Ë™ j c); (ii) (a+

(iii) (k1 +i k2 ) ·j a = k1 +i (k2 ·j a); Ve Fe k

fO S* + ** ` h &T S (Ve ; Fe) "y?L$!&M- -=%6"e"f :ulAB6"e" bv 2.2 P = (x , x , · · · , x ) S n- U H` h R &+~ = ; f_ p Æ b s, 1 ≤ s ≤ n&; P { w ~ = s +D` h

_ V y6" R = azds e = (1, 0, 0, · · · , 0), e = (0, 1, 0, · · · , 0), · · ·, e = (0, · · · , 0, 1, 0, · · · , 0) (4 i TC* 1 &S1* 0), · · ·, e = (0, 0, · · · , 0, 1) i # R =% 7 (x , x , · · · , x ) .y|m* 1

2

n

n

n

1

2

n

i

n

1

2

n

(x1 , x2 , · · · , xn ) = x1 e1 + x2 e2 + · · · + xn en

; F = {a , b , c , · · · , d ; i ≥ 1}&?LD lT % ~6" i

i

i

i

R− = (V, +new , ◦new ),

e V = {x , x , · · · , x } \Kx(&?L D x , x , · · · , x uRl%& . az~ a , a , · · · , a i# 1

1

2

2

n

s

1

2

s


=u

r-o/ [ `

lD( a

–Smarandche

+ai

=

85

a1 â—Śnew x1 +new a2 â—Śnew x2 +new ¡ ¡ ¡ +new as â—Śnew xs = 0,

1

= a2 = ¡ ¡ ¡ = 0new

t az~ b , c , ¡ ¡ ¡ , d &1 ≤ i ≤ s&i# i

i

i

xs+1 = b1 â—Śnew x1 +new b2 â—Śnew x2 +new ¡ ¡ ¡ +new bs â—Śnew xs ; xs+2 = c1 â—Śnew x1 +new c2 â—Śnew x2 +new ¡ ¡ ¡ +new cs â—Śnew xs ; ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡; xn = d1 â—Śnew x1 +new d2 â—Śnew x2 +new ¡ ¡ ¡ +new ds â—Śnew xs .

{l?L# 7 P :%lT s- +i6" ♎ 2.1 P S H`h R &+~=; f ^~=D`hW n

:) R

− − − R− 0 ⊂ R1 ⊂ ¡ ¡ ¡ ⊂ Rn−1 ⊂ Rn

− n

= {P }

K D` h R−i +UbS n − i & 1 ≤ i ≤ n

Y w Y ?& 3.1. Smarandache ?& SmarandacheK ulAy % +&S ( ;rjÆ$% LobachevshyBolyai + Riemann +7 Finsler +&S`r7u zd Kn y +=%` bE ?L gauld y + + Riemann +%pl J y +%b e_"d[ HnbEwG* (1) Q = ;% Q = , +; EY , (2)Q LY n hK, (3) p Æ;S&?&( s p > E+ # ~;Y Z~M, (4) - L 0, §3.


L y: ihUA bx

86

–

`N ;

Smarandache

+ai

* [wz -~ : # &K ^ > ~ +~< + w 13 &f ^ ~< , z 4 3.1 = (5)

3.1. ln)t7}n %)tu? e&∠a + ∠b < 180 y?lnbExD* y4HbE&HU.y d [ A6 v* s> E B+~;&8 ^~ : > E+ * k{ ybEbÆyQ& Ll) #S4HbE 8 *bE`m&H : fa 8ulTd *y&4f ? 3o/ j,nbE"a4HbE& l)E(G` /u( { SG E f y4HbE&'Y# %b e_ u &u aBd _ p &Lobachevshy * Bolyai Riemann Æ~ z% E y4HbEm#G` GL % EÆ~u* Lobachevshy-Bolyai E*s> E B+~;& ^ : > E+ * Riemann E*s> E B+~;&* ^ : > E+ * Riemann E# B}%E a/"y.y7l`= +&? d Einstein *Su`-=% o 6& = o1 lT`=6" z^2&?Lu .yfl 9u ybE# % +l ;E(% y + Lobachevshy-Bolyai + Riemann +* Finsler +-9n [16] =T T; ; %T #o/ Smarandache +'{l7l.V~6" +& e` Smarandache + lT(bY?*d&dlN_Y?.V~6" + Smarandache +S a < K K { K *{ K ),A&Æ~ n z%bE7l S=&a < K %bE* ybE"1$-"4$y d[ +lnbE* (P − 1) ^~ ( B+~;&:)- s( ;+ L: O


=u

r-o/ [ `

–Smarandche

+ai

=

87

* , (P − 2$ ^~ ( B+~;&:)- s( ; 8 ^~ : * , (P − 3) ^~ ( B+~;&:)- s( ; 8 ^- + k : * &k ≼ 2 , (P − 4) ^~ ( B+~;&:)- s( ; 8 nb : * , (P − 5) ^~ ( B+~;&:)- s( ;+ p L: K %b e_u D y + 5 nbE=% 1 Tn T& yd lnn nbE ybE=%` bE* (−1) s> E+ p Æ ;*~E ^~ , (−2) ^~ * y n hK, (−3) > E~; ~ = 4b&%*~EY l~ = M, (−4) %*~E 0, (−5) s> E B+~;&*~E ^~ : > E+ * { K %b e_u DA +=%lnn nbE&u d bE * (C − 1) ^ 6 P - { w => E+;, (C − 2) A, B, C S = * O +;&D, E S = **; } A, D, C B, E, C ; O &f( s A, B + :( s D, E + * , (C − 3) Q d w - = **+; { K %b e_u D Hilbert b e_=%lnn nbE b f 3.1 ~ =K OSSmarandache E+&}, ^*~ = ` h &*1 l S 6 *S &6 ( < *S ~ =w - Smarandache E K + K OSSmarandacheK d[ Tkiy d[} N|a Smarandache +uKx a% { 3.1 E A, B, C * y [:1T et%7&D )t* y [:x A, B, C =a"lT7%)t l?L# lT Smarandache + *7 y +b e_uiF&S=}nbEu Smarandache D%


L y: ihUA bx

88

–

`N ;

Smarandache

+ai

y4HbEma*- s ~ B+~;& ^~ 6 * ^ K 3 ( F E)t L q 7 C t %/)t AB V q +lT a AB :%7a"(ln)t %/ L&lq )t AB :% +l7 a %/ L %)t&* 3.2(a) Fm (ii) bE- s p Æ = **; ^~ ma*- s p Æ = **; ^~ 6* ^ V q }T7 D, E & e D, E 7 A, B, C =%l7& *7 C et&* 3.2(b) Fm&a"(ln)tq D, E l` }Ta)t AB 7 F, G n 7 A, B, C =lT7et%}T7 G, H aq HL%) t&* 3.2(b) Fm (i)

3.2. s- )t%~G

b kY I?=lT4P %D " Q = Y[ 6 }S T[ &6 }* 3^ T[ A ℄ 2p = J&Q = J h 4'~ = 3 [ "b D$ ,6 }* 3^ T[ A ℄ q = J&Q = J4' F kl + : , j > }SYE* Y[ &m ; E S p , }S*YE* Y[ &m ; E S q e.D % 'ulTq)/ [% ~Sf [ZJl ?a `r7u 9u ~% )|:$! [u.D %&l9iA$Ælu .D %&* 3.3 Fm&S= (a) *) %0[&(b) * v-?%9iA$Æ 3.2

3.3. 9iA$Æ%#G


=u

r-o/ [ `

–Smarandche

+ai

=

89

2 u [%lANÆ& Sf ANÆ8 [) ?&# %HT[A z (/H D = {(x, y)|x + y ≤ 1} Tutte / 1973 W` 2 % D & [12] =% 9&2 D /d bf 3.2 ~=54 M = (X , P)&E S^:qA X +rGzD Kx, x ∈ X +nKOG+% A X +~=: % P &KGK [ + K 1 K 2& K = {1.Îą, β, ιβ} S Klein 4- G e & ^ P S : % &G * ^ b k, :) P x = Îąx v 1 *ÎąP = P Îą; v 2 *e Ψ = hÎą, β, Pi ^ X Y ; n D 3.2&2 %B7*[Æ~D *4W P * Pιβ / X :# % e !,r* Klein 4- C K / X :# % ! j Euler-Poincar´eb l&?L# 2

2

ι,β

ι,β

k

−1

J

ι,β

ι,β

ι,β

|V (M)| − |E(M)| + |F (M)| = χ(M),

e V (M), E(M), F (M) Æ~|m2 M %B7 r *[ &χ(M ) |m2 M % Euler HQ&S +)/2 M Fm,%vT [% Euler HQ DlT 2 M = (X , P) u*YE*+&.4W Ψ = hιβ, Pi a X :u.f%& lD*YE*+ Îą,β

I

ι,β

3.4. D a Kelin [:%m, *lTki& 3.4 =W` D a Kelin [:%lTm,&.y 2 M = (X , P) |m*d& e 0.4.0

0.4.0

ι,β

Xι,β =

[

{e, ιe, βe, ιβe},

e∈{x,y,z,w}

P = (x, y, z, w)(ιβx, ιβy, βz, βw)


L y: ihUA bx

90

–

`N ;

Smarandache

+ai

Ă— (Îąx, Îąw, Îąz, Îąy)(βx, ιβw, ιβz, βy).

3.4 =%2 ( 2 B7 v

1

βw), (βx, ιβw, ιβz, βy)}, 4

= {(x, y, z, w), (ιx, ιw, ιz, ιy)}, v2 = {(ιβx, ιβy, βz,

nr e

1

= {x, ιx, βx, ιβx}, e2 = {y, ιy, βy, ιβy}, e3 =

y 2 T[ f = {(x, ιβy, z, βy, ιx, ιβw), = {(βw, ιz), (w, ιβz)} &S Euler HQ*

{z, ιz, βz, ιβz}, e4 = {w, ιw, βw, ιβw} (βx, ιw, ιβx, y, βz, ιy)}, f2

2

χ(M) = 2 − 4 + 2 = 0

t4W Ψ = hιβ, Pi a X :.f ^ { CV# D a Klein [:%m, K=f -M N}%0b&?LU.ylF(2&$ a6"y fB [ :%m, aB [:%m,D *d b f 3.3 4 G +C; A E- V (G) = S V , _ p Æ b 1 ≤ T i, j ≤ k &V V = ∅ &1 S , S , ¡ ¡ ¡ , S SV ` h E &+ k = Y[ &k ≼ 1 } ^~ = 1-1 Y# Ď€ : G → E :)_ p Æ b i, 1 ≤ i ≤ k &Ď€| D~ = ' |K S \ Ď€(hV i) &+ Q = ( * 3M D = {(x, y)|x + y ≤ 1} &fO Ď€(G) D G ^ Y[ S , S , ¡ ¡ ¡ , S +* B| D 3.3 = [ S , S , ¡ ¡ ¡ , S %6"44`Bm,( | alA S , S , ¡ ¡ ¡ , S &i#` j, 1 ≤ j ≤ k &S u S %i6" &D* G a S , S , ¡ ¡ ¡ , S :% w w * B| y/ [&(d[%S- bv 3.1 ~ = 4 G ^ T[ P ⊃ P ⊃ ¡ ¡ ¡ ⊃ P ^ z+ w w * B| J U 4 G ^g G = G &:)_ p Æ b i, 1 < i < s, (i) G D [ +, S (ii) _ p Æ ∀v ∈ V (G ), N (x) ⊆ ( V (G )). I

0.4.0

ι,β

k

i

j=1

i

1

j

2

k

hVi i

i

2

i

1

2

k

1

i1 1

i2

2

k

ik

2

2

ij

ij+1

k

1

s

2

s

i

i=1

i

i+1

i

G

j

j=i−1

Y ?& 54 K ua2 sd:h7% Smarandache +&z dup_w- ? 7q8 ?%ÆÆ 2 +%: ga9n [13] =a`&=?a9n [14] − [16] =&â„„~u [16] f% a3%N}&SD *d bf 3.4 ^54 M Q=C; u, u ∈ V (M) 7~=4b Âľ(u), Âľ(u)Ď (u)(mod2Ď€)& 3.3

M


=u

r-o/ [ `

–Smarandche

+ai

=

91

O (M, µ) S~ = 54 K &µ(u) S; u + D x b NWU 6 *WU Y[ + Y u s h ~ =6 h K= [ iO ( 54 K n 6 - 3.5 =W` )tk 2 :%B7%~# e% CVÆ* /. ) /. /.&u 2&7 u D* H7 y7* 7

3.5. )tk H7n 7 H7 y7* 7a 3 +6"= u.yfm%& e7%fm(~/ y6"%~#& lDu )%&b 87 u y7 3.6 =W` 1 A7a 3 +6"%fm v, =7 u * H7&v * y7l w * 7

bv 3.1

3.6. H7 y7* 7a 3- +6"%fm - n 54 K &L ^a < K K { K { K

D %"a09n [16] *t/ T&?Ld[Y? [2 +%~# a A~#& .yaB7:-3C i &U.yb qIB7&"%rul Tq9 & ^`fl T [: t_Æ( i*a [2 + =( ^%S-* [ 54 K n S *u s 54 6 u s +;S H; *lTki& 3.7 =M` s/ ,[e%lA [2 +&S=B7


L y: ihUA bx

92

`N ;

Smarandache

+ai

r:% +|a8B7 2 b%C i +

3.7. lT [2 +%ki 3.8 =M` 3.7 D % [2 +=)t%~#&℄-2& 3.9 = M` 8 [2 +=% Afr#

3.8. [2 +%)t

3.9. [2 +%fr# §4.

f nJ?&

% u`-℄Q 6"a o du %&N2 td k & l7af |#=uq# "f 2 +%'{f :.ylF2D /lT V~6":& a8V~6"%HT7:-3lT ~l7l.V~6" + Einstein


=u

r-o/ [ `

–Smarandche

+ai

=

93

b f 4.1 P U SVCALS Ď ?ALIF&W ⊆ U BMW ∀u ∈ U &N =ZVCKUXO ω : u → ω(u)&\J&BMWâ„„R n, n ≼ 1&ω(u) ∈ R Q> BMW?^R ÇŤ > 0&H=ZVCR δ > 0 DVC v ∈ W , Ď (u − v) < δ Q> Ď (ω(u) − ω(v)) < ÇŤ [N U = W &< U SVCTALIF&ES (U, ω) ,N=Z^ R N > 0 Q> ∀w ∈ W , Ď (w) ≤ N &[< U SVCYGTALIF&ES (U , ω) V ω uC i &{.V~6"?L# Einstein % 6" *t / T&?L[-. [ +t ω *C i %~#& g(d[}T( %S - bv 4.1 s W [ (P, ω) + ; u v *~E ^ HÆ + bv 4.2 ^~=W [ (P, ω) &}* ^ H;&f (P, ω) ,Q=;LS >M; 6 Q = ;LSd Y ; `/ [ t&l(*dS bv 4.3 ^W [ (P, ω) ^ b Y F (x, y) = 0 - s X D &+; (x , y ) K F (x , y ) = 0 K _ p Æ ∀(x, y) ∈ D & n

−

0

0

0

0

(Ď€ −

ω(x, y) dy )(1 + ( )2 ) = sign(x, y). 2 dx

ma&?L_a .V~6": n D 4.1&`lT m- # M * 7 ∀u ∈ M & U = W = M &n = 1 t ω(u) *lT L l?L# # M :%. # + (M , ω) ?L$!& # M :%Minkowski}bD *<s*dn2%lT F : M → [0, +∞) (i) F a M \ {0} :hh L, (ii) F u 1- Vz%& ` % u ∈ M * Îť > 0 &( F (Îťu) = ÎťF (u) , (iii) ` % ∀y ∈ M \ {0} &<sn2 m

m

m

m

m

m

m

m

m

m

gy (u, v) =

1 ∂ 2 F 2 (y + su + tv) |t=s=0 2 ∂s∂t

.

