Ornl 2548

Page 1

HOME HELP


Makes any warranty.& re comptetenesa, or usefulne any

information, apparatu

privately owned rlphts; or Assumea any liabilitiea w

or contractor

of the Commiar

des access to, any information putrua


0 RNL-2548 Chemistry General TID-4500 (15th ed.)

-

j

I

Contract

N0 . W-7405-en g-26

REACTOR CHEMISTRY DIVISION

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS R. E. Thoma, Editor

I

L

DATE ISSUED

h rc

F

I

11

ONALLABORATORY

Oak Ridgo, Tennessee opiroted by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION


!'

i

L

f '

h I !

t

t'

L

c f

c


LL1

CONTENTS INTRODUCTION 1. METAL 1.1. 1.2. 1.3. 1.4. 2.

SYSTEMS The The The The

System System System System

The The The The The

FUSED-SALT

3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.11. 3.12. 3.13. 3.14. 3.15. 3.16. 3.17. 3.18. 3.19. 3.28. 3:21. ..3;22. 3.23. ’ 3.24. 3.25. i 3.26. 327. 3.28. 3.29. 3.38: 3.31. 3.32. 3.33.

1

..........................................................................................................................

2

Silver-Zirconium Indium-Zirconium Antimony-Zirconium Lead-Zirconium..

.......................................................................................... ........................................................................................ .................................................................................... ..........................................................................................

2 4 6 8

................................................................................................

9

METAL-FUSED-SALT 2.1. 2.2. 2.3. 2.4. 2.5.

3.

..................................................................................................................................

SYSTEMS

Sodium Metal-Sodium Halide Systems .................................................................... Halide Systems ........................................................ Potassium Metal-Potassium Rubidium Metal-Rubidium Halide Systems ............................................................ Cesium Metal-Cesium Halide Systems .................................................................. Alkali Metal-Alkali Metal Fluoride Systems ........................................................ SYSTEMS

................................................................................................................

........................................................................................................ The System LiF-NaF .......................................................................................................... The System LiF-KF ........................................................................................................ The System LiF-RbF The System LiF-CsF ........................................................................................................ ........................................................................................................ The System NaF-KF ...................................................................................................... The System NaF-RbF ........................................... ..- ......................................................... The System KF-RbF ................................................................................................ The System LiF-NaF-KF .............................................................................................. The System LiF-NaF-RbF ................................................................................................ The System LiF-KF-RbF .............................................................................................. The System NaF-KF-RbF a ................................................................................................ The System NaBF,-KBF .................................................................................................... The System NaF-FeF, ...................................................................................................... The System NaF-NiF, ..................................................................................................... The System RbF-CaF, * ............................................................................................ The System LiF-NaF-CaF ........................................................................................ The System NaF-MgF2-CaF, . 3 ............................................................................................. The System NaF-KF-AIF The System-LiF-BeFz ........ .............................................................................................. -.The~System NaF-BeF, .............. . ......... . .......................................................................... The System KF-BeF- 8 . ........ ..‘.............., -: .................................................................................. .. .................................................................................................... The System RbF-Be ..................................................................................................... The System’CsF-BeF* The SyJtem LiF-NaF?BeF, .................. ..~........................................................................ ~~.~.~.~...~.~.~...~...~.............~....................................................... The Syitem’LiF-RbFGBeFm The System .NaF-KF-BeF ,$ - ../ ............................................... ......................................... The System NaF-RbF-Be 2 ............................................ ..+ .......................................... ............... ..n ................................................................................. The Systems NaF-ZnF, .. ...................................................................................................... The System KF-ZnF, ................................ ..i............ ....................................................... .The-System RbF-ZnF, ........................................................................................................ The System LiF-YF, ” .................................................... . ................................................. The System LiF-ZrF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The System NaF-ZrF:

9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 36 38 40 42 44 46 47 48 49 50 51 52 54


, ,

The System KF-ZrF ........................................................................................................ The System RbF-ZrF, ...................................................................................................... The System CsF-ZrF ...................................................................................................... The System LiF-NaF-ZrF, ............................................................................................ The System NaF-KF-ZrF .............................................................................................. The System NaF-RbF-ZrF ............................................................................................ The System NaF-CrF2-ZrF, The Section NaF.CrF, ZrF, ................................ The System NaF-CeF,- ZrF .......................................................................................... The System LiF-CeF ...................................................................................................... The System NaF-HfF, ...................................................................................................... The System LiF-ThF ...................................................................................................... The System NaF-Th F4 .................................................................................................... The System KF-ThF, ...................................................................................................... The System RbF-ThF, .................................................................................................... The System BeF,-ThF, .................................................................................................. The System BeF,-UF, .................................................................................................... The System MgF,-ThF, .................................................................................................. The System LiF-BeF,- ThF .......................................................................................... 3.52. The System NaF-ZrF,- Th F, .......................................................................................... 3.53. The System LiF-UF ........................................................................................................ 3.54. The System LiF-UF ........................................................................................................ 3.55. The System NaF -UF, ...................................................................................................... 3.56. The System NaF-UF, ...................................................................................................... 3.57. The System KF-UF, ........................................................................................................ 3.58. The System RbF-UF, ...................................................................................................... 3.59. The System CsF-UF, ...................................................................................................... 3.60. The System ZrF,.UF, ...................................................................................................... 3.61. The System SnF,- U F, ...................................................................................................... 3.62. The System PbF, -UF, ...................................................................................................... 3.63. The System ThF4-UF, ...................................................................................................... 3.64. The System LiF-No F-UF, .............................................................................................. 3.65. The System LiF-KF-UF, ................................................................................................ 3.66. The System LiF-RbF-UF, .............................................................................................. 3.67. The System NaF-KF-UF, ................................................................................................ 3.68. The System NaF-RbF-UF, .............................................................................................. 3.69. The System LiF-BeF,-UF, ............................................................................................ 3.70. The System NaF-BeF,-UF, ............................................................................................ 3.71. The System NaF-PbF,-UF, ............................................................................................ 3.72. The System KF-PbF,-UF, .............................................................................................. 3.73. The System NaF-ZrF,-UF, ............................................................................................ 3.74. The System LiF-ThF,-UF, ............................................................................................ 3.75. The System NaF-ThF,-UF, The Section 2NaF.ThF4-2NaF*UF4 ........................ 3.76. The System LiF-PuF, ...................................................................................................... 3.77. The System LiCI-FeCI .................................................................................................... 3.78. The System KCI-FeCI, .................................................................................................... 3.79. The System NaCl-ZrCI .................................................................................................... 3.80. The System KCI-ZKI, ...................................................................................................... 3.81. The System LiCI-UCI ...................................................................................................... 3.82. The System LiCI-UCI ...................................................................................................... 3.83. The System NaCI-UCI, .................................................................................................... 3.84. The System NaCl-UCI, .................................................................................................... 3.34. 3.35. 3.36. 3.37. 3.38. 3.39. 3.40. 3.41. 3.42. 3.43. 3.44. 3.45. 3.46. 3.47. 3.48. 3.49. 3.50. 3.51.

,

, , ,

.

,

,

, ,

. ,

, , ,

iv

-

56 57 58 60 62

64 66 67 68 70 72 73 74 76 77 78 79 80 82 84 85

86 88 90 91 92 93 94 95 96 98 101 102 103 104 108 110 113 114 116 119 124 125 126

127 128 130 131 132 133 134

u


3.85. 3.86. 3.87. 3.88. 4.

OXIDE 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.

5.

The The The The

KCI-UCI ...................................................................................................... RbCI-UC1 3 .................................................................................................... CsCl+~l, .................................................................................................... K,CrF,-Na,CrF6-Li,CrF 6 ........................................................................

AND HYDROXIDE The The The The The The

AQUEOUS 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10.

System System System System

System System System System System System SYSTEMS

SYSTEMS

..........................................................................................

139

SiO,-ThO, .................................................................................................... LiOH-NaOH .................................................................................................. LiOH-KOH .................................................................................................... .................................................................................................... NaOH-KOH NaOH-RbOH .................................................................................................. Ba(OH)2-Sr(OH)2 ..........................................................................................

139 140 141 142 143 144

......................................................................................................................

145

The System UO,- P,O,-H,O, 25°C Isotherm ................................................................ The System UO -H,PO,-H20, 25°C Isotherm.. ............................................................ The System U$POd),-Cl,O,-H-0, 25oC Isotherm ...................................................... The System U0,-N~~O-C$‘-H2~,~260C Isotherm ...................................................... 25oC Isotherm.. ................................ Portions of the System ThOz-Na,O-CO,-H20, The System Na,O-CO -H,O, 25% Isotherm ................................................................ Solubility of Uranyl SuI fate in Water ................................................................................ Two-Liquid-Phase Region of UO,SO, in Ordinary and Heavy Water .......................... The System UO,-SO,-H 0 .............................................................................................. Coexistence Curves for 72wo Liquid Phases in the System UO SO -H SO -H 0 .................................................................................................... 5.11. Two-i!.iq:id-Aa& Rigion of the System UO SO -H SO -H 0 ................................ 2 4R*c2h Silutiks in 5.12. Two-Liquid-Phase Coexistence Curves for UO,I the System UO,-SO,-H,O With and Without HNO,. ................................................... 5.13. Solubility of UO, in H,SO,-Hz0 Mixtures .................................................................... 5.14. Effect of Excess H,SO, on the Phase Equilibria in Very Dilute UO,SO, Solutions .” ......................................................................................................... ............................ 5.15. Second-Liquid-Phase Temperatures of UO,SO,-Li,SO, Solutions 5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing Li,SO, or BeSO ............................................................................................................ Temperatures for BeSO, Solutions Containing UO, ................ 5.17. Second-Liquid-Phase 5.18. The-System NiSOi-UQ.$O,~H,O at 25°C .............. ..t ..................................................... -5.19 . . Phase-Transition Temperatures in Solu!ions Containing CuS04, 4....................~~...............~............................~ ...................................... UCJ,SO,, and H SO. 5.20. The Effect of Cu 5 O4 and tjiS04-on Phase-Transition Temperatures: .. 0.04 m uo S04;~0.01~m H2S04. ........................................................................................ O,-GO--NiO-SOj-D,O at 300°C; 0.06 m SO, .................................... -5.21. -The System b 5.22. S&$iIi~~of Nd,(SO,), iti 0.02 m U02s04 Solution Containing 0.005 m ................................................................................................... L...... -HiSO, (180-300%) .................................................................. -5.23; Sblubility Of Laz(S04)3,in UO,jSv, Sblutions 5.24, .‘SoIubility’of CdSO, in UO,SOa Solutions~ .... .................................................................. ............................... : ..................................... 5.25. Solubility of Cs SO ‘in oO$O Solutions .......... i.. ..................................................... 5.26 i Solubility of-Y &Ol in UO 56. Solutiqns ..................................................................... -5.27. Sofubility of-Ai2S(Jt $ U02&, !jolutiotis ........................................... 5.28. Solubility at 25ooC of B&O, in UO,SO,-H,O Solutions ........................................................ 5.29. Solubility of H,WO, in 0.126 and 1.26 M UO,SO, .................................................................. 5.30. Phase Stability of H,WO, in 1.26 M UO,F,

I

1

w

135 136 137 138

145 146 147 148 150 153 156 158 160

164 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 186

V

Ill

J


5.31. The System UO2 (NO ) -H 2 0............................................................................................ and HF in Stoichiometric Concentrations 5.32. Phase Equilibria of (Aqueous System).............................................................................................................. 5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions ............................ 5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 25OOC ...................................... 5.35. Solubility of UO, in H,PO, Solution .............................................................................. 5.36. The System U02Cr0,-H20 .............................................................................................. 5.37. Variation of Li2C0, Solubility with U02C0, Concentration at Constant CO Pressure (250%) ...................................................................................................... 5.38. The System Li 0-U0,-C02-H20 at 25OOC and 1500 psi ............................................ 5.39. The System ThfNO,),-H,O .............................................................................................. 5.40. Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions ._ ........................................................................................................... 5.41. The System Tho2-CrO,-H,O at 25째C ............................................................................ 5.42. Phase Stability of Tho2-H,PO,-H,O Solutions at High Concentrations of Tho...............................................................................................................................

bd,

vi

188 190 19 1 192 193 194 195 196 197 198 199 200


PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS INTRODUCTION This compilation presents the phase diagrams for possible materials for nuclear reactors developed a t the Oak Ridge National Laboratory over the period

1950-59.

It represents the

efforts of certain personnel i n what are now the Chemical Technology, Metallurgy, Chemistry, and

ORNL. This document also contains diagrams originated by other installations under contract to ORNL during that interval. In addition, a few diagrams from Reactor Chemistry Divisions of

the unclassified literature have been included when they form part of completed systems sequences.

No general discussion of the principles of heterogeneous phase equilibrium has been included since excellent discussions are available in many well-known publications.

Equilibria

i n several o f the fused-salt systems presented below have been described in some detail in a recent publication by Ricci.'

Nor has any attempt been made to assemble the phase equilibrium

data on reactor materials available from many other sources.

For such information the reader i s

referred to other recently published compilations of phase diagrams2'6 works dealing specifically with nuclear reactor

and to the several new

material^.^'^

While some of the diagrams presented below are the result of fundamental researches, most were obtained i n support of the

ORNL programs i n development of fluid-fueled reactors. Others

have been developed as a consequence of reactor metallurgy,

ORNL interests in reprocessing of nuclear fuels,

production of uranium and thorium from raw materials,

and studies of

mechanisms o f corrosion. Much of the research effort was devoted to searches for systems of direct use as fluid fuels

or blanket materials; unpromising systems were often given only casual attention. The diagrams i n this collection, accordingly, vary widely in the degree of completeness of examination.

A

brief description of the status of the work is presented in each case; in a few cases, where no hed, the available data have been included I

i

U

LI

c

I

U

*H. H. Hausner and S.

B. Roboff, Materials

/or Nuclear Power Reactors, Reinhold Publishing Corp.,

N e w York, 1955.

9B. Kopelman (ad.), Materials /or Nuclear Reactors, McGrow-Hill Book Co., New York, 1959.

I ~

1


1

1. M E T A L SYSTEMS

I

i i

1.1.

The System Silver-Zirconium

I

(4 J. 0. Betterton, Jr., and D. S. Easton, The Silver-Zirconium System," Trans. Met. SOC. AIME 212, 470-75 (1958). A detailed investigation was made of the phase diagram of silver-zirconium, particularly i n

1

the region

,

iI 1

0 to 36 at. % Ag.

phases, Zr,Ag

The system was found to be characterized by two intermediate

and ZrAg, and a eutectoid reaction in which the p-zirconium solid solution de-

composes into a-zirconium and Zr,Ag.

It was found that impurities in the range 0.05% from the

iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial removal o f these impurities an increase i n the a-phase solid solubility l i m i t from Ag was observed.

1

2

0.1 to 1.1 at. %


UNCLASSIFIED ORNL-LR-DWG 48989

870 860 850

Y

840

Y

800 Q

790

,. .

Q+Y

780

Fig.

1.1~.

O A V TWO PHASE

V

0

-

THREEPHASE FILLED SYMBOLS INDICATE METALLOGRAPHIC SAMPLES WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT-

The System Silwr-Zirconium

in

the Eutectoid Region (0-6

ot. 56 Ag).

iI

h'

I 35

Fig, 1.b. The System Silver-Zirconium in the Region 0-36 at. % Ag.

3

i


1.2. The System Indium-Zirconium J. 0. Betterton, Jr., and W. K. Noyce, "The Equilibrium Diagram of Indium-Zirconium i n the Region

0-26 at. pct In," Trans. Met. SOC. AIME 212, 340-42 (1958).

The zirconium-rich portion of the indium-zirconium phase diagram was determined as a study of the effect of alloying a trivalent B-subgroup element, indium, with zirconium in group

IVA.

The temperature of the allotropic transition was found to rise with indium, terminating i n a

/3(9.3% In)

peritectoid reaction,

+ d22.4%

In) e a ( 1 0 . 1 % In) at 1003OC.

In this respect the

effect of indium i s analogous to that of aluminum in zirconium and titanium alloys.

UNCLASSIRED ORNL-LR-DWG (8987

4300

(200

4fOO

-

4000

V

W LL

3

900

[II

W

a

5

I-

800

700

600

500

0

2

4

8

6

40

f2

INDIUM (at. X) Fig. at. 96 In).

4

1.L. The

System Indium-Zirconium

in

the Peritectoid Region (0-13

14

c B JI


UNCLASSIFIED ORNL-LR-MNG (8983

1400

1300

1200

!400 e,

900

800

7

1

9

Region (0-6 at. %

Sb).


1.4. The System Lead-Zirconium G. D. Kneip, Jr., and J. 0. Betterton, Jr., cited by "Zirconium Equilibrium Diagrams," p and

F.

443-83

in

E. T.

Hayes and

W. L.

(3 Brien,

Tbe Metallurgy of Zirconium, ed. by B. Lustman

Kerze, Jr., McGraw-Hill Book Co., New York,

1955.

UNCLASSIFIED ORNL-LR-DWG 1375

c D P+Y m m

W

Lz

3

Q

900

I

B

[L

W

a

r

W

I-

800

"0

L

- 0

SINGLE PHASE TWO PHASE A THREE PHASE 8

600

0

2

4

6

8

10

'2

LEAD (at. 'lo)

Fig. 1.4. at. 96 Pb).

The System Lead-Zirconium i n the Paritcctoid Region (0-12

B D L

n tl

u 8


!

i

L hi u

u L

-

2. ME TAL F USE D-SAL T SYSTEMS

2.1. The Sodium Metal-Sodium Halide Systems M. A. Bredig and J. E. Sutherland, "High-Temperature Region of the Sodium-Sodium Halide Systems," Chem. A m Prog. Rep. June 20, 19j7, ORNL-2386, Q 119. Subsequent report on these systems to

be published. UNCLASSI FlED ORNL-LR-WG. 21894A

t MOLE FRACTION MX

t MOLE FRACTION MX .9 .8 .7 .6 .5 A .3 .2 .4

'

1200

COOLING'CURVESTHIS WOI

' 0

4 200

x EQUILIBRATION, M'~B,JWJ,W

A EQUILIBRATION, HRB, MB

(100

+IO0 I

\?

1000 "c

4000

TWO LIQUIDS

OC

900

900 I

, .

:L

800

- "

I

-

-

795"

"

SOLID SALT+ LIQUID METAL

70C

800

700 600

60C

ONE LIQUID

Fig. 2.1.

@

ONE LIQUID

T h e Sodium Metal-Sodium Halide Systems.

44400


9 2.2.

k

The Potassium Metal-Potassium Halide Systems

J. W. Johnson and M. A. Bredig, "Miscibility of Metals with Salts in the Molten State. 111. The Potassium-Potassium Halide Systems," J . Phys. Chem 62, 604 (1958).

u

KX-K systems, X = F, CI, Br, and I, at and above 904, 790, 727, and 717OC, that is, as close as +47, +18, -7, and +22q respectively, Complete m i s c i b i l i t y of metal and salt exists i n the

to the melting points of the salts.

The asymmetry of the liquid-liquid coexistence areas,

especially of the fluoride and chloride systems, as indicated by the consolute compositions

(20, 39, 44, and 50 mole % metal, respectively), i s largely explained by the difference in molar

At the monotectic temperature, the solubility of the solid salts i n the liquid metal, as well as of the metal i n the liquid salt phase, is much larger than i n the case of

volumes of salt and metal.

the sodium systems.

UNCLASSIFIED ORNL-LR-DWG. 214

AND SAMPLINC

900

850

I

800 OC

c L

mole % K Fig. 22 The Potassium Metal-Potassium

10

Halide Systems.


4

u

IJ

2.3. The Rubidium Metal-Rubidium Halide Systems M. A. Bredig and J. W. Johnson, “Rubidium-Rubidium Halide Systems,” Cbem. Ann. Prog. Rep. lune 20, 1957, ORNL-2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, “Molten Salt-Metal Solutions. Phase Equilibria,’’ Cbem. Ann. Prog. Rep. June 20, 1958, ORNL-2584, p 73. Subsequent report on these systems to be published.

UNCLASSIFIED

-

OR NL- LR DWG. 32909A

800 -

‘u

790O

I

I

I

50

75

750

\

706O

700

“C

650

li

600

25

Systems.


2.4.

The Cesium Metal-Cesium Halide Systems

M. A. Bredig, H. R. Bronstein, and W. T. Smith, Jr., "Miscibility of L i q u i d Metals with Salts. II. The Potassium-Potassium Fluoride and Cesium-Cesium Halide Systems," 1. Am. Chem. SOC. 77, 1454 (1955). M i s c i b i l i t y i n a l l proportions of cesium metal with cesium halides a t and above the melting points of the pure salts, and of potassium metal with potassium fluoride 50'above point of the salt, occurs,

the melting

The temperature-concentration range of coexistence of two liquid

phases decreases i n going from sodium to potassium systems and disappears altogether for the cesium systems.

The solubility of the solid halides in the corresponding liquid alkali metals,

a t a given temperature, increases greatly with increase of atomic number of the metal. UNCLASSIFIED ORNL-LR-DWG. 37044

700

650

600

"G 550

500

4500

25

Fig.

12

24.

50 MOLE 2', METAL

T h e Cesium Metal-Cesium

75

Halide Systems.

100


i

k

II I

2.5.

The Alkali Metal-Alkali Metal Fluoride Systems

J. E. Sutherland, and A. S. Dworkin, "Molten Salt-Metal Solutions. Phase Equilibria," Chem Ann. Prog. Rep. June 20, 19S8, ORNL-2584, p 73.

M. A.

Bredig,

UNCLASSIFIED 0RNL- LR - DWG. 31067A

1300

1200

1100

1000

"C 900 Ii

b i

i

3 MOLE % METAL Fig. 2.5.

The Alkali Metal-Alkali Metal Fluoride Systems.

13


3. FUSED-SALT SYSTEMS

3.1. The System LiF-NaF A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. tend. acad. sci. U.R.S.S. 31, 753-54 (1941). The system LiF-NaF contains a single eutectic at 60 LiF-40 NaF (mole %), m.p. 652T.

UNCLASSIFIED ORNL-LR-DWG 20457

NoF (mole%)

Fig. 3.1.

14

The System LiF-NaF.


3.2. The System LiF-KF A. G. Bergman and

E. P.

Dergunov, “Fusion

Diagram of LiF-KF-NaF,”

Cornpt. rend. acad.

sci. U.R.S.S. 31, 753-54 (1941).

