Int. J. Agron. Agri. R.
International Journal of Agronomy and Agricultural Research (IJAAR) ISSN: 2223-7054 (Print) 2225-3610 (Online) http://www.innspub.net Vol. 10, No. 6, p. 85-94, 2017 OPEN ACCESS
RESEARCH PAPER
Evaluation of maize ( Zea mays L.) genotypes for resistance to Aspergillus flavus infection Beatrice O. Achieng*, Felister M. Nzuve, James W. Muthomi, Florence M. Olubayo Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya Article published on June 30, 2017 Key words: Aspergillus flavus, Ear rot, Maize, Resistance Abstract Maize is the primary staple food in sub-Saharan Africa (SSA) accounting for up to 50% of the total calories consumed in the Eastern Africa region. Aspergillus ear rot is a major constraint to maize production in Kenya since the released varieties are susceptible to this condition and the post-harvest remedies are unaffordable to most small-scale farmers. Use of host-plant resistance provides a viable and sustainable management strategy for combating Aspergillus ear rot
in Maize. Hence, the aim of this study was to develop and evaluate the
performance of F1 hybrids under Aspergillus flavus infection. Thirty six F1 progenies were generated from twelve inbred lines following North Carolina II mating design. The progenies together with three checks were evaluated at the Kenya Agricultural and Livestock Research Organization (KALRO) stations in Kiboko and Katumani. Experiment was laid out in Alpha lattice design with two replications per site. The inoculation with Aspergillus flavus was initiated at mid-silking stage. Great genetic diversity was noted among the germplasm. The concentration of Aspergillus flavus in the grains ranged between 100cfu/g and 2500cfu/g. Hybrids 4, 30, 33 and 34were identified to offer better resistance to Aspergillus flavus with high grain yield compared with other genotypes. Crosses with parents MP 313E and NC334 produced the most resistant inbred lines. These lines could be introduced into local breeding programs for development of resistant, high yielding varieties. Good husk cover could be used as a guide during phenotypic selection of germplasm for resistance to Aspergillus ear rot. * Corresponding
Achieng et al.
Author: Beatrice O. Achieng  beautaachieng@gmail.com
Page 85