%`D t(" g : M Ă— M → R u D% Finsler( If : u-3 Minkowski | % #& eQ< u # M Ss6":%lT F : T M → [0, +∞) <s*dn2 y

m

m

m

m


L y: ihUA bx

94

–

`N ;

Smarandache

+ai

a T M \ {0} = S{T M \ {0} : x ∈ M } :hh L, (ii) ` ∀x ∈ M &F | → [0, +∞) ulT Minkowski | *.V~6" +%lT℄k&` x ∈ M &?L=k ω(x) = F (x) l .V~6" + (M , ω) ulT Finsler #&℄~2&* ω(x) = g (y, y) = F (x, y) &l (M , ω) u Riemann # ^&?L # d S- bv 4.4 WV `hK (M , ω)&~s5&Smarandache K &{w Finsler K & i{ w Riemann K m

(i) F

m

x

m

m

Tx M m

m

m

2

x

m

m

§5.

Oâ„„\_-YbU!

p_lp % -M * ?N}a` ~0bN}%; & e?L T v (v! 5.1 -d =<--S2 On zq * , <-` h- D : C Y ` h - ` .y(E T & Y4(fT8H& u9n [10] = %8H %|7&duM ?VKxI %|7 Einstein ℄Q 6"a o du %&{lA :< y6"a fpV=u a% {fY|#%CV& ℄ |#n# k V=lAul uSgI&E-uG+6"Uu++6" A 4 +6"&9n [16] =`yu( ^ 0M q8$Æ +=j s ~|0 M % vnR/l ℄D%p2 l lF(%N} 6" ?1`.V~ 6" (M , ω) f%N} s/ )6"%N}.yrm&2>a ?:Y4 % 8H% a& ℄rj%|# vEv|# v ( v ! 5.2 n z" 3 +<-Ub%4Dd -D - p_p i -M %ry a ℄9u e Q#G%6"| &{l |f ?%uP l P % -M ? Z)Q f%" f T * ' n z `h+F*V%4Dd Æ a _ -7fY%n2d&bI| T; (lD% K}& * ℄ |# %FRNf j -=!*6"+ u 10&M -=%6"+ u 11 tHAu$%jn9j - uS|r~# l> M ? aN}% F- -%6"+ u 12 K=f A'{&.y7llF%6" + -N} Einstein 1 J&a l7:& ? ra M ? %?[ m


=u

r-o/ [ `

–Smarandche

+ai

=

95

v (v! 5.3 nzyV &6 " | J E-5 T D ^~("tY 4 U" | 3 U 6 3 U" | 2 U` h2Mf :u Einstein 1 Ja zV n2d%T7T l [&M ? !*2M a % o& q td k & +Me '1,2M= 8d % G*>:"[6]-[7]$,z M ? , #2MuqI z8H z 6%q {& * ℄ T%lsM %a2M \ 72Mu`%& -M =U (lA>M&S℄ u +Me Evf,>M * $ 2M >MTe&? L drm} uk 7%&T %z u W&Fy2M7>M 8ula r ^ ℄&℄~u8 GE0 >f 2M fOM9a2 :uKx a%&* % ) 0MfOM9% -& -uM nu ? 0 X L%sk!g f yQ&o?e"l)!PMeZ J=O u lTsgEl { -:!g 6kB&o2I| ZJ=OuOÆ Q%; & :De%ZJ; "yÆQ% ?; u ([16]) * (1) D Q _& E n 74D E+&n 7D* E+%"K z (2){ 4 B| %dU` h w &g9 , ` h j 7 (3)x 4+ ` h YI _ `M ?Q"&0ba2 :D k9uSO%SM&flrmS 6kB % v ( v ! 5.4 n z^5 T Y y%dt# E6M976 ~l)uM ?V%lT KQ K=f ℄`6"+ !g %9u& T; du#% .\ * 6"+ ≼ 11&vD6M9 lDha ℄ # % +:&d . a2 : H F( PnR/ ℄!g 7fY %aG 2h 7 [1] A.D.Aleksandrov and V.A.Zalgaller, Intrinsic Geometry of Surfaces, American Mathematical Society, Providence, Rhode Island, 1976. [2] I.Antoniadis, Physics with large extra dimensions: String theory under experimental test, Current Science, Vol.81, No.12, 25(2001),1609-1613 [3]

BVI*B+7, N K , `m ?`IC, 2001.


L y: ihUA bx

96

`N ;

Smarandache

+ai

[4] M.J.Duff, A layman’s guide to M-theory, arXiv: hep-th/9805177, v3, 2 July(1998).

W , _ < : K , ,?`IC, `m, 2005. [6] S.Hawking, 1 hn 8, F{, `IC,2005. [7] S.Hawking, q W +<-, F{, `IC,2005. [5]

[8] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,2002. [9] H.Iseri, Partially Paradoxist Smarandache Geometries, http://www.gallup.unm. edu/˜smarandache/Howard-Iseri-paper.htm. [10] M.Kaku, Hyperspace: A Scientific Odyssey through Parallel Universe, Time Warps and 10th Dimension, Oxford Univ. Press. [11] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics Magazine, Aurora, Canada, Vol.12(2003) [12] Y.P.Liu, Enumerative Theory of Maps, Kluwer Academic Publishers, Dordrecht/ Boston/ London, 1999. [13] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73. [14] L.F.Mao, A new view of combinatorial maps by Smarandache’s notion, arXiv: math.GM/0506232. [15] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.

&

[16] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ 2006. [17] F.Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000. [18] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999. [19] F.Smarandache, Neutrosophy, a new Branch of Philosophy, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 297384. [20] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 385-438.


H " 5R y : – M _ C , _ b_t + $, 97-121 6( U ;8k 6 Pt U) wV p= —— y " y A *1? =fÆd 3 u (% n U^Qa^9 +U^f8Q% )%100190)

℄: a*.vk*%℄2Æ;U^f8* +m"%F?$3YRAsg * %^9H a^s~f8 2$*Y& a% J<0`*m"d F%$)~ { Smarandache)_g Mb +% Bz?$3YR+ +L P *m"%Æ ; f+3℄_ g * A{ _ g : - | 3 B + }r_ g *L P % CPoincare-"*L %F o } < 3- T ' ' H) 2} S 3- T_/,[*?$^ p %# ℄?$3%FL 'H w M ~; B+^Einstein G*L /%a%R y o℄m9Ef8 plM % [a^\ *)vUU%!h!Jf8*U^ u NJ: L m" ?$3 Smarandache )_g G%U^ u Abstract: By showing several thought models, this paper introduces the Smarandache multi-space and Smarandache system underlying a topological graph, i.e., d-dimensional graph step by step., and surveys applications of topological graphs to modern mathematics and physics, particularly, the idea of M-theory for the gravitational field. The last part of this paper discusses how to select a topic for research on the coordinated development of man with nature.

Key Words:

Combinatorial principle, topological graph, Smarandache

multi-space, gravitational field, research notion.

AMS(2010): 01A25, 01A27

p. 2012 8 S 30 $) 10 S 9 $ }` MoZ{ > >+>>N)_l6S\I >Nb>NYK 1

2

e-print: http://www.nstl.gov.cn


L y: ihUA bx

98

–

`N ;

Smarandache

+ai

_ m3

p_u8H r M%lAsgy_&w-u8H r MuHp_%lA| m#l&u x $8H Ml l% a â„„Cd=&lT| *lT w GlT v&:(2m&d(i &fl#G â„„Cd=ysg%u y_&u â„„#yxU4 %lAV &=f6 24% â„„aG&lTy | }%; ud[ Tep} * t2t ! *ZS~ = O +t &y " y A *1?% &{ =f-

1-1 t2t a`wx4 v!

a =yA Æ&XEl0z`*

{ $ x~ = O +t E-O { &f A { s ~ D&{ y " Æ[ f vTe&K a =y " Æ&l5 ( z`*

" { s { +y A L*=&{ $ D nE- K &{ -~ = A Æ T; dG | Ly M a %lT; 2012 +b8Zd& i0& Z"|$*h^9" $m#{ ?&4f T l; %X!*h {q {,b 0 & = : Y t *> s i E *} Pu& { D t E? 7u D% j&?alg4ZM : ll7 T} (y%tr&"%ul4 ?lgS A %1zw2S \AE * 4lz&aG ?lgH &rg (FG&q l4 % UY?&7l4 = z| %z S X 7l w2y_ }TT?%lh& S X ;G*

` z f {A *1?"g &{ =f-Æ u|S A Sy d; %lT; & X G a T; P ` &u AD+&{ >jj&P 2 O ` + Æ S X " /u A f ia *

zq { f A *1?"g &f g =f A S {z q ep &f $ Y \y~ = & f -~ = A & z q ep &f>\x P - A Æ/u S X 7 A _E Q&w2L


N `D-` `u -!%

99

4pz& PL ?&,(l4 S Y Q G%Ir&7G7l w2y _ l R & S Y ,b A a z^%; ` z f {A *1?"g & { =f $ D = {A-Æ( :zEE&|S A {*

{ f A x$* t &* > m G Æ+jhÆ /ua !*

z q { f A *1?" g &f g = { Æ

S2 O-Æ S Oln&* Tj fG f A . +$& ~N 1 $ X s K | v Æ S Y ld u u*

{ F L + A L* ^?&&$ x nE- _ { y A t{en Q &_ >Y t_f f $/ > {! Æ 41z& 2r~ l |+&q Y?&A ,!g l4 S Z j}z% qi& Gr\&l I;X? f A *1?"g &f =fÆ&?8nDa ? ?' #ST /ua} k lIf Pv1 & d;? { f A *1?"g &f =fÆ T; & d xnd&f px* .* +Æ S Z "*

{ ?h&f%O* . d { = d &f ^*d&{ tx* . d& px* . d = d +! Æ|S A ℄&y* /< l4E(Kq % S 4p h&Y? lg Q;G*

4 5 wf&{T ℄ P - -#8h-Æ A lt { ℄ 0- -# v h O * B-ÆY? L8G& S Z !*G(oK &} w2y_ yS *dD ^lT|( %; nDa PE( S X Y Z < -}SE &a/ A % 7(1T& =y A Æ =y " Æ* fx*=Æ& lF `/ !& d=k fx*=Æ& ~n^=k& ℄S 7 % DÆ a A&la S X Y Z =& .( a i# S< % = m# y S lF2&,?; .yÆG}℄*l℄u.((l 7%; &y .b ` (l 7 .y# S ,U(l℄u afT 7&y ` 7 & U0 Ddl& z afT d & x lz=k# S a = 9O=& u E1Æ%: ?L3t ^lÆQ j { K { >K&* KxK,j { *K { >*K&Kx*KÆ&au A; %z & *= 9O `

= E Æ& z^l2r&alT1-u %&a lT1-. u %& * a,?ry J=&: 4l℄; D* D(; & E 7S &" a D(y_&.y Y = f (X) | `Q,4p℄; %lFOD* D (; &ua~io?N} J rm%& ~i%*% D(&d( D&*

ENV_ (Æ& =y( |(%&u - ℄E^+ J Æ; Sb9U {~=Ya+1J |~ =4,b O 6 M` +*2_ D


100

L y: ihUA bx

–

`N ;

Smarandache

+ai

&g , D J Y ^ D F*JI&z q *1?2I O 6 M ` &O 6 . hd G = D&S J Op& ^ n M , D > &n 0 J +"p<l â„„E^d*o Ya+1 J %4Dp $ D tg 3 A-

1-2 Sb9U

T; f :7j[% y " y A d *1?g =fÆ; z`ll& * 77H vi;i%'Y Vsuy f :&E-uk VUu ℄Cd& k D(,?a %; |>& ~%&nu* ℄!gk * ℄Cd0b& 0 Cdry0bT v D(; & ulA,?_|ry%'{&up_ lp ,?ry%Ob &lw-'{* v&l* A,?%_|ryaa ( % ?sd m j T Le <:7 r dDu,?-,?uy *( &x `k * ℄Cd% $u\&!g k * ℄Cd % 0} V&S` a/ (!gk &* ℄v k &7 k AryaaÆQ ℄* % -X

2-1 t3-D!


N `D-` `u -!%

101

!"q 4,_p =& '"~&~"n&n" & "FtÆ%'{&/w Xi}a9 ℄GV 8H M.S%Æ?'{ =& ℄`ma " FtÆ&?& ℄`k % $ ra Æ&?&vD& =% nÆQJ/ = 9O=` M% T& Ft % i rÆ, ~Æl, M e 6 S Æ % Æ&l 'Æ&l, % Æ vfÆn K_ 4Æ Fy&,?QJ/ % n l Æ Æ& % ) `k % % $* V *: & kx f/)I'Y%S-& r/ ℄ $% F tÆ&l{}S8HgJ&*B <-vfÆ%N}&. x ('+f%0}

V& gI u!g [lTy 1 l [& `k %!g4}u8HX gvl& !"q 4l /w 'Y'& J',aY a & J a Æ& *F( a Æ u ℄ Tk F-&tF( a ÆJ r, l [&` <-vfÆ%!gEv x )If/'Y Fy&4}(lA ℄%,?.y r t Æ ℄! gpV%Xga/ r 7* Æ& d u !"q -n 1 S& Æ %J0 V & FtÆ.S/ n & n&"-Æ& e% -Æ, ℄ k !g %rM& nÆ, ℄; !g%rM ,?%g9a/" -Æ!g nÆ& flWS &DSO&A#Ssl%N/ ℄Cd A!g&f :du l } t l & } t Æ& $* Hn ,Æ& ℄!gk &f :)z/ Hn ,Æ Q[ %Æ?! *

2-2 J!?

J! ?: ; > &- ) ℄ Hn $ n j 3 Æ, z . &# 'Æ,K) 2 O tD ~ &^ ) = Hn ^ U &~℄ n9 t~1Æ, h) ℄ Hn . * 7~℄ Hn % Æ, `& f ' &Æ,>)~ = 1Æ 1 1 e + Æ>( Æ 7n℄ Hn % Æ,+ D& *_&*_&Æ,D b D O Æ 7 ℄ Hn % Æ,+le& *_&*_ Æ,D~mÆ & D Æ


L y: ihUA bx

102

–

`N ;

Smarandache

+ai

7r℄ Hn % Æ,+TD& h O +-Æ, __ D~S EE Æ 7q℄ Hn % Æ,+Æ;& 7 j&Æ,D Æ3D Æ 7 ) ℄ Hn % Æ,+Xk& _&{T L*_&Æ,* s D~ :$D Æ ) = Hn M*O&LjF L %+0D Æ,+tD 1& ~℄ }j*

{T *w &L_ {TQ = n j+Æ,*~t&D S {TQ = n %+DÆ, +**,℄ Æ

Hn ,Æ T Q&l [/w â„„!gk % r(& â„„!gk #G%,?$gÆ(:[(, l [d/w !grM%_| en ( %Bb( vD&b~ T~ â„„vA:[%!g& â„„ Æ,ÆgQ[r% ! g v&f : ulA { x Æ% v& *v46 F"%& 4? ` % !gP`&d u"& Æ, = { ` } S{S D } S{Sle } S{STD } SS{ ; } S{SXk } ¡ ¡ ¡ = { Æ > ( } { b D } { & } { E } { 3D } { :$ } ¡ ¡ ¡ & ^%!g&p N!l& â„„%!g Jf : f*y& !g% urMz % &u(9nâ„„ % -&lt A -& !g v lU lD b f 2.1([10],[18]) _3 p Æ > E+ b n ≼ 1& S , S , ¡ ¡ ¡ , S D n = [ **+b_ ,&~ = Smarandache *` h E S Se = S (1) uF* (G ; â—Ś), (G ; •) D = **+ e &f , MS+*` h OSd e & T S (G S G ; {â—Ś, •}). WQ&&lT ualT - G :D }A Z; {â—Ś, •}&E G ⊂ G, G ⊂ G * G =`Z; â—Ś n • n%i &l (G ; â—Ś), (G ; •) u}T &t S G=G G â„„~2&* (G; â—Ś) u?W &S 4C * 0 &(G \ {0}; •) * & t<sÆ-%* _pÆ x, y, z ∈ G&- x • (y â—Ś z) = (x • y) â—Ś (x • z) (y â—Ś z) • x = (y • x) â—Ś (z • x)& f~=de >D~ = b C"~+&z q (G \ {0}; •) xD~= % e &KG K ^ 7 &~ = d e >D~ = b "y.y `, uq8 e ;% &l =% ~, a/u D Æ-%&y `Z; n% - G , G (2) u/: (R ; {+ , â—Ś }), (R ; {+ , â—Ś }) D = **+ " &f , _ +*` 1 n