The system LiF-KF contains a single eutectic

at

50 LiF-50 K F (mole %), m.p. 492%.


s

3.3. The System LiF-RbF

C. J. Barton, T. N. McVay, L. the Oak Ridge National Laboratory,

M. Bratcher,

and W.

R. Grimes,

unpublished work performed at

1951-54.

Preliminary diagram.

c

Invariant Equilibria

Mole % LiF in Liquid

Invariant Temperature

Phase Reaction

Type of Equilibrium

at Invariant Temperature

(Oc)

44

470

Eutectic

L e R b F + LiF-RbF

47

475

Peritact iE

L

General characteristics of the system have been reported by

+ LiF *LiF*RbF

E. P. Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

UNCLASSIFIED ORNL-LR-DWG

900

800

700 c

0 0

W

(L

$

600

E W

a

5I500

400

300 LiF (mole % )

Fig. 3.3. The System LiF-RbF.

16

L E

1614

E L


3.4. The System LiF-CsF C. J. Barton, L. M. Bratcher, T. N. McVoy, and W. R, Grimes, unpublished work performed at the Oak Ridge National Laboratory,

1952-54.

Preliminary diagram.

Invariant Equilibria

Invor iant Mole % C s F in Liquid

Temperoture

55

495 f 5

63

475

Type of Equilibrium

PC,

f5

Phase Reaction at Invariant Tomperature

e

Peritectic

LiF + L

Eutectic

L e L i F * C s F+ CsF

LiF-CsF

UNCLASSIFIED ORNL-LR-DWG 14632

I

900

800

700

7

600

500

-

I

400

80

CsF

90

17


w 3.5. The System NaF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,”

Compt. tend. acad.

sci. U.R.S.S. 31, 753-54 (1941).

The system NaF-KF contains

a

single eutectic at 40 NaF-60 K F (mole %), m.p. 71093.

UNCLASSIFED ORNL-LR-DWG 354l

(000

.so0

-

800

L u

m

W

2

700

(L

%!

3

t

600

500

400 L

40

20

40

30

Fig.

3.5.

50 KF(mole%)

60

70

80

.

90

KF

The System NoF-KF.

U


3.6.

The System NaF-RbF

C. J.

Barton,

J. P.

Blakely,

L. M. Bratcher, and W.

at the Oak Ridge National Laboratory, Preliminary diagram. (mole %), m.p.

R. Grimes,

unpublished work performed

1951.

The system NaF-RbF

contains a single eutectic at

27

NaF-73

RbF

675 f 10T.

General characteristics of the system have been reported by

E. P.

Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

4000

UNCLASSIFIED ORNL-LR-DWG 357tI

950

900

V

e 850 k!3

i42

800

750

19


3.7. The System KF-RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 KF72 RbF (mole %), m.p. 770 f 1OT.

UlCLASSlFlEO ORNL-LR-OW& 35406

‘Oo0L 900

I) L

TOO W II:

a IW

6oo so0

.--

cL

ann KF

40

20

30

40

50

60

RbF (mole %I

Fig. 3.7.

20

The System KF-RbF.

70

80

90

F


3.8. The System LiF-NaF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,”

Compt. rend. acad.

31, 753-54 (1941). The system LiF-NaF-KF contains a $ingle eutectic at 46.5 LiF-11.5 (mole %), m.p. 454%.

S C ~ . U.R.S.S.

NaF-42.0

KF

UNCLASSIFIED ORNL-LR-DWG 1199A

NoF

990

TEMPERATURE IN

OC

COMPOSITION IN mole %

6’

U

Li F 845

21


3.9. The System LiF-NaF-RbF C. J. Barton, L. M. Bratcher, J. P. Blakely, at the Oak Ridge National Laboratory, 1951. Preliminary diagram. NaF-52

and

The system LiF-NaF-RbF

W. R. Grimes, uipublished work performed contains a single eutectic at

42 LiF-6

RbF (mole %), m.p. 430 f 10°C. The composition and temperature of the ternary peri-

tectic point have not yet been determined. General characteristics of the system have been reported by

E. P.

Dergunov, “Fusion Dia-

grams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947). Dergunov l i s t s the composition and temperature of the ternary eutectic as

46.5 LiF-6.5 NaF-47 RbF (mole %), m.p. 426°C.

UNCLASSIFIED 1200A ORNL-LR-DWG

RbF TEMPERATURE IN O C COMPOSITION IN mole V0

22


:L ! i

4 !

!

3.10.

The System

LiF-KF-RbF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

1951. Preliminary diagram. The system LiF-KF-RbF KF-27.5 RbF (mole %), m.p. 440 f 10%.

at the Oak Ridge National Laboratory,

contains a single eutectic at 40

General characteristics of the system have been reported by

E.

LiF-32.5

P. Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,” I I

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

RbF 795

UNCLASSIFIED ORNL-LR-DWG 35479

LiF 845

23


3.11. The System NaF-KF-RbF C. J. Barton, L. M. Bratcher, J . P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, Preliminary diagram.

1951.

The system NaF-KF-RbF

contains a single eutectic at

21 NaF-5

KF-74 RbF (mole %), m.p. 621 f 1 K .

RbF

795

T E M P E R A T U R E ("C) COMPOSITION (mole 7'0)

Fig. 3.11.

24

The System NaF-KF-RbF.

UNCLASSIFIED ORNL-LR-DWG 35482


3.12. The System NaBF,-KBF, R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957. Preliminary diagram.

The system NaBF,-KBF,

12 KBF, (mole %), m.p. 355%.

contains a single eutectic at

88 NaBF,-

The dotted line was obtained from thermal effects representing

incompletely understood sol id-phase transformations of

KBF, and NaBF,.


3.13. The System NaF-FeF,

H. A.

R. E. Thoma,

Friedman,

B. S. Landau, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory,

1957.

Preliminary diagram.

Invariant Equilibria

e:

.

Invariant

Phase Reaction

Mole % F e F 2 in Liquid

Temperature

30

680

Eutectic

, ! ,

50

783

Congruent melting point

L

63

745

Eutectic

Type of Equilibrium

a t Invariant Temperature

(OC)

e

NaF

-

e

c

+ NaF-FeF2

NaF*FeF2

,!, 2 N a F * F e F 2

+ FeF2

UNCLASSIFIED ORNL-LR-DWG 22345

r!

1 1 i NoF

40

20

c c

I

30

40

50

60

FeF2 (mole %)

Fig. 3.13.

26

T h e System N a F - F e F T

70

80

90

Fe F2

il


U

L u u

3.14. The System Naf-NiF, R. E. Thoma, H. A. Friedman, 8. S. Landau, and W. at the Oak Ridge National Laboratory, 1957.

R. Grimes,

unpublished work performed

1

Preliminary diagram.

Invariant Equilibria Invariant

Mole % NiF2

IJ ti

in Liquid

(W

23

795

50 57

Phase Reaction

Type of Equilibrium

Temperature

at Invariant Temperature

i

Eutectic

L

e

NaF

1045

Congruent melting point

L

e

NaF*NiF2

1040

Eutectic

L

4 N a F * N i F 2 + NiFZ

+ NaF*NiF2

UNCLASSIFIED ORNL-LR-OWG 22344

4300

4 200

1100

c I;

27


3.15. The System R b F X a F ,

C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,

1956.

Preliminary diagram. Invariant Equilibria Invariant

Mole % C o F 2 i n Liquid

Temperature

a t Invariant Temperature

(OC)

eRbF +

Eutectic

L

1110

Congruent melting point

L

1090

Eutectic

L e R b F * C a F 2 + CaF2

9

760

50

57

Fig.

28

Phase Reaction

Type of Equilibrium

315. T h e System RbF-CaFr

RbF*CaF2

RbF*CaF2


3.16. The System LiF-NaF-CaF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. The system LiF-NaF-CaF, contains a single eutectic at 53 LiF36 NaF-11 CaF, (mole %), m.p. 616%

bi

UNCLASSIFIED ORNL-LR-DWG 4277BR

I

LiF 845

i,

NoF '990

u 29


3.17. The System NaF-MgF2-CaF, C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. invariant Equilibria Composition of Liquid (mole %)

Temperature (OC)

Type of Equilibrium

a t invariant Temperature

Solids Present

NaF

CaF2

MgF2

65

23

12

745

Eutectic

NaF, NaF*MgF2, and CaF2

35

28

37

905

Eutectic

CaF2, MgF2, and NaF*MgF2

UNCLASSIFIED ORNL-LR-DWG 475751

CaF2 4448

COMPOSITION IN mole % TEMPERATURE IN OC

A

NaF 990

830

NaF.MgF2

990

4030

Fig. 317a. The System NaF-MgF2-CaFr

30


The minimum temperature along the quasi-binary section NaF-MgF,-CaF,

occurs at the

composition 36 NaF-36 MgF,-28 CaF, (mole %), at 910째C. The existence of the compound Nai-MgF, was previously reported by A. G. Bergman and

E. P. Dergunov, Compt. tend. acad. sci. U.R.S.S. 31, 755 (1941). Ternary systems of alkali fluorides with MgF, have been reported by Bergman et al. as follows: the system LiF-NaF-MgF, by A, G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 31, 755 (1941); the system LiF-KF-MgF, by A. G. Bergman and S. P. Parlenko, Compt. tend. acad. sci. U.R.S.S. 31,818-19 (1941); the system NaF-KF-MgF, by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 48, 330 (1945).

NoMgF3

10

20

30

40

50

60

70

80

90 CaF2

CoF2 (mole XI

u

31


3.18.

The System NaF-KF-AIF,

C. J. Barton, L..M. Bratcher, and W. R. Grimes, unpublished work performed a t the Oak Ridge National Laboratory, 1951-52. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships occurring within the system NaF-KF-AIF,. reported for the AIF, binary systems, NaF-AIF,

Phase diagrams have been

[P. P. Fediotieff and W. P. Iliinsky, Z. nnorg.

Chem. 80, 121 (1913);also N. A. Pushin and A. V. Baskow, ibid. 81, 350 (1913)l ahd KF-AIF,

[P. P. Fediotieff and K. Timofeef, Z. anorg.

u. allgem. Cbern.

206, 265 (1932)l.

UNCLASSIFIED OWG. I7406

SNaF

Fig. 3.18.

32

The System NaF-KF-AI

F,.


3.19.

The System L i F - B e F 2

This phase diagram is a composite from several published sources’-’

and from unpublished

(R. E. Moore, C. J. Barton, R. E. Thoma, and T. N. McVay) and at the Mound Laboratory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones, and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal data derived at the Oak Ridge National Laboratory

analysis data (Mound Laboratory) have served t o corroborate this composite diagram. Invariant Equilibria

% BeF2

Invariant Temperature

i n Liquid

i

IJ li

ec)

Phase Reaction

Type of Equilibrium

at Invariant Temperature

33.5*

454

Per itecti c

L

+ LiF e2LiF*BeF2

52

355

Eutectic

L

2LiF*BeF2 + BeF,

280

Upper temperature of stability for LiFoBeF,

2LiF*BeF2

+ BeF2

LiF*BeF2

*Ref 3. Roy, Roy, and Osborn have reported the presence of the compound L i F * 2 B e F 2 i n the system LiF-BeF,

although neither the Mound Laboratory nor the

ORNL data have indicated the exist-

ence of this compound. ‘D. M. Roy, R. Roy, and E. F. Osborn, J . Am. Ceram SOC. 37, 300 (1954). ,A.

V. Novosclovb, Yu. P. Simanav, and E. 1. Yarembash, J. Phys. Chem (U.S.S.R.) 26, 1244 (1952).

’John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. thesis, University of Michigan, May 29, 1952. UNCLASSIFIED ORNL-IR-DIG 464261

1 I

j

!

I

j i

i

I

I

I i

1 j

i I

Fig, 319. The System LiF-BeFr

33


3.20.

The System NaF-BeF, D. M. Roy, R. Roy, and E. F. Osborn, "Fluoride Model Systems:

BeF, and the Polymorphism of Na,BeF,

and BeF,,"

Ill. The System NaFJ. Am. Ceram. SOC. 36, 185 (1953).

Invariant Equilibria* Invariant

?6 BeF2 in Liquid

Temperature

Phose Reaction

Type of Equilibrium

a t Invariant Temperature

PC,

e NoF + a-2NaF*BeF2

31

570

Eutectic

L

33.3

600

Congruent melting point

L

-

320

Inversion

-

225

Inversion

43

340

Eutectic

L

50

376 & 5

Congruent melting point

L @ P'-NaF*BeF,

55

365

Eutectic

L

u-2NaF*BeF2

+a-2NaF*BeF2 +PNoF*BeF2

eP'-NaF.BeF2

*Roy, Roy, and Osborn did not l i s t invoriant equilibria; those shown ore work and from experiments performed a t the Oak Ridge National Laboratory.

34

estimates

+ BeF,

made from the reportec


iIi

u

E,: BeF2 (mole 'A)

Fig.

3.20. The

System NoF-BeFy

35


3.21. The System KF-BeF2 R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes,

R.

Laboratory,

E. Meadows,

and

L. A. Harris, unpublished work performed at the Oak Ridge National

1955-56.

Preliminary diagram. Invariant Equilibria

Mole % BeF, In Liquid

Invariant Temperature

a t Invariant

(OC)

19

720

Eutectic

L

K F + 3KF-BeF2

25

740

Congruent melting point

L

3KF*BeF2

27

730

Eutectic

L

3KF*BeF2+ a-2KF-BeF2

33.3

787

Congruent

L

a-2KF-BeF2

-

685

Inversion

a-2KF.BeF2

52

390

Peritectic

P-2KF*BeF2+ L

59

330

Eutectic

L

66.7

358

Congruent melting point

L

-

334

Inversion

a-KF*2BeF2 +P-KF.2BeF2

72.5

323

Eutectic

L

This system has been reported by

V. 1. Chernikh, and

E. I .

melting point

$ ,&2KF-BeF2 KF-BeF,

KF*BeF2+P-KF*2BeF2

+

a-KF*2%eF2

P-KF*2BeF2 + BeF2

M. P. Borzenkova, A. V. Novoselova, Yu.

Yarembash, “Thermal and X-Ray Analysis of the KF-BeF,

Zhur. Neorg. Khirn. 1, 2071-82 (1956).

36

Phase Reaction Temperature

Type of Equilibrium

P. Simanov, System,”


u U

UNCLASSIFIED ORNL-LR-DWG 47574R

800

700

e 600 W

5 Ia

K W

a W

500

I-

400

300

200 KF

40

20

30

40

50 8eF2 (mole

Fig. 3.21.

60

70

80

90

BeF,

%I

The System KF-BcFp.

37


!

i i

, I

1

3.22. i

The System RbF-BeF,

R. E. Moore, C. Grimes, and

i

i

R.

J.

Barton,

E. Meadows,

L. M.

Bratcher,

T. N. McVay, G. D. White, R. J. Sheil, W. R.

unpublished work performed at the Oak Ridge National Laboratory,

1955-56. Preliminary diagram.

i

i

Invariant Equilibria

Mole % BeF2 in Liquid

Invariant Temperature

Phose Reaction Temperature

Type of Equilibrium

a t Invariant

(-1

RbF + 3RbF-BeF2

16

675

Eutectic

L

25

725

Congruent melting point

L

27

720

Eutectic

L e 3 R b F * B e F 2 + 2RbF*BeF2

33.3

800

Congruent melting point

L +2RbF*BeF2

50.5

442

Peritectic

L

+ 2RbF*BeF2 +RbF-BeF2

61

383

Eutectic

L

eRbF*BeF2+ RbF*2BeF2

66.7

464

Congruent melting point

L

81

397

Eutectic

L

e3RbF*BeF2

RbF*2BeF2

e

RbF*2BeF2+ BeF2

This system has also been reported by R. G. Grebenshchikov, "Investigation of the Phase Diagram of the RbF-BeF, System and of I t s Relationship t o the BaO-SiO, System," Doklady Akad. Nauk S.S.S.R. 114,316 (1957).

38

c


Fig. X 2 2

The

System

RbF-BcFy

39


3.23. The System CsF-BeF, 0. N. Breusov, A. V. Novoselova, and Yu. P. Simanov, "Thermal and X-Ray Phase Analysis of the System CsF-BeF,

and Its Interrelationships with MeF and BeF, Systems,"

u!I

Doklady

Akad. Nauk S.S.S.R. 118, 935-37 (1958).

Invariant Equilibria Invariant

Phase Reaction Temperature

Mole % BeF2 in Liquid

Temperature

14

598

Eutectic

L

23.5

659

Peritectic

a-2Csf*BeF2 + L ---)r a-3CsF*BeF2

-

617

Inversion

a-3CsF-BeF2

33.3

793

Congruent melting point

L

-

404

Inversion

a-2CsF.BeF2

48

449

Eutectic

L $ a-2CsF*BeF2 + a-CsF*BeF2

50

475

Congruent

360

Inversion

a-CsF-BeF,

140

Inversion

P-CsF*B=F2

58.4

393

Eutectic

L

& a-CsF*BeF2 + P-CsF-2BeF2

66.7

480

Congruent melting paint

L

+a-CsF*2BeF2

-

450

Inversion

a-CsF.2BeF2

77.5

367

Eutectic

L

-

Type of Equilibrium

a t Invariant

(Oc)

melting point

L

e CsF +P-3CsF*BeF2 P-3CsF*BeF2

& a-2CsF*BeF2 p-2CsF.BsF2

a-CsF.BeF2

---\ ,&CsF-BeF2 y-CsF-BeF2

P-CsF*2B;F2

& P-CsF*2BeF2+ BeF2

G

6

40

li


UNCLASSIFIED ORNL-LR-DWG 35484

900

800

700

400

300

200

400 CsF

u

40

20

30

40

50

60

10

80

90

BeFz

BeF2 (mole 70)

Fig.

323. t h e System CsF-BeF,

41


I

3.24.

The System LiF-NaF-BeF,

T. N.

R. E. Moore, C. J. Barton, W. R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, McVay, and

L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory,

1951-58. Preliminary diagram. lnvariant EquiIibria* Composition of Liquid (mole %)

Invariant

Temperature

Solids Present Point

Type of Equilibrium

a t Invariant

LiF

NaF

BeF2

!*I

15

58

27

480

Eutectic

NaF, LiF, and 2NaF*BeF2

23

41

36

328

Eutectic

LiF,'2NaF*BeF2, and 2NaF*LiF*2BeF2

20

40

40

355

Congruent melting point

2NoF-LiF*2BeF2

5

53

42

318

Eutectic

NaF.BeF2, 2NaF-BeF2, and 2NaF*LiF*2BeF2

31.5

31

37.5

315

Eutectic

2LiF*BeF2, LiF, and 2NaFoLi F*2BeF2

~

i

*Invariant

equilibria shown in the phase diagram by the intersections of dotted-line boundary curves

hove not been determined with sufficient precision to be listed in the table.

Minimum Temperature on Alkcmade Lines ~

I

,

Composition of Liquid (mole %)

I ~

I

Temperature

Alkemade Line

BeF2

(*I

56

28

485

26

37

37

340

11

44

45

332

Na F*BeF2-2Na F - L iF-2BeF2

16

45

39

343

2NaF*BeF2-2NaF*LiF*2BeF2

30.5

31

38.5

316

2LiF*BeF2-2NaF*LiF*2BeF2

LIF

NaF

16

I

1 I 1

2NaF.BeF2-LiF 2NaF*LiF*2BeF2-Li F

Phase relationships of two of the ternary compounds i n this system have been reported by

W.

John

P'Sil icate

Z. anorg.

Models.

u. allgem. Chem.

V. NaLi(BeF,),

a Model Substance for Monticellite, CaMg(Si0,):"

276, 113-27 (1954);

Compound i n the Ternary System NaF-LiF-BeF,,

Z. anorg. u. allgem. Chem. 277, 274-86 (195411.

''Silicate Models.

VI.

No,Li(BeF,),,

and I t s Relation t o Merwinite;

a New

CO~M~(S~O~)~,''


UNCLASSIFIEO ORNL-LR-OWG 164241

BeF2 542

DOTTED LINES REPRESENT INCOMPLETELY DEFINED PHASE BOUNDARIES AND ALKEMADE LINES

TEMPERATURE ('C) COMPOSITION (mole 70)

f

I;;

u Fig. 3.24.

The System LIF-NaF-BeFr

43


c

3.25. The System LiF-RbF-BeF, T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished

s

work performed at the Mound Laboratory. Preliminary diagram.

Invariant Equilibria and Singular Points Composition of Liquid (mole 95)

Temperature

(Oc)

Type of EquiIibr ium

LiF

RbF

BeF2

40.0

20.0

40.0

485 f 5

Congruent melting point

33.3

33.3

33.3

544 f 5

Incongruent melting point of LiF-RbF*BeF2

33.0

8.0

59.0

295

26.0

12.0

62.0

305-320

12.0

29.0

59.0

334

f5

f5

Solid Phases Present

G E

2LiF*RbF*2BeF2

Eutectic

2 L i F*BeF2, 2Li F-RbF.2Be F2, and Be F2

Peritectic

2L iF*RbF*2BeF2, RbF-2Be F2, and Be F2

Quasi-binary

2LiF*RbF*2BeF2 and RbF*2BeF2

eutectic

34.0

55.0

300 f 5

Eutectic

2LiF.RbF*2BeF2, RbF*BeF2, and RbF*2BeF2

11.5 . 35.5

53.0

335 f 5

Per itectic

2LiF*RbF*2Be F2, LiF*RbF*BeF2, and RbF-BeF

9.0

40.0

51.0

380 f 5

Peritectic

LiF*RbF-BeF2, 2RbF*BeFZ. and RbF*BeF2

50.0

8.0

42.0

426 f 5

Peritectic

LiF, 2LiF.RbF.2BeF2,

41.5

19.5

39.0

473

Quasi-binary

L i F and 2LiF*RbF*2BeF2

11.0

f5

and 2LiF*BeF2

eutectic

35.0

25.5

39.5

470

f5

Per itectic

L iF, 2L iF-RbF.2Be F2, and L iF-RbF-BeF2

23.0

40.0

37.0

530 f 5

Peritectic

LiF, 2RbF*BeF2, and LiF*RbF.BeF2

30.0

35.0

35.0

544 f 5

Maximum on the boundary

L i F and LiF*RbF*BeF2

41.0

39.5

19.5

640 f 5

Quas i-binary eutect ic

L i F and 2RbF*BeF2

43.0

50.0

7.0

527 f 5

Peritectic

LiF, 3RbF*BeF2, and 2RbF*BeF2

43.0

54.0

3.0

470

f5

Per itect i c

LiF, LiF-RbF, and 3RbF*BeF2

43.0

55.0

2.0

462 f 5

Eutect i c

LiF-RbF, RbF, and 3RbF*BeF2

L;

L

u 44


UNCLASSIFIED ORNL-LR-DWG 30413

TEMPERATURE O C COMPOSITION mole %

LiF

u

LiRbF, p E

RbF

Fig. 325. The System LiF-RbF-BeFr

E

45


3.26. The System NaF=KF-BeF,

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, and Vi. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952-55. Prel iminary diagram.

