J. Bio. Env. Sci. 2016 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 8, No. 5, p. 164-174, 2016 http://www.innspub.net RESEARCH PAPER
OPEN ACCESS
Carbon Sequestration Potential of Fruit Tree Plantations in Southern Philippines Mark Daryl C. Janiola, Rico A. Marin Department of Forest Resources Management-College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, Philippines Article published on May 27, 2016 Key words: Carbon sequestration, Fruit plantation, Mangifera indica, Nephelium lappaceum, Sandoricum koetjape Abstract Global warming is recently considered a major concern worldwide due to massive emissions of greenhouse gases to the atmosphere. Trees are seen as one of the mitigating measures of this problem due to its role in carbon sequestration. This study is aimed to assess the carbon sequestration potentials of 15-year-old Mango (Mangifera indica Linn.), 12-year-old Rambutan (Nephelium lappaceum L.) and the 32-year-old Santol (Sandoricum koetjape Merr.) in Bukidnon. Potential carbon sequestered was determined in various carbon pools (trees, understorey, litters and soil) of the three different fruit crop plantations. Field measurements and laboratory analysis were used to measure biomass density and carbon stocks of the samples. Results revealed that among the three plantations, the 32-year-old santol plantation had the highest value of total carbon stored with 203.62 ton/ha. This was followed by the 15-year-old mango plantation with 122.34 ton/ha. The 12-year-old rambutan plantation had only 112.18 ton/ha carbon storage. In terms of carbon pools, the soil had the highest carbon stocks in all plantation at 113.21 ton/ha, 96.76 ton/ha, 67.56 ton/ha for santol, rambutan and mango, respectively. The carbon stocks for the trees were next highest with 86.02 ton/ha (Santol), 52.46 ton/ha (mango) and 13.13 ton/ha (rambutan). The least among the carbon pools is the understory with 0.5 ton/ha, 0.7 ton/ha and 0.36 ton/ha for rambutan, mango and santol plantations, respectively. Findings of this study suggest that fruit tree crops are potential carbon sink and must be promoted as a land-use practice to help mitigate climate change. *Corresponding
Author: Rico A. Marin  ricomarin@yahoo.com
164 | Janiola and Marin