2

n

i

i=1

1

1

2

2

â—Ś

•

â—Ś

â—Ś

•

â—Ś

1

1

1

2

2

•

2

•


N `D-` `u -!% h E Sd " (R1 S R2; {+1, ◦1} ֒→ {+2, ◦2})

103

lF2&` n ≥ 2&?LU.D n B n BT)& "y[-S Sh h & :l ? Oba[- TSh&y "y F%l Z; Sh `/ n = 2 % Smarandache B6"&SB7a/b ShG ?_|% z& A_|z dulABd_|&lFD *d* bf 2.2([11])P~=E 3b_ , P +jfOS Smarandache E+&} , ^*~ = , &*1 lS 6 *S &6 ( < *S ~ =w - Smarandache E j f+ ,OS Smarandache ,& 5& P D K ` h 1&_ + K OS Smarandache K Smarandache +ulAS Bd l% + ([7], [9]-[11] &[17]) & lT l .y Gl, Gl&n yfA l Gl& a 6":Gl&ulAY Fl|| % +& aq8 ?=u M I %&p # ulAS Bd% e_ q8 ?℄"&$v ( X(9%_|n6"& & 7 L% Æ u &!* r Mu X% I%& $ A X% ?_|n +E-ak V&Uua ℄Cd . a&. ulA ?:% {S n fS %h- { l [<& ?ry u"T Bd OTBd J%. [%8" |u +%pl ?L$!& y +"d[HnbE VSG* (1) Q = ;% Q = , +; EY , (2)Q LY n hK, (3) p Æ;S&?&( s p > E+ # ~;Y Z~M, (4) - L 0, (5)s> E B+~;&8 ^~ : > E+ * e&y?lnbExD* H7q K Æ& Ll) #S 8 *bE `m& *H : fa 8ulTd *y&4f ? 3o/ j,nbE "a4HbE& l)E G` /u( { SG E f y4HbE&'Y# %b e_u &u aBd _ p &Lobachevshy * Bolyai Riemann Æ~ z% E y4HbE& "ypl Lobachevshy-Bolyai +* Riemannian + GL % EÆ~u*


L y: ihUA bx

104

–

`N ;

Smarandache

+ai

GV: s> E B+~;& ^ : > E+ * R GV: s> E B+~;&* ^ : > E+ * Riemann E# B}%E a/"y.y7l Riemannian +&? d Einstein *Su`-=% o 6& = o Riemannian 6"% &&f l0M o1 "D 2.2 } `, Smarandache +u Lobachevshy-Bolyai +* Riemannian +%fl D ^ v- 7u4D% lT( ki*d* z 4 2-2 = Q 5 ~ =K ` { 2.1 A B C D [ * O + = ;& P h &, ;:(J+ < K &+; *& S [ ( s K ( s A B C &~;+ Q S+ A f =K >D Smarandache K & * z * "1$ H K &+7 1 K Q = ;% Q = , +; EY Æ *\S &Z i +D ( s p Æ = ; ^~ 6 P - Æ z ^4 2-2(a) &&D C E = ; O &\s D E ;> ^Q~~ l & - s P F G = ;& &>* ^- s = ;+ L

1

L2

D

E

C

L1

E

F

L

C

l1

A

F

G

B

L3

A

D

(a)

B (b)

2-2 _ Smarandache ?&{3

"2$ HK &+7 5 K s> E B+~;&8 ^~ : > E + * Æ*\S &Z i +D s> E B+~;& ^ 6 }* ^ ~ : > E+ * Æ z 4 2-2(b)P&&L D- s ; C AB + ~; D + K AE K3 CD&fs E ; & ^~ K3 L + L & P -s*^ AE +; F&f &>* ^ K3 L + &Gs ; A F + L ~E: L 1

2


N `D-` `u -!%

105

yghh Smarandache +%℄ " Iseri agp ^ G&Gj [ y +_|&hh` l_ [ Smarandache +&k* - + + zA +*z +)&0G/ 2002 `I%ZP [6] lF(2a [:hh Smarandache 2- #& 2 +%℄ " a 2004-2006 &XR/ [2 %℄ G& g?a [:hh` - + + zA +*z +)& / 2007-2009 lF(2hh Smarandache n- #&0 [10]-[13]& %z1.y)V: 9 n&yfl N} P s T 5' p_&,rM&"uH | uH5P%y_&ulAyKx%Æ?|7 _|,?'{& Smarandache B6"N}rM &rM"p_|m%Z ? Shu I Sa6"=%%* "_$C ? lTg,4f :u -:pCy_%lA m&Æ*(r *Er }A g9.[-(r &`Er % .y)V(y9n E V ulT(r -&E ⊂ V × V &lpC` (V, E) D *lT4G& D V *B7 -&E *r - ( &*pAu G %B7 nr &: $$d G V (G) * E(G) ([1],[3]) `/lTWD% G&=SB7` * [:% I7& }T7&"%r` *qI}T I7&"% t&l .y# lT a [: % T k*& 3-1 =W` p K(4, 4) * K % T 6

K(4, 4)

K6

3-1

{ WD}T G = (V , E ), G = (V , E )&DHL*Q &,%u alT 1-1 A φ : V → V i# φ(u, v) = (φ(u), φ(v))& e&(u, v) * G %lnr f :& }Tzh% & uz z&Sw-Sh l3 k*& 3-2 =W`%}T & u}Tzh 1

1

2

1

1

2

2

2

1


L y: ihUA bx

106

e4 u1 e3

`N ;

Smarandache

+ai

f4 v1 f1

e1

v3

–

v2

e2

u3

f2 u2

f3 G2

G1

3-2

lT4N# P &,%ulT -

P = {G1 , G2 , · · · , Gn , · · ·}

t<sa zh φ uWd u& ` G ∈ P ( G ∈ P "y.y[- % qx( m,( xi(&* V N )&y D %l sg &* qxV Rl 95 &℄~u %kzh S ) [%sd$g&. y & `I%l 3g&k*N-*j--P% [1]&y Gary Chartrand * Linda Lesniak -P% [3] ) "m$ 3 I ulTZ a I6"%m, E G ulT &S ulT I6"& llT I , ,%ulTq9% 1-1 A τ : G → S &i#r7r&"yfaB7 ?&"[5]$ 6"+ /)/ 3 &: %m,.yfm*)t[m,& b F(%rm, G+6"? *)t[& ud[ TD * bv 3.1([10]) p Æ~ = n n 4Y B| % H` h R , n ≥ 3

_ f : 0"a n = 3 %~# `WD% G&a6" t (t, t , t ) : =k n T7 (t , t , t ), (t , t , t ), · · · , (t , t , t )& e&t , t , · · · , t u n T zf l.yY"&`/ z% i, j, k, l, 1 ≤ i, j, k, l ≤ n&*qI7 (t , t , t ) * (t , t , t ) %)t7qI7 (t , t , t ) * (t , t , t ) %)tu?&lo( φ

n

1

2 1

3 1

2

2 2

3 2

2 n

n

3 n

1

2

2 j

3 j

k

2 k

3 k

l

2 l

3 l

tk − ti tj − ti tl − tk

t2 − t2 t2 − t2 t2 − t2 i j i l k

k

3 3 3 3 3

tk − ti tj − ti tl − t3k

^ ( s, f ∈ {k, l, i, j} i# t vBd

s

= tf

= 0,

3

2 i

3 i

n

i

j

2

&7 t , t , · · · , t u n T zf %

1

2

n


N `D-` `u -!%

107

"/G+6" a)tm,&u`( &/u I -Zf%yV a [: % 2- Rnm,& { [ S : > G ?&Wd% [A Iz(/lT 2- + H & B7 {(x , x )|x + x < 1} 2 O D Y[-lTb3EV% 2- + #D* Y[([9]) 3-3 =&W` [ *T[ 1

2

2 1

2 2

sphere

torus

3-3 A %/

lT [.y|m*lTr}}G`fr#%v-6"& [.y|m * rfr#%l$m S &i#HTl$a S =a`m}z 3-4 =&W` T[* Klein B%fr#|m -

6

6

torus T 2

-

6

6

Klein bottle

3-4 / % Klein 0l K&f

I?=P % [Æ℄D |a& +lT [ Iz(/ [&nu p T T[%qx*&nu q TA [%qx*& d[ TD bv 3.2([8],[9]) p ~ = Y[ * 3 [ ( Y[ ~: (P0 )

T[:

aa−1 ;

(Pn ) n, n ≥ 1

=" [ + ( : −1 −1 −1 −1 −1 a1 b1 a−1 1 b1 a2 b2 a2 b2 · · · an bn an bn ;


L y: ihUA bx

108 (Qn ) n, n ≼ 1

`N ;

–

Smarandache

+ai

= [ + ( : a1 a1 a2 a2 ¡ ¡ ¡ an an .

lT [D*YE*%&.SfS: +lnn- trl ?Sv ~7S X uz,z&&.7X uz&lD**YE* lT [% Euler HQ χ(S)& χ(S) =

  2,       2 − 2p,

if S âˆźEl S 2 ,

if S âˆźEl T 2 #T 2 # ¡ ¡ ¡ #T 2 , | {z } p

    2 − q,   

2

2

if S âˆźEl P #P # ¡ ¡ ¡ #P 2 . {z } | q

=% p D*.D [HQ& * Îł(S)& [%HQD * Îł(S) = 2&q D* .D HQ& * Îł(S) 3-5 Fm * K a Klein B:%lT 2Rnm, %lTm,dD*54 V &2 : lnr.yD !&"y&q Tutte ) "a&2 .y vW`. 4

-

u1

6 1

u2 u3

u4

(a)

u4

2 u1 u3

6

1

2 (b)

3-5 K Klein 0RU_*<O 4

u2

b f 3.1([8],[9]) ~ = 54 M = (X , P)&E S^ : q A X +rGz D Kx, x ∈ X, +n KO G+% A X +~ =: % P &KG K [ + K 1 K 2 & K = {1.Îą, β, ιβ} S Klein 4- G e & ^ P S : % &G * ^ b k, :) P x = Îąx v 1 *ÎąP = P Îą; v 2 *e Ψ = hÎą, β, Pi ^ X Yv9 V & e%b 1 V" P .yÆT*e AT%Hu&b 2 V" 2 %qx( ^& Im,; alDJV: O* lâ„„ 4W; &S= Îą,β

ι,β

k

−1

J

ι,β


N `D-` `u -!%

109

%e ATD *B7&l Pαβ =%e ATD *[ k*& K aT[ :%m, 4

-

1 w u

6

+s v Yzy*x ?

2

1

6

2

-

3-6 K <Ov/ 4

.y|m* #l (X

α,β , P),

e&X

α,β

= {x, y, z, u, v, w, αx, αy, αz, αu, αv,

αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw}

&

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

SB7 *

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv).

u1 = {(x, y, z), (αx, αz, αy)},

u3 = {(αβz, αβu, v), (βz, αv, βu)},

u2 = {(αβx, u, w), (βx, αw, αu)},

u4 = {(αβy, αβv, αβw), (βy, βw, βv)},

r * {e, αe, βe, αβe}, where, e ∈ {x, y, z, u, v, w} F5 54&,% urg zDlT,CRnC r ∈ Kx %2 j b 1 * 2&.y4(|"a 54 +F* Q e D z e 1 y/ a [:%m,n2 &Ob(}℄; * ! 1: >E~=4 G YE*6}*YE*Y[ S, G D Y B| S? ℄; u"d[ TD a * bv 3.3([5]) _pÆ~= (4 G&,YB|+YE* Y[ :*YE* Y[ m ; LS b X h &G } GR (G), GR (G) S G Y B| +E* Y[ *YE* Y[ m ; &f M

O

N

GRO = [γ(G), γM (G)],

, β(G) = |E(G)| − |V (G)| + 1

GRN (G) = [γ(G), β(G)],


L y: ihUA bx

110

–

`N ;

Smarandache

+ai

{D 3.3 .y `& % .D y HQ" % )I D&Fy&N } %.m,; & =a DS.m, [%y HQ*.D y HQ& Îł(G), Îł(G) * Îł (G) &S= D Îł(G), Îł(G) uu K}%&rj `l â„„ â„„&* K & p K(m, n) D SHQ ! 2: >E~=Y[ S &4 G ^Y[ S -d =**Q+B|-6}~s 5&_3>E+7b&z E;b b0&S -d =** Q + B| 6 * 54 â„„; D*m,n zX2 ; D G %.D .D m, f~l* X X M n

gi (G)xi ,

g[G](x) =

i≼0

ge[G](x) =

i≼0

gei (G)xi

e&g (G), g (G) * G aHQ* Îł(G) + i − 1 * Îł(G) + i − 1 :%m, r j `l â„„ % â„„&*T ^ ) D m,f~l j Bunside & .y4(|"aWDlTqx%( G&Sa [:%F( zhzX.D 2 r (G) ** Q i

i

O

2Îľ(G)

O

r (G) =

v∈V (G)

(Ď (v) − 1)!

|AutG|

,

e&Ď (v) *B7 v %z &AutG * G %kzh k*& K p K(m, n) a [:SG%.D zX2 Æ~* n

(n − 2)!n−1 ,

2(m − 1)!n−1(n − 1)!m−1 (m 6= n),

(n − 1)!2n−2 .

K , n ≼ 4 a [:SG% zX.D 2 ** n ≼ 5 l( n

1 X n (Kn ) = ( + 2 O

k|n

nO (K4 ) = 3

&t.

X

n−1 n X (n − 2)! k φ(k)(n − 2)! k + ) n n . n−1 k k ( k )! k|(n−1),k6=1 k|n,k≥0(mod2)

"P$\ - $# 3 E G ulT I &L ulT - G :lTz$ θ : V (G) S E(G) → L& L =%C` G %B7*rf%z &k*& 3-7 =& {1, 2, 3, 4} ` K f% zD L

4


N `D-` `u -!%

111

2 1

1 2

1 2 4 1

3

4

2

3

1

2 1

4 2

3

4

1

3-7 $# }T7 - rz$ I G , G D*0 a +&* alTzh Ï„ : G → G i S #` x ∈ V (G ) E(G )&( Ï„ θ (x) = θ Ï„ (x) 7 - rz$ I .y * Smarandache B6" Se = S S %lAw- I Sh& A7 - rz$ I G[S]e D *d ([11],[12]) * L1 1

1

1

L2 2

1

L1

2

L2

n

i

i=1

e = {S1 , S2 , · · · , Sn }, V (G[S]) \ e = {(Si , Sj ), Si Sj 6= ∅, 1 ≤ i, j ≤ n}, E(G[S])

e k*&`/ - S , 1 ≤ i ≤ n z D7&S T S z r (S , S ) ∈ E(G[S]) & a = { HT }&b = { hi }&c , c = { ng }&d = { }&e = { i } &f = { Ui } &g , g , g , g = { } &h = { /; } &lS ISh0 3-8. i

i

j

1

1

2

a a∩d b∩d b

3

i

j

2

4

g1

c1 c1 ∩ d

d∩e e d c2 ∩ d c2

g2

g1 ∩ f e∩f

g3 ∩ f g3

g2 ∩ f

f

3-8 N?U 3Y

f ∩h

h g4 ∩ f g4

A ISh7 %f #a4 u$. vD&n^" 3-8 %w-S h&{ +:8SK5VuGlTâ„„-/ %#a -lAk 2{vu& g& 8 3-8 =HTB7 2- +H & ^# [ %a#0 3-9.


L y: ihUA bx

112

g1

–

`N ;

Smarandache

+ai

g2

c1 a

d b

e

f

h

c2 g3

g4

3-9 / N?