Phase relationships within the system NaF-KF-BeF,

hava not yet

become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.

UNCLASSIFIED ORNL-LR-DWG 38414

Be F.

TEMPERATURE I N O C COMPOSITION IN mole 7�

NaF

KF

990

E-710

Fig.

46

3.26.

The System NaF-KF-BeFr

856


I

I! i

Lu

3.27. The System NaF-RbF-BeF2 R. E. Moore, C. J. Barton, L. M.

Bratcher, and W.

at the Oak Ridge National Laboratory,

1954-57.

R.

Grimes, unpublished work performed

Preliminary diagram. Invariant Equilibria and Singular Points Composition of Liquid (mole Sa)

Temperature Type of Equilibrium

ec,

Solids Present at Invariant Temperature

NaF

RbF

BeF2

20.5

68.5

11.0

610

Eutectic

RbF, NaF, and 3RbF*BeF2

50

37.5

12.5

640

Quasi-binary eutectic

3RbF*BeF2 and NaF

46

38

16

635

Eutectic

3RbF*BeF2, 2RbF*6eF2, and NaF

45

37

18

650

Quasi-binary eutectic

2RbF*BeF2 and NaF

37

33

30

570

Peritectic

2RbF*BeF2, NaF, and 2NaF*4RbF*3BeF2

52

15

33

477

Eutectic

2NaF*4RbF*3BeF2, NaF, and 2NoF*BeF2

33

33.7

33.3

580

Peritectic

2RbF-BeF2 and 2NaF-4RbF*3BeF2

51.7

15

33.3

480

Quos I-b inary eutect i c

2Na F 4 RbF*3BeF and 2Na F. BeF

UNCLASSIFIEO ORNL-LR-DWG 22343A2

BE BP CM IM TE TP

BINARY EUTECTIC BINARY PERlTECTlC CONGRUENT MELTING POINT INCONGRUENT MELTING POINT TERNARY EUTECTIC TERNARY PERITECTIC

TEMPERATURES ARE IN OC COMPOSITION IN mole 7 '.

BeF2 CM 543

A

BE

CM 786

CM 992

Fig. 327. The System NaF-RbF-BcF1

47


3.28. The System NaF-ZnF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952. Preliminary diagram. lnvar iant Equ iI ibr ia Invariant

Mole % Z n F 2 i n Liquid

Temperature

33

635

50

748 f 10

69

685

Phase Reaction

Type of Equilibrium

at Invariant Temperature

(OC)

e

+ NaF*ZnFp

Eutectic

L

Congruent melting point

L $ NaF-ZnF2

Eutectic

L

NaF

NaF*ZnF2

+ ZnF2

UNCLASStF DWG 14627

I

I

6oF

I

I

I

I

I

I

LN N

r;

5 00

z

Fig.

48

I

3.28,

The System N a F - Z n F y

r ci� L1


3.29.

The System C.

Ridge

J.

Barton,

National

breliminary

KF-ZnF, L.

M. Bratcher,

Laboratory,

and W. R. Grimes,

unpublished

work

performed

at the Oak

1952.

diagram.

Invariant

Equilibria

Invariant Mole

% ZnF2

Temperature

Type

of

Phase

Equilibrium ot

in Liquid

Reaction

Invariant

Temperature

PC)

21

670

Eutectic

L ~KF L + K F*ZnF

30

720

f

10

Peritactic

50

850

f

10

Congruent

80

740

f

5

Eutectic

melting

point

L

+ 2KF.ZnF2 2 e2KF*ZnF2

eKF*ZnF2

L ---\K

F*ZnF2

+ ZnF2

UNCLASSIFIED DWG (46261

I

‘300

KF

I 10

I

I

I

I

I

I

I

I

I

30

40

50

80

70

80

90

I20

Fig. 3.29.

The

System

I

ZtlF5!

KF-ZnF,

49

-_--_.

____


3.30. The System RbF-ZnF,

R.

C. J. Barton, L. M. Bratcher, and W. Ridge National Laboratory,

Grimes, unpublished work performed a t the Oak

1952.

Preliminary diagram.

Invariant Equilibria Invariant

Mole % ZnF2 in

Type of Equilibrium

Temperature

Liquid

at

Phase Reoction Invariant Temperature

21

595

f 10

Eutectic

32

620

f

Peritectic

eRbF + 2RbF*ZnF2 L + RbF*ZnF2 e2RbF*ZnF2

50

730

f 10

Congruent melting point

L

Eutectic

L $RbF*LnF2 + ZnF2

70

10

650

L

RbF-ZnF2

UNCLASSIFIED DWG (5349 R

1

I 900

800

V

W

a

3

5

700

a W

n

5 I-

600

c

LLN

N

N

500

LL

LL

n

n

LL

IY

N

400

RbF

40

20

40

30

50

60

ZnF2 (mole %)

Fig.

50

3.30.

The System RbF-ZnFT

70

80

90

ZnF2


a,

C. F. Weaver, and H. A. Friedman, unpublished work performed at the Oak

Invariant Equilibria

--Type of Equilibrium

Temperature

I,

at

Phase Reaction lnvoriant Temperature

Eutectic

L

e LiF + LiF*YF3

Peritectic

L+YF3eLiF*YF3

UNCLASSIFIEO ORNL-LR-DWG 38116

i400 BREWER. i 8 7 O

0

/

7

(300 RESULTS FROM THERMAL-GRADIENT QUENCHING EXPERIMENTS

(100

4000

LiF

20

30

Fig. 3.31.

40

50

60

YF3 (mole %)

70

80

90

yF3

The System LiF-YFo.

51


3.32. The System LiF-ZrF, R. E. Moore, F. F. Blankenship,

W. R.

H. A.

C. J. Barton, R. E. Thoma, and H. Insley, unpublished 'work performed at the Oak Ridge National Laboratory, 1951-56. Grimes,

Friedman,

Preliminary diagram.

Invariant Equilibria

Mole % ZrF, in Liquid

52

Invariant Temperature

Phase Reaction Temperature

T .. w e of Eauilibrium

at Invariant

(OC)

21

598

Eutectic

L

e L i F + a-3LiF*ZrF4

25

662

Congruent melting point

L

a-3LiF*ZrF4

-

475

Inversion

a.3LiF*ZrF4

---\ P 3 L i F * Z r F 4

470

Decomposition

/Ot3LiF*ZrF4

e L i F + 2LiF-ZrF,

29.5

570

Eutectic

L

a-3LiF*ZrF4 + 2LiF*ZrF4

33.3

596

Congruent melting point

L

2LiF*ZrF4

49

507

Eutectic

L

& 2LiF*ZrF4 + 3LiF*4ZrF4

51.5

520

Peritectic

L

+ ZrF, & 3LiF*4ZrF4

-

466

Decomposition

3LiF*4ZrF4

e 2LiF*ZrF4 + ZrF,

tl cl


UNCLASSIFIED ORNL-LR-DWG

l695t

900

L1

t

w I-

600

500

400

300

LIF

IO

20

30

Fig. 3.32.

40

50 ZrF, (mole%)

60

70

80

90

ZrF,

The System LiF-ZrF,.

53


3.33. The System NaF-ZrF, C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, “Phase Equilibria in thesystems NaF-ZrF,,

UF4-ZrF,,

and NaF-ZrF,-UF,,”

J. Phys. Chem. 62,665-76 (1958).

Invariant Equilibria _ _

lnvar iant .

Mole % z1F4 in Liquid

Temperature

Type of Equilibrium at

(“c,

Phase Reaction Invariant Temperature

20

747

Eutectic

L

eNaF + 3NaF-ZrF4

25

850

Congruent melting paint

L

3NaF*ZrF4*

-

523

lnvers ion

a-5NaF-2ZrF4 $ P-5NaF*2ZrF4

30.5

500

Eutectoid

a-5NaF*2ZrF4ss + 3/-2Na F*ZrF,

34

640

Per itectic

L

+ 3NaF.ZrF4(ss, cu. 27.5 Zr F), .& a 3 N a F.2Zr F4

39.5

544

Per itect ic

L

+ a-5NaF*2ZrF4(ss, 30 mole % ZrF4) $ a-2NaF*ZrF4

533

Inversion

a-2NaF*ZrF4 &P-2NaF*ZrF4

505

lnvers ion

P-2NaF*ZrF4

40.5

500

Eutectic

L *Y2NaF-ZrF4

46.2

525

Congruent melting point

L

e 7NaF-6ZrF4

49.5

512

Eutectic

L

e7NaF*6ZrF4 + 3NaF*4z1F4

56.5

537

Peritect i c

L

+ ZrF4

-

+

mole %

Y2NaF*ZrF4

+ 7NaF-6ZrF4ss

e3NaF*4ZrF4

*A determination of the crystal structure of 3NaF*ZrF4 has been reported by Structures of Na3ZrF7 and Na3HfF7,” Acta Cryst. 12, 172 (1959).

54

P-5NaF*2ZrF4

L. A. Harris, “The Crystal

E


UNCLASSIFIED ORNL-LR-OWG-22i05

f000

900

800

-u

0

700

W

E

3

5 i a w

2

600

W

+ 500

400

55


L f"

3.34. The System KF-ZrF, C. J. Barton, H. Insley, R. P.

Metcalf,

R. E. Thoma, and W. R. Grimes, unpublished work

performed at the Oak Ridge National Laboratory,

1951-55.

Gd

c

Prel iminary diagram. Invariant Equilibria

LI

Invariant

Mole % ZrF4 in Liquid

Temperature

Type of Equilibrium at

(OC)

Phase Reaction Invariant Temperature

14

765

Eutectic

L

e K F + 3KF*ZrF4

25

910

Congruent melting point

L

3KF*ZrF4

36

590

Peritectic

3KF*ZrF4 + L

40.5

412

Peritectic

2KF*ZrF4 + L

42

390

Eutectic

L

e 3KF*2ZrF4 + KF*ZrF4

50

475

Congruent melting point

L

e KF.ZrF4

55

440

Eutectic

L

& 2KF*ZrF4 3KF*2ZrF4

KF*ZrF4+ ZrF4

UNCLASSIFIED 48965 ORNL-LR-DWG

I000

900

000

0

0

w 700

a

3 + a

a W a

5I- 600 500

400

300 KF

10

20

30

40

50

60

ZrFg (mole Yo)

Fig. 3.34

56

The System KF-ZrF+

70

00

90

ZrG


a,

C. J. Barton, W. R, Grimes, H. Insley, B. S. Landau, and H. A.

erformed at the Oak Ridge National Laboratory, 1955-56.

Invariant Equilibria

Type of Equilibrium at

897

.

Phose Reaction Invariant Temperuture

Congruent melting point

L

3RbF*ZrF4

Per itectic

L

lnvers ion

u-2RbF*ZrF4

Lowered inversion

F4ss ~-2RbFaZr

+ 3RbF*ZrF4ss $a-2RbF*ZrF4

and decomposition L

P-2RbF*ZIF4

+P-2RbF*ZrF4ss

u-2RbF*ZrF4ss + 5RbF*4ZrF4

390

Eutectic

---\ 5RbF*4ZrF4 L & SRbF*4ZrF4 + P-RbF*ZrF4

L-

423

Congruent melting point

L $&-RbF*ZrF4

391

Inversion

a-RbF*frF4

L-

400

Eutact ic

L

Congruent melting point

L

P-RbF*ZrF4

+a-RbF*ZrF4 + RbF*2ZrF4

t L

57


I

3.36. The System CsF-ZrF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, Pre Iiminary

1952-53.

d iagram. 1

lnvariant Equilibria

Mole % ZrF4 in Liquid

58

Invariant Temperature

e)

Phase Reaction Temperature

Typc of Equilibrium

at lnvariant

L

CsF + 3CsF*ZrF,

L

3CsF*ZrF4

9

640

Eutectic

25

775

Congruent

35

520

Per itectic

L + 3CsF-ZrF4 f=! 2CsF*ZrF4

40

420

Eutectic

L

50

515

Congruent melting point

L

-

320

h e r s ion

a-Cs F-Zr F,

59

470

Eutectic

L

melting point

& 2CsF-ZrF, + a-CsF*ZrF4 a-CsF-ZrF, p-Cs F-ZrF,

a-CsF*ZrF4 + ZrF,


UNCLASSIFIED ORNL-LR-DWG 18963

Io00

T

900

800

-Y

700

z

W

a + 3 a a W

600

2 500

400

I

30C CsF

10

20

30

40

50

60

70

80

90

ZrF4

ZrF, (mole %)

Fig.

U

L36.

The System CsF-ZrF4.

59


3.37. The System

LiF-NaF-ZrF,

F. F. Blankenship, H. A. Friedman, H. Insley, R. work performed at the Oak Ridge National Laboratory,

E.

Thoma, and

W. R.

Grimes, unpublished

1953-59.

Pre I i m inary diagram.

lnvariant EquiI ibria Composition of Liquid (mole X)

Temperature

ec,

Type of lnvar iant

0 at

Solids Present Invariant Temperature

LiF

NaF

ZrF4

37

52

11

604

Eutectic

NaF, LiF, and 3NaF*ZrF4

55

22

23

590

Eutectic

a9LiF*ZrF4, 3NaF*ZrF4ss, and L i F

32

36

32

450

Peritectic

p-3L iF*ZrFa, 3Na F*ZrF4ss, and 2 L i F*ZrF4

31

35

34

448

Per itectic

3NaF*ZrF4, ~-5NaF-2ZrF4ss, and 2LiF-Zr F4

31

34.5

34.5

445

Per itectic

2Na F-Zr F ,,

26

37

37

425

Eutectic

2NaF*ZrF4, 7NaF*6ZrF4, and 2LiF.ZrF4

29

25.5

45.5

449

Eutectic

7NaF*6ZrF4, 3NaF*4ZrF4ss, and 2LiF*ZrF4

29

24.5

46.5

453

Per itect i c

3NaF*4ZrF4ss, 3LiF*4ZrF4ss, and 2LiF-ZrF4

28

24

48

475

Peritectic

3Na F-4Zr F4ss, 3L iF-4Zr F4ssl and Zr F4

60

a 4 N a F*2ZrF4ss, and 2 L i F-Zr F,

c


UNCLASSIFIED

ORNL-LR- DWG 38445

ZrF, 942

TEMPERATURE IN "C COMPOSITION IN mole %

&800+

-"HHlNDlCATES

SOLID SOLUTION

61


3.38. The System NaF-KF-ZrF, R. E. Thoma, C. J. Barton, H. Oak

performed at the

Insley,

H. A.

Ridge National Laboratory,

Friedman, and

W. R. Grimes, unpublished work

1951-55.

Preliminary diagram. Invariant Equilibria* Composition of Liquid

(mole %I** ZrF4

Invariant Temperature

Type of Equilibrium

Solids Present a t Invariant Point

ec I

NaF

KF

34

58

8

695

Eutectic

NaF, KF, and 3KF*ZrF4

45

38

17

720

Eutectic

NaF, 3KF*ZrF4, and 3NaF*3YF*2ZrF4

61

19

20

710

Eutectic

NaF, 3NaF-ZrF4, and 3NoF-3KF*2ZrF4

52

17

31

Peritectic

48

18

34

Peritectic

33

32

35

Per itectic

3NaF*ZrF4, 3NaF*3KF.2ZrF4, and NaF*KF*ZrF4 3NaF.ZrF4, Na F*KF*ZrF4, and 5NaF*2ZrF4 3NaF*3KF.2ZrF4, 3KF*ZrF4, and NaF*K F-ZrF4

12

51

37

Peritectic

3KF*ZrF4, 2KF-ZrF4, and NaF.KF.ZrF4

40

21

39

Peri t e c t i c

5NaF.ZZrF4, 2NaF*ZrF4, and NaF.KF.ZrF4

39

21

40

Peritectic

2NaF*ZrF4, 7NaF.6ZrF4, and NaF*KF-ZrF4

11

49

40

Peritectic

2KF*ZrF4, 3KF*2ZrF4, and NaF*KF*ZrF4

10

48

42

Eutectic

3KF*2ZrF4, KF*ZrF4, and NaF*KF*ZrF4

15

40

45

Eutectic

KF*ZrF4, NaF*KF.ZrF4, and 2NaF-3KF.5ZrF4

22

33

45

Peritectic

NaF.KF*ZrF4, 7NaF*6ZrF4, and 2Na F.3 KFa5Zr F4

25

25

50

Eutectic

7NaF*6ZrF4, 3NaF*4ZrF4, and 2NaF*3KF.5ZrF4

21

29

51

Eutectic

3NaF*4ZrF4, ZrF4, and 2Na F.3KF-5Zr F4

20

30

50

Congruent melting point

2Na F*3KF 4 Z r F4

385

432

*Three solid phases hove been observed routinely in the composition region 30-50 mole % ZrF4 which have not been identified as t o composition. Whether these exhibit primary phases at the liquidus surface has not yet been determined. **Compositions of invariant points shown by the intersection of dotted boundary curves are approximate.

62


UNCLASSIFIED

ORNL-LR-DWG 35480

ZrG 912

TEMPERATURE IN OC COMPOSITION IN mole%

A. ZNaF.3KF-5ZrG

E. NaF.KF.Zr5 C. 3NOF.3KF.ZZrF,

KF

856

for the temperatures 600, 650, and 7OO0C

itted in order not to obscure the phase

63


3.39. The System NaF-RbF-ZrF, R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-56. Preliminary diagram. Invariant Equi Iibrio Composition of Liquid

,

bole%)

NaF

RbF

23

Invariant Temperature

Type of Equilibrium

Solids Present a t Invariant Point

ZrF4

eC)

72

5

643

Eutectic

NaF, RbF, and 3RbF*ZrF4

50

27

23

720

Eutect i c

NaF, 3RbF*ZrF4, and 3NaF-ZrF4

37

32

31

605

Eutectic

3NaF*ZrF4, 3RbF*ZrF4, and NaF-RbF*ZrF4

39

26

35

545

Per itect i c

3NaF*ZrF4, 5NaF-2ZrF4, and NaF*RbF*ZrF4

36.3

24.2

39.5

427

Peritectic

5NaF*2ZrF4, PNaF-ZrF,, NaF*RbF*ZrF,

34.5

24

41.5

424

Peritectic

2NaF-ZrF4, NaF-RbF-ZrF,, 3NaF.3RbF.4ZrF4

34

23.5

42.5

422

Peritectic

2NaF*ZrF4, 7NaF*6ZrF4, and 3NaF.3RbF*4ZrF4

33

23.5

43.5

420

Eutectic

7NaF*6ZrF4, 3NaF*3RbF*4ZrF4, and NaF*RbF*2ZrF4

28.5

21.5

50

443

Eutectic

3NaF.4ZrF4, 7NaF.6ZrF4, and NaF*RbF*2ZrF4

28

21.5

50.5

446

Peritectic

3NaF*4ZrF4, ZrF4, and NaF*RbF*2ZrF4

23.5

39.5

37

470

Peritectic

NaF-RbF-ZrF,, 3RbF.ZrF4

21

40

39

438

Peritectic

NaF-RbF-ZrF,, 2RbF.ZrF4, and 3Na F*3RbF*4ZrF4

8

50

42

400

Eutectic

3NaF-3RbF-4ZrF4, 2RbF-ZrF4, and 5RbF*4ZrF4

8.5

47

44.5

395

Eutectic

3NaF*3RbF*4ZrF4, 5RbF*ZrF,, NaF-RbF-2ZrF4

6.2

45.8

48

380

Eutectic

NaF.RbF*2ZrF4, 5RbF*4ZrF4, and RbF*ZrF4

5

42

53

398

Eutectic

NaF-RbF*2ZrF4, RbF*ZrF4, and RbFg2Zr F4

6.5

39

54.5

423

Per itact i c

ZrF4, NaF*RbF*2ZrF4, and RbF*2ZrF4

33.3

33.3

33.3

642

Congruent meltin point

NaF-RbF-ZrF4

25

25

50

462

Congruent melting point

NaF*RbF*2ZrF4

64

and and

2RbF*ZrF4, and

and


Minimum Temperatwes on Alkemade l i n e s

Composition of Liquid (mole %)

Temperature

Alkemade L i n e

Na F

RbF

Zr F4

e,

24.75

24.75

51.5

455

NaF*RbF*2ZrF4-Zr F4

6

44

50

402

NaF*RbF*2ZrF4-RbF*ZrF4

7.5

46.5

46

405

No F*RbF.2Zr F4-5Rb F.4Zr F4

8.5

48.5

43

405

3Na F*RbF*4ZrF4-5RbF*4Zr F4

213

28

44

435

3NaF*RbF*4ZrF4-Na F-RbF*2ZrF4

22

40

38

442

3NaF*3RbF*4ZrF4-2Rb F-Zr F4

29

41.5

49.5

450

No F-RbF-2Zr F4-7Na F-6Zr F,

37

24.5

38.5

610

NaF*RbF*ZrF4-3NaF*ZrF4

47

28

25

732

3NaF*ZrF4-3RbF*ZrF4

36

48

16

777

NaF-3RbF*ZrF4

30

36.7

33.3

598

NaF*RbF*ZrF4-3RbF*ZrF4

UNCLLSSIFIED

ORNL-LR-DWG 1696OA

ZrFq 940

Fig. 3.39. The System NaF-RbF-ZrFC

LW 65


3.40. The System NaF-CrF2-ZrF,: R. E. Thoma, H. A. Friedman,

The Section NaF-CrF,

B. S.

-

ZrF,

Landau, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram.

No invariant equilibria occur for compositions lying on the section

NaF-CrF,-ZrF,.

UNCLASSIFIED ORNL-LR-DWG (9367R

4000

900

800

c

0 W

a 3 $ 700

E

a

5

I-

600

E 500 NaF*CrF2+ ,9-NoF.CrF2. 2ZrF4

400 NaF-CrF2

$0

20

30

,9-NaF.CrF2.

