MOMENTS OF THE SMARANDACHE FUNCTION

Page 1

MOMENTS OF THE SMARANDACHE

FUNCTIO~

Steven R Finch MathSoft Inc. 101 Main Street Cambridge, MA, USA 02142 sjinch@mathsojt.com

Given a positive integer n, let P(n) denote the largest prime factor of nand S(n) denote the smallest integer m such that n divides m! This paper extends earlier work [1] on the average value of the Smarandache function S(n) and is based on a recent asymptotic result [2]: I{n ~ N:P(n) < S(n)}j

= 01(

due

to

•W

~ln(N)J

I

J

for any positive integer j

Ford. We first prove:

Theorem 1.

where((x) is the Riemann zeta function. In particular, In(N) lim - N . E(S(N»

N~oo

lim

N~oo

In(N) -2-'

N

Var(S(N»

;r2

= -12 = 0.82246703 ... ((3)

=-..,- = 0.40068563 ... ~

Sketch of Proof. On one hand, L(k)

In(n)

= lim - k - ' E(P(n) n~oo

n

k

)

~

In(n) k lim - k - ' E(S(n) ) n~oc n

N ~""

The above summation, on the other hand, breaks into two parts: In(N) ( k k'1 lim ~·I L pen) + LS(n) N-+oo N \..P(n)=S(n) P(n)<S(n)

j

140

In(N)

f

N

n=!

= 15 m ---;:;:!. L..S(n)

k


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.