IdQ&.yfl 8 3-9 =wG %Hlw2" [0 GlT 3- + e& f% ,x& ^ # k VlT f% &0 3-10.

3-10 3- N?

"z$ 3 :[vA"lT 1- + I u* 2- + I & ?u* 3- + I &# ? L0 % f #a%~v&f :.yf%lF ?Z &# n- + I ([13]-[15]) &D *d: bf 3.2([11],[14]) ~=E- 1- U %4 G Q+ %` h OS d- U %4& f [G] &z q G K TS M f [G]\V (M f [G]) D- = M A e , e , · · · , e +%&, & Q = e , 1 ≤ i ≤ m (1)M * 3 d- UM T B ; (2)_ p Æ b 1 ≤ i ≤ m & e − e *~ =6 } = d- U T B MS&K n GM (e , e ) * 3nGM (B , S ) â„„-2&* lT d- + I % 1- + I * & S:E(n x&lD 8 d- + I *d- U` l(d[ Ty/ d- + I sg %S- d

d

d

1

2

m

i

d

i

d

i

i

d−1

i

d


N `D-` `u -!%

113

bv 3.4([11],[14]) _pÆ~= d- U %4 Mf (G)&- Ď€(Mf (G)) ≃ Ď€ (G, x ), x ∈ f (G)) ≃ 1 , 1 ≤ k ≤ d. G, 5&_3 p Æ~T d- U`&Ď€ (M sg * y % I6"D* (` h &"D 3.4 $& l* d- + u qx6" h/$% Perelman G`T Poincare {&/ 2010 m# o$ ? : e&G"a Q = (+ 3- (I* 3 S , j TS &? L.y# d[ Ty/ qx 3- #%Sh(D * bv 3.5([14]) Q = (+ 3- ( ID~T 3- U` â„„-2&.y&$ L% d- + I & a d- + I : ,$ÆSh&* ~1 S:%p_ &)$Æ +: &â„„~2& z ;w- Riemannian # (lAG+ I ) :% & ~ Re &# *dS * f Ă— bv 3.6([13]) Mf S~ = - M ( I&Re : X (Mf) Ă— X (Mf) Ă— X (M) f) → C (M) f S~ = M ( I + Y8 r f_ ∀p ∈ M f&, \ Z (U ; [Ď• ]) & X (M - Re = Re dx ⊗ dx ⊗ dx ⊗ dx & & d

k

d

d

1

0

0

G

3

∞

p

ĎƒĎ‚

(ĎƒĎ‚)(Ρθ)(¾ν)(κΝ)

Ρθ

¾ν

p

κΝ

2 2 2 2 e(ĎƒĎ‚)(Ρθ)(¾ν)(κΝ) = 1 ( ∂ g(¾ν)(ĎƒĎ‚) + ∂ g(κΝ)(Ρθ) − ∂ g(¾ν)(Ρθ) − ∂ g(κΝ)(ĎƒĎ‚) ) R 2 ∂xκΝ âˆ‚xΡθ ∂x¾νν ∂xĎƒĎ‚ ∂xκΝ âˆ‚xĎƒĎ‚ ∂x¾ν ∂xΡθ Ξo Ξo + Î“Ď‘Κ (¾ν)(ĎƒĎ‚) Γ(κΝ)(Ρθ) g(Ξo)(Ď‘Κ) − Γ(¾ν)(Ρθ) Γ(κΝ)(ĎƒĎ‚)Ď‘Κ g(Ξo)(Ď‘Κ) ,

K g(¾ν)(κΝ) = g( ∂x∂

¾ν

, ∂x∂κΝ )

z v ( v M N}& r/ â„„%.}6"& *.(a â„„.}6"=&uy%S .yXR/f f%"fn". "_$( van 1h:`hD2 O ` -a Einstein &j&N} GlF Newton % 6 |&!* "76"u}A z% M 6"V~mi44& "V~miuO fJ& ` 6|!gM9&SV~mi% 6e"* ((x , x , x )|t)&y `/}Tr2 A = (x , x , x |t ) * A = (y , y , y |t )&S 6"R* 1

1

1

2

â–ł(A1 , A2 ) =

3

1

2

1

2

3

p

(x1 − y1 )2 + (x2 − y2 )2 + (x3 − y3 )2 .

2

3

2

l&Einstein %u`-|a "76"V .Æ&/u(u` 6|& R ` 4


L y: ihUA bx

114

/u` 6=%}Tr2 B

= (x1 , x2 , x3 , t1 )

1

*B

2

–

`N ;

= (y1 , y2, y3 , t2 )

Smarandache

+ai

&S 6"R*

â–ł2 s = −c2 â–łt2 + â–ł2 (B1 , B2 ),

e&c * 5&{l`m ma*8Q%*d * z

6

future

-y x

past

4-1 D 5 w r

u` 6%|raO* ) 6& Minkowskian 6"&S` %tC* d2 s = Ρ¾ν dxÂľ dxν = −c2 dt2 + dx2 + dy 2 + dz 2 ,

e&Ρ * Minkowskian V~&D * ¾ν

Ρ¾ν



−1 0 0 0

  0 =  0  0



 1 0 0  . 0 1 0   0 0 1

?L$!& "u â„„ y\ M9ZJ Jnr2rS J%lT &S M ? ur2rS S % 0"R 1 h #D2 O-? V( -* \ 1: 1 h D n zS r 7B v i +7b&:1 h P - ` A|7&f : u ` 6|7 \ 2: 1 h yD n zS r 7i +~ = 7b& :1 h *Y } A|7 uu` 6|7&du Einstein u`-|7& | M ?V% O |7 a A|7d&!* "u(XJ%& " Einstein o1 J`r& 7l%8H â„„se"=& â„„svl0u "% X


N `D-` `u -!%

115

=U(4fÆ?; 0bf%J0'&& u1 h 95DBt ^ -[N $ D n zgB ^- + #%4D2 O- :Æ iF"+ k e C , 5 + ` D2 O-.( â„„; N}| & â„„ y !g "%g9 "m$ f9 j w Einstein m 8 ,?N}=&*+o` B}V ÆlG*#| ul2_ÆK}%r~&Einstein u`-%- &a/So` â„„!g& *Xio` â„„!gla` 'Æ z`ll &Einstein u`-. ulT (!gS &=f " % rlfl 9f Einstein u`-%f9&uSy/M D%a`% u(E ([2]) * C N}v* ~=t E7+ V^ -\ 7{ &L* u3\ + \e&E- *+ I< V & z_u n O|â„„"7l%&Fy&Einstein % u(E / %& f : u [ aj 7 * n +Æ S9 Æ lÆ?'{%em *y&Einstein a u(E sd:&j $Æ + [4] =% & ~7l H V& ([2]) 1 R¾ν − g¾ν R = ÎşT¾ν , 2

e&R

¾ν

Æ~*Ricci r , Ricci Y8 , ¡ s a 6aOd&Einstein o1 J%

ι = R¾ιν = g ιβ Rι¾βν , R = g ¾ν R¾ν 4

Îş = 8Ď€G/c = 2.08 Ă— 10

−48

−1

cm

`DT Schwarzschild V & 2

ds =

2mG 1− r

¡g

−1

dt2 −

2

dr 2 − r 2 dθ2 − r 2 sin2 θdφ2 . 2mG 1− r

aysd:& 8H?E & * V S 10 l.y. 1&<-&pÆ;L *& P - * +E &Friedmann a:p 1_ 7l zd8He"& 4

ds2 = −c2 dt2 + a2 (t)[

88HÆG℄1℄* ~ y -* da/dt p| y -* da/dt , y -* da/dt

= 0; < 0; > 0.

dr 2 + r 2 (dθ2 + sin2 θdĎ•2 )], 1 − Kr 2


L y: ihUA bx

116

–

`N ;

Smarandache

+ai

a 1929 %|#|a&8H h/0 L[&"y.S 8H ℄s "& *<-F"3 137 ~> +~ <-Æ i "P$5' y ℄rmk V= a 4 Asg o& >z F : ~

)&Einstein %u`-Ob\ o%*&l~io?luy/$|mi"uH & :uo p(uo /(uo) 4fM ? &SL Einstein g l)3o/|l ,Asg o& |l u`-*~io?&7lM ?% |l -&d u9n=q3`m%Theory of Everything & ; l)E(# T &S%}7a/ u`-uy/9|8H -&* /_ N\_ 2M)&S EM9uq9ÆÆ%,l~io?luy/ $|8H -&*:i 9i =i)&S EM9ua2ÆÆ% =f; N}% J,& ℄!g ;d`m l ; &k** <-DQ~+ E-z q *Q~&-d = <--S2 On zO*% , <-n z" 3 , &+<-+Ub03d - D 3 U E-z q <-F"3Æ i&oO Æ i >D2 O- D` h ~n - E- g & + ~n -Æ +D^ n z Ot ~n -Æ ...... p_p i`m%j -*T : ; <D sd l - Emi u 97lu+ z% p-f & Sf p T (4V%i6"& e p ulT &fgI( (&℄-lXvj (ZJ z &j -*8HpS ` l#( %1t* <-x"1D~ = ` h UbS 11 U` h Æ i &, & 4 = *U^ E G +pr h &i # B 7 = *Uf^ E GH Y |1& tISf T O)% + 4 U a <- O* t + 7 UN a <- 4 U a <- w +Z' Einstein H V&i 7 UN a <- w +Z' 3rZ V&* Y & < +1 `D~ = ^ Q = ;H Y ~ = 7 U` h R + 4 U` h R j -f :ua u`-sd:ry%lA ?w- -& ℄m( Ev`S"fn".&Fy&j -< uh1_ M ?V%N}O & (z`Q &!*H ulA %M -& j -_z ℄%'{ ;&*!g8HgQ[r,` lT =& 0bT %!g; &un^|#6"+ ≥ 4 %rM%*& * ℄rj%|# r/ 3- +6"&a 3- +6"=fm ℄-/? ` % Hubble

7

4


N `D-` `u -!%

117

!g J&lAy)I%'{&u= z%|#S w-XQ&fl#G`rM% e!g& w- 3- +6"& K a >&fle S%* 4-2 =W` K : %|#e"%lTki ([9]-[11])

4

P1

?

?

P2

-

R3

R3

-

R3

R3

6

P3

6

P4

4-2 /L 4

V & e R T R ux3 T% 3- +6"&S+ .y* 1 + 2 +n 3 +& ^& .y S/G+6"|# k*&&$ m T 3- +6"w-&E V (G) = {u, v, · · · , w} &l.y8 Einstein o1 J Aw-6":&* 3

3

1 Rµu νu − gµu νu R = −8πGEµu νu , 2 1 Rµv νv − gµv νv R = −8πGEµv νv , 2 ···············, 1 Rµw νw − gµw νw R = −8πGEµw νw . 2

` %&d.y w- vD StCw-& =&D tCw-7F(6" %?%+ mb (y k*&`HT6" `D z&l.y# Sa 6aO % `DT&la mb = 1& HT6"% "V~ t = t &( µ

2

ds =

m X µ=1

2Gmµ 1− 2 c rµ

m 2Gmµ −1 2 X 2 2 dt − (1 − 2 ) drµ − rµ (dθµ + sin2 θµ dφ2µ ). c r µ µ=1 µ=1 2

m X

[U(4f0fl N}%℄ & % .yTlT9n [10]-[16]


L y: ihUA bx

118

–

`N ;

Smarandache

+ai

& Jw4GCao ,?u â„„ (!gk %.M&rm !gk %&fl f â„„ryv k &7k Ary G p_lp ,?ry%Ob &z d` , Nâ„„ a` %m|

5-1 y-l)1

vD& ( z \ &z \\e+b_℄ _ n :F g 9Aqm+Z' ( 2 O t+? Bb__ g9 v"1$Q* z&b9 v {S2O_b_? {_b_ -C \E? ?f : uÆ?& /q sd:%:$7T vA X!/?" ?G*? 4<%{v u mf% q| ℄ih&v P Æ? %Sj AP4|=&*! %Xi ) %8i) !"q = q $nlH &q $n l * &qY $n e&_\ $n ?qj&t ) 8 $n K D & n &S $ *S l &\ ℄ Z Æ u Xi S &y?R` ry h&Æ,8i o.-qi- 3_& .i

&r.i* 7 &q.i b &) .ili&* .i ? B&*6AÆ&D&

&8 ) ; )&lIV=e #1 Fy&{bG* % ?℄ & o2(lA ' a Æ&* ,? o% o7 "2$" 6F&5'jv { S2 O wg9 = d & -2 O '- T; uHlT ?℄ o2[`%; ??,Æ#Qa&!grM QJ0& z &`rM%!gd Q /:[ vD&*+{!g:9u AaG&fl9 u Hn ,ÆvA %t7 Æ,ÆgQ[r E ~ y ( : Æ%!gS -w-usd b$!&,?Æ, ur%&l#G`rM% f T u, ?%n/ { lCV`r&,N3 .yÆ*H℄* Z 1 u: _ h ~b_ & h ~ = d - a , Z 2 u: _ h ~b_ qm- a ,


N `D-` `u -!%

119

Z 3 u: _b_ qm- a , Z 4 u: _V_qm- a , Z 5 u: _ n z r 7F g - a Fy& ℄N}3 /: H℄=%ul℄&K5$_ + %3 & =k`aG ℄!gk ( +%3 u0b% b HT `S? S I N &n S z℄7f% N ?S Mba ?ll ; d!f%?, sd& * * Æ&z `7 ?(y%uy?,&* -o? -M -O ?)sd3f% T&y` ?sd Suy$g(lT [% T* & ^alg?{ ?,?N} ayVSN} ;fy%z &yV z?, `SN} ;% |& yw-'{*sd&fm?,"%?& |* J& rz Æ (Æ&fl* ℄!gk v k l~`dn "3$' ^^&X [( T -= < >D E &_ L < >~E r t E- ℄!g% r()I 3,NG % r(&4}rmlTN}G d &, lJd& * ℄%N}G PualD%n2dm#%& n2 Cn SGn2 &q8S . Glnu(n2%Gl Fy& b!*q 8S LGl& Cn2&nu&$q8S a zn2d%℄i&fl# S ulAKx%N} z &d bQ Æ#& u &Æ#%!gd a r(&bA/!P &A/m|Æ#S-l Q uLd%;?OV "4$: 4" &? d * f)%+Sq%O* y LTE &%OS E-,?N }E( |rz&_h%G &" Dah dG* L%Kx!g&vA*l m#%G l kkF *n" Z Æu,?N}% . *y&b(9Qk?&b Dk?&" m#Gz& *v u " ~ Æ&z &1|C G ` ,?ry ℄!gk %Bb(&`SP99f& *.( ℄': LL& k %N} J& (. * ℄!gk `dn "5$+T ( & ( 4Z f . S n +S> X s E &f y V : , n ( = n g9S> E-m ,?N}&u"n'T 6o\O* e6 %Sk&l B 3 f :uqG* N}3 &4f? <ha z2; yfzl; nuh; %N} Fy&'lT % oT ,?=%B ; A _( . ( *y&b HTN} Gb(lAS(% O&OJ', ,N e& f Tz%N}G &z & T z ;%y G &℄~uN}'{* v& {=m#℄Ælryk %N}&fl#Gp G l u G ? ℄Cdf, p_lp &,? # 5ry& ℄Sj %


L y: ihUA bx

120

–

`N ;

Smarandache

+ai

aG& `k ℄ % od #Vop& 7yz &TvB :0 . _ShJ<Q); % LB& 7 ℄ .< `k %% $ &{r f( /k %%jJ* V #(y *y&HT,?℄ P[ lT0J '%; & u&V_+' ? l +D2 O-V_D Y O n z'(&O F g j 7- 7uak% ,? %N/ ℄!gk &,?N}o2Sf 7k Ary f%& d u ?℄ 0bI| %; &l l J=&w -?Esd*7l r Mp_& l Iy_aasg'{* v 2h 7 [1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The Macmillan Press Ltd, 1976. [2] M.Carmei, Classical Fields – General Relativity and Gauge Theory, World Scientific, 2011. [3] G.Chartrand and L.Lesniak, Graphs & Digraphs, Wadsworth, Inc., California, 1986. [4] S.S.Chern and W.H.Chern, Lectures in Differential Geometry (in Chinese), Peking University Press, 2001. [5] J.L.Gross and T.W.Tucker, Topological Graph Theory, John Wiley & Sons, 1987. [6] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,2002. [7] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics Magazine, Aurora, Canada, Vol.12(2003) [8] Y.P.Liu, Introductory Map Theory, Kapa & Omega, Glendale, AZ, USA, 2010. [9] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011. [10] Linfan Mao, Smarandache Multi-Space Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011. [11] Linfan Mao, Combinatorial Geometry with Applications to Field Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011. [12] Linfan Mao, Combinatorial speculation and combinatorial conjecture for math-


N `D-` `u -!%

121

ematics, International J.Math. Combin. Vol.1(2007), No.1, 1-19. [13] Linfan Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology, Vol.7, No.1(2007),65-114. [14] Linfan Mao, Graph structure of manifolds with listing, International J.Contemp. Math. Sciences, Vol.5, 2011, No.2,71-85. [15] Linfan Mao, A generalization of Seifert-Van Kampen theorem for fundamental groups, Far East Journal of Mathematical Sciences Vol.61 No.2 (2012), 141-160. [16] Linfan Mao, Relativity in combinatorial gravitational fields, Progress in Physics, Vol.3(2010), 39-50. [17] F.Smarandache, Mixed noneuclidean geometries, Eprint arXiv: math/0010119, 10/2000. [18] F.Smarandache, A Unifying Field in Logics–Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.