40

50

60

ZrF4 (mole %)

Fig. 3.40.

66

The Section NaF*CrF2-ZrF+

70

2ZrF4 +ZrF4

80

90

ZrF4


3.41. The System NaF-CeF,-ZrF,

W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, “Solubility Relationships of Rare Earth Fluorides and Yttrium Fluoride in Various Molten NaF-ZrF,

and NaF-ZrF4-UF,

Solvents,” J . Chem. Eng. Data (in press). UNCLASSIFIED ORNL-LR-DWG 29164R

\

NoF (99OOC)

‘600°C

50 70

Fig. 3.41~. The S y s t e m NaF-CeF3-ZrFC UNCLASSIFIED ORNL-LR-DWG 2 9 4 6 5 R

PROBABLE NoF- ZrFq PRIMARY P H A S E FIELDS

2NaF. ZrFq

A

B 3NaF.4ZrF4 C 7NaF.6ZrFq

E

SNaF.2ZrFq F 3NaF+ZrF4

20 I\

Fig. 341b. The System NaF-CeFj-ZrF4 0-20 Mole 96 CeF3, 30-70 Mole X ZrFC

in the Region 30-70 Mole X NaF,

67


3.42. The System LiF-CeF,

C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. The system LiF-CeF, contains a single eutectic at 81 LiF-19 CeF, (mole %), m.p. 755 *5OC.

68


L

Fig. 3.42

The

System LiF-GFT

69


3.43. The System NaF-HfF, R. E. Thoma, C.

F. Weaver, T. N.

McVay,

H. A.

Friedman, and W.

R. Grimes, unpublished

work performed at the Oak Ridge National Laboratory, 1956-58. Preliminary diagram.

Invariant Equilibria

'

Invariant

Phase Reaction Invariant Temperature

MoleHfF4 in Liquid

Temperatwe

18.5

695

Eutectic

L

e NaF + 3NaF*HfF4

25

863

Congruent melting point

L

3NaF*HfF4*

34

606

Per itect i c

L

-

535

Inver s ion

U J N ~ F - P H ~ F ~ ,8-5NaF.2HfF4

35

586

Peritectic

L

Be low 350

lnvers ion

P-2NaF*HfF4

eY-2NaF*HfF4

Below 350

Inversion

')'-2NaF*HfF4

4 8-2NaF*HfF4

43

510

Eutectic

L

4 ,8-2NaF*HfF4 + 7NaF*6HfF4

45

53 1

Per itect ic

L

+ NaF-HfF,

50

557

Congruent melting point

L

$NaF-HfF,

53

535

Eutect ic

L

.$

-

Type of Equilibrium at

(-1

+ 3NaF*HfF4 +U - S N ~ F - P H ~ F ~ + aJNaF*2HfFq__I P-2NaF-HfF4

B

+7NaF*6HfF4

NaF-HfF,

+ HfF4 .

* A determination of the crystal structure of 3NaF*HfF4 has been reported by L. A. Harris, "The Crystal Structures of Na3ZrF7 and Na3HfF7," Acta Cryst. 12, 172 (1959).

U

70


UNCLASSIFIED ORNL-LR-DWG 35488

71


3.44. The System LiF-ThF,

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in

the Fused Salt Systems LiF-ThF,

and NaF-ThF,,"

J . Phys. Chem. 63, 1266-74 (1959).

Invariant Equilibria Invariant

Mole % ThF,

Temperature

Phase Reaction

Type of Equilibrium

at Invariant Temperatue

in Liquid -~

-

23

568

Eutectic

L

+ L i F + 3LiF*ThF4

25

573

Congruent melting point

L

e 3LiF*ThF4

29

565

Eutectic

L

+ 3LiF*ThF4+ 7LiF*6ThF4

30.5

597

Per itectic

LiF*2ThF4 + L

7LiF*6ThF4

42

762

Peritectic

LiF*4ThF4 + L

LiF-2ThF4

62

897

Per itectic

ThF4 + L

LiF*4ThF4

UNCLASSIFIED ORNL-LR-DWG 2 6 5 3 5 A

4450 1050

9 -

950

W

[ZI

2

850

W

a 750 2 W

I-

650

550 450 LiF

40

20

30

40

50

60

ThG (mole X ) Fig. 34d. The System LiF-ThF+

72

70

80

90 ThG


3.45. The System MaF-ThF,

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Fused Salt Systems LiF-ThF, and NaF-ThF,," J . Phys. Chem. 63, 1266-74 (1959). Invariant

Equilibria

Invariant

"le

% ThF4 in Liquid

Temperature

Phase Reaction Temperature

Type of Equilibrium

at Invariant

(-1

ea-4NaF*ThF4

21.5

645

Per i t e c t i c

NaF + L

22.5

618

Eutectic

L

604

Inversion

a-4Na F*ThF,

&Na

558

Decomposition

@-4NaF*ThF4

NaF + 2NaF*ThF4

33.3

705

Congruent melting point

L -L2NaF*ThF4

37

690

Eutectic

L

40

712

Congruent melfing point

L

e 3NaF-2ThF4

41

705

Eutectic

L

e 3NaF-2ThF4 + a-NaF*ThF4

-

683

Decomposition

3NaF*2ThF4

45.5

730

Peritectic

NaF*2ThF4 + L&

58

83 1

Per itect ic

ThF,

-

eaJNaF*ThF,

+ 2NaF*ThF4 F*ThF,

e2NaF*ThF4 + 3NaF*2ThF4

e 2NaF*ThF4 + U-NaF-ThF, U-NaF-ThF,

+ L $NaF*2ThF4 UNCLASSIFIED ORNL-LR-DWG 2 8 5 2 8 A R

li

u I

20

30

Y

1

60

70

80

90

Thb

ThG (mole 70) Fig. 3.45.

iI

40

The System NaF-ThF,.

73


The System KF-ThF, W. J. Asker, E. R. Segnit, and A. W. Wylie, "The Potassium Thorium Fluorides," J . Chem.

3.46.

SOC. 1952,4470-79.

This system has

also

been reported by A. G. Bergman and E. P. Dergunov, Doklady Akad.

Nauk S.S.S.R. 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, "An Investigation

Fused-Salt Systems Based on Thorium Fluoride ThF,," J . Nuclear Energy 5, 108-14 (1957). of

- II.

NaF-KF-ThF,,

NaF-ThFi, and KF-

Invariant Equilibria Invariant

Temperatue

14

694

Eutectic

L

635

Inversion

U-5KF*ThF4

712

Peritectic

L

+ JKF-ThF,

25

865

Congruent melting point

L

e3KF-ThF4

-

570

Decomposit ion

3KF*ThF4 & ,&5KF*ThF4 +P-2KF*ThF4

31

691

Eutectic

L *3KF*ThF4

-

747

Peritectic

-

645

Inversion

+ KF*ThF4 eu-2KF*ThF4 u - ~ K F - T ~ F& , P-2KF*ThF4

50*

905

Congruent melting point

L

56

875

Eutectic

e KF-ThF, L e KF-ThF, + KF-PThF,

66

930

Per itect ic

L

+ KF.3ThF4

75

990

Congruent melting point

L

& KF-3ThF4

78

980

Eutectic

L

-

e,

Type of Equilibrium

Phase Reaction Invariant Temperatue

% ThF4 in Liquid

at

KF

+ P-5KF*ThF4 P-5KF*ThF4 a-5KF*ThF4

+ U-2KF*ThF4

L

eKF*2ThF4

KF*3ThF4 + ThF4ss

*It has been shown that the compound labeled by Asker e t al. has the actual formula 7KF*6ThF4; cf. R. E. Thoma, Crystal Stnutwes of Some Compounds of UF4 and ThF4 with Alkali Fluorides, ORNL CF-58-1240 (December 11, 1958).

74


UNCLASSIFIED ORNL-LR-DWG (8966

1200

1100

/ i

7\ -

IO00

9 -

/

\'

900

7 \

3 K

t 6 a

p 800 700

600

500 KF

10

20

30

40

50

60

70

80

90

ThF4

ThF, (mole % )

75


E 3.47. The System RbF-ThF,

E. P.

A. G. Bergman, “Complex Formation Between Alkali Metal Fluorides and Fluorides of Metals of the Fourth Group,” Doklady Akad. Nauk S.S.S.R. 60, 391-94 (1948). Dergunov and

Invariant Equilibria Invariant

Mole % ThF, in Liquid

Temperature

Type of Equilibrium at

(OC)

Phase Reaction Invariant Temperature

_ _ _ _ _ ~ -~

+ 3RbF*ThF4

15

664

Eutectic

L

25

974

Congruent melting point

L *3RbF*ThF4

37

76 2

Eutectic

L

---\

50

852

Congruent melting point

L

e RbF-ThF,

54

848

Eutectic

L

75

1004

Congruent melting point

L

e RbF*3ThF4

80

1000

Eutectic

L

e RbF*5ThF4 + ThF,

RbF

3RbF*ThF4

RbF*ThF4

+ RbF-ThF,

+ RbF*3ThF4

UNCLASSIFIED ORNL-LR-DWG 20464

ThF4 (mole

Fig. 3.47.

76

yo)

The System RbF-ThF4.


3.48. The System BeF,-ThF, R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Systems of

BeF,-ThF,

and LiF-BeF2-ThF,,"

paper to be presented at the 136th National Meeting

the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959. The system BeF,-ThF,

contains a single eutectic at

98.5 BeF2-l.5 ThF, (mole %), m.p.

526 k3'C. UNCLASSIFIED

ORNL-LR-DWG 24554

I1

I200 t too

W

700

600 500 BeF2

40

20

30

40

50

60

70

80

90

ThG

ThF, (mole Yo)

Fig. 3.48,

The System BcFZ-ThF4.

77


I

3.49. The System BeF,-UF,

T. B. Rhinehammer, P. A. Tucker, and E. F. Joy, Phase Equilibria in the System BeF2-UF4,

MLM-1082 (to be published). Preliminary diagram.

contains a single eutectic at 99.5 BeF,-0.5

The system BeF2-UF,

UF, (mole %), m.p. 535 f2T.

I

I

I

I

I

I

I

I

LIQUID

UF4 +LIOUID

QHIGHBeF2 +UF4

I

I

I

I

I

I

Fig. 3.49.

I

I

I

I

I

I

The System BeF2-UFC

I

I

I

I

I

I

IO -4


3.50. The System MgF,=ThF, J. 0. Blomeke, An Investigation of the TbF4-Fused Salt Solutions for Homogeneous Reactors, ORNL-1030 (June 19, 1951) ( d e c l a s s i f i e d with deletions). Invariant Equilibria Invariant

Mole % ThF4 in Liquid

Temperature

ec)

Phase Reaction

Type of Equilibrium

at Invariant Temperature

25

915

Eutectic

L

e ThF4 + MgF2*2ThF4

33.3

937

Congruent melting point

L

e MgF2*2ThF4

40

925

E ute cti c

L

MgF2*2ThF4

+ MgF2

UNCLASSIFIED ORNL-LR- DWG 204 6 5

79


3.51. The System LiF-BeF,-ThF,

R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Sys-

136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959. tems BeF,-ThF,

and LiF-BeF,-ThF,,"

paper to be presented at the

lnvariant Equil ibria Composition of Liquid (mole %)

Invariant

Te mperat we

Type of Invariant

a t Invariant

Solids Present Point

LiF

BeF,

ThF4

15

83

2

497 f 4

Peritectic

ThF4, LiF*4ThF4, and BeF,

33.5

64

2.5

455 f 4

Peritectic

LiF*4ThF4, LiF*2ThF4, and BeF,

47

51.5

1.5

356 f 6

Eutectic

2LiF*8eF2, LiF*2ThF4, and BeF,

60.5

36.5

3

433 f 5

Peritectic

LiF*2ThF4, 3LiF-ThF4ss, and 2 L i F*BeF,

65.5

30*5

4

444 k 4

Peritectic

LiF, 2LiF*BeFz, and 3L iF*ThF4ss

63

30.5

6.5

448 f 5

Peritectic

3LiF*ThF4ss, 7LiF*6ThF4, and L iF-2ThF4

~~

~~

UNCLASSIFIED ORNL-LR-DWG 37420P.

ThF, 4 4 4 4

TEMPERATURE IN 'C COMPOSITION IN mole 70

4

LiF,4ThF,

P 465

E 370

Fig, 3.51~. The System LiF-BeF,-ThF+

80


L

Limits of Single-Phase 3 L I F * t h F 4 Solid Solution Composition (mole %)

LiF

BeF2

ThF,

75

0

25

58

16

26

59

20

21

A three-dimensional model of the system LiF-BeF2-ThF,

Fig. 3.51b.

i s shown in Fig.

3.51b.

Model of the System LiF-BeF2-ThFt

81


3.52.

The System NaF-ZrF,-ThF,

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. Invariant Equilibria

Composition of Liquid (mole X)

lnvar iant Temperatwe

Solids Present Point

Type of Equilibrium

at Invariant

ZrF,

ThF,

ec,

77

3

20

645

Per itect i c

NaF, a-4NaF*ThF4, and 3NaF*ZrF4

75.5

2.5

22

618

Eutectic’

U-4Na F*ThF ,, 2Na F-ThF ,, 3Na F*ZrF4

63

6

31*

683

Decompos it ion point of 3NaF*2ThF4 in ternary system

3NaF*2ThF4, 2NaF*ThF4, and Na F-Th F,

65.5

21.5

13

622

Per itect ic

2NaF*ThF4, 3NaF*ZrF4, and NaF-ThF,

65.5

24.5

10

615

Per itect i c

3NaF*ZrF4, NaF*ThF4, and U-5Na F*2ZrF4

64.5

25.5

10

593

Peritectic

u-SNaF*2ZrF4, NaF-ThF,, NaF-2ThF4

58

38

4

538

Per itect ic

U-5Na F*2ZrF ,, Na F-2ThF,

58

40

2

495

Eutact i c

,f%2NaF-ZrF4, NaF*2ThF4, and 7NaF*6ZrF4-3NaF*2ZrF4ss

53

42

4

510

Per itect i c

NaF*2ThF4, Th(Zr)F4ss I and 7Na F*6Zr F4-3NaF*2ThF4ss

49.5

48

2.5

505

E utect i c

7NaF.6ZrF4, 3NaF*4ZrF4, and Zr (Th) F, ss

NaF

and

and

a-2NaF-Zr F ,,

and

*Approximate compos it ion.

Note:

The boundary curve maximum on the Alkemade line 7NaF.6ZrF,-ThF4

fall’exactly on this line, because pure solid solutions with both ZrF,

ThF, does not occur along this line. Since ThF, forms

and NaF.2ThF4, i t i s not readily determined on which side of

the Alkemade line this maximum occurs.

1

82

i s unlikely to


UNCLASSIFIED ORNL-LR- DWG 20466A

83


3.53. The System LiF-UF,

C. J. Barton, V. S. Coleman, L. M. Bratcher, and W. R. Grimes, unpublished work performed

1953-54. Preliminary diagram. The system LiF-UF, contains a single eutectic at 73 LiF-27 UF,

at the Oak Ridge National Laboratory,

(mole %), m.p.

770째C. UNCLASSIFIED

ORNL-IR-DWG

4000

950

900

850 c

%

800

W

a:

B 0

3

750

b

W

a I w I-

700

650

600

550 0

500 UF, (mole %)

Fig. 3.53. The System LIF-UF3.

84

2923


. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma,“Phase lkali Fluoride-Uranium aF-UF,,”

1. Am.

Tetrafluoride Fused Salt Systems:

1.

The Systems

Ceram. SOC. 41, 63-69 (1958). Invariant Equilibria

Invariant Tcmpcrat we

e,

Type of Equilibrium at

Phase Reaction invariant Temperatwe

e LiF + 7LiF*6UF4

470

Decompor it ion

4LiF*UF4

500

Per itcctic

LiF + L $ 4LiF.UF4

490

Eutectic

L

610

Per itectic

L + LiF*4UF4

e 7LiF*6UF4

775

Pcritcctic

L + UF4+

LiF*4UF4

e4LiF*UF, + 7LiF*6UF4

UNCLASSIFIED ORNL-LR-DWG

60

Fig. 3.54

70

80

I7457

90

The System LIF-UF,.

85


3.55. The System NaF-UF, C. J. Barton, V. S. Coleman, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953-54. Preliminary diagram. Invariant Equ.ilibria

Mole % UF3

in Liquid

Invariant To mperat we

e,

Type of Equilibrium at

Phase Reaction Invariant Temperatwe

~~

86

27

715

Eutectic

L

35

775

Per itectic

L

-

595

inversion

a-NaF*UF3

NaF + a - N a F * U F 3

+ UF3+

a-NaF.UF3 P-NaF-UF3


;u

UNCLASSIFIED

NaF

UF3 (mole % )

Fig. 855.

The System NaF-UF3.

U

87


E J 3.56.

The System NaF-UF,

H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria i n the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: 1. The Systems

C. J.

LiF-UF,

Barton,

and NaF-UF,,"

J. Am. Ceram.

SOC. 41, 63-69 (1958).

Invariant Equilibria

% uF4

in Liquid

e,

Phase Reaction

Type of Equilibrium

at Invariant Temperatwe

21.5

618

Eutectic

25

629

Congruent melting point

+a-3NaF*UF4 + NaF L e a-3NaF-UF4

528

Inversion

a-3NaF*UF4

P-3NaF*UF4

497

Decomposition

P-3NaF*UF4

NaF

28

623

Eutectic

L @ a9NaF*UF4 + 2NaF*UF4

32.5

648

Per itect ic

L + 5NaF.3UF4

37

673

Peritectic

L

-

630

Decomposition

5NaF*3UF4

46.2

718

Congruent melting point

L

7NaF-6UF4

56

680

Eutectic

L

e 7NaF*6UF4 + UF,

660

Upper stability l i m i t of NaF*2UF4

7NaF*6UF4

-

-

88

Invariant Temperature

L

+ 2NaF*UF4

& 2NaF-UF4

+ 7NaF*6UF4 e5NaF*3UF4 2NaF*UF4

+ UF,

+ 7NaF-6UF4

e NaF.2UF4

*


UNCLASSIFIED (9364

ORNL-LR-DWG

4100

to00

900

i

600

500

400

NaF

10

20

30

Fig. 3.56.

40

50 UF4 (mole %)

60

70

80

90

"F4

The System NaF-UF,.

89


3.57. The System KF-UF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: II. The Systems KF-UF, and RbF-UF,,"

J . Am. Ceram. SOC. 41, 538-44 (1958). Invariant Equilibria

Invariant

"le

% uF4

in Liquid

Temperature

Phase Reaction

Type of Equilibrium

at invariant Temperatue

ec,

15

735

Eutectic

L

KF + 3KF*UF4

25

957

Congruent melting point

L

3KF.UF4

608

Decompos it ion

2KF.UF4

35

755

Paritectic

3KF*UF4 + L

38.5

740

Eutectic

L

46.2

789

Congruent melting point

L

54.5

735

Eutectic

L

65

765

Paritect ic

UF,

-

3KF*UF4

+ 7KF*6UF4

2KF*UF4

2KF*UF4

+ 7KF*6UF4

e7KF*6UF4 7KF*6UF4 + KF-ZUF,

+L

KF*2UF4

I100 1000

o 900 Y

W

5 800 !z

[r:

5;:

5!-

700

600 '

500 400

30

Fig. 3.57.

90

40 50 60 UG (mole XI The

System

KF-UFc

70

80

90

UF4


3.58. The System RbF-UF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, “Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: It. The Systems KFUF, and RbF-UF,,” J . Am. Ceram. SOC. 41, 538-44 (1958). Invariant Equilibrla

Mole % UF, in Liquid

Invariant Temperature

Type of Equilibrium

Phase Reaction at Invariant Temperature

ec,

10

710

Eutectic

L e R b F + 3RbF*UF4

25

995

Congruent melting point

Le3RbF*UF4

38

818

Peritectic

L + 3RbF*UF4

43 5

675

Eutectic

L e 2 R b F * U F 4 + 7RbF*6UF4

44

693

Peritectic

RbF*UF4

50

735

Congruent melting point

L +RbF*UF,

55

714

Eutectic

L +RbF=UF,

56.5

722

Peritectic

RbF*3UF4

+L

57

730

Peritectic

RbF*6UF4

+ L & RbF-3UF4

70.5

832

Peritectic

UF,

e 2RbF*UF4

+ L 4 7RbF*6UF4 + 2RbF*3UF4 2RbF*3UF4

+ L eRbF*6UF4

UNCLASSIFIED ORNL-LR-DWG 28525

!

Fig. 3.58 The System RbF-UFt

91


E! 3.59. The System CsF-UF, C. J. Barton, L. M. Bratcher,

J. P.

Blakely, G.

J.

c

Nessle, and W. R. Grimes, unpublished

work performed at the Oak Ridge National Laboratory, 1951-53. Preliminary diagram. Invariant Equilibria Invariant

Mole % UF,

Phase Reaction

Type of Equilibrium

Ternperatwe

in Liquid

ec)

7.5

650

Eutect ic

L

CsF

25

970

Congruent malting point

L

e3CsF*UF4

34

800

Per itect ic

L

+ 3CsF*UF4

41

695

Eutectic

L

2CsF*UF4

50

735

Congruent melting point

L

eu-CSF-UF,

550

lnver s ion

u-CsF*UF,

725

Eutectic

L ~ u - C S F - U F UF, ~

53

a t Invariant Temperature

+ 3CsF*UF4 2CsF*UF4

+ U-CsF*UF,

P-CSF-UF,

.u

+

UNCLASSIFIED ORNL-LR-DWG. 18915

IIO0

I

I

I

I

I

I

I

I

I

I

I

I

I

1 L

1000

900

c

."

8oa

a

: 3

w

n

5 70C t 6 OC

a ?

5 O(

8

n 4 O(

A

5F

IO

20

U F ~(mole

O/o)

Fig, S.59. The System CsF-UF,.