H" 5R y : – )9 & , Qx w / KHYK < , 122-128 X. % '2 R % Æ %o9 M 8% A x (& o w / 9 . & * 100045) ℄: v . JGXJ; % _ v . 2HC } n\ JN A m u ^ %C 1 , O 4 %} ' k " a % } ^v . JG f P k%' r ^Jypl k Jy U w Jy d M ; 9J JyL Jy y;P mK9JyE6 v . ~; Jy } Jya w / 8 < Z %^i|v . JG!V!J, } Abstract: The operation system of bidding market is important for protecting the State’s interests, the social and public interests, the legitimate rights and interests of parties to tender and bid activities, improving the economic effects and ensuring the quality of projects. Combining its normalizing development with those of market researches in recent years, this paper explores how to make such a system effectively operating through by aspects such as those of the goal of bidding business, construction of system rules, supervision by the government, tenderer and bidder organization, institutions, personnel, self-regulation system, bidding theory and culture. All of these discussions are beneficial for the development of tendering and bidding business in China.

{1u{1q %^e&E({1 E({1q %_P[H= dXÆ 4D {1ahJ-4=%sd( &lx 7lv%* 5V%{1Z%t 5&luV"{1b ?|&+P{1q ( Z%%g n2 z z5V& *? CdO q 7E= OhJ-4 aGq V"~r9~%lA? |5V&a fq e59P )>* | z z{1e_&A *K;*A? |%*) [ # Mr%Gz&`? q 7Er\ Bb &gu#G " z z th z *Oe&%! K Q%{1e_ =f z z5V |'%J,&d[ `l e5=%; &* z z D8q{. < – 3^ y~y %2011 0 2 L. 1

2

e-print: http://www.qstheory.com.


*: ( -Ryx 0 LIZL=

123

5V |l !`fK,ze Q %! QC3% \7Q4,%g â„„*2 VGm al ; 2 UiF `&{1z t5}y( Z%,{1OeM k%alDJV: \&E7z 1 zm UiFLB,Zg ^K7 E u|l N&? u))& ; * # ( T &d)I5P z zrg4"ry z z%gulA K 2 %%g&Fy&h7 |(7% z z {1Z%t5& 'lT KnlT2 u . T %&o2 _|,?'{& ` TZ%t5=% l 7 ~ 7 Q )f%%g_| N =& !)ug &0bfl JOe59P&\u!)( &=v kx {1AN %gk%T %r~?W%gw'n{1 T &{l#G!)9|A9 %g | YgkO nvq %(7%{1Z%t5 *y&x s5%gr y N, %g4"ry&7l z z{1( Z%t5GaFP g9S-h ` z z{1AN~G&x `%gryrz %g5V7E %g Qt5 7% %gw' %g{gth G7%gk% z z -e_ %g W O*%g9O7E) 8 T [&` | z z{177f%VD&yi z z 5V( 2%N/? CdO q 7E& f{1%r!7E

_ W-^A $ &V#jTo $$k v $ $n8&PUN:

| z z{177&!) S K%*Xf2yBb% !g:% |ly K"a z z{1=% j &if Q z z{1Z%t5l ) u fKfuÆ%Q &lq j % i&!Y Æ %! G *n( *m (rS Fy& | z z{177gI b fl JOq e5 9P&{l | z z{177 l | z z{177%n/a/fl r\ z z5Va{1 OhJ-4%u| &Fy& z z%gryr z * x j }-W+w / KHYK < &Sf o . / - Px vÆ& *y&%g A, K*%! Q K JOe59P&! $_ K j *vA7q e59P A%k g&y%N q 7E* &bb' lryrz | z z{1ry m L uB U L^ $f&kQ} $ $n8& P U+ ℄ %g5V7EÆ*}T$z&luv%5V7E&pu%gzd5V7E 1 %gv%5V7E z z{1=&

ld S & V*,~Æ%m al


124

L y: ihUA bx

–

`N ;

Smarandache

+ai

2{o#FKx&2 VGO h al 2 ,B K &77l |l% z z{1Z%t5a!lS *y&Gs0bw' z zv *v')℄ &fl 7 zv%e_%7E℄ & i z zv%5V%|l y{ v%5V$[&~ l 2 K% *nQÆ *%m 2 %gzd5V&u DlT%gu 4"ry u GÆ%Bbz1 _l HM"& z z%gzd5V7E G ℄J℄℄℄ zd z92 %5D& ` | {1Oe%%gzd J) 0GÆ *y&Gs0bw' G% gl sg5V&* z z%g℄ | J %Nzd* , 0)l _ %g92&y<s%gry0b,z &u| y ? 7- &7v !) j~ th %gw')f%? N[& x M z zG$R z zG y ? ? N[d&_ jZ MZ < n<?) l& ,n l %&( % z z l Mv&fl 7%gz d5V%7E℄

P B XUId7$&k v $ $n8& P U u %! Qu z z5V K M K K Æ%l~BbV ℄&du

j Cdbej * r -vÆ %(oV &*y&Gs0by NO7 Ev;!)*[t&7llAG rR%%! Qt5&aG%! Gnv Q% o& -S _ bvÆ* i vÆ)%*,bVDT z z eb *

Æ

* e NÆ) z z ;%X }; ,`l 7%!ty an y_ nSGj y_&aabe?|%N%th&n z thb GYg95℄ & s℄S7%!ty?'%j y_ l V &*F` y )V u&g7 l 2 %g&t(j|l%%! Qt5&`T * e NÆf% gM VD&0b`Sf℄ 7SGV f%`iÆQ&fl5D`lA$-? q 7E0b%%! Qe5& %%! QJ7 (%zdO~ &{laG% ! Q G49 ANrm&2 ydl %! K G v<A % z zjJ& X

e N y Æ` r b"hm (rS,l` z zjJ=`m%l a k&v%*& UA " N4 & #%v%-3S%%! Q(j l 2 %! GN2=`[ z `[Czd m z n z th 5 *lA 3% ,QJ&/u z Czd`m l Ygz % n S "C ,SPt&, , S + n Lt~ww6 xv Æ%xm *y&0baG%! Q Gnv%! o*rR{!%49&7l%! Q G*E*|Æt5,z


*: ( -Ryx 0 LIZL=

125

*tyb(B7 (=k2`%! Q G%*v%**z f% *&A T (N%*%&v& )

z L^ 5 QVk v $ $n8& P +k5EU&N _ | z z{177&{1U Oe Z4SA v- Æusd& =&%gw'{k% [`{1U OeXfu|% &SBb(E09s& l V{2_0 w7 %g 2 K% z z%gw'&:?/{1r y *y&Gs0b7l4 %g|l, UV { Æ ~ Zg ` ( a % z z%gw'e_ fl#G z z%gw'e_& x % gw'N}%gryB r~&GÆB r~%gry, 0 %N/!) %g*dGu z z dEl%n/ *y& z z db u|I G!), r~&OR!) yuy℄ &z &**> z z% !. %!8172%rS&.a z z dEl z z ATth&n g af,%!. n%!81j&g%x d ATthf%AT *Z"2%N/dG& z z d 7%! K7l|"%gx !& z dG8 ,z &%! Kd o#P7l Agxt5& *H`#G~ Q7 7 *le%{1Z%e5 ("h

& L^7 %J

U{'& V 1 v $ $n8& P UQ} w L {gth* G&u V%g.P9ry% bn2 "_$L ^ 7 ,d =fvDh. hiVK o & z th ~o45VFB | &M- 2009 1& {r z gN%th"SL!) jth$uq 6000 |+ z th"j z m d% Kx& F+ D%%N zd N2 NT gN l thaNT gN?&_ SG v lm i Z[, l [&l ~r% z 9~d% +d& y( rJ7* ( m |a&0bw'N} z .P9ryt5& y a ~* ;ÆÆ<sq 7E0 n2d&v 95 z th ~,z &5 {1 X P%El&ng z thryel%p & ZgO* eO ry&a8 z th XÆX F Æ,z &**zYg3 & `m% z {1d,5Vf%N}&?19uvA g 8 , S 8 DÆ~ el& b f z hQ%|l


126

L y: ihUA bx

`N ;

Smarandache

+ai

"m$L ^ i ' QV {g^K7E b&$ j&,b&$S? o~e *y&0b{1T [`{g^K7Ef%_| N* 1 z j ?S)℄ &$ m%G ZgÆÆ&aq ? ℄? v? ~ ?℄Zg E z jg,S)℄ ,z &ngG)? N}thf% z j #o o %)℄,( N2 GaG)? E z jZg%.%(N}&aG)E >Zg)℄r =E4 z jZg&yv q 7Ery& Cdaa z jZg$g%G lgS 2 z j{g G~ 2007 &E r ry9P,p-Ær z jZg G (g C % D * z[(g & f℄Mv &/ 2009 2010 G`w' }z z[(g & &2_u( 18000 f m# z[(g " &* | z j%* d lDsd * V z zrg.P94 "ry& ((g & LL k& t/aG{g G(g49&d t/` {g G*g~ *y&0bfl 7l z j G z G%(gd,5 V& -\`Ll_ {g G%~ Mv&*{g GV"5V 9E>5V &(5V* -Q|Æt5&{lV"{g G%(g49$-Cdry0b 3 z jZ ^K7E 7ll#Zg G (g!" %CzZ ^K&u z z5V( f ℄%BbV Z Æ*}℄&luCzZ &n z ? nv GCz℄ ,p u z j - v E?N}Z &`(y z j - v E?f%_| N} ANrm&Cz J s HÆm al 2 #FKx l Z GCz℄ ?y g CzZL*n2&b z n z th&GiDbCzVN , |T~Z N2j !gZ > Gf% s&&v*l z 7CzZ m xX q *y&0b( I ( N2 J V y: `!)o-C zZ >7E℄ &`CzZ %|l~ & fl r\Z hJ% ,z &7lCzZ )E &(5V* -Q|Æt5&yLQCzZ %~ & pS(g!"*gN49)℄& VCz5V#y( f℄


*: ( -Ryx 0 LIZL=

127

z zul~f/(Fp%5V&S -N}:?/f/l)ulT % Q *y&0b{UT$[h7 z jE? ,N* 8AT%Z ^K& *%g,? aaZg -ngC 0 "P$L^ 4Æ %gk%u V z zjJ r nv 7 z zjJ M #P%Bb V"&z du7l SA 5 (AUXÆ%)In f Q&` z z{ 1Oe C l) u_|% -7f/N} *y&0ba%g%Nzdsd :&w'(yg Z N} 7l z z C t5, K y` z th z z Cz,GdZ ){1Oe G% C ℄ ,ays d:& y z th z z *Cz,GdZ %M p ℄ &` p f%| & GÆ Mf { %%g! {1Oe%*,z & %gw'b p` z z{1Oe%k% Q&fl 7%gk%')*Cd Qt5)&yR %! Qo~% s $ $v 1 k $ $n8j T o U6F z z -e_Æ*}T &luv%sd& z zv%5V&pu q -sd&0bo-$|q ? - ~ ?*Z℄?)uy,?&l) E(# g ? %B} *y&0bx !) D Cd R Yg℄ )fA l&El z zZ~N}s^&"!) %gw' ,Nth)DMrÆN} 3 &hR z z -7%gry=l B 3 N},ng,N G` z z -*%g=% 7; f%N},z &b7lB 7kN}t5&w'uy ;Z ` z z ;rS%l B 7kf%ÆQ d *N}&rÆ N}ZL, %gry 6 L^F. -QVk $ $n8 vU+ ℄b 7k Aryu %,?ry|`Cdry%lTBb, '{ *y& b m ,? &* W G y z z p N}&8 '3 z hJNP" z z &y<s n :F g 9AqmÆ%Cdryrz W a z j=% rL0 4&0bN} 7E%r~Ff&l uU℄ >7E&* z z%g5V> z th> z > z j{g G>)sg >,pu:i z j5V :i z jbe L*


128

L y: ihUA bx

–

`N ;

Smarandache

+ai

z z&v%* bL L%7E,1u{gth z z~r a 8 _|,,uw'N}5D%g| 7*| ,z&7l%g | 5V %g | ,zrÆ !)r~ +#a& LV %u&%g WO7E&℄~u:i z5V7E%z & G z z. 6(℄ &` ' * K)h> r &v%*aa tjn2

L^ -QVk $ $n8)U2. f $ E H! 1 U+ ℄ 5 z j5Va? uqf℄ _f &`? CdO q 7E&A *K ;*A?|%*) [r\ Bb & 2_%& L.bla z z& T % APu1 znu z jXWf*A)Q &| 2 | z z %ga L =%# v 7> ~r&v (y& Zf27%g9O u*l Gej L% . Æ j & Æ & fZ!> z j~r 6 [(y *y&by7ECdO ( +e_*sd& J%gMf %9O e_7E&flaG{g G'{!"49*,?9O4℄&?19u z j GaCd:%# z &* k z z5VaCdO oK9a*M99a7 E=r\% &b!P [ ZvS/ ss 'S Æ%El&;l Z! ` I{1Oe*%g{gth G%gfrw gfG y &vr2%%! ! rhsS )~℄ &{l l z z5Va L =% ℄# o:F &_|h7 z z{177&ufl r\ z z5Va{1h J O-4=sd( & |{1Oe%**%! Q *& i{1r!7 E%l~ *y&0baV ? q 7E%sd:&w'Z XÆN} "& AJ!) %gw' Yg1T [%u|(&fl _|h7 |(7 % z z{1Z%t5&*? CdO q 7E~`Z dn


H " 5R y : – - P _ Vlq&Qx w 4 T < , 129-138 M_B U TgEp' R %1 w 2 A x (& o w / 9 . & * 100045) ℄: v 3S~;C92. [d~ ; Xh^ J;~; F+ R x XRM x/ U ,~ ; HR*%& C "v 3 S 3 r *~ ; R9 B m v 3S~; %q6JG,O U v 3S*,O3"% a ,O^ U, ^v 3S9p~; !J +kp ~% 9Q|x } <f~M ~ v 3S^JG,O*G& Abstract: The bidding theory is such an economically purchasing theory established on known theories such as those of consumer behaviors, operation research, game theory, multi-statistics and reliability analysis ,...,etc. to instruction of bidding practice. For letting more peoples understand the essence of bidding purchasing in the market system and know this theory, this paper systematically introduces it from micro-economy, which will enables the reader comprehends the function of bidding in market economy of China.

z ju{1q 5Vdf%{1hJ O-4%lAz ?| l&Sf 9&ux z z Jfm jz% *{1q d%lA$|q jJ& z j0b{ $|q ? %&{ q ?% =kP & aysd:&f % O=k&flfmaGq &V"~r9~%rz *lAz ?|& z jU 3f fCd f %j *id z j% Aq (& D z j -uy$|q ?*sd%lA (r=k -&ulAs/lz( sd:% O -&yd{ z j -% sg N erz*=z. ÆQ1T [Æ~f%/ D8q{. ( i VY %2012 2 S 17 $ 1 2

e-print: www.ctba.org.cn


130

L y: ihUA bx

–

`N ;

_ $0 v U6 K* – Y'n8^A& * $ M

Smarandache

+ai

2 O Dw 4 T <- z j -uy/ z jZ % lF(%B & SL` z jlF(: %ya/ & S jS ÆQ z j5V u{1q =%lAz (?|5V&Sf℄ a {1q &0b{A{1q % "_$n8^AUz 6 $!&{1q u,{1ANahJ-4=Xsd( %lAq e 5 {1q `{1ANahJ-4=% &a/S.dD *+S.*.> ); &n'{1ANQT {1q (yd,Tsg℄ * {1Oe%kO( {1Oeu$|q %sgwGb4 a{1q n2 d& +Yg SGq w'nT &o2u +Sf% (XÆkOÆ%{1 Oe& kkOq k3 H k?ry k?P {1y_% )( {1y_% )(&,{1jJ%F(S. q %N * aI :u )%&E() ℄Æ& ?| nf r & "uH )&|m*{1?Wy_&{A) ?WEl {1jJ%z ( {1jJ%z (u{1q %v(.M&|m*z Fo*z Jo%|l& iU℄{1Oe! N}{1~G&ÆQ{1 W& T{10 &OT{1 l&v {10 SuO {1Z%%v5( {1Z%%v5(u{1q %Xgb v5(u7 l* 7{1q jJ 377%v%e_&SL{1lv**v} [&( uV"{1Z% J%b ?|77 "m$ $ $n8UzN ℄ { z z5V *? q 7E= OhJ-4 aGq V"~r9 ~%lAz (?|5V&a fq e59P )>* | z z{1e_& A *K;*A?|%*) [ # Mr%Gz&`? q 7Er\ B b &gu#G z z{1& l{1"{1Oe {11e {1v * CdV )sgb4hG z z{1Oe z z%{1Oeu z * z e& z u 1 T& z ufT z thI z %`r, & z z,C z,Gd" z nvw7&I S, &5 z92=%Czzd* v&`


.Q` Wmr(Ryx 5U =

131

z92f%_|%CM*iF& GCzZL* +=z== )gC 0 z z{11e z z{11e ?|1e&u℄J pMn%N z z{1v * `vxl -zv z zv z z vf℄nk ) | z{1Oe?|%*%v% v D)&u{1 77%CdV %! Q K %! Q K * z z{1%*v &nv)h z zjJ=%&v%*&SjJu+G{177%BbV "P$ $0 v ka S e v *lA{1q d%z ?| -& z j - g 5{1q %℄7 * %&pS z jjJ%G`qY7 v,Sz&8v (Kx % (& S- =k - Z℄? - fC| ÆQ .'(ÆQ) ( -# G z j -&_ l -, z jf/& P99f& {f/= Q& f/= & 4 s 4 s \4 s Æ%7E v =&{1q usd&

=k -u, &lZ℄? - fC| .'(ÆQ)luk =k ℄ &d.( ^ G% z j -& $-? {1q f &fl. /, z jf/ m $0 v Ue $$ – ^A Bh > $' "_$ $0 k _ * { R L z ju z ( lfm jz%%lA =k%*& A=k%* ux z zbLn z_ r`bP_ & z 5 z92b s a zM- "j6? z92f%bP& z 5Cz,Gd G%CzZL*

+%=z== D=z Sr`=zx$ "N $& ? z *=z 5 -zPD#% N& G=z~rfm jz% l j J.yÆGy d}TL[* Z 1 Wh*[ Wh, < $ $Wh lL[ObSLydr~* z r` zbLn z_ &r z 92, z 5 z92%b s5 a z92 D% zM- "j6? z92, z w' z, Cz,GdCz, z n Cz,Gd%Cz ZL* +%=z== D=z , z *=z 5 z92*=z % z92gE [-z


L y: ihUA bx

132

–

`N ;

Smarandache

+ai

Z 2 Wh* Wh&<0 $U 5 Wh lL[b z *=z n Mf El#%-zPD N&fm j z%&flfmaGq V"~r9~% z jr% =& z z Ju j#l&M #Pfm jz%u (&Fy z ju z z J* -z#P J%|le&p Æa& l&aGq V"~r9~ 1 fh& du7l z z5Vf% j%n/ jq (}A&lAu$|q & lAu9|q e& j$|q u{ j Tem#%)Iq &l j9|q lu, j%*aCdq e_=X% y "y.S%q Fy& j #% CdhJQ>& j QG&z & jS %Cd0 <sJVQG& j

dQ" j$|q *9|q .y d[}Tbl ;* CW = CB − CS − CP n X X CH = (CB + Ci ) − (CS + CP + CTi ) i

i=1

e&C - pmO% j$|q &C - pmO%9|q &C - jA ;i C - jGg &C - -z Q&C - pmO%4 i ~Cd &C - 4 i T z nz %)IGg j %r%ufm j$|q *9|q

y O& D<s max C * max C % z na 8*=z nG?a 8 [-q a r & e%r &u,lAM>% ~Ho lT 4Fo %<sJV r % u|ml 4%ku~%uO~F X % u~%uO~ ar =&ku~ulM>% ~&l u~lu<s JVn =kf :uA;P d%lA O=k, S % O

=kulA O=k& j lFy S$|q C y O*ja& `/nvo2f% z%~r&lb j 9|q C y O& b jS aG Cdq l uaG z n=z "m$ $)U'7):%a ): uap nf )%` &j ` % )uWk %`# )&~` (j/k % %lA (%*&Æ* - *- }℄ F5- W S

H

P

B

i

W

Ti

H

W

H


.Q` Wmr(Ryx 5U =

133

&, 7 {kIj `r7SG 7 T G n#GpO&F#S ` pO (j lz " - ( $u, 7 a%J=k Ev GP ( &. x z f% -=(lT4P %ki& W 5n3&a Tki=& v}T k} ln z& " s&b } =2>(lT !z& lvOEvW GLDz *y&'*zd } &z aa d[ Tn2 GL=k* z q { ni { +* 4 P n&{ > . S l B- H i 5 )nTF , z q { * ni { +* 4 n&f { { {S 2 E ET& 10 ~ E,z q { T = n L n&f n L . ET& * . {S 2 E ET&{ 8 ~ E, z q n L* n&oO _ L . N N+ hTss& 1 ~ E ^& v}T {k j y Orz`r&Æ~=k `k y(j% & U>& ** ` U>lk U>&l8d 10 !&f 2 W z j z SLz 7- }A& =& z &"% uz &l z 7=z &"l*- 1. [ Whka ): z j J=& z zL[` /z &" z s5% z92= D%-zn2 =zn2*{1n2~G D&1 (t|l/ z jf/& u z s5 z92&y z 7 z & D-z#P l0bB7& $%r~ a Dk n2& z z & V yd Tr~* W %= JV` z jS % | z jz =% W " } Æ (wG&lu{1aW~G,puT z z o2bÆ% W&k* z% e&{1aW D z jz %y JV z jrzfm%. (&ld D zz%&℄~u z92bÆ%z%7f z%%l3(&)I y_ j jq ` z jS % | jq rzui z m#y %rz& 7 zf aGuS-& { z fo`rf%k =k z % A=k Qa & z 5E ) Qa &u 2 z j%q d Q",z&& z jq a &℄~u z n kIf oz & dhG z aq [ A k*{1: ( z ; + *Czsd % l&{#l: z %q a & E(S


134

L y: ihUA bx

–

`N ;

Smarandache

+ai

- zf aGQngS5kIfoz &d)I 3 z Ev5SkIfo5 Ez )&. x #&numz 'z) [m#y Z +& ^ j/ aGCdq Cd f ` z jS % | z ju{1q dlA OhJ -4%5V&7Cd f V .Æ&i# z jgIU%3f JCd f &ZP7ry A%1?% v* [% N Ob|ma0bk =k i ℄Cd7k ryu A% k =k (gf %z%&℄~u`

J ℄S 7ry( f %.> gf ) z JV` z jS % | z ux z m# % z Qf&=k12 & z m#% Q"&=z m#% Q+ Fy z j J=& z fm jrz% vs/ z %z &=z m# %y )lu*> zz %y JV&y" uz lu = &"%- & mx z a Kv=&'*z"/Æ~a z "yG v} &i#SE (mktd&flfm }T P!z%r% z j=&"/ : M R ℄& z z J=k a- n2 Fy&fm z j y O&5E%=zn2 F- %g n2& i z "- m#% >/)/SRl z% &z p{1 Q&7l{1M C t5 2. Whk'7): z j- & z 7=z gE-z&y #%-z J=% %*&S)I | z jz%%fm&ObB -zgE Æ-* lÆ1Tr~ -zElEl z j-z"=z % z92* z Sr`%=z x$ #G&25 z92 D%f9(b *n2& -zz% ~ 9~ DnZ[ #%Mr 27* l &Pj *T % v)y =z z92 / z92b %N f%El& =&-zz%* ~ 9~ #% Mr 27* l &Pj *T % v)QJ/ z92&n=z % z92 / z92 D%N & Dn Z[lQJ/=z % z92& z a=z ?0z% 0b S#0%pm -z#%=% Ob(1A& - - O7 *41 + D)& 5 r %dniVf% Æ- -z lÆ- `.g~-z l%~ Æ- AÆ- y=+y z#0*rz&5 (j/95n*> l% JV{l*> ` l0b#0%


.Q` Wmr(Ryx 5U =

135

pm*y rz%ElQÆ--z l "P$ $Y * d * P v 6F\ L sR z jC ,zÆ*}â„„&lâ„„u.y)I#~%,z&k* Q g z)&D*ku~, lâ„„ )I#~&. "I â„„n â„„&D*ku~&k* p o ?) `/ku~&.y ? v O& `/ku~&y( v uXR/ 7 -` = 4f% 7&57y_f%=k A li# L.ylF(27l z j 4"%7y_&fl D z jrz 4 7f%=k j 4% 7(ydl ( v* wq 1: ^ [ !q qY %jau(i | ÆQ&SLS,z +| t 9fM v S ÆQ) jrz0 z&S %| ,z z& lF0n S q ,z +&` ÆQ.>i ` 0b9fr~&fl D8â„„. >,z%v |'& l J B ,? &UB j %qY7 4 9 `/fzB.i %.> j&.yn iz| +f%qY 7 wq 2: sR q D 4 A B " y_&f/=(lA( v& =v& A vu y> Yz =ky 7%lA v 3 % =v( 4nf 4 0.618 v pÆv Fibonacci =v)& =y( %u 0.618 v wq 3: 1Ef3q `v x k,z)IiF7y_% 4&. Z e t5 D 4" 7 A t5 .yr\Z Zg s&,.yr\Z e s&{l<s j0 rz Z lF yd J: GlZ w wGG *T &yta( .y ; v&5 b dbÆ %El , n &ÆY & T uyr~&ob &w'[ -&N} zd&y Geg, Z n T ?g qY*zd&f% , epZ S &` Z e 0&ay i V &Z f :.y|m* = E( n T 4 A , A , ¡ ¡ ¡ , A 0f% 7&lZ 0b GlT nĂ—n % = [a ] & e&a &1 ≤ i, j ≤ n * A , A "y_% +& A > A a = 1 ,z&&A < A a = 0 V 1

ij nĂ—n

i

j

i

j

ij

2

ij

i

j

ij

n


L y: ihUA bx

136

–

`N ;

Smarandache

+ai

& eD % aO`Ct:%C * 0&t<s* a = 1 l a = 0 %n2 Z w n ≼ 2 & zZ G% = lD l^&y 0b 8F(Z % = |ep*lT = &fl Grz 4% 7 ep v (}A&lAu *ep, lAu Æ *ep& -3HTZ lD%Æ + p , p , ¡ ¡ ¡ , p ≼ 1& ? ; * ij

1

2

ji

n

[bij ]nĂ—n = p1 [M1 ] + p2 [M2 + ¡ ¡ ¡ + pn [Mn ].

zS 7nR/ zrz 4% 7&? uj %sd f/=&ar z 4 7sd:` z 7(}A v&lAurz v& rz . rz "rz" alAV~y_$*frz v, lAu : gv& a j 4* zS #G%( :& D zS "%l*|m y_%( &fl=k jrz

P $0 v d Qn8. m k F U m R7$ : =zS %. (ÆQ&,=z #%-z&fm=zS %.'(ÆQ&S L=z #P o*z%.'(ÆQ}T [&u z j J=& z k = k=z &fm z jz%%ja&duÆQ z jS & ℄ z jz% .fm(%lA v "_$)$Jk F 1H C =z u . &fl k#Pfm jz%ulT.\%; &B = z w'Sh GSh749 E E℄ aG ~ 7 A o %N9~ # l o&y A41 o)Jfr~&ulA8"%ku~ fC| ? =%Sh Je"&x D u~", ℄~uv Ev)I#~u~% aShy _, flY"e"u &y *+A %'{, *A#*C Cd,?&℄~u ~ ?=%l ,zaa lAs/| ?%h-ÆQ v& A v.( / `=z f%. ÆQ Sh J"#~e"*She"wG&S=&#~e" %t( Jw* X = AX U + C Y = AY V + D,

e&X - J,z"*{1aWTv,z$wG% ~,Y - S,z"*%N 2$wG% ~,U - Jku~,V - Sku~,A - J,z7 Jku~&" X


.Q` Wmr(Ryx 5U =

137

%y_&u J,za Jku~:% i3' ,A - S,z7 Sku~ &"%y_&u S,za Sku~:% i3' ,C - J,z X %O+ ~,D- S,z Y %O+~,She" %t( Jw** Y

V = GU + HV + I,

e&U - Jku~,V - Sku~,G- Jku~` Sku~% |"*{ 1Tv`%N o% |$,H- Sku~"%y_"*%N G℄497SG Sku~%y_$,I - Sh J% ~&z a J=0 dTw% Æ n %g 2;*~r℄7& h7 - C *, ) J&,?- 2 DSh J=% A A U * V &uC =z . %sd(℄ e& * Drzuja&l i3' 7 z jf uS-luXg ` : 1A=z & ℄65h8 NS8*%N8 "m$7.ki N .>n_|a D%n2* D% " & G D` % oD*.>n_ |%.'(& e& Dn2,.>n_|i %Tvn2*℄Gn2,k*z l> zl"$%`=&aG5b *a5 :%j&S.'(|m l^&F yo2,a D%n2udD, D ",.> D% G N ",=f.> N "%o &.>`mt %:&8o &` %&S.'(d= k*& `6 %`=*%j 5 %`=& tuzl> zl"$?&? `mt %:&d , D` l,.>B D%S2 %` V",z Fb .> ` %f>*S ,z%G+&)I | .>.'(,z%G+ .>n_|.'(SL.>n_|%y ( .+,(*E .'(1 b4& e&y (,.>i Et (ni d4& {_|℄JCVQ"& +. > . 100% rSt ,.+,(,.>rSt ?& k tBO2x + Gn+, bt & u.+,(,E .'(&,E .>n_| &XÆ&$ .>%|i (*| (&5 .'(y O%b f%E .>n_|.'(C &.yi :&,zn ",z& ,zSL.'V \ & Et ℄ " \ j " ( V)& kQ"&* .> ~* N&S=i d T > t %.> ~* u(t)&l84.>.'V.D~|m* X

Y

P (T > t) =

u(t) . N

lF2&* B. n z Y& : i+ u(t)/N :D2all + p 5h J& lt Yz Qf& J&VQ &lD + p *8.>%.'(& * R(t) = p


138

L y: ihUA bx

–

`N ;

Smarandache

+ai

.'(zdu.'(℄J7~ %sd&l&ua -, dx pS℄J7 ~ f/qYl5D& =fN} ryy qY% 4 ℄,E ℄ 7 %S &lFÆ1T$z* .'(sdzd,Zg.'(sdzd*(.'(b %.>zd e&.'(sdzdu,`.'(℄J7~ ( , %sdzd,Zg.'(sdzdull ℄.>e %.'(zd,(.'(b %.>zdu,UA(.'(,z)b % e.>zd "P$)$Y Un8 =zS %{1V sduCdM e_7E, {1OeyM El*~ hr%Xg Mf Elb `rOea`rjJ=bMf& 1 & N t&f% z , 7 %iÆj& yA G *Cdj % lQm (j, Q& 6kbP&LQ5v% D* r %PD#% N&z &a r PD a n EP?1|~#rSB 9u & nMf %b D r %Æj N*j &{l$uU r j {1M e_&"!)M YgM *T M 1 ÆhG&S=&!)M uCdM %s`&T M uCdM %sd&lyy1 yjR*y | o%uYgM {1M e_7ESL* M 9O7E, v%v 7E, M C zd E4, M W L7E, ~ Q %Ne_7E, h7M {1t5, )℄M g*M o, h7YgM Tv)


H " 5R y : – w / v4* |M> y, 139-147 % Æ %rd^ | (K6 {g # , A x (& o w / 9 . & * 100045) ℄: ui a*= )+{L= {LL =2JD%h?bliv . u a= Ci|v 3SJR% BJyE6*= 9p a^ v . u3) 6q i m-m -m -q p-m p-q i-m %*}6 {L%F^= !J *}6{L!J x% ?bli+ a= %!hi| "v 3S3r Abstract: The semantic meaning of an article in a law or a regulation is determined by the meaning of its word groups, order and in which situation it is. It is well-known that to grasp the semantic meaning of an article in tendering and bidding laws and regulations is foundation of its normally carrying out and self-regulation of partners. In this paper, we distinguish the semantic meaning of some special words groups in Article 4th, Article 8th, Article 22nd, Article 32nd, Article 34th, Article 52nd, Article 54th and Article 82nd in the Enforcement Regulation of China Tendering and Bidding Law, which are applicable for normally purchasing in China.