92

I


3.60. The System ZrF,-UF,

C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria J . Phys. Chem. 62,665-76 (1958). in the Systems NaF-ZrF,, UF,-ZrF,, and NaF-ZrF,-UF,,"

The system ZrF,-UF, forms a continuous series of solid solutions having a minimum melting temperature of 765OC at 77 ZrF,-23 UF, (mole %). UNCLASSIFIED 49887

ORNL-LR-DWG

I050

4000

950

u

900

W

lr 3 Ia a

w

a 850

5I-

800

750

700 20

30

40

50

60

70

80

90

ZrF4

93


3.61. The System SnF2-UF4

B. J. Thamer and G. E. Meadows,

LA-2286

The Systems UF4-SnF2 and PuF3-SnF2,

(July 1959). lnvar iant Equi Iibria Invariant

Phase Reaction

Mole % UF4 in Liquid

Temperature

Type of Equilibrium

0.5

212

Eutectic

L

4.5

340

Peritectic

L

7.8

371

Peritectic

e)

at Invariant Temperature

e SnF2 + 2SnF2*UF4

+ SnF2.UF4 e 2SnF2*UF4 L + UF4 e SnF2*UF4 UNCLDSSIFIED ORNL-LR-DWG 36864

4400

4000

900

800

700

.o l W Y 3

600 W

a

J I500

400

300

200

400 SnF2

40

20

30

40

50

60

UG (mole%)

Fig. 3.61.

94

The System SnF2-UF+

70

80

90

uF4


3.62. The System PbF,-UF,

L. M.

J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. C. J. Barton,

hatcher,

Preliminary diagram. invariant Equilibria

Mole % UF4 in Liquid

Invariant Temperature

Phase Reaction

Type of Equilibrium

a t Invariant Temperature

ec,

-~

~

L

L

14.3

92 0

Congruent melting point

L & 6PbF2*UF4

35

835

Eutectic

L

40

840

Congruent melting point

L

3PbF2*2UF4

62

762 f 10

Eutectic

L

e 3PbF2*2UF4

The eutectic at quite high

.

e6PbF2*UF4 + 3PbF2*2UF4 .I-

UF4

PbF, concentrations is not shown on this diagram. The authors

examined thermal data but found no evidence of a eutectic thermal effect.

UNCLASSIFIED DWG14633R

I; L,

Y I

U F ~(mole%)

Fig. 3.62.

The System PbF2-UFC

95


1

3.63. The System ThF4-UF, C. F. Weaver, R. E. Thoma, H. A. Friedman, and H. Insley, "Phase Equilibria in the Systems UF,-ThF,

and LiF-ThF,-UF,,"

Ceramic Society, Chicago, The system ThF,-UF, I

I I

i

96

paper presented at the 61st National Meeting of the American

Ill., May 17-21, 1959. forms a continuous series of solid solutions without a minimum.


UNCLASSIFIED ORNL-LR-DWG 279!3

f 200 c

V W

1100

u:

3

5 too0 a: W

a

5

900

t-

800 ThG

i0

20

30

40

50

60

70

80

90

UG

UF, (mole %I Fig. 3 6 3 The System ThF4-UFC

Iy !

97


3.64.

The System LiF-NaF-UF,

R. E. Thoma, H. Insley, B. S.

Landau,

H. A.

Friedman, and

W. R.

in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems:

UF,,"

Grimes, "Phase Equilibria

111. The System NaF-LiF-

J . Am. Ceram. SOC. 42, 21-26 (1959).

lnvariant Equil ibr ia Composition of Liquid '(mole %) Temperature PC)

Solid Phases Present a t Invariant Point

Type of Equilibrium

NaF

LiF

UF4

60

21

19

480

Eutect i c

2NaF*UF4, NaF, and L i F

65

13

22

497

Per itectic

P-3NaF-UF4, 2NaF*UF4, and NaF

7

65.5

27.5

470

Peritectic

7LiF4UF4ss,* 4LiF*UF4, and L i F

35

37

28

480

Eutectic

2NaF*UF4, 7NaF*6UF4ss, and L i F

57

13

30

630

Per itect ic

2NaF*UF4, 5NaF*3UF4, and 7NaF4UF4ss

24.3

43.5

32.2

445

Eutectic

7NaF*6UF4ss, LiF, and 7LiF-6UF4ss

24.5

29

46.5

602

Eutectic

NaF*2UF4, 7LiF*6UF4ss, and 7NaF*6UF4ss

24.3

28.7

47

605

Per i t e c t i c

NaF-2UF4, LiF*4UF4, and 7LiF.6UF4ss

23.5

28

48.5

640

Peritectic

UF,

37.5

10.5

52

660

Peritectic

UF4, NaF*2UF4, and 7NaF-6UF4ss

NaF.2UF4, and LiF*4UF4

*The compounds 7LiF.6UF4 and 7NaF4UF4 as they occur in the ternary system are members of the solid solution 7LiF.6UF4-7NaF.6UF4.

98

E


i

UNCLASSIFIED ORNL-LR-DWG 282l4R

"F4

1035

COMPOSITION IN mole % TEMPERATURE IN OC

99


UNCLASSIFIED ORNLDWG _ _ _LR - -..-

297s __

700

675

tl

600

575

550 7NaF.6UF4

0 10

20

30 LiF

Fig, 3.646.

100

(mole

40

50

7LiF*6UFq

‘?&I

The Join 7NaF*6UF4-7LiF*6UF4.

7 Iii


3.65. The System LiF-KF-UF, C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. The system LiF-KF-UF, has not yet been defined at the Oak Ridge National Laboratory with sufficient precision to permit the temperatures and compositions of the invariant equilibria to be listed.

UNCLASSIFIED ORNL-LR-OW0 2 8 6 3 3 1

UF4 1035

TEMPERATURE ("C) COMPOSITION (mole %I

KF 856

u

845 E-49

Fig. 365. The Systes LiF-KF-UF,.

101


3.66.

The System LiF-RbF-UF,

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. have not yet Preliminary diagram. Phase relationships within the system LiF-RbF-UF, become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the-invariant points may be listed.

UNCLASSIF!EO ORNL-LR-DWG 286341

UF4 1035

TEMPERATURE IN OC COMPOSITION IN mole%

LiF

845

790

Fig. 3.64

The System LiF-RbF-UF,.


3.67. The System NaF-KF-UF, R. E. Thoma, C. J. Barton, J. P. Blakely, R. E. Moore, G. J. Nessle,

H. Insley,

Friedman, unpublished work performed at the Oak Ridge National Laboratory,

1950-58.

Preliminary diagram.

Phase relationships within the system NaF-KF-UF4

and

H. A.

have not yet

become so w e l l defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.

UNCLASSIFIED ORNL-LR-DWG 38412

U61035 THIS DIAGRAM HAS BEEN DERIVED ENTIRELY FROM TA DATA.

:b.

COMPOSITION IN mole % TEMPERATURE IN "C

I!

NoF

990

E 740

Fig. 867.

856

The System NaF-KF-UFC

103


3

3.68. The System Naf-RbF-UF,

R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at

6

the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Composition of Liquid (mole %)

Invariant.

Temperature UF4

e,

Type of

Equilibrium

Solid Phases Present at Invariant Point

NaF

RbF

18

73

9

670

Eutectic

RbF, NaF, and 3RbF*UF4

46

33

21

470

Eutectic

NaF, NaF*RbF*UF4, and 3RbF-UF4

44

33

23

500

Per itect i c

NaF*RbF*UF4, 2RbF*UF4, and 3RbFeUF4

45

30

25

4 85

Per itect i c

NaF, 2NaF*UF4, and NaF*RbF*UF4

52

23

25

500

Decomposition

3NaF*UF4, NaF, and 2NaF*UF4

41

26

33

555

Per itect ic

2RbF*UF4, 2NaF.UF4, and NaF*RbF*UF4

57

8

35

630

Decomposition

2NaF*UF4, SNaF*3UF4, and 7NaF=6UF4

33

30

37

535

Eutectic

2RbF*UF4, 2NaF*UF4, and 7RbF*6UF4

32

29

39

540

Per itect i c

7RbF*6UF4, 2NaF*UF4, and 7NaF*6UF4

26

27

47

620

Eutectic

7RbF*6UF4, 7NaF.6UF4, and RbF*UF4

25

25

50

630

Eutectic

7NaF*6UF4, RbF*UF4, and 2RbF-3UF4

27

22

51

633

Per itectic

7NaF*6UF4, 2RbF*3UF4, and RbF*3UF4

33

14

53

655

Per itect ic

7NaF*6UF4, RbF.3UF4, and RbF*6UF4

42

3

55

678

Per itect ic

7NaF*6UF4, RbF*6UF4, and UF4

c c


m

TEMPERATURES ME EOREES C E N T I O R ~ E

COMFUSITKMD

IN MOLE PERCENT

Fig. 3.68~. The System NaF-RbF-UF4.

0

(0

20

30

40

50

60

66.7

RbF (mole %)

Fig. 3686. The Section 2NaF*UF4-2RbF*UF,.

105


UNUbSSIFIEC

ORNL-LR-DWG 17' 650

600

ZRbF.UF,

ZNaF. UFq

+ PRbF. UF4 + LIQUID

+ LlOUlD

500

I NaF

50

+ NaF .RbF .UFq

45

40 NaF (male X )

Fig.

106

3.68~. The

Section

NoF-NoF*RbF*UF+

35

30


UNCLASSIFIED

1000

-

900

-

ORNL-LR-

3RbF.UF4

800

+ LIQUID

I

I

-

DWG 47667R

I.

I

0

0, W P I-13

a

4 700 5c

0 2RbF. UG

600

I

,2RbF.UF4

+ LIQUID

I

+ 2NoF. UF4 + LIQUID

7

L

500

2RbF-UF4

.? . LL

4: LL 0

400 5 33.3 35

i

+ 3RbF. UF4 + LIQUID

NaF.RbF.UF,

t 3RbF-UF4

I 40

45

LIQUID

NaF. RbF. UF4

P 3 IL

0"

I

50 55 RbF (mole% 1

*)

60

65

70

75

h: ci L;

I

P L

i

i;" 107


3.69.

L. V. P. A.

LiF-BeF,-UF, D. E. Etter, C. R.

3

The System Jones,

Tucker, and

L. J.

Hudgens,

A. A.

Huffman,

T. B.

Rhinehammer,

Wittenberg, Phase Equilibria in the LiF-BeFZ-UFq

N. E.

Rogers,

0

System, MLM-1080(Aug. 24, 1959).

UNCLASSIFIED MOUND LAB. NO. 56-44-29 (REV)

4035 UFA

ALL TEMPERATURES ARE IN C '

E = EUTECTIC

€I

Ternary F u s e d S a l t

A

/

c 6;:

\

LiF 845

ci Fig. 3.69~. The System LIF-BeF2-UF4.

cp'

U

108

c


Preliminary diagrap.

li

u

Invariant Equilibria Compos ition of Liquid LiF 72

u li bl.

Temperature

(mole %)

BeF2 6

UF4 22

e, 480

Type of Equilibrium

Peritectic (decomposition of 4LiF-UF4 in the

Solid Phases Present Temperature

a t Invariant

4LiF-UF4, LiF, and 7LiF*6UF4

terhary system)

69

23

8

426

Eutectic

LiF, 2LiF.BeF2, and 7LiF.6UF4

48

51.5

0.5

350

Eutectic

7LiF*6UF4, 2LiF*BeF2, and BeF,

45.5

54

0.5

381

Per itectic

LiF-4UF4, 7LiF.6UF4, and BeF2

29.5

70

0.5

483

Peritectic

UF4, I-iF-4UF4, and BeFZ

The minimum temperature in the quasi-binary system 2LiF-BeF2-7Li F.6UF4 occurs at 65 LiF-29 BeF,-6

UF, (mole %) at 438%.

A three-dimensional model of the system LiF-BeF,-UF,

i s shown in Fig. 3.696.

!

Fig. 3.693.

Model of the System LiF-BeF2-UF4.

109


3.70. The System NaF-BeF,-UF, J. F. Eichelberger, C. R. Hudgens, L, V. Jones, G. Pish, 7. B. Rhinehammer, P. A. Tucker,

and L. J. Wittenberg, unpublished work performed at the Mound Laboratory, 1956-57. Preliminary diagram. Invariant Equl Ilbrla Composition of Liquid (mole X) NaF

Temperature

@3

Solid Phases Present at Invariant Temperature

Type of Equilibrium

BeF2

UF,

74

12

14

500

Peritectic (decomporltlon of 3NaF*UF4 In ternary system)

3NaF*UF4, NaF, and 2NaF*UF4

72.5

17

19.5

486

Eutectic

NaF, 2NaF.UF4, and 2NaF-BeF2

64.5

9

26.5

630

Peritectic (decomposition of 5NaF-3UF4 i n the ternary

5NaF*3UF4, 2NaF*UF4, and 7NaF*6UF4

system)

I

57

42

1

378

Per itectic

2NaF*BeF2, 2NaF*UF4, and 7NaF-6UF4

56

43.5

0.5

339

Eutectic

2NaF*BeFp, NaF*BeF2, and 7NaF*6UF4

43.5

55.5

1

357

Eutectic

7NaF*6UF4, BeF2, and NaF*BeF2

41

58

1

375

Peritectic

7NaF*6UF4, NaF*ZUF4, and BeF2

26

63

1

409

Peritectic

NaF*2UF4, NaF*4UF4, and B t F 2

44

18

38

665

Per itectic

7NaF*6UF4, UF,

40

47

13

548

Peritectic

UF4, NaF*2UF4, and NaF*4UF4

27

72

1

498

Peritectic

UF,

and NaF*2UF4

BeF2, and NaF*4UF4

The minimum temperature in the quasi-binary system 2NaF.BeF2-2NaF*UF, occurs at 66.7 LiF-25 BeF,-8.3 UF4 (mble %) at 528OC. The minimum temperature in the quasi-binary system NaF-BeF2-7NaF-6UF, occurs at 50.5 NaF-48.5 BeF2-1.0 UF, (mole %) at 367째C. A three-dimensional model of the system NaF-BeF,-UF, has been constructed by the authors and i s shown in Fig. 3.706.

110


UNCLASSIFIED MOUND LAB. NO. 56-41-30

ALL TEMPERATURES ARE

E UF4

(REV)

IN OC

= EUTECTIC

I

PERITECTIC

- PRIMARY PHASE FIELD

E F2

I1

i

Y

111


c

c

Fig. 370b. Model of the System NaF-BeF2-UFC

112

b'

0


3.71. The System NaF-PbF,-UF, C. J. Barton, J. P. Blakeil

*

J.

Nessle, L.

M* Bratchert

and

w.

R. Grimes, unpublished

work performed at the Oak Ridg Preliminary diagram. No study has been made at the

Ridge

Laboratory

Of

the

phase relationships within the system NaF-PbFp-UF,.

"

UNCLASSIFIED 20455R

ORNL-LR-OWG

F4

4035

TEMPERATURE IN OC COMPOSITION IN mole

I

1

n

?e

PbF2 815

113


3 3.72.

The system

KF-PbF,-UF,

C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,

li

1950-51.

Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system

KF-PbF2-UF,.

0

.i E n U

W 114


U iJ

UNCLASSIFIED DWG 41514A F4

4035

115


c

3.73. The System NaF-ZrF4-UF4 C. J. Barton, W.

R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria

in the Systems NaF-ZrF,,

UF,-ZrF,,

and NaF-ZrF,-UF,,"

J . Phys. Chem. 62,665-76 (1958).

UNCLASSIFIED ORNL-LR-DWG 19886R

"F4

1035

Fig.

116

373a. The System NaF-ZrF4-UFC


Invariant

Campos ition of Liquid

Ternper at we

(mole %)

NaF

h i;

Equilibria and Singular Points

(W

Type of Equilibrium

Solids Present Invariant Point

at

ZrF,

UF4

69.5

4.0

26.5

646

Maximum temperature of boundary curve

3NaF*(U,Zr)F4 and 2NaF-UF4

68.5

5.5

26.0

640

Peritectic

3NaF*(U, Zr)F4, 2NaF*UF4, and 5NaF*3UF4ss

65.5

12.0

22.5

613

Peritectic or decompos ition

,, 5Na F-3UF4ss, 3Na F-(U, Zr) F and 7NaF*6(U,Zr)F4

64.0

27.0

9.0

592

Per itact ic

3NaF.(U,Zr)F4, 5NaFa2Zr F4ss, and 7NaF*6(U,Zr)F4

61.5

34.5

4.0

540

Peritectic

5NaF92Zr F4ss, 2NaF-Zr F ,, and 7NaF*6(U,Zr)F4

50.5

47

2.5

513

Per itect ic

7NaF*6(U, Zr)F4, (U,ZI)F4, and 3NaF*4ZrF4

lL i

e

i

UNCLASSIFIED ORNL-LR-DWG I9888

850

800

750

!

-

0

e

700

W

rT

2a a

I

Ii

4 W

650

IW

600

LIQUIDUS POINTS SOLIDUS POINTS LlQUlOUS POINTS

L; 0

I L

i;"

550

500 3NoF.UG

0

QUENCHING EXPER QUENCHING EXPERI

FILTRATION RESIDUE CO FILTRATE COMPOSITIONS

4

45

40

20

3 NaF-ZrF4

ZrF4 (mole 70)

Fig. 873b.

The Subsystem 3NaF*UF4-3NaF*ZrFc

117


Fig. 3.73~. The Subsystem 7NoF*6ZrF4-7NaF*15UFC

118


i

P 3.74. The System LiF-ThF,-UF,

C. F. Weaver, R. E. Thoma,

H. Insley, and H. A. Friedman, "Phase Equilibria in the Systems

UF,-ThF, and LiF-ThF,-UF,," paper presented a t the 61st National Meeting of the American Ceramic Society, Chicago, Ill., May 17-21, 1959. lnvariont

Compos it ion of Liquid (mole %)

lnvar iant

Temperature

(0~)

Solids Present at Invariant Point

Of

LiF

ThF,

72.5

7.0

20.5

500

Peritectic

LiF, 3LiF*(Th,U)F4, and 7LiF*6(U,Th)F4

72.0

1.5

26.5

488

Eutectic

LiF, 4LiF*UF4, and 7LiF*6(U,Th)F4

19

609

Per itectic

7L iF*6(U,Th)F4, L iF*2(Th,U)F4, and L iF*4(U,Th)F4

53

18

UF4

Equilibria

Equilibrium

A three-dimensional model of the system LiF-ThF,-UF,

is

shown in Fig. 3.74e. UNCLASSIFIED ORNL- LR- DWG 2824JAR2

PRIMARY-PHASE AREAS TEMPERAWRE IN OC COMPOSITION IN mole 7'0

I

i i

Li LiF

"F4

4035

845

Fig. 3.74~. The System LiF-ThF4-UF4.

119


UNCLASS IFlED ORNL-LR-DWG 35503R

((I)

LIQUID+ 3LiF-ThF4 ss

(6) L i F f LIQUID ( c ) LiF+ 3LiF*ThF4 ss +LIQUID

( d ) L i F + 7 L i F - G T h $ -7LiF.GUG ss ( e ) 4LiF*UF4+ LIQUID

( f ) 4LiF.UG ( g ) 4LiF.UG

+ LIQUID + 7LiF-6Thb -7LiF-GUh

( h ) 3LiF*ThF4 ss

(i

+ LiF

+ LIQUID

3 L i F * ThF4 ss

+ 7 L i F - 6ThF4 - 7 L i F

(i) LiF + 7 L i F * 6ThF4-

ss

*

B

+ LIQUID

6 UF4 ss

0

+ LiF

-

7 L i F 6 UF4 ss

575Pi

( k ) L i F + 4LiF.UF4+ 7LiF.6ThF,-7LiF.6UF4ss ( 1 ) 4LiF.UF4+ 7LiF.6ThF4-7LiF.6UF4ss

A

THERMAL DATA

550

-525F I

Y

W

a 53

I-

a of

W

n

E w 500

I-

450 475

I ,

0

5

c3 IO UF4 (mole

Fig. 3.74b.

120

The System LiF-ThF4-UF4:

15

20

O/O)

The Section at 75 Mole % LiF.

25

c


UNCLASSIFIED

050

800

750

-w 0

700

(L

3

G

(L

W

a

5

t-

650

600

550

500 0

5

IO

(5

20

25

35

30

40

45

UF4 (mole%)

Fig. 3.74~. The System LiF-ThF4-UF4:

The Section

at

53.8 Mole % LiF.

121


UNCLASSIFIED ORNL- LR DWG 35506 R

-

( a ) UF4-ThF4 ss

+ LIQUID

( b ) L i F - 4 U F 4 - LIF. 4ThF4+LlQUlD (C)

UG-ThF, ss + L I Q U ~ D + L ~ F - ~ U F ~ - L ss IF-~T~~

+ LIQUID + LIF- 4UF4- LIF 4ThF4 ss 4UF4 - L i F - 4ThF4 ss +LIQUID + 7 L i F - 6 U F 4 - 7 L i F * 6 T h F 4 s s

( d ) LIF. 2ThF4 ss (e) LiF.

*

( f ) LiF. 2ThF4 ss ( 9 ) LiF. 4UF4-LiF. 4ThF4 S S + ~ L ~ F - ~ U F ~ - ~ L ~ F . ~ T ~ F ~ S S

( h ) LiF-4UF4-LiF-4ThF4 ss

+ 7LiF-6UF4-7LiF*6ThF4 ss+LiF-2ThF4

ss

A THERMAL BREAKS 0 QUENCH RESULTS 0 TIE LINE INTERSECTION

900

p E

W

U

3

800 [z

W

a

2 W I-

700

6oo

5 00

L

0

10

20

30 40 UF4 (mole %)

Fig. 3.74d. The System LiF-ThF,-UF,:

122

50

The Section at 3 8 3 Mole % LIF.

60

6S2/,


Li

Fig. 3.74e.

Model of the System LiF-ThF4-UFC

123


3.75. The System NaF-=ThF,-UF,: The Section 2NaF-ThF4-2NaF-UF4 R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1958-59. Preliminary diagram.

UNCLASSIFIED ORNL-LR-DWG 34986

725

700

675

650

0 W

625

u

3

5

600 I-

575

550

B

525

500 2N0F.ThF4

5

i0

45 20 UF4 (mole %I

25

Fig. t75. The Section 2NaF*ThF4-2NaF*UF,.

1.24

30 2NoF.UF4


3.76. The System LiF-PuF, C. J. Barton and R. A. Strehlow, “Phase Relationships in the System Lithium FluoridePlutonium Fluoride,” paper presented at the 135th National Meeting of the American Chemical

5-10, 1959.

Society, Boston, Mass., Apr. The system LiF-PuF,

contains a single eutectic at 80.5 LiF-19.5 PuF, (mole %), m.p.

743°C.

I

i

u

UNCLASSIFIED ORNL-LR- DWG 348i7

4500 4400

i ~

-

4 300

0

e4200 W i

E

3

Ga

1100

W

a

5

1000

I-

900

800 700 LiF

40

20

Fig.

30

3.76.

40 50 60 PuF3 (mole %I

70

8G

90

PuF3

The System LIF-PuF3.

125


3.77. The System LiC1-FeCI2 C. Beusman, Activities in the KCI-FeC$

and LiCI-FeC$

Systems, ORNL-2323 (May 15,

1957). The system

LiCI-FeC12

forms a continuous series of solid solutions with a minimum at

60

LiCI-40 FeCI, (mole !%), m.p. 540%.

8500 a

-

-

u

-

-

.u

I

W

8-

400

t

I

I

I

I

I

I

I

I

c


u 3.78. The System KCI-FeCI, C. Beusman, A c t i v i t i e s in the KC1-FeC12 and LiCL-FeCZ, Systems, ORNL-2323 (May 15, 1957). Anearly identical diagram to this one has been reported by H. L. Pinch and J. M. Hirshon, "Thermal Analysis of the Ferrous Chloride-Potassium Chloride System," J . Am. Cbem. SOC.

79, 6149-50 (1957). Invariant Equilibria lnvar iant

?G FeC12

'Ole

Temperature

Phase Reaction

Type of Equilibrium

a t Invariant Temperature

i n Liquid

385

Per itect ic

L + KCI

255

Inversion

a-2KCI*FeC12

39

355

Eutectic

L $a-2KCI*FeC12 + a-KCI-FeCI,

50

400

Congruent melting point

L

-

300

lnvers ion

a-KCbFeCI,

53

390

Eutectic

L $a-KCI-FeCI2

35

& a-2KCI*FeCI2 ,8-2KCI*FeC12

a-KCI.FeC1,

e,&KCI*FeCI, + FeCI2

UNCLASSIFIED

ORNL-LR-DWG. 20940R

8OC

I

I

I

I ,

I

I

I

I

I

70

80

90

772

1

70 0

-

60 0

0

0,

LI C 30 0

c ILC

20 0

0

IO

20

30

40

Fig. Z78.

50 60 MOLE % F&IZ

100

T h e System KCI-FeClr

1

i

Y

127



UNCLASSIFIED

ORNL-LR-DWG

900

800

17671

l l

700

-Y

,--a2Nakl.

ZrCI,+LhUID

I

I

I

60

70

80

- 600 W K

3

c4 W K

a

5 500 I-

400

300 NbCl +/32NaCI:ZrC14

200 NaCl

I

I

IO

20

40

30

50

90

ZrC!,

ZrC!, (mole %)

Fig.

3.79.

The System NaCI-ZrCI,.

E Y

Ij"

Y

129


3.80.

The System KCI=ZrCI,

C. J.

Barton,

R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge

1955.

National Laboratory,

Preliminary diagram. Invariant Equilibria Invariant

Mole X ZrCll

Ta mperatu re

Liquid

in

Phase Reaction

Type of Equilibrivm

at

Invariant Temperature

PO

23

600 f 5

Eutectic

L e K C I + 2KCI*ZrCI4

33.3

790 f 5

Congruent melting point

A L -2KCI*ZrCI4

4s

565 f 5

Pe r itec t i c

L

-

222 f 4

lnvers ion

a*7KC b6Zr Cl4

65

225 f 4

Eutectic

L +u-7KC1*6ZrCl4

Some phase work on this system has been reported by

+ 2KCI*ZrC14eU-7KCI*6ZrC14 ,a7 KCb6Zr CI

+ ZrCI4

H. H. Kellogg, L. J. Howell, and R. C. and NaCl-

Physical Chemical Properties of the Systems NaCI-ZrC14, KCL-ZrCL,,

Sommer,

KCI-ZrCZ4, Summary Report, NYO-3108 (April 7, 1955). UNCLASSIFIED ORNL-LR-DWG 46952

600

-

-

1

-

i

,

0 0

w

500

K

3

$

5 4 400

W

I-

300

200

~

4 00

KCI

io

20

Fig. 3.80.

130

The System KCI-ZrCI,.


3.81. The System LiCI-UCI, C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,

1953.

Preliminary diagram. The system (mole %), m.p.

LiCI-UCI, contains a single eutectic at 75 LiCI-25 UCI,

495 &5oC.

UNCLASSIFIED DWG. 22252

900

ih

800

i

i i

--

700

0

i

W

a 3

1

$

600

a W

5 t-

i

I ~

L:

500

400

300 .~ LiCl

10

20

30

40

50

60

70

80

90

UCI3

UC13 (mole %)

Fig. 3.81.

The S y s t e m LiCI-UCI3

131


3.82. The System LiCl-UCI,

J.

R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. C.

Barton,

Preliminary diagram. Invariant Equilibria Invariant

Mole % UCI,

Temperature

in tiquid

Phase Reaction at lnvar iont Ta mperature

Type of Equi Iibrium

(OC)

29

415

33.3

430

10

405

48

$~ L ~ C C U C+I , LiCI

Eutectic

L

Congruent melting point

L +~L~CI*UCI,

Eutectic

L

+~ L ~ c I * u+cUCI, I,

Some data on this system were reported by C. A. Kraus in Phase Diagrams of Some Complex

Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

UNCLASSIFIED

LiCl

IO

20

30

50

40 UCi,

60

(mole %)

Fig. 3 8 2 The System LiCI-UCI,.

132

70

00

90

UCl,


3.83. The System NaCI-UCI,

C. A. Kraus, unpublished work. Preliminary diagram constructed with the author’s permission from data reported in Phase

Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). The system NaCI-UCI,

contains a single eutectic at

67 NaCI-33 UCI,

(mole %), m.p.

525OC.

UNCLASSIFIED

900

0 00

400

300 NaCl

40

20

30

Fig.

40

3.83.

50 UCi3 (mole %)

60

70

00

90

UCI3

The System NaCI-UClr

133


3.84. The System NaCI-UCI, C. J. Barton, R. J. Sheil, A. 8. Wilkerson, and W, R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. Preliminary diagram. Invariant Equilibria

Mole % UCI, in Liquid

Invariant Temperature

Phase Reaction a t Invariant Temperature

Type of Equilibrium

E

(OC) ~

!

1 I j

30

430 f 5

Eutectic

L&NaCl+

33.3

440 f 5

Congruent melting point

L&2NaCI*UCI4

47

370 f 5

Eutectic

L+

57

415 f 5

Peritectic

L

2NaCI*UC14

2NaCI*UCI4

+ unidentified compound

+ UCI4 *unidentified

compound

A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1,

1943).

40

50

uC$ (mole

60 %)

70

80

90

b:

.o


3.85. The System KCI-UCI, C. J. Barton, A. B. Wilkerson, T. N. McVay, R. J. Sheil, and W.

R. Grimes, unpublished work

performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria

lnvarian t

Mole % UCI,

Te mperatu re

in Liquid

,I]

!

Phase Reaction a t

Type of Equilibrium

Invariant Temperature

(OC)

e KCI + 2KCI*UCI4

25

550

Eutectic

L

33.3

6 30

Congruent melting point

L

44

3 30

Eutectic

L ~ 2 K C I * U C I +4 KCI*UCI,

49

345

Peritectic

L

+ KCI*3UCI4~KCI*UCl4

61

395

Pe r ite ct i c

L

+ UCI4&

2KCI*UCI4

KCI*3UCI4

A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

UNCLASSIFIED ORNL-LR-DWG 1532R

000

700

--Y

W

w

a

a

500

a W

4

400

I-

300

KCI

IO

20

30

40

50

M)

UCI4 (mole %)

Fig. 185. The System KCI-UCI,.

70

ao

90

uci4


3.86. The System RbCI-UCI, C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria Invariant

Mole % UC1,

Temperature

15

610

25

in

Liquid

Phase Reaction a t

Type of Equilibrium

Invariant Temperaiuie

Eutectic

L e R b C l + 3RbCI*UCI3

745 f 10

Congruent melting point

L +3RbCI*UCI3

40

560 f 10

Peritectic

L +3RbCI*UCI3~2RbCI*UCl3

45.5

513 f 5

E u tec ti e

L ~ 2 R b C I * U C I +3 RbCI*UCI3

49

550 f 10

Peritectic

L + UCl3+RbCI*UCl3

RbCl

IO

20

x)

40

50

60

Ucl3 (mole %)

Fig.

136

386. The System RbCI-UCIr

70

80

90

UC13


3.87. The System CsCI-UCI,

J.

C.

Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak

Ridge National Laboratory,

1953.

Preliminary diagram. Invariant Equilibria

Mole % UCI4 in Liquid

Invariant

Phase Reaction a t Temperature

Type of Equilibrium

Tam perature

Invariant

I OC\

~~

+ 2CrCI*UC14

20

505 f 5

Eutectic

L +CCsCI

33.3

657 f 5

Congruent melting point

L+~CSCI*UCI~

58

370 f 5

Eutectic

L+2CSCI.UC14

63

382 & 5

Peritectic

L

+ CrCI*2UC14

+ uc14+cscI.2uc14

I

UNCLASSIFIED

I

800

700

-e 600 V

LL W

2

2 500 a 5

1

ii

Y

400

300

200 CSCl

(0

20

30

40

50

60

70

80

90

uc'4

UCl, h o l e %)

Fig. 387. The System CrCI-UClc

137


3.88. The System K,CrF6-Na,CrF6-Li,CrF6 B. J. Sturm, L. G. Overholser, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-52. Pre I iminary diagram.

UNCLASSIFIED DWG. 17407

o X-RAY PATTERN OBTAINED AT THESE COMPOSITIONS

OLlD SOLUTION

SOLID SOLUTI

k/ K3CrF6

\/

\J

V /

Fig. 3.88.

138

V

KOLkrF6

-

V

v

yv

Li2KCrF6

The System K3CrF6-Nu3CrF6-Li3CrF6.

V Li3CrF6


4. O X I D E A N D H Y D R O X I D E SYSTEMS

4.1. The System Si0,-Tho,

L. A. Harris, "A Preliminary Study Ceram. SOC. 42, 74-77 (1959).

2300

I

I

I

I

I

he Phase Equilibria

of

Diagram of Tho,-SiO,,"

I

UNCLASSIFIED PHOTO 31087 I

1

I

J . Am.

\

\

-

2200

-

\

\

\

Tho2 t LlOUlD 2100-

\

\

e

\

w 2ooo-

-

----- ------

[L

3

l-

1975 2

50"

a

\

I I

g

-

LlOUlD

\

1900-

5

\

Tho2+ Th02-Si02

\

I-

I800

\

\

Tho2. SiO, + LlOUlO

-

-

0 1700

u)

.

-

Tho2 * S i 4

I-

1600 0

I

IO

I

20

I

1

30

Tho2

Fig.

i

40

I

t

-

- - - - -L

- - - - - -I700*1@-

0 " r

SlO, t LlOUlD

\

'A-

N

-

\

Si4

I

50 60 S102 [ WT. O/o)

I

I

I

70

80

90

IM

Sld,

41. t h e System SiOZ-Th02.

li

139


4.2. The System LiOH-NaOH

C. J. Barton, J. P. Blakely, K. A. Allen, W. C. Davis, and B. S. Weaver, unpublished work performed a t the Oak Ridge National Laboratory, 1951. Preliminary diagram. recently by

A phase diagram of the system LiOH-NaOH has been reported more

N. A. Reshetnikov and G. M. Oonzhakov, Zhut. Neotg. Khim 3, 1433 (1958). Invariant Equilibria Phase Reaction at

Mole % LiOH in Liquid

Invariant Temperature

27

219

Eutectic

L

40

250

Peritectic

L + LiOH

-

180

Inversion

a-LiOH*NaOH e & L i O H * N a O H

(OC)

Type of Equilibrium

Invariant Temperature

NaOH +a-NaOH*LiOH a-LiOHONaOH

UNCLASSIFIED ORNL-LR-DWG 20463R

500

450

400

I

0 I

a

350

3

tE W W

300

I-

250

200

450 LiOH (mole %)

Fig. 4 2 The System LiOH-NaOH.

140


4.3.

LiOH-KOH

The System

C. J. Barton, J. P. Blakely,

L. M.

a t the Oak Ridge National Laboratory,

Bratcher, and

W. R. Grimes, unpublished work performed

1951,

Preliminary diagram. Invariant Equilibria

X KOH

Mole

Invariant Temperature

in Liquid

( OC)

40

315

Phase Reaction

Type of Equilibrium

Incongruent melting point of

at

Invariant Temperature

L

+ LiOH +3LiOH*2KOH

3 L iOHoSKOH 245

70

Eutectic

L e 3 L i O H * 2 K O H +P-KOH

UNCLASSIFIED ORNL-LR-DWG 20460R

600

500 f

-

0 W

400

n

3

5n W

a I 300 W I-

200

400

I

LiOH

&3 lo 10

20

30

40

50

60

70

80

90

KOH

KOH (mole %I

Fig. 4.3.

The System LIOH-KOH.

141


4.4. The System NaOH-KOH

G. von Hevesy, "The Binary Systems NaOH-KOH,

KOH-RbOH,

and RbOH-NaOH,"

2.

physik. C h a 73, 667-84 (1910).

UNCLASSIFIED ORNL-LR-DWG 20458

400

350

300

G s w

a

3

5

250

a a w

3 k-

200

T R A N S I T I O N OlAGRAM

I

I

I

70

80

90

4 50

400

KOH

40

20

30

40

50

60

NaOH (mole %)

Fig. 44 The System NaOH-KOH.

142

NoOH


4.5. The System NaOH-RbOH G. von Hevesy, “The Binary Systems NaOH-KOH,

KOH-RbOH,

and RbOH-NaOH,”

Z.

physik. C h e n 73, 667-84 (1910).

UNCLASSIFIED ORNL-LR-DWG 204 59

320

300

280

0

,“ 260 E

2

ta w

a I 240 W

I-

220

200

480

I NaOH (mole %)

Fig. 4 5 .

The

System

NaOH-RbOH.

143


4.6. The System Ba(OH),-Sr(OH), K. A. Allen, W. C. Davis, and 8. S. Weaver, unpublished work performed a t the Oak Ridge National Laboratory, Preliminary Sr(OH),-63

1951.

diagram.

Ba(OH), (mole

The system Ba(OH),-Sr(OH),

contains a single eutectic a t

37

X), m.p. 360OC. UNCLASSIFIED

'

00 B o ( O H ) ~(mole %)

Fig. 46. The System Bo(OH)2-Sr(OH)T

90

Bo(OH),

-u B

U t; [I

144


5. AQUEOUS SYSTEMS

c 1

lid

5.1.

The System U0,-P,O,-H,O,

25OC Isotherm

J. M. Schreyer, "The Solubility of Uranium(1V) Orthophosphates in Phosphoric Acid So-

77, 2972 (1955). point between U(HPO,),dH,O

l u t i o n ~ , ~J '. Am. Chem. SOC.

The

tj

was at

transition

and U(HPO4),~H,PO,*H2O

0.62 f. 0.02 M U (10.3 wt % UO,) and 9.8 & 0.1 M PO, (42.6

1.63 f 0.03 g/ml.

The compound U(HPO,),~H,PO,~H,O

i s incongruently

as

wt %

stable solids

P,O,),

density

soluble in water.

UNCLASSIFIED ORNL-LR-DWG 1915

looh

Fig. 5.1.

The System U02-P205-H20,

2 P C Isotherm.

145


5.2. The System U0,-H,P0,-H20,

25째C Isotherm

J. M. Schreyer and C. F. Baes, Jr./ ."The Solubility of Uraniurn(V1) Orthophosphates in Phosphoric Acid Solution," The normal phosphate

J . Am. Chem. SOC. 76, 3% (1954). (U02),(P0,),dH20 i s stable below 0.025

mole %

H,PO,.

The

stability ranges are as follows: Compound

Toto1 Phocphatq Molarity

<0.014 0.01 4-6.1 >6.1

UNCLASSIFIED DWG 20233

6.0

mole Y

Fig.

146

5.2

The System U03-HQ04-H20,

H,P04

2 P C Irot&erm. 0-60 mole % U03, 0-60 mole % H3POa.


of U(H,P04),(CI04)

Fig.

!L3.

,4H ,O.

Schreinemakerr' Projection

the UO2-Cl20,-H20

of the System UO2-P2O,-CI,O,-H2O

at

25OC. A projection on

face, plotted i n rectangular coordinates.

147


U 5.4. a*

The System U0,-Na,O-C0,-H,O,

26OC Isotherm

C. A. Blake, C. F. Coleman, K. B. Brown, D. G. Hill, R. S. Lowrie, and J. M. Schmitt, Studies in the Carbonate-Uranium System,” J. Am. Chem. SOC. 78, 5978 (1956). UNCLASSIFIED ORNL-LR-DWG 39480

COMPOSITION wt

% ’

1

Fig. 5.h. The System U03-Na20-C02-H20 at 26OC. Gmpositions are plotted i n weight per cent. I, solutions i n equilibrium with sodium uranates; 11, solutions in equilibrium with sodium uranyl hicarbonate; 111, solutions in equilibrium with uranyl carbonate. A, Na2C03; B, Nq2C03*H20; C, Na2CO3*7HS20; D, Na2C03* 10H20; E, Na2C03*NaHC03*2H20 (trona); F, NaHCO,; C, U0,C03; H, Na4U02(C03),. The entire upper face of the triangular prism represents pure water.

148

u

u h’ bl

I]


The stable uranium-carbonate solids found were UO,CO,

The solution

and Na,UO,(CO,),.

composition at the transition point (not determined exactly) was a t least 26 wt % UO,

Na,O,

5.6

wt %

and 7.2 wt % CO, (mole ratio U03:Na20:C02 = 1:1.0:1.8). Further data on this system are available from the American Documentation Institute

(document No. 5079). These include compositions, pH's, and densities a t points in and near the planes Na,O-C0,-H,O,

U0,-Na20-H,O,

H,O,

U0,-NaHC0,-H,O,

U0,-Na,CO,-H,O,

UO,CO,-Na,CO,-H,O, and UO,CO,-Na,O-H,O.

at 50 and 75OC are reported by

Related phase equilibria in the system Na,O-UO,-H,O J. E. Ricci and F. J. Loprest,

1. Am.

Na,U0,(C0,),-NaHC03-

G e m . SOC. 77, 2119 (1955).

UNCLASSIFIED PHOTO 24714

Na, UOz ( CO,

N a z UO, ( CO, ) Na,C03 '10H,O

c.

COMPOSITION w t o/'

Na2C03

A.

8.

3

,

A

Fig. 5.46.

UO2CO3

The Section U02C03-Na2C03-H20 at 26OC.

149


5.5. Portions of the System ~h0,-Na20-CO2-H20,

25OC Isotherm

F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955. The stable thorium-carbonate solids found were ThOC03*8H,0 and Na,Th(C03)5*12H20. Temqry Points

Composition of Solution ( w t Sa) Solid Phases Present Tho, Na6Th(C03)5*12H20, NaHC03, and Na2C03*NaHC03*2H20(trona)

0.62

Na6Th(C03)5*12H20, Na2C03*10H20, and trona

0.48

'

Na20

CO2

12.0

9.96

14.1

10.86

UNCLASSIFIED ORNL-LR-OWG

38043

)

EOUILIBRIUMSOLI0 PHASES a-b z+NaHC03 z NaHC03 +TRONA b-c NaHC03+ TRONA b-d Z+TRONA d z +TRONA +Na2C03.40Hp d-e TRONA+Na2C03.10Hz0

b

+

d-1 Z + No2CO3.4OH2O 9-h ThOCO3,8H20

+

f 1 I

(z= 3Na20 .ThO2.5CO242HP (TRONA= Na2CO3.NaHCO3.2H201

Fig. 5.5~. Perspective Representation of the System Th02-Na20-C02-HZ0

1SO

OS

a

Tetrahedron.

U


The highest thorium solubility found was 3.35 wt % Tho, (3.06 wt % Na20, 3.60 wt % CO,) in equilibrium with solid Na6Th(C0,),*12H20 and ThOC03*8H20. (The terminal points of this binary line were not established.)

The

maximum thorium

solubility in equilibrium with

Na6Th(C03),*12H,0 and Na,C03*10H,0 was 1.25 wt % Tho, (12.5 wt % Na,O, 9.4 wt % c0,); with Na6Th(C0,),~12H,0 and trona, the highest solubility was 0.7 wt % Tho, (12.6 wt % Na,O, 10.4 wt % CO,). (5.0 wt % Na,O,

The highest found with Na,Th(C03),*12H,0 6.0 w t % CO,),

and NaHCO, was 1.2 wt % Tho,

which was the most dilute NaHCO, solution tested.

UNCLASSIFIED ORNL-LR-DWG 38013

Tho, EOUlLlBRlUM SOLID PHASES

i

I

a-b b b-c b-d d d-e d-f g-h

z+NaHC03 NaHCO- +TRONA NaHC03 k N A z+Tf?ONA z TRONA NazC0340Hfl TRONA+ NazC03~iOHz0 z NazC03-iOHp 2 + ThOC03.8H20 2

+

+

+

A

+

+

COMPOSITION wt '7-

( z = No6Th(C03)5.i2HZO) (TRONA = Na,C0,~NoHC0,~2HzO)

I I

-4

151


UNCLASSIFIED ORNL-LR-DW 38041

EOUlLlBRlUM SOLID PHASES

a-b b b-c b-d d +e d-f 9-h

2+NaHC03 2 NaHCOJ +TRONA NaHCq+TRoNA Z+TRONA 2 TRONA Na2C03.!OHfl TRONA +NazC0340Hp 2 +No,C0340H,0 2 ThOC03.BHz0

+

+

+

+

( 2 = 3NazO-Th02%02.!2Hfl)

(TRONA = Na&O3.NaHC0,~2HZO)

0

5

10

Fig. 5 . 5 ~ . The System Th02-Na20-C02-H20

15

25

at 2PC. Proiection to the Th02*C02-3Na20*4C02-H20

internal plane, represented as an equivalent triangle, along radii from the C02 vertex.

100

152

W?

% H20.