?L$!&9QualD9vn2d % lb TlT98n9Æ% &l [0b Tx9w-& TS|$ & l [l0b T98 9Æ %ka & J$ & *9Æ% "9Æ|$ *Ska Wez D& 9Æ:d9*at f/=&`z^lTv%n9& z% *dDd( z% T-SXJ a/ z% &SCdf/ T oy FhTv z&` v%El v% l=%l y1(xw%9 5(j/SkIj

# g Æ % T&{lhG ( y |&E : Æ f :& +lTv%n9 SFa y i}b %2013 3 2 L 1 2

e-print: www.ctba.org.cn


L y: ihUA bx

140

–

`N ;

Smarandache

+ai

v%e_=&5 9QSh%0}y_&S u D*. T%& =%y1 a/8l v% Tv%e_= T&l l v% T v%& *v%"uuHp_* |% g9 z zvfâ„„nk "yd(D n k $=l â„„~xw& r5 S9 |'%xwf%vQ&yORT d = nk u n99 &fl | z jf/

_ L Id. |Æ nk 4,n` z z%! Q K%(jf%Æ℄& D o vRqm )9 , S # 9A a o w / D Z&_ o℄ *Æ x ( l + D Vw / 3 I 4*eNl C o vR D z A~ 6 Q x (YW "' g v 0,S & {j E+ D _- ` w / 3 I4* e NÆ& e j E+ Æ& , NO℄g* WO U Ew7E ?xZ q! j 8N) KaSD (j D Eth*D Gs5) EÆ=% E Æ& EÆ D=3( z z%! Q(j%&nv` z zjJf℄ Q&z&&l ` z z jJf℄ Q& * NO K#%( n uS (v% o% EÆ D nk 4,nz D H 5 n^ qm )9 , S # 9A

K X +w / D Z H 5 n^ - ` , S { j E+ D & _w / 3 I4* e N& vCsw / 3 I&+OvKS H 5 n ^ _ , [, S - ` w / 3 I+ e N D # - j E+& , j EÆ& =& # - j EÆ=% # Æuu`/ NO K(jÆ℄lQ& o y:2 `!)`S z z%! Q(jÆ℄ z/ NO KÆ℄%&*%82 `!)%Æ℄&z&&E(Æ℄ D&nu(jÆ℄z/ NOÆ℄%&*% N O`S K z z%! Q%(jÆ℄ m \ $ O nk 4:n4lD*_ zn2& D o -C nb [6 }/#5℄ + v T"Kw +( l & K Mw , - Q I ~+&Y u R w *"~$N ℄ [ - Vw U 6 }UF g " 3 & - ? ^/ n Y I \ e,"n$4' K Mw <+ 'n( l * g+ s ÆÆ g&!* Æn s ÆÆ&fla`_ z%Oeu z l uSG r n %! Q K,Sz& z zvf℄nk |%lTObr~u z 1 z&k*&8nv b z%~rf%_ z&Fy& nk


x 0 w5+ }N? z

141

4:n4pD D - > i7n( Q I&[3 7 * j E+( l &*( l , S ^ ( l 1Zl r E,, ( l *w n R - ` K e N, S Zl r EÆ& !Dnv.y _ z% u z lu~rM4 (d K*%! Q K z% & T Æ* s ÆÆzdu l3%&b | z 8nv b z%~rf%_ z%* & eU0bJ'%u&"/ z 7~ rM4 (d Knu%! Q K T Æ* s ÆÆUV l&u d`m nv.yf%_ z& !D K 3!D&flhG z~r&a ~ o℄ .KO w / 3 I B n + v _ & 2 - P 5 &~ ( l # Æ%lvn/ -{ z zv f℄yQ z %! Q Kf %*Q &4. `m8 z lVOG K Mw Æ A l#llB)_ z%` &k*& !) jv )I8b z * !) j%Ob l f :&b z _ zP /z ( j l&S+ a/ z u ℄D%n ℄D% l :[ T }A j l&? b z%` &!* b z% z $! z u &.y( - z * z %mx%*& A TgI / -T:\Æ&&z B4S D& v 7 S $Æ%v%E l Fy&nvfm nk 4:n D& _ zaCdO {1q =r\S ( &o2`_ z(lA !g* z z% a/j z z{1%sd(AN & OhJ-4& flVG j Cdbej * z zjJ r %-vÆ &aGq

&V"~r9~& u? 7l z z5V%n/ *y& z zjJ r &y ~rM4 (d K*%! Q K& }a lGV _ z&( j/{1q ry (j/v%r%fm%& 5 nk 4:n D&nvw '_ zl l12pA I<Æf%b z z zv E( Æb z*_ z f*f N Æ& aS4_l n D o vRqm S , S E+ o℄ *;( l % F$ X K n^ E+5 *;( l *E K Mw +&- o vRqm S , S 6 }% F$ X K n^ &Y "Ku R w Æ& B7~r*V k; )b { `!) D%2 B7~r b z& tu B7~rn2 B7~ r& vtb z%&q 4dd.yw'_ z aB7~rsd:& n k 4:n8b z~r|'M o -C nb [6 }/#5℄+ v T"Kw +( l Æ& a <sS4lD D%}Tn2%&q ~rM4 (d


142

L y: ihUA bx

–

`N ;

Smarandache

+ai

K*%! Q K!D&.y _ z&z^u AEl%em z zv 4_Pn D w n 4'u Rw <+& * 3 = E [ w ( l + y CA { + E+v n 6 } , M ql/ u R XÆ& e% z ~b u 3 = Æ&y<s zz 0b&_ n2u E [ w ( l + y CA { Æ&flfm z jr% Fy&*fm nk 4 :n D%_ z&l [&{ z Q"&aSq {1A)& D<s z zv 4_Pn D%ka z ~(r&k* 5 T&nuq #;& z 9 lD ~&k* 6 T fm 2 - P 5 Æ% jn/ & f% _ z& 0bV %u&_ z lDu u R 3 = / n Æ z&y "_ $-n2%F(ka z &k* 5 T z z& *| rV2 ,z t5&` z k D=zS (j, l [&{~rM4 (d K&y %! Q KQ"&.b z =k_ z%`r7u* aGq V "~r9~&.bS a - n2r5 Wka z & !DS f%_ z& *b z*_ zPuv%!.% z#l& I<S wx vÆ& z z% wx Æ r%&uaGq &V"~r9~ P $ $4 k 2 | Y O $ O ji nk 4p_pn D ? ^/ n 6 } , u` n _C ; E b v +& ^ C ;E R b v 1 h 2 u> l,_w b v - +& ^/ 1 h 10 u> l w n FP% u3 3 uwZl , Zl > & _%w / 3 IÆ =&xw _%Æ, u-l[ "& *{hQAM92 kr`2F F M-&nu{ z92 kr 2 z zM-&S "q9 ;& u a .j& z #w'F hQF M-nu z zM-& #f% z e0fl [-%; u& w / 3 I_%&D RwhKC ; R 1 h6 D/ 1 h-u 0bP4&0} (9&y z .u B r`hQAM92&n z92L| ,9lD hQAM92 z92% L| ,9. |hQF 92s5t s 3 %%&nu. | z92s5 s 15 %%& z u Pa?hQAMF 92nu z92%M- ",* !hQAM92 z92 (&zv% %!v %p5( D& | hQAMS n ka z z%&nvo2f% z%~r% z


x 0 w5+ }N? z

143

a,9hQAM92n z92?B z. z 0 r +'v O 8 $*B; $J5 $J z zv 4_:n D w n *) * v ^/ n & *)_ ? ^/ n 4K / N AÆ& nk 41_pn D w n *) * + v ? ^/ n 6 }/ n Æ&S="P$z D #y , * v ? ^/ n 6 }/ n Æ e&- ,-A! nr & - & -A! n -Ar q3t ^lÆQ +*~E v& v+*~E Æ&vD& z zv D%

* v Æ=% * Æ1Tl,dD 0bvQ V & e% * Æ u ,% -A! n -Ar &l(℄~n2& *`r%*.b &zv%El*v% l u4.%*&Fy&. av%F dVD e * Æ% z zjJ0b{Ab b b *Mf %v%El z zv =E(k u n2 / - n2&Fy& z zv 4_:n=% * v Æ&,&z z zv%El%n2& &z

K M K K Z4A'ÆEl%n2, nk 41_pn=% * v Æ&,8nk %"l$ " $A en2&y SG&z K M K K Z4A'ÆEl%n2&` %&"P$=% , * v Æ,"l$ " $& %&&z K M K K Z4A'ÆEl%n2

& $J2F $8$

nk 41_,n D :w n ^ u` Y y $w K N+v n , M 6 } = n &*)7 ^ / Æ e&

:w n ^ u` Æ,7 z a`rj y_ `v=%j y_ &,7 %v%y_nllr2 rf n (Æj Ny_% &k*&y/`v%;L\m&j y_ u,7\m ( Iy_n .y_% &*2m&- &hu &uÆ &uN 7 z aj y_% (yd A~#* ~ y_ & f% N w ' 95 p )yMfmw' erz% &*= 7T℄Jp)7=

7T4l℄J %y_&= 7T℄Jpb)u? %~ y_ , sÆy_ & * z %ib) sn9sb)), uNy_& uÆ 7uN &*7 z a[Py_nuj8Ss;nu % ), SGnv7 z aj y_ % +#V %u& Y y $w K NÆur2 D℄9&7yu` &


L y: ihUA bx

144

–

`N ;

Smarandache

+ai

g Æ, 100% &

*Y y Æ, 0%&l Y y ÆlY/ 0% 2 100% &" lF!*&

aj y_lD a | zb (%ka. & z &zv%v p5 ( D% v G8v SGw'n T =z&yfm z j y O& A Eu -T:\Æ Fy, nk 41_,n4lD Y y $w K NÆ =% Yy Æ& ulF :%ka. &lu,&z zb (%rf&d u "&7 z aj y_&t a | zb (rf%%v n SGw' # z&* z&S z}*E kQ"&h A 8 K ow &, D K o 7 [ b [K oD Y / - 7u4D% .y z& # | zb (& z z J=& #`m`Sib) s 9sb)%t { %*&*hQ AM92 z92&zv%v %p5( D`S℄ { &y Cz D= z J=`S℄ { %*) z &* z %ib) s 9sb) z& z % +℄ GP7S aj y_&5 z zv 41 _Pn* nk 4,_ n D&0baq& y z # | Cz $ O>? w x z zv 41_ n D VL . Y w U / n _/ b v & w * _ + wx Z w+Y O 6 }j _ Æ& nk 4H_pn D / b v &w * _ + wx _ bG 6 } S x w& VL . r SRw/ n Zl w Y O j _ +& X [ ( ( / n Æ =&xw w * _ ÆulT ,: &,FS % D a |S& e(}Tr~0bvQ g, nk 4H_pn D=% _ bG 6 } S x wÆ; ; w * _ Æ- 7u4D% Fy&< z^lTx w& nk 4H_pn=% w * _ Æ7 z zv 41_ n% l3& z zv =% w * _ Æ* ,& nk 4H_pn=% w *_ Ælu, _ bG 6 } S x wÆ& r~% D a | S Sz&!* w * _ Æ%Oe. uCz,Gd& du nk 4H_p n= D VL . *)d= 6 }0#/ n ZlY O j _ &*) U/ n /I l+Y O j _ Æ%E & b / n +Y O j _ 4'X [ I<, %*)Ll/ b v +}P 6 } ) / b v +4#N wx Æ& *Y4I L l/ b v +}P 6 } ) / b v +4#N wx Æ%L| "a92%%*)I &z z zv 4p_:n ^w b v w U / b v + 1 h t +/ b v &w n CPÆ% D


x 0 w5+ }N? z

145

6 1$Y f nk 4H_,n D v T"Kw +( l &w n FP% 5 u3 3 uw K =& \ n &K = ( *) 3 3 u Æ&z D& / n 6 }, u` n _ v T"Kw +( l + q - +& ^& \ n K = ( h l w n FP% u3 3 uw Zl ,Zl > & _%w / 3 IÆ =& _%w / 3 IÆ, z #f% z jdlTTN& D =z gE-z bmulArgAL& yI 97℄ % 99e e% K=& \ n Æ& CdL$Cz,Gd +%=z== &yI C d Q ebvQ%&uL$` uCd GUu7 z zjJ(y%j y _ {I Cd Q | z z%*`r& z zjJ I Cd G Q l ℄ z~r&k*B 4 TV%~ry SG(℄ b t Cd Gb %_ z~r&~r(9 t Cd Gb &Fy& e% K =_,Æ Ob `7 z zjJ(y%j y_ &`b zy .y Cd Gb %_ z~r&.y ,DGY 2) Cd Gb & z&&l.y `_ z b &yI z Sj y_ % )$ %B Gv nk 4:_pn D* v T"Kw +( l +w / 3 IO{w / v + j E&_ & q bS4#N $&K * y 4 Z )= *7 : +&w / & n 5& v*>w 6 } =& _& q bS4#N $Æ,=z n=z (rS f9(u O&k*=z * z A&S z D SG z *=z &nu`= zz% D 9~ #%Mr)-zf9( (hG | vD& )= *Æ% udD- )= *ÆlF T*r? %fm% *r%2h Mv&Fy&w'Cz,GdB Czn z B zP.y}* fm z j% ℄ vD& nk 4:_pn=%xw )= *Æ E( + Fy& nk 4:_pn=% )= *Ælx2S- z zv 4 _,n T z zv 4 _,n D v T"Kw +( l O{ v j E&& n5+& { v j E+& v , 5/ n &*> E& n 6 } {


146

L y: ihUA bx

–

`N ;

Smarandache

+ai

v*>"Kw Æ& e% *> E& n Æ& a=zE jadnvB D=z %%*&(}A~#* ECz,Gda`% [CzZL* +%=z == ( & nvo2f% z%~r&< S z zjJ&z z zv D& 0`CzZL*=z== hGf9( |&y 09 =zS ., ECz,Gda`CzZLn +=z== E & B Cz. D Cz S &y w'Cz,Gdf%B Cz&B GCzZL* +=z== & ? D=z ob & z .ynvB w7Cz,GdCz V &B C zlDuECz,Gda`%CzZL* +%=z== E jad i & l&&z41_:n4pD D% p ℄ = n *) v - $ + s V q Æ Cz,Gda`% [CzZLn +=z== E & tB Cz# D CzS & z w'B z D=zS & z 2w'B z& z B rÆ zbL z_ )f%bP_ & z 5 % bP_ z& z B w' z Cz* D=z %%* Fy& nk 4 :_pn=%xw )= *Æ&,:[%4 A~#& ECz,Gda`% [ CzZL* +%=z== ( & < z zjJ&z z zv D`= zS hG f9( |& 0`CzZL*=z== hGf9( |&y 0 z 9 =zS .&l S B Cz*B z}A ℄ ^& n k 4:_pn% u* v T"Kw ( l +w / 3 IO{w / v + j E&_& q bS4#N $&K * y 4 Z )= *7 : &G * y DH VL . l+X [ 5 : p +& \ n *> E& q +&O{w / v j E+w KSn5&O{w / v j E+/ KS/ &* 1&O{w / v j E+& q n5& v*> 6 *>M w ` z zv * nk n9Zf%vQ. 09n [3] 2h 7 [1] ry*9P,Gdv ) NOv5Mb| ^) * *v *)& & n^ O o w / v4* F &= N`IC&`m&2012. [2] A x&D V x ( l w 4 T < :4 s &American Research Press, USA, 2007


x 0 w5+ }N? z

147

A x d &w / v b y C f y&= 7Tâ„„g`IC&` m (2013 8`I) [4] *9 * 6 &>i_ - >i >v > &,?`IC&`m&2012. [5] a7nOs&v _&,?`IC&`m&2010 [3]


H " 5R y : – K x 1985-2012 ~< 1 l1, 148-154

t 1985-2012 }( /%

' 1. /y NyuW RMI El&&8b_g9&29-32,1"1985$ 2. ?\ ?%7,ed&&8b_g9&22-23,2"1985$ 1990 ' 1985

1.