'(Th0;CO.I 30

Portion from

70 to


5.6. The System Na,O-C0,-H,O,

F. A.

25OC Isotherm

1955. London 233, 35 (1922)1

Schimmel, unpublished work performed at the Oak Ridge National Laboratory,

Significant changes from the data of Freeth [Phil. Trans. Roy. SOC.

were found throughout the range; there was closer agreement in the bicarbonate range with the data of Hill and Bacon [ J . Am. Chem. SOC. 49, 2487

(1927)I.

Transition Points Composit ion of Solution Solid Phases Present

(wt

%)

NaOH*H20 and Na2C03

40.5

0.85

Na2C03 and Na2C03*H20

31.4

0.72

Na2C03*H20 and Na2C03*7H20

18.7

6.9

Na2CO3*7H20and Na2C03*10H20

17.85

7.8

Na2C03*10H20 and Na2C03*NaHC03*2H20 (trona)

13.7

10.35

Trona and NaHC03

11.9

9.5

153


The System Na20-C02-H20,

U0C Isotherm

Composition of Saturated Solution Equilibrium Solid Phase

(wt %)

Na20

co2

41.3 40.5 40.45 31.6 31.4 31.1 29.9 26.6 25.2 23.2 23.15 21.15 19.3 18.95 18.57 18.6 18.7 18.5 17.7 18.3 17.85 17.3 16.1 15.6 15.1 13.7 13.28 13.55 14.1 13.7 17.0 16.7 13.8 11.9 11.55 10.5 9.4 8.1 6.4 5.4 3.9

0 0.85 0.8 0.67 0.72 0.78 0.5 0.4 0.55 0.9 1.o 2.3 4.3 6.0 7.5 7.8 6.9 6.75 7.95 7.3 7.8 7.88 7.9 7.92 8.1 8.85 9.4 10.15 11.0 10.35 13.0 12.7 10.35 9.5 9.3 8.8 B.0 7.5 6.5 5.75 5.0 4.95 4.93

3.56 3.47

*The formula of trona is Na2CO3*NaHCO3*m2O.

154

NaOH*H20 Na2C03 Na2C03 Na2C03 Na2C03 and Na2C03*H20 Na2C03*H20 No2C03*H20 Na2C03*H20 Na2C03*H20 No2C03*H20 Na2CO3-H2O Na2C03*H20 Na2C03*H20 Na2C03*H20 Na2C03*H20 (metastable) No2C03*H20(metastable) Na2C03*H20 and Na2C03*7H20 Na2C03*7H20(metastable) Na2C03*7H20 (metastable) Na2C03*7H20 Na2C03*7H20 and Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2CO3*1OH2O Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 (metastable) Na2C03*1O H 2 0 and trona* Trona (metastable) Trona (metastable) Trona Trona and NaHC03 NaHC03 NaHC03 NoHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03


UNCLASSIFIED ORNL-LR-DWG 38044

NoQ

J

5

10

15

20

25

30

35

40

45

155 I


i

I I

5.7.

1. C. H. Secoy, J. Am. Chem. SOC. 72, 3343 (1950) (data above 3OOOC). 2. C. H. Secoy, J. Am. Chem. SOC. 70, 3450 (1948) (data up to 300OC).

I

,

Solubility of Uranyl Sulfate in Water

3. L. Helmholtz and G. Friedlander, Physical Properties of Uranyl Sulfate Solutions, MDDC-808 (1943) (room temperature data).

i

4. C. Dittrich, Z . p h y s i k Chem. 29, 449 (1899).

1

5. E.

1 1

a 4

,

V.

Jones and

V.

Jones and W.

W. L. Marshall, HRP Quar. Prog. Rep. March 15, 1952, ORNL-1280,

p 180-83. p

6. E. 210-1 1.

L. Marshall, HRP Quar. Prog. Rep. Jan. 31, 1959, ORNL-2696,

i

The two-liquid-phase region of this system in actuality must be represented by the three 4

I

1

i,

components UO,

SO,

and H,O.

The curve representing the boundary of liquid-liquid immisci-

bility i s correct for stoichiometric solutions. However, the t i e lines within the region of immiscibility do not connect two solutions containing stoichiometric UO,SO,

but rather connect solu-

IJ

UO, and SO, (Fig. 5.10). A t low concentrations and high temperatures, that is, below 0.02 m UO,SO, and above 25OoC, hydrolysis

I

occurs to produce a nonstoichiometric solution phase.

~

i

I

~

!

tions containing varying concentrations and ratios of

concentration and temperature (see Sec 5.13).

1

i

The point of hydrolysis is dependent on

Note:

Revised data (ref

1) showed higher temperatures in this region and a possible likelihood of acid

I

Earlier data (ref

1

impurity in the solutions.

I

I

!

156

5) are used to construct the immiscibility boundary in the figure.


UNSATURATED SOLUTION ( L 2 ) +

r,

t\ -

350

SOLUTIO

TWO- LIQUID PHASES

300

\

- 250 0

0 Y

:200

UN SATURATED S 0LUT ION

3

f00

50 U02S04* 3 H20 + SOLUTION

ICE + U02S04. 3 H 2 0

-50

L

0

I

I

1

2

,

Fig. 5.7.

I

I

I

I

3 4 5 6 m, moles/1000 g H20

I 7

I 0

9

The System U0,S04-H20.

L;

157


5.8.

TwoSLiquidSPhase Region of

UO,SO,

i n Ordinary and Heavy Water

E. V. Jones and W. L. Marshall, HRP Qum. Prog. Rep. March 15,1952, ORNL-1280, p 180-83. The two curves shown are boundary curves for liquid-liquid immiscibility obtained by observing the phase-transitional behavior of known as a function of temperature.

U02S04-H20 (D20) solutions in sealed tubes

For later reference, this procedure i s designated the visual-

synthetic method. As was described in Sec

5.7, the concentrations and compositions of the two

phases within the boundary region at equilibrium cannot be obtained from this figure.

Mixtures

which are solutions at lower temperatures separate into two liquid phases as the temperature i s raised, according to the boundary curves.

‘158


UNCLASSIFIED ORNL-LR-DWG 29344

340 I

I

I

I

4

I

3 W

I-

280

270 0

1

2

3

4

5

6

m, moles U02S04 / I O 0 0 gm H20, D20 Fig. 5.8.

Two-Liquid-Phase

Region of UO,SO,

in Ordinary and Heavy

Water.

159


The System U0,-SO,-H,O

5.9.

1. A. Colani, Bull. SOC. c h i n France [41 43, 754-62 (1928). 2. J. S. Gill, E. V. Jones, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 87. The 25' data on the SO,-rich side are those of Colani. The higher temperature data are those of Gill, Jones, and Secoy, obtained by filtration techniques at temperature. The number 25, 100, and 175OC are somewhat uncertain. Subsequent unpublished work of F. E. Clark and C. H. Secoy has disclosed that the

and identity of the solid phases i n the U0,-rich

K

regions at

solid i s identical (x-ray diffraction) with the mineral uranopilite,

6UO,*SO,*Xfl,O,

that the G

solid i s not identifiable as any known mineral, and that at least one additional unidentified solid phase occurs at

25 and 100'.

The liquidus curves for the

25 and 100' isotherms are

essentially correct as shown except that the transition points (two solid phases) occur at somewhat lower concentrations than those indicated.

UNCLASSlFlED DWG 21934

H2째

.u

K = URANOPILITE 6 U 0 3 - S 0 3 *18 ( ?) H20

G = G BASIC SALT (5U0, 2S0, yH20)?

A= UO,

-u

- 2S03-1.5H20

U

Fig. 5.9~. The System U03-SO3-H20

160

ot 2PC.

6'


t !

161


U UNCLASSIFIED DWG 21936

Fig. 5 . 9 ~ . The System U03-S03-H20

162

at

179C

II


UNCLASSIFIED

163


5.10.

Coexistence Curves for Two Liquid Phases i n the System U02S04-H,S04-H20 H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Qum. Prog. Rep. Oct. 1, 1952,

ORNL-1424, p 108. A l l curves in this figure must extrapolate to the critical temperature of water (374.2OC) at zero concentration of uranium.

These are boundary curves which were determined by

observing sealed tubes in which immiscibility occurred in U0,-SO,-H,O the temperature.

solutions upon varying

As was explained in Sec 5.7, they do not represent concentrations and compo-

sitions of the two liquid phases within the temperature-concentration region of immiscibility

but are lower solution boundary curves.

164


UN ORNL-

450

425

/

400

z

375

W

a

3

5a

w a

H

W

+ 350

325

S

300

I

275 5

IO

15

20

25

URANIUM (wt %)

Fig 5.10.

Coexistence Curves for Two Liquid Phases in the System

U02S04-H2S04-H20.

165


5.11.

Two-Liquid-Phase Region of the System UO2SO4-H2SO,-H2O

R. E. Leed and C. H. Secoy, Cbem. Quat. Pmg. Rep. Sept. 30, 1950, ORNL-870, p29-30; Secoy, Cbem. Quar. Prog. Rep. Dec. 31, 1949, ORNL-607, p 33-38.

C. H.

In contrast with the immiscibility curves shown in Fig. extrapolate to a critical temperature curve for SO,-H,O

UO, i s dissolved.

Since

SO,

5.10, each of these curves must

in which a small or negligible amount of

dissolved in H,O (neglecting any dissolved UO,)

w i l l elevate the

critical temperature, the curves obtained from solutions containing a constant amount of free for H,O alone.

H2S04 w i l l a l l extrapolate to critical temperatures higher than that (374.2%)

UNCLASSIFIED

DWG. 10085

410

I

/

/I

4001

2901

0

Fig. 5.11.

166

1

I

I

I

\I

\ \ I

I IO

I

20

I I 40 50 WEIGHT PERCENT UO2SO4 I 30

I

60

I

70

Two-Liquid-Phase Region of the System U02S04-H2S04-H20.

0


5.12.

Two-Liquid=Phase Coexistence Curves for U0,-Rich

H,O With and Without

Solutions i n the System U0,-SO,-

HNO,

E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. ]uly 1, 1952, ORNL-1318, p 147-48. These curves have been obtained by the visual-synthetic method mentioned i n Sec 5.8. They are therefore boundary curves and do not describe compositions and concentrations within the i

I iqu id-I iqu id immisci bi Iity region.

UNCLASSIFIED DWG. 15625

I

!

i

lic

-w

K

I

I

I

I

1

I

I

270-

3

IU

e w a

E

300-

I-

290 -

280

j !

li

-

0

t r

io

+-

u= 1.20 AND so4

CONTAINING

n

20

30

40

TOTAL URANIUM ( w t X ) Fig. 5.12 Two-Liquid-Phose Coexistence Curves for U03-Rich Solutions in the System U0,-SO,-H,O With and Without HNOp

167


5.13. Solubility of UO, in H,SO,-H,O Mixtures W. L. Marshall, Anal. Chem. 27, 1923 (1955). The data are represented in this manner in order to show the full concentration range on one figure and to best indicate the degree of precision. The solid phase i s a-U0,*H20 below 205OC and &UO,*H,O

above 205OC. These curves represent hydrolysis equilibria.

UNCLASSIFIED ORNL-LR-DWG. i 8 4 0 A R

SOLUBILITY MOLE RATIO UO,/

Fig. 513. Solubility of U03 in H2S0,-H20

H,S04

Mixtures.

0 u U

168


5.14.

Effect of Excess

H,SO,

on the Phase Equilibria in Very Dilute UO,SO,

Solutions

1. W. L. Marshall, Anal. Chem. 27, 1923 (1955). 2. H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Quat. Prog. Rep. ORNL-1424, p 108. The curves were drawn by C. H. Secoy from data used for Figs. 5.10 and 5.13.

Oct. 1, 1952,

UNCLASSIFIED ORNL-LR-DWG t9400

350 -

- 325

-

W

LT

3

!LTz W

a 5

300

-

275 -

Fig. %14 Effect of Excess H2S04 on the Phase Equilibria in Very Dilute U02S04 Solutions.

169


5.15. Second*Liquid*Phase Temperatures of UO,SO,-Li,SO,

Solutions

R. S. Greeley, S. R. Buxton, and J. C. Griess, "High Temperature Behavior of Aqueous UO,SO,-Li

,SO,

and U02S04-BeS04,"

Meeting, New York City (Oct.

1957).

paper presented at American Nuclear Society 2nd Winter Also

R.

S.

Greeley and

J. C.

Griess, HRP Dynmic So-

lution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52,p 30-31. These data were obtained by the visual-synthetic method mentioned in Sec

400

-

5.8.

UNCLASSIFIED ORNL-LR-DWG 491Ot 7

380 360 -

u e 340

-

w

-

cc

3

I-

Q

B a

320 -

P.'003 d

280

W

-

CONCENTRATIONS ARE UNCOR FOR LOSS OF WATER TO VAPOR AT ELEVATED TEMPERATURES

260 240

-

0

Fig.

0.02

5. IS

0.05

0.t 0.2 LizSO4 ( m )

Second-Liquid-Phase

0.5

Temperatures of

4.0

2.0

U02S04-Li *SO,

5.0

So-

lutions.

c 170


5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing Li,SO, or BeSO,

R.

s.

Greeley and J.

C. Gtiess,

HRP Dynamic Solution Corrosion Studies for Quarter Ending

July 31, 1956, ORNL CF-56-7-52, p 30. Liquid-liquid immiscibility occurs a t the boundary curves as the temperature i s raised.

UNCLASSIFIED ORNL-LR-DWG 1580

40

-E

35'

W

a 3 l-

a a

0 2 S 0 4 + 25MOLE % L i 2 S 0 4

w

a z w I-

3O<

2 51

0.5

I.o

1.5 2.0 M O L A L I T Y OF UO,SO,

2.5

Fig. 5116. Second-Liquid-Phose Temperatures for UO,x), Li2S04or BeSOC

3.0

Solutions Con-

toining

Y

I

-

171


5.17. Second*Liquid.Phase Temperatures for BeSO, Solutions Containing UO,

R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies {or Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 31. Liquid-liquid immiscibility occurs at the boundary curves as the temperature i s raised.

UNCLASSIFIED ORNL-LRDWG %E04

4 OC

-

35(

I

0

0

W

a 3

I-

a

a W a

Ec

30(

254 0

C i

4.0 MOLALITY

Fig, 5.17. taining UOg

172

1.5 OF

2 .o

2.5

3.0

Beso4

Second-Liquid-Phase Temperatures fur

BeSO,

Solutions Can-


i

i

u Lj

5.18. The System NiS0,-UO,SO,-H,O

at

25OC

E. V. Jones, J. S. Gill, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1954, ORNL-1813, p

16667. Also included in the reference are solubility data for this system at 175 and 25OOC. The

data at high temperature are not in sufficient quantity for a diagram to be presented.

UNCLASSIFIED ORNL-LR-DWG 3713A

j

I= I; Fig. 518.

The System NiSOa-UO2SO4-H20 at 2 9 C .

Compositions are

plotted in weight per cent.

'U i

173


C 5.19. PhaseaTransition Temperatures in Solutions Containing CuSO,, U02S0,, and H2S04

F. E. Clark, J. S. Gill, R. Siusher, and C. H. &coy, 1. Cbem. Eng. Data4, 12 (1959). All data were obtained by the visual-synthetic method mentioned in Sec 5.8 and represent temperatures a t which immiscibility occurred upon raising the temperature.

No deductions can

be made regarding compositions within the two-liquid-phase region.

UNCLASSIFIED ORNL-LR-OWG 244226

IO

5

0

t5

0

29

5

uo2SO4 Iwt 70) 15

-f 3

I5

-r to -

10

0

20

15

-

Q

10 uO2SO4(wt%)

0

to

5

lm2SO4~wt%1

Fig. 519.

0 45

20

0

5

I5

IO

uo,so,

15

20

TEMPERATURE CONTOUR LINES (isotherms) FOR APPEARANCE OF TWO LIQUID PHASES

111111111111

REGION OF RED SOLIDS

20

E

Li

REGION OF BLUE-GREEN CRYSTALLINE SOLIOS

A

REFERENCE COMPOSITION OF 0.1m C u S a 0.t m UOzSO4

+.

REFERENCE COMPOSITION OF HRT FUEL

;5

0

IO U02SO4IWt 70)

--&v \

0 "

5

5

c c

0.005 m CuS04 0.04 m UQSO4 (PLUS co 0 0 2 5 m H2S04)155%)

(wt%)

Phase-Transition Temperatures I n Solutions containing

cum4, U02S0,

and H2SOC

C 174


The Effect of CuSO, and NiSO, on PhaseaTransition Temperatures: 0.04 m UO,SO,; 0.01 m H,SO, C. H. Secoy et al., HRP Quar. Prog. Rep. July 31, 1957, ORNL-2379, p 163. Also additional data: F. Moseley, Core SoIution StabiIity in the Homogeneous Aqueous Reactor; the Effect of Corrosion Product und Copper Concentrations, HARD(C)/P-41 (May 1957).

5.20.

The curves for liquid-liquid immiscibility were drawn from data obtained by the visualsynthetic method mentioned in Sec

5.8.

Saturation temperatures for solid-liquid equilibria were

obtained by measuring solution concentrations as a function of temperature and determining a break in the curve.

The numbers in parentheses are temperatures at which the indicated solid

phase appeared upon raising the temperature.

Solid phases indicated in parentheses were found

in small quantity.

UNCLASSIFIED OR NL- LR- D W G 23 0t 4 A

0.04

u:

264 0.03 (29 :-282 )

-282 (&9)

h

F

v

0" 0.02

!2e

0.04

175


5.21.

The System U0,-CuO-NiO-SO,-D,O

J. S. Gill, R. Slusher, and W. p 205-13.

at

L. Marshall,

300OC; 0.06 m SO,

HRP QUW. Prog. Rep. Jmz 31, 1959, ORNL-2696,

The variation in solution composition i n the presence of one, two, and three solid phases was determined at

3OOOC from 0.04 to 0.2 m SO.,

Solubility relationships a t

0.06 m SO, were ob-

c

tained from these separate solubility curves, and the skeletal volume figure for the five-component system was drawn.

Other skeletal figures can be drawn a t varibus SO,

concentrations.

This investigation i s s t i l l in progress, and the data are subject to revision.

UNCLASSIFIED ORNL- LR-OWG. 3 5 7 f 4 A

/

T Ternary Composition 0.044 m NiO 0.040m CuO 0.025 m uo3

I I I

I

0.07

I

(

I

U03. UOzS04 SOLID

QUESTIONABLE

1.03 , /

/

B

/

0

OD 2

0.04

m Fig. 5.21.

CUO

0.03

-

The System UO3-Cu0-N1O~SO3-D20 ot 3OO0C; 0.06 m SO3.

P 176

ii


5.22. Solubility of Nd,(SO,),

in

0.02 m UO,SO, Solution Containing 0.005 m H,S0,(180-3W째C)

R. E. Leuze et at., HRP Quat. Prog. Rep. April 30, 1954, ORNL-1753, p 176-79. Also included in the reference are preliminary solubility data for rare earth sulfate mixtures as well as Ce,(SO,),

and La,(SO,),

in 0.02 m

UO,SO,, 0.005 m H,SO,.

UNCLASSIFIED

ORNL-LR-DWG 925A

40.0

5.0

TRACER- FILTRATION METHOD

'\.-.

J-

'Q \, .

--- 9,.-

I

I

1 I

P

--a-

0.1

(80

200

220

240

TEMPERATURE Fig. 5.22.

260

280

300

("C)

blubility of Ndz(S04), in 0.02 m U02S04 Solution Containing

0.005 m H ,SO, ( 180-300째C).

177


5.23. Solubility of La,(SO,), in UO,SO, Solutions E. V. Jones, M, H. Lietrke, and W. L. Marshall, J . Am, Chem. SOC. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water mzd in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

Experimental data for Figs. 5.23-5.27 were obtained by the visual-synthetic method described in Sec 5.8. The very large effect of UO,SO, must be noted and indicates considerable solvation of other species by aqueous UO,SO,, UNCLASSIFI

DWG. 1464

300

-

I

1

iI -

I

A TWO L I Q U I D PHASES A MUTHMANN AND ROLIQ

I

25C

I

I \

\

\

0

0 Y

W E

IN 4.35 m U02 SO4

2oc r

2,

I-

a a W a H

W I-

15c

IN 0.427 m U02S04

1 oc

-

\

\J

IN H20

t 5(

1.0

I

I

I

2.0

3.0

4.0

L a 2 ( S O 4 I 3 ( w t ‘IO) Fig. 5.23.

178

Solubility of

Lo,(SO$~

in UO,sO,

blutions.

L’

li C


5.24. Solubility

of

CdSO, in UO,SO,

Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also The Solubility

of

Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous Uranyl SuZfate Solution,

ORNL CF-55-7-69 (declassified Aug. 23, 1955).

See comments in Sec 5.23. UNCLASSlFlED DWG. 14613A

25C

I

I

IN 0.127 m UOS , O,

li

20c

h

0 0 Y

W

150

LT 3

!-

a

LT W

:k

a

I I

I-

i

z W

1oc

@

BENRATH

50

i i

0 I

Fig. 5.24

Solubility of CdSO, in U01S04 Solutions.

179


5.25. Solubility of Cr,SO, in U02S0, Solutions E. V. Jones, M. H. Lietrkc, and W.

L, Marshall, I.

Am. Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69(declassified Aug. 23, 1955). See comments in Sec

5.23.

UNCLASSIFIED DWG. 146!7A

I;

I

Fig.

5.25.

Solubility of

Cs$04 in U0,504 blutionr.

'44 180


5.26. Solubility of Y &SO,),

in UO,SO,

Solutions

E. V. Jones, M. H. Lietzke, and W. The Solubility

of

L.

Marshall,

/. Am. Chem.

SOC.

79, 267 (1957); also

Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec

5.23. UNCLASSIFIED D W G 14635A

35c

I

I

I

I

I

I

I

I

I

I

I

30C

-

250

V

0

Y

W K

3

tE w a

5I200

tl

L i

irv

IO0

I

I

i .o

I

2.0 Y2

Fig, 5.26.

Solubility of

(SO,),

3.0 ( w t Yo)

Y2(SO4I3 i n UO,SO,

Solutions.

I 4.0


P -!J

5.27. Solubility of Ag,SO,

in UO,SO,

LJ

Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous UrunyZ Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).

B

See comments in Sec 5.23. UNCLASSlnEO DWG. 14645A

-

Fig. 5.27.

182

Solubility of AB2%,

(WT%) in

U02S04 blutionr.

c

c

- BARRE

Ag,Ss

u


aqueous

U02S0,. UNCLASSIFIED

DWG. 45530A

400

I

i

I

I

I

I

I

I

I

I

I

I

I

1

I

I

:-: 40 -I rn

3 J

0

cn

v)

0 c

x

E

*

Y

0

cn

4.0

B

c I,

0.4

I

I

I

I

I

1

I

MOLALITY

u

I

I

uo,so,

Fig. L28. Solubility at 25OoC of BaSO, in UO2S0,-H20

i

I

Solutions.

183


J 5.29.

0.126 and 1.26 M UO,SO, C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Solubility of H2W04i n

Quar. Prog. Rep. Oct. 31, 1953,

ORNL-1658, p 96-99.

u

The data shown in the figures were obtained by direct sampling of equilibrated solutions, by the filter bomb method, and by the synthetic method described previously in Sec

5.8.

In 0.126 M

H2W04 first shows a positive temperature coefficient of solubility and In 1.26 M U02s04 the temperature then, above 100째C, a negative coefficient of solubility.

UO,SO,

the solubility of

coefficient of solubility is positive up to form

- a characteristic of U02S04-H,O

285q the temperature at which two liquid phases

solutions.

t:

UNGLA SSlFl ED DWG. 247608

300

G 200 v

w

U

3 + a

U

w

Q

H

E 100

0

0

t.0 2.0 SOLUBILITY (MOLARITY OF H,WO,

3.0 x to3)

Fig. 5 . 2 9 ~ Solubility of H2W04 in 0.126 M UOzS04.

u


UNCLASSIFIED

DWG. 21757 B

300 TWO LIQUID PHASES

I

lb

SOLUTION

c

-,o 200

SOLID + SOLUTION

0 10 20 30 SOLUBILITY ( MOLARITY OF H ~ W Ox io3) ~

0

Fig.

129b. Solubility of H,WO,

in

40

1.26 M U0,%,

I

185 i


E 5.30. Phase Stability of H,WO,

in

1.26 M UO,F,

C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 96-99. The methods of solubility and stability determination were the same as for analogous studies of

H,WO,

in UO,SO,

(Sec

5.29). The data on the figure as drawn show temperatures a t which

u

hydrolytic precipitation of an unidentified solid phase occurs from solutions stable a t lower temperatures.

P


UNCLASSIFIED DWG.24764 B

300

-

0

200

0

SOLID

w U

? a U

w

ii

!

i!

a I

+

I SOLUTION

A'

T SOLUTION

E too

I

/

h;. 0 0

1.0 2.0 3.0 SOLUBILITY (MOLARITY OF H,WO,

Fig. 5.30.

i!

j

4.0 x

5.0

to3)

Phose Stability of H2W0, in 1.26 M U02Fr

il 11

187


5.31.

The System UO,(NO,),-H,O

1. Reported in full by W. L. Marshall, J. S, Gill, and C. H. Secoy, Chem. Qum. Prog. Rep. Match 31, 1951, ORNL-1053, p 22-25.

2. Reported in part by W. L. Marshall, J. S. Gill, and C. H. Secoy, I. A m Chem. SOC. 73, 1867 (1951). AS i n the case of the system UO,SO,-H20, hydrolysis occurs at high temperatures and low concentrations, resulting in precipitation of UO,*H,O from stoichiometric U02(N0,), solutions. In addition, decompqsition of NO’, occurs at elevated temperature to produce an equilibrium vapor phase of nitrogen oxides. temperature up to point

F

Letter A represents a region of complete solution.

Data at low

were obtained by direct analysis of equilibrated solutions, whereas

the high-temperature data were obtained by the visual-synthetic method described in Sec 5.8.

188


400

UNCLASSIFIED DWG. 10868

I

I

I

I

I

I

I

I

1

G n

350

300

I

250

:I L i

o^ 200 Y

A

IO0

0, ::PRECIPITATION LIMITS

= VAPOR PHASE COLORATION

50

0

3

Fig L31. The System U02(N03)2-H20.


5.32. Phase Equilibria of UO, and HF in Stoichiometric Concentrations (Aqueous System) W. L. Marshall,

J. S. Gill,

C. H. Secoy, J . Am. Chem. SOC. 76, 4279 (1954).

and

The two-liquid-phase region and the region of "basic" are in actuality segments of the three-component system phases are nonstoichiometric with regard to UO,F,. system

U0,-H,SO,-H,O

400

U0,-HF-H,O,

in which

he equilibrium

This system is somewhat analogous to the

I

I

I

I

I

I

I SOLID + SUPER CRITICAL FLUID

I

H -A-A-A-A-A--AA-A-&-

I-

+ saturated solution

5.7).

I

I

I

350

(see See

solid solution

I

y UOeF2* 2H20+LIQUID I

300

250

V

0,

200 K UNSATURATED SOLUTION

U

3

i-

a a

f 5I-

150

7'

€34

100

16 .'e

A OUR DATA

00

,fe(D U02F2 - 2H20 + SATURATED $ SOLUTION a

€3 DATA OF DEAN

50

0 DATA OF KUNIN

f

A

0 ICE +SATURATED SOL'N.

- 5_ 0_

Fig.

I

I

0

o-.-.-.a.*.

!O

132 Phase

20

Equilibria of

I

I

0;B

I

30 40 50 60 WEIGHT PERCENT AS U02F2

U 0 3 and HF

I

I 70

80

in Stoichiometric Concentrations (Aqucous System).

90


5.33. Solubility of Uranium Trioxide i n Orthophosphoric Acid Solutions W. L. Marshall, J.S. Gill, and H. W. Wright, HRP Qum. Ptog. Rep. May 15, 1951, ORNL-1057, p 112-15. The data were obtained for the most part by equilibrating solutions of known concentration in sealed tubes for various times at different temperatures.

Phase changes were observed visually.

UNCLASSIFIED DWG. 11232

350

I

I

I

I

I

I

I

----I

/--

'0

CURVE A I MOLAR Ha PO4 CURVE B EMOLAR H3 PO4 CURVE C 3MOLAR H3 PO4 00

I OUR DATA

4 A

KUHN AN0 RYON

0

LOS ALAMOS

191


clj 5.34, Solubility of Uranium Trioxide in Phosphoric Acid at 250OC

J. S. Gill, W. L. Marshal1,and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951,ORNL-l121, p

LI

119-21. Solution and solid mixtures were equated at 25OOC in sealed glass tubes.

The tubes were

cooled rapidly to room temperature, and the solution and solid phases were analyzed.

The slow

€j

n

reversibility of equilibrium conditions made this procedure possible.

1.6

1.4

1.2

-s^ m 0 3

1.0

Y

0

>-

k 0.8

2

m

' 3

-I

0.6

0.4

0.2

C 0

2

1

3

4

CONCENTRATION OF H,PO,

Fig.

5.34.

5

6

7

8

(Y)

Solubility of Uronium Trioxide in Phosphoric Acid at 250°C.

U

c 192


5.35. Solubility of UO, in H,PO, Solution

B. J. Thamer et al., The Properties of Phosphoric Acid Solutions of Uranium 4s Fuels for Homogeneous Reactors, LA-2043 (March 6 , 1956); W. L. Marshall, J. S. Gill, and H. W. Wright, HRP Quar. Prog. Rep. M a y 15, 1951, ORNL-1057, p 112-15; and J. s. Gill, W. L. Marshall, and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951, ORNL-1121, p 119-21. This figure represents a compilation from the data of B. J. Thamer et al. of Los Alamos and W. L. Marshall et al. of Oak Ridge National Laboratory.

UNCLASSIFIED ORN L LR DWG 293 46

- -

2

1

> k 4

\

0.5

A 0

I 3

0.2

0.1 1.o

2

5

40

20

PO4 MOLARITY Fig.

5.35.

Solubility of

UO, I? H3P04 slution.

193


U 5.36.

The System U02Cr04-H20 ’ 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, J . Am. Chem. SOC. 77, 4705 (1955). 2. W. L. Marshall, HRP Qum. Prog. Rep. Mmcb 31, 1953, ORNL-1554, p 105-6. The solid phases are U02Cr045’/2H20 (A) and U 0 2 C r 0 4 d 2 0 ( B ) . Curve rs represents

il

the boundary of a region in which hydrolytic precipitation of a basic uranyl chromate occurs. In the same concentration range the dichromate, U02Cr20,, and apparently dissolves in the supercritical fluid (ref

i s stsble to the critical temperature

2).

E

UNCLASSIFIED

ORNL-LR-DWG 54448

t40

I

I I NON-BINARY (30 -SOLID LIQUID

I

I

n

-

+

-

-

120

-

too-

c

90

B

r

+ LIQUID -

LIQUID

1

80

70 60 50 40 30 A

20

+ LIQUID

to 0

A

80

-10

0

10

20

30

40

50

60

70

Uo2Cro4 (.wt o/~) Fig. %36.

The System U02Cr0,-H20.

90

400

c


U

L

Li k;

5.37.

Variation of Li ,CO, Solubility with UO,CO, Concentration at Constant CO, Pressure (25OOC) 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, HRP Quar. P t o g . Rep. Iuly 31, 1955, ORNL-1943, p 227-35. 2. W. L. Marshall, F. J. Loprest, and C. H, Secoy, HRP Quat. Prog. Rep. Jan. 31, 1956, ORNL-2057, p 131-32.

L

The solubility relationships in the figure indicate strong complexing of UO,cO, under CO, pressure. The formation of HCO,'

species in solution i s

with Li,CO,

indicated.

UN CLASS ORNL-LR-DW

4 .ooo

0.800

-

0.600

Y

F

rg

0 0

I .-I

Pt

0.400

0.200

L

00

F i g 5.37. I '

a,

* -

.

4

3.37 moles of Li per mole of U (LiZCO3 IS SOLID PHASE) * . .I I . 4.44 motes OT LI per mole OT u AT ISOBARIC INVARIANT 1

1 -

a

I

.

.I.

-I-I

0

2 0.04 0.06 0.08 0.10 0.12

Variation of Li2C03 Solubility with

0.i4

0.t6

0.48

UOZC03 Concentration at

Constant C 0 2 Pressure (25OOC).

195


~

5.38. The System Li20-U03-C0,-H20 a t 2 5 0 O C and 1500 psi 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, H R P Quar. Prog. R e p . July 31, 1955,

Ll

ORNL-1943, p 227-35.

2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, H R P Quat. Pmg. R e p . J m 31, 1956, ORNL-2057, p 131-32. As CO, pressure i s increased, the area of complete solution (indicated by the shading)

G

increases. As temperature i s increased, the solution area decreases.

UNCLASSIFIED ORNL-LR-DWG 143428

H2째

100

90

10

0

5

10

U03(Wt%) Fig. 5.38.

196

The System Li20-U03-C02-H20

at 25pC and 1500 psi.

u


5.39.

The

System

Th(NO,),=H,O

1. Reported in full by W. L. Marshall, J. S. Gill, and C. H. &coy, HRP Quar. Prog. Rep. NOW 30, 1950, ORNL-925, p 279-90. 2. W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. SOC. 73, 4991 (1951). Hydrolytic precipitation of Tho, and thermal decomposition of NO,- in this system occur in an analogous manner to the reactions occurring in the system UO,(NO,),-H,O (see Sec 5.31).

1

A t higher temperatures the two-component system in actuality must be considered

II; i

three components Tho,,

HNO,,

in terms of

the

and H,O. UNCLASSIFIED DWG. 9967

u

Y

WEIGHT PERCENT Th(N03)4

Fig. 5.39.

The System Th(NO.J4-H2O.

197


5.40.

Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions

1. W.

L.

Marshall and

C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658,

ORNL-1053, p 22-25. The data used to draw the individual curves were obtained by observations at various temperatures of tubes that contained different solutions of known concentration. was analogous to that used for obtaining data for Fig. tation of UO,(NO,),

5.33.

The procedure

The curve for hydrolytic precipi-

i s taken from ref 2.

UNCLASSIFIED ORNL-LR-DWG. 247598

380 1

I

I

1

340

Y

440

400

4 2 .o 4.0 THORIUM, URANIUM ( M )

Fig. 5.40.

Hydrolytic Stobiliiy of Thorium Nitrate-Nitric

Nitrate Solutions.

198

Acid and Uranyl


5.41. The System ThO,-CrO,-H,O at 25OC 1. H. T. S. Britton, J. Cbsm. SOC. 123, 1429 (1923). 2. W. L. Marshall, F. J. Loprest, and c. H. Secoy, HRP Quar. Prog. Rep. Jan. 31, 19S5,

ORNL-1853, p 205-6. 2 5 O was determined by Britton. Points 1-7 indicate compositions investigated at high temperature by Marshall, Loprest, and Secoy. These solution compositions The phase diagram at

were phase stable up to 16OOC for point

7 and 32OOC for

point

1.

UNCLASSIFIED ORNL-LR-DWG 5020A

Flg. 141.

ystc

,-Cr03-H20

at

29C.

Compositions are in

weight per cent.

I

,

i

liv Ll

199


5.42.

Phase Stability of

Th0,-H3P0,-H,0

W. L. Marshall, experimental data

Tho, in ORNL research notebook 2881, p 35 (May 1953). Solutions at High Concentrations of

Solutions of uppropriate concentrations were prepared and analyzed.

These solutions were

sealed i n glass tubes and shaken at various temperatures for times varying from days.

In this manner the phase stability boundaries with respect to concentration and temper-

ature were established.

At first inspection of the figure it i s surprising that more Tho, can be

dissolved per liter at the lower H,PO,/ThO,

ratio than at the higher ratio.

Actually, there

Tho,

i s a physical volume limitation due to the high fractional volumes occupied by As any solution i s diluted with

at these concentrations.

H,O,

and

H3P0,

hydrolysis of thorium i n solution

occurs. At room temperature, solutions in which the H,PO4/ThO2

1O:l

1 hr to several

ratio is

5 1 are gels, whereas

ratio solutions are s t i l l fluid.

400

350 0

1

UNCLASSIFIED ORNL- LR - DWG,38529

I

I

I

I

I

I

1

\I” 1

300

250

>’’:&

HYDROLYTIC PRECIPITATION> REGION

HYDROLYTIC PREClPlTATION REGION

I-

\I

200

FOR 40:4 MOLE RATIO, %FQ4/Th02

>’

).

k I

I

I

-

y’qi,$zpN FOR 5:t MOLE RATIO, H3P04/Th02

I

I

I

GRAMS Tho2 PER LITER OF SOLUTION (25°C) Fig. 5.42

Phose Stability of Th02-H3P04-H20

Solutions at High Concentrations of T h O r

200 A


ACKNOWLEDGMENT

Acknowledgment i s made to the following for permission to reproduce copyrighted material: American Ceramic Society American Institute of Mining, Metallurgical, and Petroleum Engineers

Analytical Chemistry ]oumal of Chemical and Engineering Data

Ioumal of Physical Chemistry Iournal of the American Chemical Society

U.S. Atomic Energy Commission

201



0RNL-2548

4J

-

Chemistry General TID-4500 (15th ed.)

I

I!

IN TERN AL DI ST RI BU TI0N

1. 2. 3. 4.

R. D. Ackley R. E. Adams

G. M. Adamson L. G. Alexander 5. K. A. Allen 6. C. F. Baes 7-11. C. J. Barton 12. S. E. Beall 13. P. R. Bell 14. J. 0. Betterton 15. A. M. Bilfings 16. D. S. Billington 17. C. A. Blake 18. J. P. Blakely 19. R. E. Blanco 20. F. F. Blankenship 21. M. Blander 22. E. P. Blizard 23. C. M. Blood 24. A. L. Boch 25. E. G. Bohlman 26. S. E. Bolt 27. G. E. Boyd 28. M. A. Bredig 29. J. C. Bresee 30. R. B. Briggs 31. H. R. Bronstein 32. J. R. Brown 33. K. B. Brown 34. W. E. Browning 35. F. R. Bruce 36. W. D. Burch 37. S. R. Buxton 38. S. Cantor

55. J. S. Culver 56. D. R. Cuneo 57. J. E. Cunninaham 58. D. G. Davis 59. R. J. Davis 60. W. C. Davis 61. J. H. DeVan 62. R. R. Dickison 63. L. M. Doney 64. F. A. Doss 65. J. S. Drury 66. A. S. Dworkin 67. L. B. Emlet (K-25) 68. J. L. English 69. J. E. Eorgan 70. R. B. Evans 71. D. E. Ferguson 72. J. L. Fowler 73. A. P. Fraas 74. H. A. Friedman 75. J. H. Frye, Jr. 76. C. H. Gabbard 77. W. R. Gall 78. J. S. Gill 79. J. H. Gillette 80. L. 0. Gilpatrick 81. J. M. Googin (Y-12) 82. R. S. Greeley 93. A. T. Gresky 84. J. C. Griess 85-89. W. R. Grimes 90. E. Guth 91. P. A. Haas 92. P. H. Harley 93.

94. 95. 96. 97. 98. 99.

C. S. HarriII L. A. Harris P. N. Haubenreich G. M. Hebert

H. L. Hemphill J. W. H i l l E. C. Hire 100. E. E. Hoffman

52. J. H. Crawford 53. C. R. Croft 54.

F. L. Culler

103. R. W. Horton 104. A. S. Householder 105. H. lnsley 106. G. H. Jenks 107. D. T. Jones 108. E. V. Jones

203


109. W. H. Jordan 110. P. R. Kasten 111. G. W. Keilholtz 112. C. P. Keim 113. M. T. Kelley 114. M. J. Kelley 115. B. W. Kinyon 116. N. A. Krohn 117. J. A. Lane 118. S. Longer 119. C. G. Lawson 120. J. E. Lee, Jr. 121. R. E. Leed 122. R. E. Leuze 123. W. H. Lewis 124. M. H. Lietzke 125. T. A. Lincoln 126. S. C. Lind 127. R. B. Lindauer 128. R. S. Livingston 129. J. T. Long 130. R. A. Lorenz 131. R. E. Lowrie 132. M. 1. Lundin 133. R. N. Lyon 134. J. P. McBride 135. W. B. McDonald 136. H. F. McDuffie 137. H. A. McLain 138. R. A. McNees 139. H. G. MacPherson 140. T. N. McVay 141. J. R. McWherter 142. W. D. Manly 143-147. W. L. Marshall 148. R. E. Meadows 149. R. P. Metcalf 150. R. P. Milford 151. A. J. Miller 152. J. W. Miller 153. C. S. Morgan 154. K. Z. Morgan 155. R. E. Moore 156. R. L. Moore 157. J. P. Murray (Y-12) 158. M. L. Nelson 159. G. J. Nessle 160. R. F. Newton 161. L. G. Overholser 162. L. F. Parsly, Jr. 163. R. L. Pearson 164. F. N. Peebles

204

165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179, 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204-213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225.

D. Phillips L. R. Phillips (Y-12) M. L. Picklesimer W. T. Rainey A. D. Redman S. A. Reed P. M. Reyling D. M. Richardson R. C. Robertson A. D. Ryon H. C. Savage H. W. Savage F. A. Schimmel (Y-12) J. M. Schmitt J. M. Schreyer (Y-12) H. E. Seagren C. H. Secoy C. L. Segaser J. H. Shaffer E. M. Shank R. J. Shell R. P. Shields E. D. Shipley M. D. Silverman M. J. Skinner R. Slusher N. V. Smith W. T. Smith, Jr. A. H. Snell B. A. Soldano 1. Spiewak H. H. Stone R. A. Strehlow 8. J. Sturm C. D. Susano J. E. Sutherland J. A. Swartout A. Taboada E. H. Taylor R. E. Thoma D. G. Thomas M. Tobias D. S. Toomb D. B. Trauger J. Truitt W. E. Unger R. Van Winkle F. C. VonderLage W. T. Ward G. M. Watson B. S. Weaver C. F. Weaver I


226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237.

A. M. Weinberg K. W. West M. E. Whatley G. C. Williams C. E. Winters H. W. Wright J. P. Young F. C. Zapp P. H. Emmett (consultant) H. Eyring (consultant) D. G. Hill (consultant) C. E. Larson (consultant) ,

I:

~

238. 239. 240. 241. 242. 243-244. 245. 246-265. 266. 267. 268.

W. 0. Milligan (consultant)

J. E. Ricci (consultant) G. T. Seaborg (consultant) E. P. Wigner (consultant) Biology Library Central Research Library Health Physics Library Laboratory Records Department Laboratory Records, ORNL R.C. Reactor Experimental Engineering Library ORNL Y-12 Technical Library, Document Reference Section

-

EXTERNAL DISTRIBUTION

269-270. Stanford Research Institute, Menlo Park, Calif. (1 copy ea. to D. Cubicciotti and J. W. Johnson) 271-272. National Lead Co., P. 0. Box 158, Cincinnati 39, Ohio (1 copy ea. to R. E. DeMarco and K. Notz) 273. Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St., Washington 8, D.C. (J. W. Grieg) 274. Mound Laboratory, Miamisburg, Ohio (E. F. Eichelberger) 275-276. Minnesota Mining and Manufacturing Co., Central Research Dept., 2301 Hudson Rd., St. Paul 9, Minn. (1 copy ea. to J. R. Johnson and G. D. White) 277. Chemical Separations and Development Branch, Nuclear Technology, Division of Reactor Development, AEC, Washington 25, D.C. (F. Kerze, Jr.) 278. Dept. of Chemistry, Brown University, Providence 12, R.I. (C. A. Kraus) 279. Mallinckrodt Chemical Works, Uranium Division, P.O. Box 472, St. Charles, Mo. (C. W. Kuhlman) 280. Portland Cement Association Fellowship, National Bureau of Standards, Washington 25, D. C. (E. M. Levin) 281-282. National Carbon Research Laboratories, P.O. Box 6116, Cleveland, Ohio (1 copy ea. to G. W. Mellors and S. Senderoff)

283. College of Mineral Industries, Pennsylvania State University, University Park, Pa. 285. 286. 289.

290.

1663, Los Alamos, N. M. (B. J. Thamer) Dept. of Physics, University of Chicago, Chicago, 111. (W. H. Zachariasen) Reaction Motors Division, Thiokol Chemical Corp., Denville, N.J. (F. L. Loprest) ington 25, D. C. (H. F. McMurdie) National Bureau of Standards, 25, D.C. (G. W. Morey) rbide Corporation, Parma, Ohio (F. E. Clark) National Carbon Division of Res pment, AEC, Washington

291. Division of Res 292. Division of Reactor Deve

2

. Given distribution as shown i n TID-4500 (15th ed.) -

under Chemistry-General category

(75 copies OTS)

205


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.