The maximum size of r-partite subgraphs of a K3-free graph,

F b_, 4

"1990),417-424. 1992 ' 1. `m C?O 100m3 BTâ„„â„„& e D V&1"1992$ 2. "75B-P$`mq Fe 50m zd& QSh#Pâ„„â„„&x 5V N &4"1992$ 1993 ' 1. "75B-P$`mq Fe 62m EvSA oi {â„„â„„&x 5V N &1"1993$ 1994 ' 1. "7ZW0-P$R(G)=3 %k= % ShN}&y b_: 'b_&Vol. 10"o $(1994),88-98 2. Hamiltonian graphs with constraints on vertices degree in a subgraphs pair, H < ;_R_ &Vol. 15"o $(1994),79-90 1995 ' 1. "75B-P$`mq Fe & Q#Pi Shâ„„â„„&x 5 N â„„&5"1995$


'2 + L y 1985-2012 =2m2

149

& QSh#P℄℄ && o 4'V N S q Æ|="95 I$&1995 3. a4Lee℄B{r BT℄℄ && o 4'V N S q Æ|="95 I$&1995 1996 ' 1. (WDLxk= %y r &{b>DV N Æ__ &Vol. 23"o $(1996), 6-10 2. i eE ÆQ ;&x 5V N &2"1996$ 1997 ' 1. n^s G$7T℄℄4 G 7&x 5b a &11"1997$ 2.

1998

'

1. A localization of Dirac’s theorem for hamiltonian graphs, 2(1998),188-190.

b_g9:

< &Vol.18,

i eE ÆQ ;&x 5 N ℄&9"1998$ 3. n^s G$7T℄℄4 G 7&x 5V N &1"1998$ 1999 ' 1. ? lM℄J℄℄w'pE &/Y%Os*x 5 D V* D M S 4 'Q =&= 7T℄g`IC&1999 2. & Q℄J℄℄w'E &3 *Os*x 5 D V* D M S 4 'Q=& = 7T℄g`IC&1999 3. `mq Fe & Q#Pi Sh℄℄, = 7T℄Jpb)s*x 5 D V * D 4 Q=(2), = 7T℄g`IC&1999 2000 ' 1. O Fan n2%lT &Y # '}Æ__ "F g V_u$&Vol. 26 &3(2000), 25-28 2. `m:oS.AV= ℄℄9~957~ &x 5V N &2"2000$ 3. `m:oS.AV= _x℄J℄℄&x 5 D V* D 4 Q=(7), = 7T℄g `IC&1999 2.


L y: ihUA bx

150

–

`N ;

Smarandache

+ai

' 1. "7 X.-P$ Vo %l℄ % OXÆn2&Y # '}Æ__ "F g V_u$&Vol. 27&2(2001), 18-22 2. (with Liu Yanpei)On the eccentricity value sequence of a simple graph, s ' }Æ__ "F g V_u$, 4(2001), 13-18 2001

3. (with Liu Yanpei)An approach for constructing 3-connected non-hamiltonian cubic maps on surfaces,OR Transactions, 4(2001), 1-7. 2002

'

1. A census of maps on surfaces with given underlying graphs, A Doctorial Dissertation, Northern Jiaotong University, 2002. 2. On the panfactorical property of Cayley graphs,

b_g9:

<, 3(2002), 383-

3. E{b? 2.'(% $ Ne"&& oK / _ , 3"2002$, 88-91 4. Localized neighborhood unions condition for hamiltonian graphs, s '}Æ_ _ "F g V_u), 1(2002), 16-22 2003 ' 1. (with Liu Yanpei) New automorphism groups identity of trees, b_"m, 5(2002), 113-117 390

2. (with Liu Yanpei)Group action approach for enumerating maps on surfaces, J. Applied Math. & Computing, Vol.13(2003), No.1-2, 201-215.

"7 X.-P$ %.D m,%zX. (&b_t _ , 3"2003$,287293 4. "7 -P$B7 a ≼ 2 % On27 Vo & s '}Æ__ "F g V_u$, 1(2003),17-21 2004 ' 3.

1. (with Yanpei Liu)A new approach for enumerating maps on orientable surfaces, Australasian J. Combinatorics, Vol.30(2004), 247-259.

"7k -P$Riemann [: Hurwitz D %w- && o V_R&> > m: B_V_â„„ < < b A &2004 12 T,75-89 2.


'2 + L y 1985-2012 =2m2 2005

151

'

1. (with Feng Tian)On oriented 2-factorable graphs, J.Applied Math. & Computing, Vol.17(2005), No.1-2, 25-38. 2. (with Liu Yanpei and Tian Feng)Automorphisms of maps with a given underlying graph and their application to enumeration,Acta.Math.Sinica, Vol.21, 2(2005), 225236.

&oV_R&> 5 &2005.6.

3. On Automorphisms of Maps and Klein Surfaces,

4. A new view of combinatorial maps by Smarandache’ notion, e-print: arXiv: math.GM/0506232. 5. Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005. 6. On automorphism groups of maps, surfaces and Smarandache geometries, Scientia Magna, Vol.1(2005), No.2, 55-73. 7. Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005), No.2,120133. 2006

'

1. with Yanpei Liu and Erling Wei) The semi-arc automorphism group of a graph with application to map enumeration, Graphs and Combinatorics, Vol.22, No.1 (2006), 93-101. 2. Smarandache Multi-Space Theory, Hexis, Phoenix, American 2006. 3.

& oD V x ( l * D w N H :f y –Smarandache *` h w e G,

Xiquan Publishing House, 2006. 4. On algebraic multi-group spaces, Scientia Magna, Vol.2,No.1(2006), 64-70. 5. On multi-metric spaces, Scientia Magna, Vol.2,No.1(2006), 87-94. 6. On algebraic multi-ring spaces, Scientia Magna, Vol.2,No.2(2006), 48-54. 7. On algebraic multi-vector spaces, Scientia Magna, Vol.2,No.2(2006), 1-6.

-M r%p_lp ? Smarandache B6" -&& o V N < b^ *200607-91 9. zC e_% ?e" TÆQ, & o V N < b^ *200607-112 8.

10. Combinatorial speculation and the combinatorial conjecture for mathematics, arXiv: math.GM/0606702 and Sciencepaper Online:200607-128.


L y: ihUA bx

152

–

`N ;

Smarandache

+ai

11. A multi-space model for Chinese bidding evaluation with analyzing, arXiv: math.GM/0605495.

B6" uy ?w- -, 0| $ :s Smarandache d g9 , High American Press&2006. 2007 ' 12. Smarandache

1. Geometrical theory on combinatorial manifolds, JP J. Geometry and Topology, Vol.7, 1(2007), 65-113. 2. An introduction to Smarandache multi-spaces and mathematical combinatorics, Scientia Magna, Vol.3, 1(2007), No.1, 54-80. 3. Combinatorial speculation and combinatorial conjecture for mathematics, International J. Math.Combin., Vol.1,2007, 1-19. 4. Pseudo-manifold geometries with applications, International J. Math.Combin., Vol.1,2007, 45-58. 5. A combinatorially generalized Stokes theorem on integration, International J. Math.Combin., Vol.1,2007, 67-86. 6. Smarandache geometries & map theory with applications(I), Chinese Branch Xiquan House, 2007. 7. Differential geometry on Smarandache n-manifolds, in Y.Fu, L.Mao and M.Bencze ed. Scientific Elements(I), 1-17. 8. Combinatorially differential geometry, in Y.Fu, L.Mao and M.Bencze ed. Scientific Elements(I), 155-195. 9.

D V x ( l w 4 T < :4 s, American Research Press, 2007.

2008

'

1. Curvature Equations on Combinatorial Manifolds with Applications to Theoret-

&

ical Physics International J. Mathem.Combin., Vol.1, 2008,16-35.

&

2. Combinatorially Riemannian Submanifolds International J. Math.Combin., Vol.2, 2008, 23-45.

&

3. Extending Homomorphism Theorem to Multi-Systems International J. Math.Combin., Vol.3, 2008,1-27.

&

4. Actions of Multi-groups on Finite Sets International J. Mathe.Combin., Vol.3, 2008, 111-121.


'2 + L y 1985-2012 =2m2 2009

153

'

&

1. Topological Multi-groups and Multi-fields International J. Math.Combin., Vol.1, 2009, 8-17.

&

2. Euclidean Pseudo-Geometry on Rn International J. Math.Combin., Vol.1, 2009, 90-95.

J z z{1 â„„r |&& ox &2009 1 T 24 % 4. z j G(g & ' E &, - w 4 T f y "+Os$& = N`IC&2009 3.

5. Combinatorial Fields - An Introduction, International J. Math.Combin., Vol.3, 2009, 01-22. 6. Combinatorial Geometry with Application to Field Theory, InfoQuest Press, 2009. 2010

'

1. Relativity in Combinatorial Gravitational Fields, Progress in Physics, Vol.3,2010, 39-50.

~w ' zg QO # – z j7kÆQ "Os$&= N`IC&2010

2. 2010

3. A Combinatorial Decomposition of Euclidean Spaces Rn with Contribution to Visibility, International J. Math. Combin., Vol.1, 2010, 47-64.

4. Labeling, Covering and Decomposing of Graphs – Smarandache s Notion in Graph Theory, International J. Math. Combin., Vol.3, 2010, 108-124. 5. Let’s Flying by Wings-Mathematical Combinatorics & Smarandache Geometries(in Chinese), Chinese Branch Xiquan House, 2010. 2011

'

1. Sequences on graphs with symmetries, International J. Math.Combin., Vol.1, 2011, 20-32. 2. Automorphism Groups of Maps, Surfaces and Smarandache Geometries (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011. 3.

Combinatorial Geometry with Applications to Field Theory(Second edition),

Graduate Textbook in Mathematics, The Education Publisher Inc. 2011. 4. Smarandache Multi-Space Theory(Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.


154

L y: ihUA bx

–

`N ;

Smarandache

+ai

5. Graph structure of manifolds with listing, International J.Contemp.Math. Science, Vol.5,2011, No.2, 71-85.

JOe59P&_|h7 z z{1Z%t5&U D < H&2011 2 T 28 %&& o w / &3"2011$ 7. mx z%q %*ÆQ {1` && o w / &5"2011$ 8. |l{1?| l& z zrg4"ry&& o w / &12"2011$ 2012 ' 1. ,?h7 z j -e_&& o w / &1-2"2012$. 2. {q ?`r&h7 z j -e_& 4 T A~ &2012 2 T 17 % 6.

3. A generalization of Seifert-Van Kampen theorem for fundamental groups, Far East Journal of Math.Sciences, Vol.61 No.2 (2012), 141-160.

) z j G(g & ' E – w 4Tf y "Os$&=

N`IC&2012 5 )Linear isometries on pseudo-Euclidean space, International J. Math. Combin.,

4

Vol.1, 2012, 1-12.

)

6 Non-solvable spaces of linear equation systems, International J. Math.Combin., Vol.2, 2012, 9-23.


[~o

155

8 LZ s*|&℄? o ? o?&E G ℄J[&I ?dC-G&I

?w-\1 Os 2006 ,=I Who’s Who &E> = , 9at .? &m* r9,O~ d= z z d+T 4 = , ?O~ 7 W_|B7fY|N} G&`m7T℄J?O$(E N }S [ 1962 12 T 31 %`S/,jV"\{&1978-1980 ,jV J=?G 80 1 C?\,1981 -1998 a= 7T4p℄J ℄ &g? G

^4 ,4 ~rp℄J[)(,1998 10 T -2000 6 T = v?ds7M b|p℄J[,2000 7 T -2007 12 T z(rj b)&i ~rq Z Mb|O *+p℄J[)(,S" 1999 -2002 ` ?x ?_T o ?4&2003 -2005 = ,?O~ 7 W_|B7N}|{r o?N }℄ ,2008 1 T2_&= z z d+T 4 f %N}℄ Ob =a ? -M *℄J7E) ;&g?a l P ? M:r| Smarandache + $Æ +7 -M w-2 -*℄J7E~ -9 60 f8&aI `I 1g ?? ZP }g℄J z j -ZP*lg-9 &a `Ilg ?-9 { 2007 10 T k&Os

?w-| MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) &8\| uqaI s}`I 10 a 7 2 g "7T℄J~ ℄ " 7T℄J℄℄w'E fk " * 7T℄J℄℄fk " "II * VII$%s ,u =K `e* zd ℄℄ zhQAM92 "2007 I$* =K `e* zd℄℄ z92 "2007 I$ Si ,{%Obs Z ,2008 X z[(g & ' E , ,Gd,G z j7kÆQ"2009 $ ' E +Os& z j7 kÆQ"2012 $ ' E Os


Abstract: This book is for young students, words of one mathematician, also being a physicist and an engineer to young students. By recalling each of his growth and success steps, i.e., beginning as a construction worker, obtained a certification of undergraduate learn by himself and a doctor’s degree in university, after then continuously overlooking these obtained achievements, raising new scientific topics in mathematics and physics by Smarandache’s no-

tion and combinatorial principle for his research, tell us the truth that

Æ

all roads

lead to Rome , which maybe inspires younger researchers and students. Some papers on scientific notions and bidding theory can be also found in this book, which are beneficial for the development of bidding business in China.

) â„„: tkf Vx 1)$ %tk3~ > Lb)}b+>6\IeJ>+)

kH$> wÆjHph%_x 1)!$P wÆk^ 8~, ` R!kS6S\ %wÆj> Ff+>f% xy(>h$H %+F(> ^S n>3%x `>P+ >M|< \ Cj>% \ v,) Smarandache &zVj `_ $l{2be$ > LbM|$ÆI%; &.'?C $F % %_Yf $x >RF ' xf)W- <yb $ 7 y ib,d^6D8~%_ I< y~ yqf3!qx D g

ISBN 9781599732145

90000 >

9 781599 732145


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.